1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * commsup.c 15 * 16 * Abstract: Contain all routines that are required for FSA host/adapter 17 * communication. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/crash_dump.h> 23 #include <linux/types.h> 24 #include <linux/sched.h> 25 #include <linux/pci.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/completion.h> 29 #include <linux/blkdev.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/interrupt.h> 33 #include <linux/bcd.h> 34 #include <scsi/scsi.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_device.h> 37 #include <scsi/scsi_cmnd.h> 38 39 #include "aacraid.h" 40 41 /** 42 * fib_map_alloc - allocate the fib objects 43 * @dev: Adapter to allocate for 44 * 45 * Allocate and map the shared PCI space for the FIB blocks used to 46 * talk to the Adaptec firmware. 47 */ 48 49 static int fib_map_alloc(struct aac_dev *dev) 50 { 51 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 52 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 53 else 54 dev->max_cmd_size = dev->max_fib_size; 55 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 56 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 57 } else { 58 dev->max_cmd_size = dev->max_fib_size; 59 } 60 61 dprintk((KERN_INFO 62 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 63 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 64 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 65 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 66 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 68 &dev->hw_fib_pa, GFP_KERNEL); 69 if (dev->hw_fib_va == NULL) 70 return -ENOMEM; 71 return 0; 72 } 73 74 /** 75 * aac_fib_map_free - free the fib objects 76 * @dev: Adapter to free 77 * 78 * Free the PCI mappings and the memory allocated for FIB blocks 79 * on this adapter. 80 */ 81 82 void aac_fib_map_free(struct aac_dev *dev) 83 { 84 size_t alloc_size; 85 size_t fib_size; 86 int num_fibs; 87 88 if(!dev->hw_fib_va || !dev->max_cmd_size) 89 return; 90 91 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 92 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 93 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 94 95 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 96 dev->hw_fib_pa); 97 98 dev->hw_fib_va = NULL; 99 dev->hw_fib_pa = 0; 100 } 101 102 void aac_fib_vector_assign(struct aac_dev *dev) 103 { 104 u32 i = 0; 105 u32 vector = 1; 106 struct fib *fibptr = NULL; 107 108 for (i = 0, fibptr = &dev->fibs[i]; 109 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 110 i++, fibptr++) { 111 if ((dev->max_msix == 1) || 112 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 113 - dev->vector_cap))) { 114 fibptr->vector_no = 0; 115 } else { 116 fibptr->vector_no = vector; 117 vector++; 118 if (vector == dev->max_msix) 119 vector = 1; 120 } 121 } 122 } 123 124 /** 125 * aac_fib_setup - setup the fibs 126 * @dev: Adapter to set up 127 * 128 * Allocate the PCI space for the fibs, map it and then initialise the 129 * fib area, the unmapped fib data and also the free list 130 */ 131 132 int aac_fib_setup(struct aac_dev * dev) 133 { 134 struct fib *fibptr; 135 struct hw_fib *hw_fib; 136 dma_addr_t hw_fib_pa; 137 int i; 138 u32 max_cmds; 139 140 while (((i = fib_map_alloc(dev)) == -ENOMEM) 141 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 142 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 143 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 144 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 145 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 146 } 147 if (i<0) 148 return -ENOMEM; 149 150 memset(dev->hw_fib_va, 0, 151 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 152 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 153 154 /* 32 byte alignment for PMC */ 155 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 156 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 157 (hw_fib_pa - dev->hw_fib_pa)); 158 159 /* add Xport header */ 160 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 161 sizeof(struct aac_fib_xporthdr)); 162 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 163 164 /* 165 * Initialise the fibs 166 */ 167 for (i = 0, fibptr = &dev->fibs[i]; 168 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 169 i++, fibptr++) 170 { 171 fibptr->flags = 0; 172 fibptr->size = sizeof(struct fib); 173 fibptr->dev = dev; 174 fibptr->hw_fib_va = hw_fib; 175 fibptr->data = (void *) fibptr->hw_fib_va->data; 176 fibptr->next = fibptr+1; /* Forward chain the fibs */ 177 init_completion(&fibptr->event_wait); 178 spin_lock_init(&fibptr->event_lock); 179 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 180 hw_fib->header.SenderSize = 181 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 182 fibptr->hw_fib_pa = hw_fib_pa; 183 fibptr->hw_sgl_pa = hw_fib_pa + 184 offsetof(struct aac_hba_cmd_req, sge[2]); 185 /* 186 * one element is for the ptr to the separate sg list, 187 * second element for 32 byte alignment 188 */ 189 fibptr->hw_error_pa = hw_fib_pa + 190 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 191 192 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 193 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 194 hw_fib_pa = hw_fib_pa + 195 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 196 } 197 198 /* 199 *Assign vector numbers to fibs 200 */ 201 aac_fib_vector_assign(dev); 202 203 /* 204 * Add the fib chain to the free list 205 */ 206 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 207 /* 208 * Set 8 fibs aside for management tools 209 */ 210 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 211 return 0; 212 } 213 214 /** 215 * aac_fib_alloc_tag-allocate a fib using tags 216 * @dev: Adapter to allocate the fib for 217 * 218 * Allocate a fib from the adapter fib pool using tags 219 * from the blk layer. 220 */ 221 222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 223 { 224 struct fib *fibptr; 225 226 fibptr = &dev->fibs[scmd->request->tag]; 227 /* 228 * Null out fields that depend on being zero at the start of 229 * each I/O 230 */ 231 fibptr->hw_fib_va->header.XferState = 0; 232 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 233 fibptr->callback_data = NULL; 234 fibptr->callback = NULL; 235 fibptr->flags = 0; 236 237 return fibptr; 238 } 239 240 /** 241 * aac_fib_alloc - allocate a fib 242 * @dev: Adapter to allocate the fib for 243 * 244 * Allocate a fib from the adapter fib pool. If the pool is empty we 245 * return NULL. 246 */ 247 248 struct fib *aac_fib_alloc(struct aac_dev *dev) 249 { 250 struct fib * fibptr; 251 unsigned long flags; 252 spin_lock_irqsave(&dev->fib_lock, flags); 253 fibptr = dev->free_fib; 254 if(!fibptr){ 255 spin_unlock_irqrestore(&dev->fib_lock, flags); 256 return fibptr; 257 } 258 dev->free_fib = fibptr->next; 259 spin_unlock_irqrestore(&dev->fib_lock, flags); 260 /* 261 * Set the proper node type code and node byte size 262 */ 263 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 264 fibptr->size = sizeof(struct fib); 265 /* 266 * Null out fields that depend on being zero at the start of 267 * each I/O 268 */ 269 fibptr->hw_fib_va->header.XferState = 0; 270 fibptr->flags = 0; 271 fibptr->callback = NULL; 272 fibptr->callback_data = NULL; 273 274 return fibptr; 275 } 276 277 /** 278 * aac_fib_free - free a fib 279 * @fibptr: fib to free up 280 * 281 * Frees up a fib and places it on the appropriate queue 282 */ 283 284 void aac_fib_free(struct fib *fibptr) 285 { 286 unsigned long flags; 287 288 if (fibptr->done == 2) 289 return; 290 291 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 292 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 293 aac_config.fib_timeouts++; 294 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 295 fibptr->hw_fib_va->header.XferState != 0) { 296 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 297 (void*)fibptr, 298 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 299 } 300 fibptr->next = fibptr->dev->free_fib; 301 fibptr->dev->free_fib = fibptr; 302 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 303 } 304 305 /** 306 * aac_fib_init - initialise a fib 307 * @fibptr: The fib to initialize 308 * 309 * Set up the generic fib fields ready for use 310 */ 311 312 void aac_fib_init(struct fib *fibptr) 313 { 314 struct hw_fib *hw_fib = fibptr->hw_fib_va; 315 316 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 317 hw_fib->header.StructType = FIB_MAGIC; 318 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 319 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 320 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 321 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 322 } 323 324 /** 325 * fib_deallocate - deallocate a fib 326 * @fibptr: fib to deallocate 327 * 328 * Will deallocate and return to the free pool the FIB pointed to by the 329 * caller. 330 */ 331 332 static void fib_dealloc(struct fib * fibptr) 333 { 334 struct hw_fib *hw_fib = fibptr->hw_fib_va; 335 hw_fib->header.XferState = 0; 336 } 337 338 /* 339 * Commuication primitives define and support the queuing method we use to 340 * support host to adapter commuication. All queue accesses happen through 341 * these routines and are the only routines which have a knowledge of the 342 * how these queues are implemented. 343 */ 344 345 /** 346 * aac_get_entry - get a queue entry 347 * @dev: Adapter 348 * @qid: Queue Number 349 * @entry: Entry return 350 * @index: Index return 351 * @nonotify: notification control 352 * 353 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 354 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 355 * returned. 356 */ 357 358 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 359 { 360 struct aac_queue * q; 361 unsigned long idx; 362 363 /* 364 * All of the queues wrap when they reach the end, so we check 365 * to see if they have reached the end and if they have we just 366 * set the index back to zero. This is a wrap. You could or off 367 * the high bits in all updates but this is a bit faster I think. 368 */ 369 370 q = &dev->queues->queue[qid]; 371 372 idx = *index = le32_to_cpu(*(q->headers.producer)); 373 /* Interrupt Moderation, only interrupt for first two entries */ 374 if (idx != le32_to_cpu(*(q->headers.consumer))) { 375 if (--idx == 0) { 376 if (qid == AdapNormCmdQueue) 377 idx = ADAP_NORM_CMD_ENTRIES; 378 else 379 idx = ADAP_NORM_RESP_ENTRIES; 380 } 381 if (idx != le32_to_cpu(*(q->headers.consumer))) 382 *nonotify = 1; 383 } 384 385 if (qid == AdapNormCmdQueue) { 386 if (*index >= ADAP_NORM_CMD_ENTRIES) 387 *index = 0; /* Wrap to front of the Producer Queue. */ 388 } else { 389 if (*index >= ADAP_NORM_RESP_ENTRIES) 390 *index = 0; /* Wrap to front of the Producer Queue. */ 391 } 392 393 /* Queue is full */ 394 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 395 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 396 qid, atomic_read(&q->numpending)); 397 return 0; 398 } else { 399 *entry = q->base + *index; 400 return 1; 401 } 402 } 403 404 /** 405 * aac_queue_get - get the next free QE 406 * @dev: Adapter 407 * @index: Returned index 408 * @priority: Priority of fib 409 * @fib: Fib to associate with the queue entry 410 * @wait: Wait if queue full 411 * @fibptr: Driver fib object to go with fib 412 * @nonotify: Don't notify the adapter 413 * 414 * Gets the next free QE off the requested priorty adapter command 415 * queue and associates the Fib with the QE. The QE represented by 416 * index is ready to insert on the queue when this routine returns 417 * success. 418 */ 419 420 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 421 { 422 struct aac_entry * entry = NULL; 423 int map = 0; 424 425 if (qid == AdapNormCmdQueue) { 426 /* if no entries wait for some if caller wants to */ 427 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 428 printk(KERN_ERR "GetEntries failed\n"); 429 } 430 /* 431 * Setup queue entry with a command, status and fib mapped 432 */ 433 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 434 map = 1; 435 } else { 436 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 437 /* if no entries wait for some if caller wants to */ 438 } 439 /* 440 * Setup queue entry with command, status and fib mapped 441 */ 442 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 443 entry->addr = hw_fib->header.SenderFibAddress; 444 /* Restore adapters pointer to the FIB */ 445 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 446 map = 0; 447 } 448 /* 449 * If MapFib is true than we need to map the Fib and put pointers 450 * in the queue entry. 451 */ 452 if (map) 453 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 454 return 0; 455 } 456 457 /* 458 * Define the highest level of host to adapter communication routines. 459 * These routines will support host to adapter FS commuication. These 460 * routines have no knowledge of the commuication method used. This level 461 * sends and receives FIBs. This level has no knowledge of how these FIBs 462 * get passed back and forth. 463 */ 464 465 /** 466 * aac_fib_send - send a fib to the adapter 467 * @command: Command to send 468 * @fibptr: The fib 469 * @size: Size of fib data area 470 * @priority: Priority of Fib 471 * @wait: Async/sync select 472 * @reply: True if a reply is wanted 473 * @callback: Called with reply 474 * @callback_data: Passed to callback 475 * 476 * Sends the requested FIB to the adapter and optionally will wait for a 477 * response FIB. If the caller does not wish to wait for a response than 478 * an event to wait on must be supplied. This event will be set when a 479 * response FIB is received from the adapter. 480 */ 481 482 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 483 int priority, int wait, int reply, fib_callback callback, 484 void *callback_data) 485 { 486 struct aac_dev * dev = fibptr->dev; 487 struct hw_fib * hw_fib = fibptr->hw_fib_va; 488 unsigned long flags = 0; 489 unsigned long mflags = 0; 490 unsigned long sflags = 0; 491 492 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 493 return -EBUSY; 494 495 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 496 return -EINVAL; 497 498 /* 499 * There are 5 cases with the wait and response requested flags. 500 * The only invalid cases are if the caller requests to wait and 501 * does not request a response and if the caller does not want a 502 * response and the Fib is not allocated from pool. If a response 503 * is not requested the Fib will just be deallocaed by the DPC 504 * routine when the response comes back from the adapter. No 505 * further processing will be done besides deleting the Fib. We 506 * will have a debug mode where the adapter can notify the host 507 * it had a problem and the host can log that fact. 508 */ 509 fibptr->flags = 0; 510 if (wait && !reply) { 511 return -EINVAL; 512 } else if (!wait && reply) { 513 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 514 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 515 } else if (!wait && !reply) { 516 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 517 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 518 } else if (wait && reply) { 519 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 520 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 521 } 522 /* 523 * Map the fib into 32bits by using the fib number 524 */ 525 526 hw_fib->header.SenderFibAddress = 527 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 528 529 /* use the same shifted value for handle to be compatible 530 * with the new native hba command handle 531 */ 532 hw_fib->header.Handle = 533 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 534 535 /* 536 * Set FIB state to indicate where it came from and if we want a 537 * response from the adapter. Also load the command from the 538 * caller. 539 * 540 * Map the hw fib pointer as a 32bit value 541 */ 542 hw_fib->header.Command = cpu_to_le16(command); 543 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 544 /* 545 * Set the size of the Fib we want to send to the adapter 546 */ 547 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 548 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 549 return -EMSGSIZE; 550 } 551 /* 552 * Get a queue entry connect the FIB to it and send an notify 553 * the adapter a command is ready. 554 */ 555 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 556 557 /* 558 * Fill in the Callback and CallbackContext if we are not 559 * going to wait. 560 */ 561 if (!wait) { 562 fibptr->callback = callback; 563 fibptr->callback_data = callback_data; 564 fibptr->flags = FIB_CONTEXT_FLAG; 565 } 566 567 fibptr->done = 0; 568 569 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 570 571 dprintk((KERN_DEBUG "Fib contents:.\n")); 572 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 573 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 574 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 575 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 576 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 577 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 578 579 if (!dev->queues) 580 return -EBUSY; 581 582 if (wait) { 583 584 spin_lock_irqsave(&dev->manage_lock, mflags); 585 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 586 printk(KERN_INFO "No management Fibs Available:%d\n", 587 dev->management_fib_count); 588 spin_unlock_irqrestore(&dev->manage_lock, mflags); 589 return -EBUSY; 590 } 591 dev->management_fib_count++; 592 spin_unlock_irqrestore(&dev->manage_lock, mflags); 593 spin_lock_irqsave(&fibptr->event_lock, flags); 594 } 595 596 if (dev->sync_mode) { 597 if (wait) 598 spin_unlock_irqrestore(&fibptr->event_lock, flags); 599 spin_lock_irqsave(&dev->sync_lock, sflags); 600 if (dev->sync_fib) { 601 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 602 spin_unlock_irqrestore(&dev->sync_lock, sflags); 603 } else { 604 dev->sync_fib = fibptr; 605 spin_unlock_irqrestore(&dev->sync_lock, sflags); 606 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 607 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 608 NULL, NULL, NULL, NULL, NULL); 609 } 610 if (wait) { 611 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 612 if (wait_for_completion_interruptible(&fibptr->event_wait)) { 613 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 614 return -EFAULT; 615 } 616 return 0; 617 } 618 return -EINPROGRESS; 619 } 620 621 if (aac_adapter_deliver(fibptr) != 0) { 622 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 623 if (wait) { 624 spin_unlock_irqrestore(&fibptr->event_lock, flags); 625 spin_lock_irqsave(&dev->manage_lock, mflags); 626 dev->management_fib_count--; 627 spin_unlock_irqrestore(&dev->manage_lock, mflags); 628 } 629 return -EBUSY; 630 } 631 632 633 /* 634 * If the caller wanted us to wait for response wait now. 635 */ 636 637 if (wait) { 638 spin_unlock_irqrestore(&fibptr->event_lock, flags); 639 /* Only set for first known interruptable command */ 640 if (wait < 0) { 641 /* 642 * *VERY* Dangerous to time out a command, the 643 * assumption is made that we have no hope of 644 * functioning because an interrupt routing or other 645 * hardware failure has occurred. 646 */ 647 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 648 while (!try_wait_for_completion(&fibptr->event_wait)) { 649 int blink; 650 if (time_is_before_eq_jiffies(timeout)) { 651 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 652 atomic_dec(&q->numpending); 653 if (wait == -1) { 654 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 655 "Usually a result of a PCI interrupt routing problem;\n" 656 "update mother board BIOS or consider utilizing one of\n" 657 "the SAFE mode kernel options (acpi, apic etc)\n"); 658 } 659 return -ETIMEDOUT; 660 } 661 662 if (unlikely(aac_pci_offline(dev))) 663 return -EFAULT; 664 665 if ((blink = aac_adapter_check_health(dev)) > 0) { 666 if (wait == -1) { 667 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 668 "Usually a result of a serious unrecoverable hardware problem\n", 669 blink); 670 } 671 return -EFAULT; 672 } 673 /* 674 * Allow other processes / CPUS to use core 675 */ 676 schedule(); 677 } 678 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) { 679 /* Do nothing ... satisfy 680 * wait_for_completion_interruptible must_check */ 681 } 682 683 spin_lock_irqsave(&fibptr->event_lock, flags); 684 if (fibptr->done == 0) { 685 fibptr->done = 2; /* Tell interrupt we aborted */ 686 spin_unlock_irqrestore(&fibptr->event_lock, flags); 687 return -ERESTARTSYS; 688 } 689 spin_unlock_irqrestore(&fibptr->event_lock, flags); 690 BUG_ON(fibptr->done == 0); 691 692 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 693 return -ETIMEDOUT; 694 return 0; 695 } 696 /* 697 * If the user does not want a response than return success otherwise 698 * return pending 699 */ 700 if (reply) 701 return -EINPROGRESS; 702 else 703 return 0; 704 } 705 706 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 707 void *callback_data) 708 { 709 struct aac_dev *dev = fibptr->dev; 710 int wait; 711 unsigned long flags = 0; 712 unsigned long mflags = 0; 713 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) 714 fibptr->hw_fib_va; 715 716 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 717 if (callback) { 718 wait = 0; 719 fibptr->callback = callback; 720 fibptr->callback_data = callback_data; 721 } else 722 wait = 1; 723 724 725 hbacmd->iu_type = command; 726 727 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 728 /* bit1 of request_id must be 0 */ 729 hbacmd->request_id = 730 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 731 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 732 } else 733 return -EINVAL; 734 735 736 if (wait) { 737 spin_lock_irqsave(&dev->manage_lock, mflags); 738 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 739 spin_unlock_irqrestore(&dev->manage_lock, mflags); 740 return -EBUSY; 741 } 742 dev->management_fib_count++; 743 spin_unlock_irqrestore(&dev->manage_lock, mflags); 744 spin_lock_irqsave(&fibptr->event_lock, flags); 745 } 746 747 if (aac_adapter_deliver(fibptr) != 0) { 748 if (wait) { 749 spin_unlock_irqrestore(&fibptr->event_lock, flags); 750 spin_lock_irqsave(&dev->manage_lock, mflags); 751 dev->management_fib_count--; 752 spin_unlock_irqrestore(&dev->manage_lock, mflags); 753 } 754 return -EBUSY; 755 } 756 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 757 758 if (wait) { 759 760 spin_unlock_irqrestore(&fibptr->event_lock, flags); 761 762 if (unlikely(aac_pci_offline(dev))) 763 return -EFAULT; 764 765 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 766 if (wait_for_completion_interruptible(&fibptr->event_wait)) 767 fibptr->done = 2; 768 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 769 770 spin_lock_irqsave(&fibptr->event_lock, flags); 771 if ((fibptr->done == 0) || (fibptr->done == 2)) { 772 fibptr->done = 2; /* Tell interrupt we aborted */ 773 spin_unlock_irqrestore(&fibptr->event_lock, flags); 774 return -ERESTARTSYS; 775 } 776 spin_unlock_irqrestore(&fibptr->event_lock, flags); 777 WARN_ON(fibptr->done == 0); 778 779 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 780 return -ETIMEDOUT; 781 782 return 0; 783 } 784 785 return -EINPROGRESS; 786 } 787 788 /** 789 * aac_consumer_get - get the top of the queue 790 * @dev: Adapter 791 * @q: Queue 792 * @entry: Return entry 793 * 794 * Will return a pointer to the entry on the top of the queue requested that 795 * we are a consumer of, and return the address of the queue entry. It does 796 * not change the state of the queue. 797 */ 798 799 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 800 { 801 u32 index; 802 int status; 803 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 804 status = 0; 805 } else { 806 /* 807 * The consumer index must be wrapped if we have reached 808 * the end of the queue, else we just use the entry 809 * pointed to by the header index 810 */ 811 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 812 index = 0; 813 else 814 index = le32_to_cpu(*q->headers.consumer); 815 *entry = q->base + index; 816 status = 1; 817 } 818 return(status); 819 } 820 821 /** 822 * aac_consumer_free - free consumer entry 823 * @dev: Adapter 824 * @q: Queue 825 * @qid: Queue ident 826 * 827 * Frees up the current top of the queue we are a consumer of. If the 828 * queue was full notify the producer that the queue is no longer full. 829 */ 830 831 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 832 { 833 int wasfull = 0; 834 u32 notify; 835 836 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 837 wasfull = 1; 838 839 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 840 *q->headers.consumer = cpu_to_le32(1); 841 else 842 le32_add_cpu(q->headers.consumer, 1); 843 844 if (wasfull) { 845 switch (qid) { 846 847 case HostNormCmdQueue: 848 notify = HostNormCmdNotFull; 849 break; 850 case HostNormRespQueue: 851 notify = HostNormRespNotFull; 852 break; 853 default: 854 BUG(); 855 return; 856 } 857 aac_adapter_notify(dev, notify); 858 } 859 } 860 861 /** 862 * aac_fib_adapter_complete - complete adapter issued fib 863 * @fibptr: fib to complete 864 * @size: size of fib 865 * 866 * Will do all necessary work to complete a FIB that was sent from 867 * the adapter. 868 */ 869 870 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 871 { 872 struct hw_fib * hw_fib = fibptr->hw_fib_va; 873 struct aac_dev * dev = fibptr->dev; 874 struct aac_queue * q; 875 unsigned long nointr = 0; 876 unsigned long qflags; 877 878 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 879 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 880 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 881 kfree(hw_fib); 882 return 0; 883 } 884 885 if (hw_fib->header.XferState == 0) { 886 if (dev->comm_interface == AAC_COMM_MESSAGE) 887 kfree(hw_fib); 888 return 0; 889 } 890 /* 891 * If we plan to do anything check the structure type first. 892 */ 893 if (hw_fib->header.StructType != FIB_MAGIC && 894 hw_fib->header.StructType != FIB_MAGIC2 && 895 hw_fib->header.StructType != FIB_MAGIC2_64) { 896 if (dev->comm_interface == AAC_COMM_MESSAGE) 897 kfree(hw_fib); 898 return -EINVAL; 899 } 900 /* 901 * This block handles the case where the adapter had sent us a 902 * command and we have finished processing the command. We 903 * call completeFib when we are done processing the command 904 * and want to send a response back to the adapter. This will 905 * send the completed cdb to the adapter. 906 */ 907 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 908 if (dev->comm_interface == AAC_COMM_MESSAGE) { 909 kfree (hw_fib); 910 } else { 911 u32 index; 912 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 913 if (size) { 914 size += sizeof(struct aac_fibhdr); 915 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 916 return -EMSGSIZE; 917 hw_fib->header.Size = cpu_to_le16(size); 918 } 919 q = &dev->queues->queue[AdapNormRespQueue]; 920 spin_lock_irqsave(q->lock, qflags); 921 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 922 *(q->headers.producer) = cpu_to_le32(index + 1); 923 spin_unlock_irqrestore(q->lock, qflags); 924 if (!(nointr & (int)aac_config.irq_mod)) 925 aac_adapter_notify(dev, AdapNormRespQueue); 926 } 927 } else { 928 printk(KERN_WARNING "aac_fib_adapter_complete: " 929 "Unknown xferstate detected.\n"); 930 BUG(); 931 } 932 return 0; 933 } 934 935 /** 936 * aac_fib_complete - fib completion handler 937 * @fib: FIB to complete 938 * 939 * Will do all necessary work to complete a FIB. 940 */ 941 942 int aac_fib_complete(struct fib *fibptr) 943 { 944 struct hw_fib * hw_fib = fibptr->hw_fib_va; 945 946 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 947 fib_dealloc(fibptr); 948 return 0; 949 } 950 951 /* 952 * Check for a fib which has already been completed or with a 953 * status wait timeout 954 */ 955 956 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 957 return 0; 958 /* 959 * If we plan to do anything check the structure type first. 960 */ 961 962 if (hw_fib->header.StructType != FIB_MAGIC && 963 hw_fib->header.StructType != FIB_MAGIC2 && 964 hw_fib->header.StructType != FIB_MAGIC2_64) 965 return -EINVAL; 966 /* 967 * This block completes a cdb which orginated on the host and we 968 * just need to deallocate the cdb or reinit it. At this point the 969 * command is complete that we had sent to the adapter and this 970 * cdb could be reused. 971 */ 972 973 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 974 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 975 { 976 fib_dealloc(fibptr); 977 } 978 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 979 { 980 /* 981 * This handles the case when the host has aborted the I/O 982 * to the adapter because the adapter is not responding 983 */ 984 fib_dealloc(fibptr); 985 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 986 fib_dealloc(fibptr); 987 } else { 988 BUG(); 989 } 990 return 0; 991 } 992 993 /** 994 * aac_printf - handle printf from firmware 995 * @dev: Adapter 996 * @val: Message info 997 * 998 * Print a message passed to us by the controller firmware on the 999 * Adaptec board 1000 */ 1001 1002 void aac_printf(struct aac_dev *dev, u32 val) 1003 { 1004 char *cp = dev->printfbuf; 1005 if (dev->printf_enabled) 1006 { 1007 int length = val & 0xffff; 1008 int level = (val >> 16) & 0xffff; 1009 1010 /* 1011 * The size of the printfbuf is set in port.c 1012 * There is no variable or define for it 1013 */ 1014 if (length > 255) 1015 length = 255; 1016 if (cp[length] != 0) 1017 cp[length] = 0; 1018 if (level == LOG_AAC_HIGH_ERROR) 1019 printk(KERN_WARNING "%s:%s", dev->name, cp); 1020 else 1021 printk(KERN_INFO "%s:%s", dev->name, cp); 1022 } 1023 memset(cp, 0, 256); 1024 } 1025 1026 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1027 { 1028 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1029 } 1030 1031 1032 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1033 { 1034 switch (aac_aif_data(aifcmd, 1)) { 1035 case AifBuCacheDataLoss: 1036 if (aac_aif_data(aifcmd, 2)) 1037 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1038 aac_aif_data(aifcmd, 2)); 1039 else 1040 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1041 break; 1042 case AifBuCacheDataRecover: 1043 if (aac_aif_data(aifcmd, 2)) 1044 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1045 aac_aif_data(aifcmd, 2)); 1046 else 1047 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1048 break; 1049 } 1050 } 1051 1052 /** 1053 * aac_handle_aif - Handle a message from the firmware 1054 * @dev: Which adapter this fib is from 1055 * @fibptr: Pointer to fibptr from adapter 1056 * 1057 * This routine handles a driver notify fib from the adapter and 1058 * dispatches it to the appropriate routine for handling. 1059 */ 1060 1061 #define AIF_SNIFF_TIMEOUT (500*HZ) 1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1063 { 1064 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1065 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1066 u32 channel, id, lun, container; 1067 struct scsi_device *device; 1068 enum { 1069 NOTHING, 1070 DELETE, 1071 ADD, 1072 CHANGE 1073 } device_config_needed = NOTHING; 1074 1075 /* Sniff for container changes */ 1076 1077 if (!dev || !dev->fsa_dev) 1078 return; 1079 container = channel = id = lun = (u32)-1; 1080 1081 /* 1082 * We have set this up to try and minimize the number of 1083 * re-configures that take place. As a result of this when 1084 * certain AIF's come in we will set a flag waiting for another 1085 * type of AIF before setting the re-config flag. 1086 */ 1087 switch (le32_to_cpu(aifcmd->command)) { 1088 case AifCmdDriverNotify: 1089 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1090 case AifRawDeviceRemove: 1091 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1092 if ((container >> 28)) { 1093 container = (u32)-1; 1094 break; 1095 } 1096 channel = (container >> 24) & 0xF; 1097 if (channel >= dev->maximum_num_channels) { 1098 container = (u32)-1; 1099 break; 1100 } 1101 id = container & 0xFFFF; 1102 if (id >= dev->maximum_num_physicals) { 1103 container = (u32)-1; 1104 break; 1105 } 1106 lun = (container >> 16) & 0xFF; 1107 container = (u32)-1; 1108 channel = aac_phys_to_logical(channel); 1109 device_config_needed = DELETE; 1110 break; 1111 1112 /* 1113 * Morph or Expand complete 1114 */ 1115 case AifDenMorphComplete: 1116 case AifDenVolumeExtendComplete: 1117 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1118 if (container >= dev->maximum_num_containers) 1119 break; 1120 1121 /* 1122 * Find the scsi_device associated with the SCSI 1123 * address. Make sure we have the right array, and if 1124 * so set the flag to initiate a new re-config once we 1125 * see an AifEnConfigChange AIF come through. 1126 */ 1127 1128 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1129 device = scsi_device_lookup(dev->scsi_host_ptr, 1130 CONTAINER_TO_CHANNEL(container), 1131 CONTAINER_TO_ID(container), 1132 CONTAINER_TO_LUN(container)); 1133 if (device) { 1134 dev->fsa_dev[container].config_needed = CHANGE; 1135 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1136 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1137 scsi_device_put(device); 1138 } 1139 } 1140 } 1141 1142 /* 1143 * If we are waiting on something and this happens to be 1144 * that thing then set the re-configure flag. 1145 */ 1146 if (container != (u32)-1) { 1147 if (container >= dev->maximum_num_containers) 1148 break; 1149 if ((dev->fsa_dev[container].config_waiting_on == 1150 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1151 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1152 dev->fsa_dev[container].config_waiting_on = 0; 1153 } else for (container = 0; 1154 container < dev->maximum_num_containers; ++container) { 1155 if ((dev->fsa_dev[container].config_waiting_on == 1156 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1157 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1158 dev->fsa_dev[container].config_waiting_on = 0; 1159 } 1160 break; 1161 1162 case AifCmdEventNotify: 1163 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1164 case AifEnBatteryEvent: 1165 dev->cache_protected = 1166 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1167 break; 1168 /* 1169 * Add an Array. 1170 */ 1171 case AifEnAddContainer: 1172 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1173 if (container >= dev->maximum_num_containers) 1174 break; 1175 dev->fsa_dev[container].config_needed = ADD; 1176 dev->fsa_dev[container].config_waiting_on = 1177 AifEnConfigChange; 1178 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1179 break; 1180 1181 /* 1182 * Delete an Array. 1183 */ 1184 case AifEnDeleteContainer: 1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1186 if (container >= dev->maximum_num_containers) 1187 break; 1188 dev->fsa_dev[container].config_needed = DELETE; 1189 dev->fsa_dev[container].config_waiting_on = 1190 AifEnConfigChange; 1191 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1192 break; 1193 1194 /* 1195 * Container change detected. If we currently are not 1196 * waiting on something else, setup to wait on a Config Change. 1197 */ 1198 case AifEnContainerChange: 1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1200 if (container >= dev->maximum_num_containers) 1201 break; 1202 if (dev->fsa_dev[container].config_waiting_on && 1203 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1204 break; 1205 dev->fsa_dev[container].config_needed = CHANGE; 1206 dev->fsa_dev[container].config_waiting_on = 1207 AifEnConfigChange; 1208 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1209 break; 1210 1211 case AifEnConfigChange: 1212 break; 1213 1214 case AifEnAddJBOD: 1215 case AifEnDeleteJBOD: 1216 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1217 if ((container >> 28)) { 1218 container = (u32)-1; 1219 break; 1220 } 1221 channel = (container >> 24) & 0xF; 1222 if (channel >= dev->maximum_num_channels) { 1223 container = (u32)-1; 1224 break; 1225 } 1226 id = container & 0xFFFF; 1227 if (id >= dev->maximum_num_physicals) { 1228 container = (u32)-1; 1229 break; 1230 } 1231 lun = (container >> 16) & 0xFF; 1232 container = (u32)-1; 1233 channel = aac_phys_to_logical(channel); 1234 device_config_needed = 1235 (((__le32 *)aifcmd->data)[0] == 1236 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1237 if (device_config_needed == ADD) { 1238 device = scsi_device_lookup(dev->scsi_host_ptr, 1239 channel, 1240 id, 1241 lun); 1242 if (device) { 1243 scsi_remove_device(device); 1244 scsi_device_put(device); 1245 } 1246 } 1247 break; 1248 1249 case AifEnEnclosureManagement: 1250 /* 1251 * If in JBOD mode, automatic exposure of new 1252 * physical target to be suppressed until configured. 1253 */ 1254 if (dev->jbod) 1255 break; 1256 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1257 case EM_DRIVE_INSERTION: 1258 case EM_DRIVE_REMOVAL: 1259 case EM_SES_DRIVE_INSERTION: 1260 case EM_SES_DRIVE_REMOVAL: 1261 container = le32_to_cpu( 1262 ((__le32 *)aifcmd->data)[2]); 1263 if ((container >> 28)) { 1264 container = (u32)-1; 1265 break; 1266 } 1267 channel = (container >> 24) & 0xF; 1268 if (channel >= dev->maximum_num_channels) { 1269 container = (u32)-1; 1270 break; 1271 } 1272 id = container & 0xFFFF; 1273 lun = (container >> 16) & 0xFF; 1274 container = (u32)-1; 1275 if (id >= dev->maximum_num_physicals) { 1276 /* legacy dev_t ? */ 1277 if ((0x2000 <= id) || lun || channel || 1278 ((channel = (id >> 7) & 0x3F) >= 1279 dev->maximum_num_channels)) 1280 break; 1281 lun = (id >> 4) & 7; 1282 id &= 0xF; 1283 } 1284 channel = aac_phys_to_logical(channel); 1285 device_config_needed = 1286 ((((__le32 *)aifcmd->data)[3] 1287 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1288 (((__le32 *)aifcmd->data)[3] 1289 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1290 ADD : DELETE; 1291 break; 1292 } 1293 break; 1294 case AifBuManagerEvent: 1295 aac_handle_aif_bu(dev, aifcmd); 1296 break; 1297 } 1298 1299 /* 1300 * If we are waiting on something and this happens to be 1301 * that thing then set the re-configure flag. 1302 */ 1303 if (container != (u32)-1) { 1304 if (container >= dev->maximum_num_containers) 1305 break; 1306 if ((dev->fsa_dev[container].config_waiting_on == 1307 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1308 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1309 dev->fsa_dev[container].config_waiting_on = 0; 1310 } else for (container = 0; 1311 container < dev->maximum_num_containers; ++container) { 1312 if ((dev->fsa_dev[container].config_waiting_on == 1313 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1314 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1315 dev->fsa_dev[container].config_waiting_on = 0; 1316 } 1317 break; 1318 1319 case AifCmdJobProgress: 1320 /* 1321 * These are job progress AIF's. When a Clear is being 1322 * done on a container it is initially created then hidden from 1323 * the OS. When the clear completes we don't get a config 1324 * change so we monitor the job status complete on a clear then 1325 * wait for a container change. 1326 */ 1327 1328 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1329 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1330 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1331 for (container = 0; 1332 container < dev->maximum_num_containers; 1333 ++container) { 1334 /* 1335 * Stomp on all config sequencing for all 1336 * containers? 1337 */ 1338 dev->fsa_dev[container].config_waiting_on = 1339 AifEnContainerChange; 1340 dev->fsa_dev[container].config_needed = ADD; 1341 dev->fsa_dev[container].config_waiting_stamp = 1342 jiffies; 1343 } 1344 } 1345 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1346 ((__le32 *)aifcmd->data)[6] == 0 && 1347 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1348 for (container = 0; 1349 container < dev->maximum_num_containers; 1350 ++container) { 1351 /* 1352 * Stomp on all config sequencing for all 1353 * containers? 1354 */ 1355 dev->fsa_dev[container].config_waiting_on = 1356 AifEnContainerChange; 1357 dev->fsa_dev[container].config_needed = DELETE; 1358 dev->fsa_dev[container].config_waiting_stamp = 1359 jiffies; 1360 } 1361 } 1362 break; 1363 } 1364 1365 container = 0; 1366 retry_next: 1367 if (device_config_needed == NOTHING) { 1368 for (; container < dev->maximum_num_containers; ++container) { 1369 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1370 (dev->fsa_dev[container].config_needed != NOTHING) && 1371 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1372 device_config_needed = 1373 dev->fsa_dev[container].config_needed; 1374 dev->fsa_dev[container].config_needed = NOTHING; 1375 channel = CONTAINER_TO_CHANNEL(container); 1376 id = CONTAINER_TO_ID(container); 1377 lun = CONTAINER_TO_LUN(container); 1378 break; 1379 } 1380 } 1381 } 1382 if (device_config_needed == NOTHING) 1383 return; 1384 1385 /* 1386 * If we decided that a re-configuration needs to be done, 1387 * schedule it here on the way out the door, please close the door 1388 * behind you. 1389 */ 1390 1391 /* 1392 * Find the scsi_device associated with the SCSI address, 1393 * and mark it as changed, invalidating the cache. This deals 1394 * with changes to existing device IDs. 1395 */ 1396 1397 if (!dev || !dev->scsi_host_ptr) 1398 return; 1399 /* 1400 * force reload of disk info via aac_probe_container 1401 */ 1402 if ((channel == CONTAINER_CHANNEL) && 1403 (device_config_needed != NOTHING)) { 1404 if (dev->fsa_dev[container].valid == 1) 1405 dev->fsa_dev[container].valid = 2; 1406 aac_probe_container(dev, container); 1407 } 1408 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1409 if (device) { 1410 switch (device_config_needed) { 1411 case DELETE: 1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1413 scsi_remove_device(device); 1414 #else 1415 if (scsi_device_online(device)) { 1416 scsi_device_set_state(device, SDEV_OFFLINE); 1417 sdev_printk(KERN_INFO, device, 1418 "Device offlined - %s\n", 1419 (channel == CONTAINER_CHANNEL) ? 1420 "array deleted" : 1421 "enclosure services event"); 1422 } 1423 #endif 1424 break; 1425 case ADD: 1426 if (!scsi_device_online(device)) { 1427 sdev_printk(KERN_INFO, device, 1428 "Device online - %s\n", 1429 (channel == CONTAINER_CHANNEL) ? 1430 "array created" : 1431 "enclosure services event"); 1432 scsi_device_set_state(device, SDEV_RUNNING); 1433 } 1434 /* FALLTHRU */ 1435 case CHANGE: 1436 if ((channel == CONTAINER_CHANNEL) 1437 && (!dev->fsa_dev[container].valid)) { 1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1439 scsi_remove_device(device); 1440 #else 1441 if (!scsi_device_online(device)) 1442 break; 1443 scsi_device_set_state(device, SDEV_OFFLINE); 1444 sdev_printk(KERN_INFO, device, 1445 "Device offlined - %s\n", 1446 "array failed"); 1447 #endif 1448 break; 1449 } 1450 scsi_rescan_device(&device->sdev_gendev); 1451 1452 default: 1453 break; 1454 } 1455 scsi_device_put(device); 1456 device_config_needed = NOTHING; 1457 } 1458 if (device_config_needed == ADD) 1459 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1460 if (channel == CONTAINER_CHANNEL) { 1461 container++; 1462 device_config_needed = NOTHING; 1463 goto retry_next; 1464 } 1465 } 1466 1467 static void aac_schedule_bus_scan(struct aac_dev *aac) 1468 { 1469 if (aac->sa_firmware) 1470 aac_schedule_safw_scan_worker(aac); 1471 else 1472 aac_schedule_src_reinit_aif_worker(aac); 1473 } 1474 1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1476 { 1477 int index, quirks; 1478 int retval; 1479 struct Scsi_Host *host = aac->scsi_host_ptr; 1480 int jafo = 0; 1481 int bled; 1482 u64 dmamask; 1483 int num_of_fibs = 0; 1484 1485 /* 1486 * Assumptions: 1487 * - host is locked, unless called by the aacraid thread. 1488 * (a matter of convenience, due to legacy issues surrounding 1489 * eh_host_adapter_reset). 1490 * - in_reset is asserted, so no new i/o is getting to the 1491 * card. 1492 * - The card is dead, or will be very shortly ;-/ so no new 1493 * commands are completing in the interrupt service. 1494 */ 1495 aac_adapter_disable_int(aac); 1496 if (aac->thread && aac->thread->pid != current->pid) { 1497 spin_unlock_irq(host->host_lock); 1498 kthread_stop(aac->thread); 1499 aac->thread = NULL; 1500 jafo = 1; 1501 } 1502 1503 /* 1504 * If a positive health, means in a known DEAD PANIC 1505 * state and the adapter could be reset to `try again'. 1506 */ 1507 bled = forced ? 0 : aac_adapter_check_health(aac); 1508 retval = aac_adapter_restart(aac, bled, reset_type); 1509 1510 if (retval) 1511 goto out; 1512 1513 /* 1514 * Loop through the fibs, close the synchronous FIBS 1515 */ 1516 retval = 1; 1517 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1518 for (index = 0; index < num_of_fibs; index++) { 1519 1520 struct fib *fib = &aac->fibs[index]; 1521 __le32 XferState = fib->hw_fib_va->header.XferState; 1522 bool is_response_expected = false; 1523 1524 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1525 (XferState & cpu_to_le32(ResponseExpected))) 1526 is_response_expected = true; 1527 1528 if (is_response_expected 1529 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1530 unsigned long flagv; 1531 spin_lock_irqsave(&fib->event_lock, flagv); 1532 complete(&fib->event_wait); 1533 spin_unlock_irqrestore(&fib->event_lock, flagv); 1534 schedule(); 1535 retval = 0; 1536 } 1537 } 1538 /* Give some extra time for ioctls to complete. */ 1539 if (retval == 0) 1540 ssleep(2); 1541 index = aac->cardtype; 1542 1543 /* 1544 * Re-initialize the adapter, first free resources, then carefully 1545 * apply the initialization sequence to come back again. Only risk 1546 * is a change in Firmware dropping cache, it is assumed the caller 1547 * will ensure that i/o is queisced and the card is flushed in that 1548 * case. 1549 */ 1550 aac_free_irq(aac); 1551 aac_fib_map_free(aac); 1552 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1553 aac->comm_phys); 1554 aac->comm_addr = NULL; 1555 aac->comm_phys = 0; 1556 kfree(aac->queues); 1557 aac->queues = NULL; 1558 kfree(aac->fsa_dev); 1559 aac->fsa_dev = NULL; 1560 1561 dmamask = DMA_BIT_MASK(32); 1562 quirks = aac_get_driver_ident(index)->quirks; 1563 if (quirks & AAC_QUIRK_31BIT) 1564 retval = pci_set_dma_mask(aac->pdev, dmamask); 1565 else if (!(quirks & AAC_QUIRK_SRC)) 1566 retval = pci_set_dma_mask(aac->pdev, dmamask); 1567 else 1568 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1569 1570 if (quirks & AAC_QUIRK_31BIT && !retval) { 1571 dmamask = DMA_BIT_MASK(31); 1572 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1573 } 1574 1575 if (retval) 1576 goto out; 1577 1578 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1579 goto out; 1580 1581 if (jafo) { 1582 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1583 aac->name); 1584 if (IS_ERR(aac->thread)) { 1585 retval = PTR_ERR(aac->thread); 1586 aac->thread = NULL; 1587 goto out; 1588 } 1589 } 1590 (void)aac_get_adapter_info(aac); 1591 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1592 host->sg_tablesize = 34; 1593 host->max_sectors = (host->sg_tablesize * 8) + 112; 1594 } 1595 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1596 host->sg_tablesize = 17; 1597 host->max_sectors = (host->sg_tablesize * 8) + 112; 1598 } 1599 aac_get_config_status(aac, 1); 1600 aac_get_containers(aac); 1601 /* 1602 * This is where the assumption that the Adapter is quiesced 1603 * is important. 1604 */ 1605 scsi_host_complete_all_commands(host, DID_RESET); 1606 1607 retval = 0; 1608 out: 1609 aac->in_reset = 0; 1610 1611 /* 1612 * Issue bus rescan to catch any configuration that might have 1613 * occurred 1614 */ 1615 if (!retval && !is_kdump_kernel()) { 1616 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1617 aac_schedule_bus_scan(aac); 1618 } 1619 1620 if (jafo) { 1621 spin_lock_irq(host->host_lock); 1622 } 1623 return retval; 1624 } 1625 1626 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1627 { 1628 unsigned long flagv = 0; 1629 int retval; 1630 struct Scsi_Host *host = aac->scsi_host_ptr; 1631 int bled; 1632 1633 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1634 return -EBUSY; 1635 1636 if (aac->in_reset) { 1637 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1638 return -EBUSY; 1639 } 1640 aac->in_reset = 1; 1641 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1642 1643 /* 1644 * Wait for all commands to complete to this specific 1645 * target (block maximum 60 seconds). Although not necessary, 1646 * it does make us a good storage citizen. 1647 */ 1648 scsi_host_block(host); 1649 1650 /* Quiesce build, flush cache, write through mode */ 1651 if (forced < 2) 1652 aac_send_shutdown(aac); 1653 spin_lock_irqsave(host->host_lock, flagv); 1654 bled = forced ? forced : 1655 (aac_check_reset != 0 && aac_check_reset != 1); 1656 retval = _aac_reset_adapter(aac, bled, reset_type); 1657 spin_unlock_irqrestore(host->host_lock, flagv); 1658 1659 retval = scsi_host_unblock(host, SDEV_RUNNING); 1660 1661 if ((forced < 2) && (retval == -ENODEV)) { 1662 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1663 struct fib * fibctx = aac_fib_alloc(aac); 1664 if (fibctx) { 1665 struct aac_pause *cmd; 1666 int status; 1667 1668 aac_fib_init(fibctx); 1669 1670 cmd = (struct aac_pause *) fib_data(fibctx); 1671 1672 cmd->command = cpu_to_le32(VM_ContainerConfig); 1673 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1674 cmd->timeout = cpu_to_le32(1); 1675 cmd->min = cpu_to_le32(1); 1676 cmd->noRescan = cpu_to_le32(1); 1677 cmd->count = cpu_to_le32(0); 1678 1679 status = aac_fib_send(ContainerCommand, 1680 fibctx, 1681 sizeof(struct aac_pause), 1682 FsaNormal, 1683 -2 /* Timeout silently */, 1, 1684 NULL, NULL); 1685 1686 if (status >= 0) 1687 aac_fib_complete(fibctx); 1688 /* FIB should be freed only after getting 1689 * the response from the F/W */ 1690 if (status != -ERESTARTSYS) 1691 aac_fib_free(fibctx); 1692 } 1693 } 1694 1695 return retval; 1696 } 1697 1698 int aac_check_health(struct aac_dev * aac) 1699 { 1700 int BlinkLED; 1701 unsigned long time_now, flagv = 0; 1702 struct list_head * entry; 1703 1704 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1705 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1706 return 0; 1707 1708 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1709 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1710 return 0; /* OK */ 1711 } 1712 1713 aac->in_reset = 1; 1714 1715 /* Fake up an AIF: 1716 * aac_aifcmd.command = AifCmdEventNotify = 1 1717 * aac_aifcmd.seqnum = 0xFFFFFFFF 1718 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1719 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1720 * aac.aifcmd.data[2] = AifHighPriority = 3 1721 * aac.aifcmd.data[3] = BlinkLED 1722 */ 1723 1724 time_now = jiffies/HZ; 1725 entry = aac->fib_list.next; 1726 1727 /* 1728 * For each Context that is on the 1729 * fibctxList, make a copy of the 1730 * fib, and then set the event to wake up the 1731 * thread that is waiting for it. 1732 */ 1733 while (entry != &aac->fib_list) { 1734 /* 1735 * Extract the fibctx 1736 */ 1737 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1738 struct hw_fib * hw_fib; 1739 struct fib * fib; 1740 /* 1741 * Check if the queue is getting 1742 * backlogged 1743 */ 1744 if (fibctx->count > 20) { 1745 /* 1746 * It's *not* jiffies folks, 1747 * but jiffies / HZ, so do not 1748 * panic ... 1749 */ 1750 u32 time_last = fibctx->jiffies; 1751 /* 1752 * Has it been > 2 minutes 1753 * since the last read off 1754 * the queue? 1755 */ 1756 if ((time_now - time_last) > aif_timeout) { 1757 entry = entry->next; 1758 aac_close_fib_context(aac, fibctx); 1759 continue; 1760 } 1761 } 1762 /* 1763 * Warning: no sleep allowed while 1764 * holding spinlock 1765 */ 1766 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1767 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1768 if (fib && hw_fib) { 1769 struct aac_aifcmd * aif; 1770 1771 fib->hw_fib_va = hw_fib; 1772 fib->dev = aac; 1773 aac_fib_init(fib); 1774 fib->type = FSAFS_NTC_FIB_CONTEXT; 1775 fib->size = sizeof (struct fib); 1776 fib->data = hw_fib->data; 1777 aif = (struct aac_aifcmd *)hw_fib->data; 1778 aif->command = cpu_to_le32(AifCmdEventNotify); 1779 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1780 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1781 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1782 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1783 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1784 1785 /* 1786 * Put the FIB onto the 1787 * fibctx's fibs 1788 */ 1789 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1790 fibctx->count++; 1791 /* 1792 * Set the event to wake up the 1793 * thread that will waiting. 1794 */ 1795 complete(&fibctx->completion); 1796 } else { 1797 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1798 kfree(fib); 1799 kfree(hw_fib); 1800 } 1801 entry = entry->next; 1802 } 1803 1804 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1805 1806 if (BlinkLED < 0) { 1807 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1808 aac->name, BlinkLED); 1809 goto out; 1810 } 1811 1812 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1813 1814 out: 1815 aac->in_reset = 0; 1816 return BlinkLED; 1817 } 1818 1819 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1820 { 1821 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1822 } 1823 1824 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1825 int bus, 1826 int target) 1827 { 1828 if (bus != CONTAINER_CHANNEL) 1829 bus = aac_phys_to_logical(bus); 1830 1831 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1832 } 1833 1834 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1835 { 1836 if (bus != CONTAINER_CHANNEL) 1837 bus = aac_phys_to_logical(bus); 1838 1839 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1840 } 1841 1842 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1843 { 1844 if (sdev) 1845 scsi_device_put(sdev); 1846 } 1847 1848 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1849 { 1850 struct scsi_device *sdev; 1851 1852 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1853 scsi_remove_device(sdev); 1854 aac_put_safw_scsi_device(sdev); 1855 } 1856 1857 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1858 int bus, int target) 1859 { 1860 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1861 } 1862 1863 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1864 { 1865 if (is_safw_raid_volume(dev, bus, target)) 1866 return dev->fsa_dev[target].valid; 1867 else 1868 return aac_is_safw_scan_count_equal(dev, bus, target); 1869 } 1870 1871 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1872 { 1873 int is_exposed = 0; 1874 struct scsi_device *sdev; 1875 1876 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1877 if (sdev) 1878 is_exposed = 1; 1879 aac_put_safw_scsi_device(sdev); 1880 1881 return is_exposed; 1882 } 1883 1884 static int aac_update_safw_host_devices(struct aac_dev *dev) 1885 { 1886 int i; 1887 int bus; 1888 int target; 1889 int is_exposed = 0; 1890 int rcode = 0; 1891 1892 rcode = aac_setup_safw_adapter(dev); 1893 if (unlikely(rcode < 0)) { 1894 goto out; 1895 } 1896 1897 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1898 1899 bus = get_bus_number(i); 1900 target = get_target_number(i); 1901 1902 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1903 1904 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1905 aac_add_safw_device(dev, bus, target); 1906 else if (!aac_is_safw_target_valid(dev, bus, target) && 1907 is_exposed) 1908 aac_remove_safw_device(dev, bus, target); 1909 } 1910 out: 1911 return rcode; 1912 } 1913 1914 static int aac_scan_safw_host(struct aac_dev *dev) 1915 { 1916 int rcode = 0; 1917 1918 rcode = aac_update_safw_host_devices(dev); 1919 if (rcode) 1920 aac_schedule_safw_scan_worker(dev); 1921 1922 return rcode; 1923 } 1924 1925 int aac_scan_host(struct aac_dev *dev) 1926 { 1927 int rcode = 0; 1928 1929 mutex_lock(&dev->scan_mutex); 1930 if (dev->sa_firmware) 1931 rcode = aac_scan_safw_host(dev); 1932 else 1933 scsi_scan_host(dev->scsi_host_ptr); 1934 mutex_unlock(&dev->scan_mutex); 1935 1936 return rcode; 1937 } 1938 1939 void aac_src_reinit_aif_worker(struct work_struct *work) 1940 { 1941 struct aac_dev *dev = container_of(to_delayed_work(work), 1942 struct aac_dev, src_reinit_aif_worker); 1943 1944 wait_event(dev->scsi_host_ptr->host_wait, 1945 !scsi_host_in_recovery(dev->scsi_host_ptr)); 1946 aac_reinit_aif(dev, dev->cardtype); 1947 } 1948 1949 /** 1950 * aac_handle_sa_aif Handle a message from the firmware 1951 * @dev: Which adapter this fib is from 1952 * @fibptr: Pointer to fibptr from adapter 1953 * 1954 * This routine handles a driver notify fib from the adapter and 1955 * dispatches it to the appropriate routine for handling. 1956 */ 1957 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1958 { 1959 int i; 1960 u32 events = 0; 1961 1962 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1963 events = SA_AIF_HOTPLUG; 1964 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1965 events = SA_AIF_HARDWARE; 1966 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1967 events = SA_AIF_PDEV_CHANGE; 1968 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1969 events = SA_AIF_LDEV_CHANGE; 1970 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1971 events = SA_AIF_BPSTAT_CHANGE; 1972 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1973 events = SA_AIF_BPCFG_CHANGE; 1974 1975 switch (events) { 1976 case SA_AIF_HOTPLUG: 1977 case SA_AIF_HARDWARE: 1978 case SA_AIF_PDEV_CHANGE: 1979 case SA_AIF_LDEV_CHANGE: 1980 case SA_AIF_BPCFG_CHANGE: 1981 1982 aac_scan_host(dev); 1983 1984 break; 1985 1986 case SA_AIF_BPSTAT_CHANGE: 1987 /* currently do nothing */ 1988 break; 1989 } 1990 1991 for (i = 1; i <= 10; ++i) { 1992 events = src_readl(dev, MUnit.IDR); 1993 if (events & (1<<23)) { 1994 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 1995 i, 10); 1996 ssleep(1); 1997 } 1998 } 1999 } 2000 2001 static int get_fib_count(struct aac_dev *dev) 2002 { 2003 unsigned int num = 0; 2004 struct list_head *entry; 2005 unsigned long flagv; 2006 2007 /* 2008 * Warning: no sleep allowed while 2009 * holding spinlock. We take the estimate 2010 * and pre-allocate a set of fibs outside the 2011 * lock. 2012 */ 2013 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2014 / sizeof(struct hw_fib); /* some extra */ 2015 spin_lock_irqsave(&dev->fib_lock, flagv); 2016 entry = dev->fib_list.next; 2017 while (entry != &dev->fib_list) { 2018 entry = entry->next; 2019 ++num; 2020 } 2021 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2022 2023 return num; 2024 } 2025 2026 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2027 struct fib **fib_pool, 2028 unsigned int num) 2029 { 2030 struct hw_fib **hw_fib_p; 2031 struct fib **fib_p; 2032 2033 hw_fib_p = hw_fib_pool; 2034 fib_p = fib_pool; 2035 while (hw_fib_p < &hw_fib_pool[num]) { 2036 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2037 if (!(*(hw_fib_p++))) { 2038 --hw_fib_p; 2039 break; 2040 } 2041 2042 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2043 if (!(*(fib_p++))) { 2044 kfree(*(--hw_fib_p)); 2045 break; 2046 } 2047 } 2048 2049 /* 2050 * Get the actual number of allocated fibs 2051 */ 2052 num = hw_fib_p - hw_fib_pool; 2053 return num; 2054 } 2055 2056 static void wakeup_fibctx_threads(struct aac_dev *dev, 2057 struct hw_fib **hw_fib_pool, 2058 struct fib **fib_pool, 2059 struct fib *fib, 2060 struct hw_fib *hw_fib, 2061 unsigned int num) 2062 { 2063 unsigned long flagv; 2064 struct list_head *entry; 2065 struct hw_fib **hw_fib_p; 2066 struct fib **fib_p; 2067 u32 time_now, time_last; 2068 struct hw_fib *hw_newfib; 2069 struct fib *newfib; 2070 struct aac_fib_context *fibctx; 2071 2072 time_now = jiffies/HZ; 2073 spin_lock_irqsave(&dev->fib_lock, flagv); 2074 entry = dev->fib_list.next; 2075 /* 2076 * For each Context that is on the 2077 * fibctxList, make a copy of the 2078 * fib, and then set the event to wake up the 2079 * thread that is waiting for it. 2080 */ 2081 2082 hw_fib_p = hw_fib_pool; 2083 fib_p = fib_pool; 2084 while (entry != &dev->fib_list) { 2085 /* 2086 * Extract the fibctx 2087 */ 2088 fibctx = list_entry(entry, struct aac_fib_context, 2089 next); 2090 /* 2091 * Check if the queue is getting 2092 * backlogged 2093 */ 2094 if (fibctx->count > 20) { 2095 /* 2096 * It's *not* jiffies folks, 2097 * but jiffies / HZ so do not 2098 * panic ... 2099 */ 2100 time_last = fibctx->jiffies; 2101 /* 2102 * Has it been > 2 minutes 2103 * since the last read off 2104 * the queue? 2105 */ 2106 if ((time_now - time_last) > aif_timeout) { 2107 entry = entry->next; 2108 aac_close_fib_context(dev, fibctx); 2109 continue; 2110 } 2111 } 2112 /* 2113 * Warning: no sleep allowed while 2114 * holding spinlock 2115 */ 2116 if (hw_fib_p >= &hw_fib_pool[num]) { 2117 pr_warn("aifd: didn't allocate NewFib\n"); 2118 entry = entry->next; 2119 continue; 2120 } 2121 2122 hw_newfib = *hw_fib_p; 2123 *(hw_fib_p++) = NULL; 2124 newfib = *fib_p; 2125 *(fib_p++) = NULL; 2126 /* 2127 * Make the copy of the FIB 2128 */ 2129 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2130 memcpy(newfib, fib, sizeof(struct fib)); 2131 newfib->hw_fib_va = hw_newfib; 2132 /* 2133 * Put the FIB onto the 2134 * fibctx's fibs 2135 */ 2136 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2137 fibctx->count++; 2138 /* 2139 * Set the event to wake up the 2140 * thread that is waiting. 2141 */ 2142 complete(&fibctx->completion); 2143 2144 entry = entry->next; 2145 } 2146 /* 2147 * Set the status of this FIB 2148 */ 2149 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2150 aac_fib_adapter_complete(fib, sizeof(u32)); 2151 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2152 2153 } 2154 2155 static void aac_process_events(struct aac_dev *dev) 2156 { 2157 struct hw_fib *hw_fib; 2158 struct fib *fib; 2159 unsigned long flags; 2160 spinlock_t *t_lock; 2161 2162 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2163 spin_lock_irqsave(t_lock, flags); 2164 2165 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2166 struct list_head *entry; 2167 struct aac_aifcmd *aifcmd; 2168 unsigned int num; 2169 struct hw_fib **hw_fib_pool, **hw_fib_p; 2170 struct fib **fib_pool, **fib_p; 2171 2172 set_current_state(TASK_RUNNING); 2173 2174 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2175 list_del(entry); 2176 2177 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2178 spin_unlock_irqrestore(t_lock, flags); 2179 2180 fib = list_entry(entry, struct fib, fiblink); 2181 hw_fib = fib->hw_fib_va; 2182 if (dev->sa_firmware) { 2183 /* Thor AIF */ 2184 aac_handle_sa_aif(dev, fib); 2185 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2186 goto free_fib; 2187 } 2188 /* 2189 * We will process the FIB here or pass it to a 2190 * worker thread that is TBD. We Really can't 2191 * do anything at this point since we don't have 2192 * anything defined for this thread to do. 2193 */ 2194 memset(fib, 0, sizeof(struct fib)); 2195 fib->type = FSAFS_NTC_FIB_CONTEXT; 2196 fib->size = sizeof(struct fib); 2197 fib->hw_fib_va = hw_fib; 2198 fib->data = hw_fib->data; 2199 fib->dev = dev; 2200 /* 2201 * We only handle AifRequest fibs from the adapter. 2202 */ 2203 2204 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2205 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2206 /* Handle Driver Notify Events */ 2207 aac_handle_aif(dev, fib); 2208 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2209 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2210 goto free_fib; 2211 } 2212 /* 2213 * The u32 here is important and intended. We are using 2214 * 32bit wrapping time to fit the adapter field 2215 */ 2216 2217 /* Sniff events */ 2218 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2219 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2220 aac_handle_aif(dev, fib); 2221 } 2222 2223 /* 2224 * get number of fibs to process 2225 */ 2226 num = get_fib_count(dev); 2227 if (!num) 2228 goto free_fib; 2229 2230 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2231 GFP_KERNEL); 2232 if (!hw_fib_pool) 2233 goto free_fib; 2234 2235 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2236 if (!fib_pool) 2237 goto free_hw_fib_pool; 2238 2239 /* 2240 * Fill up fib pointer pools with actual fibs 2241 * and hw_fibs 2242 */ 2243 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2244 if (!num) 2245 goto free_mem; 2246 2247 /* 2248 * wakeup the thread that is waiting for 2249 * the response from fw (ioctl) 2250 */ 2251 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2252 fib, hw_fib, num); 2253 2254 free_mem: 2255 /* Free up the remaining resources */ 2256 hw_fib_p = hw_fib_pool; 2257 fib_p = fib_pool; 2258 while (hw_fib_p < &hw_fib_pool[num]) { 2259 kfree(*hw_fib_p); 2260 kfree(*fib_p); 2261 ++fib_p; 2262 ++hw_fib_p; 2263 } 2264 kfree(fib_pool); 2265 free_hw_fib_pool: 2266 kfree(hw_fib_pool); 2267 free_fib: 2268 kfree(fib); 2269 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2270 spin_lock_irqsave(t_lock, flags); 2271 } 2272 /* 2273 * There are no more AIF's 2274 */ 2275 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2276 spin_unlock_irqrestore(t_lock, flags); 2277 } 2278 2279 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2280 u32 datasize) 2281 { 2282 struct aac_srb *srbcmd; 2283 struct sgmap64 *sg64; 2284 dma_addr_t addr; 2285 char *dma_buf; 2286 struct fib *fibptr; 2287 int ret = -ENOMEM; 2288 u32 vbus, vid; 2289 2290 fibptr = aac_fib_alloc(dev); 2291 if (!fibptr) 2292 goto out; 2293 2294 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2295 GFP_KERNEL); 2296 if (!dma_buf) 2297 goto fib_free_out; 2298 2299 aac_fib_init(fibptr); 2300 2301 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2302 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2303 2304 srbcmd = (struct aac_srb *)fib_data(fibptr); 2305 2306 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2307 srbcmd->channel = cpu_to_le32(vbus); 2308 srbcmd->id = cpu_to_le32(vid); 2309 srbcmd->lun = 0; 2310 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2311 srbcmd->timeout = cpu_to_le32(10); 2312 srbcmd->retry_limit = 0; 2313 srbcmd->cdb_size = cpu_to_le32(12); 2314 srbcmd->count = cpu_to_le32(datasize); 2315 2316 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2317 srbcmd->cdb[0] = BMIC_OUT; 2318 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2319 memcpy(dma_buf, (char *)wellness_str, datasize); 2320 2321 sg64 = (struct sgmap64 *)&srbcmd->sg; 2322 sg64->count = cpu_to_le32(1); 2323 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2324 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2325 sg64->sg[0].count = cpu_to_le32(datasize); 2326 2327 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2328 FsaNormal, 1, 1, NULL, NULL); 2329 2330 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2331 2332 /* 2333 * Do not set XferState to zero unless 2334 * receives a response from F/W 2335 */ 2336 if (ret >= 0) 2337 aac_fib_complete(fibptr); 2338 2339 /* 2340 * FIB should be freed only after 2341 * getting the response from the F/W 2342 */ 2343 if (ret != -ERESTARTSYS) 2344 goto fib_free_out; 2345 2346 out: 2347 return ret; 2348 fib_free_out: 2349 aac_fib_free(fibptr); 2350 goto out; 2351 } 2352 2353 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2354 { 2355 struct tm cur_tm; 2356 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2357 u32 datasize = sizeof(wellness_str); 2358 time64_t local_time; 2359 int ret = -ENODEV; 2360 2361 if (!dev->sa_firmware) 2362 goto out; 2363 2364 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2365 time64_to_tm(local_time, 0, &cur_tm); 2366 cur_tm.tm_mon += 1; 2367 cur_tm.tm_year += 1900; 2368 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2369 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2370 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2371 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2372 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2373 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2374 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2375 2376 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2377 2378 out: 2379 return ret; 2380 } 2381 2382 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2383 { 2384 int ret = -ENOMEM; 2385 struct fib *fibptr; 2386 __le32 *info; 2387 2388 fibptr = aac_fib_alloc(dev); 2389 if (!fibptr) 2390 goto out; 2391 2392 aac_fib_init(fibptr); 2393 info = (__le32 *)fib_data(fibptr); 2394 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2395 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2396 1, 1, NULL, NULL); 2397 2398 /* 2399 * Do not set XferState to zero unless 2400 * receives a response from F/W 2401 */ 2402 if (ret >= 0) 2403 aac_fib_complete(fibptr); 2404 2405 /* 2406 * FIB should be freed only after 2407 * getting the response from the F/W 2408 */ 2409 if (ret != -ERESTARTSYS) 2410 aac_fib_free(fibptr); 2411 2412 out: 2413 return ret; 2414 } 2415 2416 /** 2417 * aac_command_thread - command processing thread 2418 * @dev: Adapter to monitor 2419 * 2420 * Waits on the commandready event in it's queue. When the event gets set 2421 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2422 * until the queue is empty. When the queue is empty it will wait for 2423 * more FIBs. 2424 */ 2425 2426 int aac_command_thread(void *data) 2427 { 2428 struct aac_dev *dev = data; 2429 DECLARE_WAITQUEUE(wait, current); 2430 unsigned long next_jiffies = jiffies + HZ; 2431 unsigned long next_check_jiffies = next_jiffies; 2432 long difference = HZ; 2433 2434 /* 2435 * We can only have one thread per adapter for AIF's. 2436 */ 2437 if (dev->aif_thread) 2438 return -EINVAL; 2439 2440 /* 2441 * Let the DPC know it has a place to send the AIF's to. 2442 */ 2443 dev->aif_thread = 1; 2444 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2445 set_current_state(TASK_INTERRUPTIBLE); 2446 dprintk ((KERN_INFO "aac_command_thread start\n")); 2447 while (1) { 2448 2449 aac_process_events(dev); 2450 2451 /* 2452 * Background activity 2453 */ 2454 if ((time_before(next_check_jiffies,next_jiffies)) 2455 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2456 next_check_jiffies = next_jiffies; 2457 if (aac_adapter_check_health(dev) == 0) { 2458 difference = ((long)(unsigned)check_interval) 2459 * HZ; 2460 next_check_jiffies = jiffies + difference; 2461 } else if (!dev->queues) 2462 break; 2463 } 2464 if (!time_before(next_check_jiffies,next_jiffies) 2465 && ((difference = next_jiffies - jiffies) <= 0)) { 2466 struct timespec64 now; 2467 int ret; 2468 2469 /* Don't even try to talk to adapter if its sick */ 2470 ret = aac_adapter_check_health(dev); 2471 if (ret || !dev->queues) 2472 break; 2473 next_check_jiffies = jiffies 2474 + ((long)(unsigned)check_interval) 2475 * HZ; 2476 ktime_get_real_ts64(&now); 2477 2478 /* Synchronize our watches */ 2479 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2480 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2481 difference = HZ + HZ / 2 - 2482 now.tv_nsec / (NSEC_PER_SEC / HZ); 2483 else { 2484 if (now.tv_nsec > NSEC_PER_SEC / 2) 2485 ++now.tv_sec; 2486 2487 if (dev->sa_firmware) 2488 ret = 2489 aac_send_safw_hostttime(dev, &now); 2490 else 2491 ret = aac_send_hosttime(dev, &now); 2492 2493 difference = (long)(unsigned)update_interval*HZ; 2494 } 2495 next_jiffies = jiffies + difference; 2496 if (time_before(next_check_jiffies,next_jiffies)) 2497 difference = next_check_jiffies - jiffies; 2498 } 2499 if (difference <= 0) 2500 difference = 1; 2501 set_current_state(TASK_INTERRUPTIBLE); 2502 2503 if (kthread_should_stop()) 2504 break; 2505 2506 /* 2507 * we probably want usleep_range() here instead of the 2508 * jiffies computation 2509 */ 2510 schedule_timeout(difference); 2511 2512 if (kthread_should_stop()) 2513 break; 2514 } 2515 if (dev->queues) 2516 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2517 dev->aif_thread = 0; 2518 return 0; 2519 } 2520 2521 int aac_acquire_irq(struct aac_dev *dev) 2522 { 2523 int i; 2524 int j; 2525 int ret = 0; 2526 2527 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2528 for (i = 0; i < dev->max_msix; i++) { 2529 dev->aac_msix[i].vector_no = i; 2530 dev->aac_msix[i].dev = dev; 2531 if (request_irq(pci_irq_vector(dev->pdev, i), 2532 dev->a_ops.adapter_intr, 2533 0, "aacraid", &(dev->aac_msix[i]))) { 2534 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2535 dev->name, dev->id, i); 2536 for (j = 0 ; j < i ; j++) 2537 free_irq(pci_irq_vector(dev->pdev, j), 2538 &(dev->aac_msix[j])); 2539 pci_disable_msix(dev->pdev); 2540 ret = -1; 2541 } 2542 } 2543 } else { 2544 dev->aac_msix[0].vector_no = 0; 2545 dev->aac_msix[0].dev = dev; 2546 2547 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2548 IRQF_SHARED, "aacraid", 2549 &(dev->aac_msix[0])) < 0) { 2550 if (dev->msi) 2551 pci_disable_msi(dev->pdev); 2552 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2553 dev->name, dev->id); 2554 ret = -1; 2555 } 2556 } 2557 return ret; 2558 } 2559 2560 void aac_free_irq(struct aac_dev *dev) 2561 { 2562 int i; 2563 2564 if (aac_is_src(dev)) { 2565 if (dev->max_msix > 1) { 2566 for (i = 0; i < dev->max_msix; i++) 2567 free_irq(pci_irq_vector(dev->pdev, i), 2568 &(dev->aac_msix[i])); 2569 } else { 2570 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2571 } 2572 } else { 2573 free_irq(dev->pdev->irq, dev); 2574 } 2575 if (dev->msi) 2576 pci_disable_msi(dev->pdev); 2577 else if (dev->max_msix > 1) 2578 pci_disable_msix(dev->pdev); 2579 } 2580