xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 7bcae826)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/sched.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/slab.h>
41 #include <linux/completion.h>
42 #include <linux/blkdev.h>
43 #include <linux/delay.h>
44 #include <linux/kthread.h>
45 #include <linux/interrupt.h>
46 #include <linux/semaphore.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52 
53 #include "aacraid.h"
54 
55 /**
56  *	fib_map_alloc		-	allocate the fib objects
57  *	@dev: Adapter to allocate for
58  *
59  *	Allocate and map the shared PCI space for the FIB blocks used to
60  *	talk to the Adaptec firmware.
61  */
62 
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67 	else
68 		dev->max_cmd_size = dev->max_fib_size;
69 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71 	} else {
72 		dev->max_cmd_size = dev->max_fib_size;
73 	}
74 
75 	dprintk((KERN_INFO
76 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
77 	  dev->pdev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79 	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
80 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82 		&dev->hw_fib_pa);
83 	if (dev->hw_fib_va == NULL)
84 		return -ENOMEM;
85 	return 0;
86 }
87 
88 /**
89  *	aac_fib_map_free		-	free the fib objects
90  *	@dev: Adapter to free
91  *
92  *	Free the PCI mappings and the memory allocated for FIB blocks
93  *	on this adapter.
94  */
95 
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98 	if (dev->hw_fib_va && dev->max_cmd_size) {
99 		pci_free_consistent(dev->pdev,
100 		(dev->max_cmd_size *
101 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
102 		dev->hw_fib_va, dev->hw_fib_pa);
103 	}
104 	dev->hw_fib_va = NULL;
105 	dev->hw_fib_pa = 0;
106 }
107 
108 void aac_fib_vector_assign(struct aac_dev *dev)
109 {
110 	u32 i = 0;
111 	u32 vector = 1;
112 	struct fib *fibptr = NULL;
113 
114 	for (i = 0, fibptr = &dev->fibs[i];
115 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
116 		i++, fibptr++) {
117 		if ((dev->max_msix == 1) ||
118 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
119 			- dev->vector_cap))) {
120 			fibptr->vector_no = 0;
121 		} else {
122 			fibptr->vector_no = vector;
123 			vector++;
124 			if (vector == dev->max_msix)
125 				vector = 1;
126 		}
127 	}
128 }
129 
130 /**
131  *	aac_fib_setup	-	setup the fibs
132  *	@dev: Adapter to set up
133  *
134  *	Allocate the PCI space for the fibs, map it and then initialise the
135  *	fib area, the unmapped fib data and also the free list
136  */
137 
138 int aac_fib_setup(struct aac_dev * dev)
139 {
140 	struct fib *fibptr;
141 	struct hw_fib *hw_fib;
142 	dma_addr_t hw_fib_pa;
143 	int i;
144 	u32 max_cmds;
145 
146 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
147 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
148 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
149 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
150 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
151 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
152 	}
153 	if (i<0)
154 		return -ENOMEM;
155 
156 	/* 32 byte alignment for PMC */
157 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
158 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
159 		(hw_fib_pa - dev->hw_fib_pa));
160 	dev->hw_fib_pa = hw_fib_pa;
161 	memset(dev->hw_fib_va, 0,
162 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
163 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
164 
165 	/* add Xport header */
166 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
167 		sizeof(struct aac_fib_xporthdr));
168 	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
169 
170 	hw_fib = dev->hw_fib_va;
171 	hw_fib_pa = dev->hw_fib_pa;
172 	/*
173 	 *	Initialise the fibs
174 	 */
175 	for (i = 0, fibptr = &dev->fibs[i];
176 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
177 		i++, fibptr++)
178 	{
179 		fibptr->flags = 0;
180 		fibptr->size = sizeof(struct fib);
181 		fibptr->dev = dev;
182 		fibptr->hw_fib_va = hw_fib;
183 		fibptr->data = (void *) fibptr->hw_fib_va->data;
184 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
185 		sema_init(&fibptr->event_wait, 0);
186 		spin_lock_init(&fibptr->event_lock);
187 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
188 		hw_fib->header.SenderSize =
189 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
190 		fibptr->hw_fib_pa = hw_fib_pa;
191 		fibptr->hw_sgl_pa = hw_fib_pa +
192 			offsetof(struct aac_hba_cmd_req, sge[2]);
193 		/*
194 		 * one element is for the ptr to the separate sg list,
195 		 * second element for 32 byte alignment
196 		 */
197 		fibptr->hw_error_pa = hw_fib_pa +
198 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
199 
200 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
201 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
202 		hw_fib_pa = hw_fib_pa +
203 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
204 	}
205 
206 	/*
207 	 *Assign vector numbers to fibs
208 	 */
209 	aac_fib_vector_assign(dev);
210 
211 	/*
212 	 *	Add the fib chain to the free list
213 	 */
214 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
215 	/*
216 	*	Set 8 fibs aside for management tools
217 	*/
218 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
219 	return 0;
220 }
221 
222 /**
223  *	aac_fib_alloc_tag-allocate a fib using tags
224  *	@dev: Adapter to allocate the fib for
225  *
226  *	Allocate a fib from the adapter fib pool using tags
227  *	from the blk layer.
228  */
229 
230 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
231 {
232 	struct fib *fibptr;
233 
234 	fibptr = &dev->fibs[scmd->request->tag];
235 	/*
236 	 *	Null out fields that depend on being zero at the start of
237 	 *	each I/O
238 	 */
239 	fibptr->hw_fib_va->header.XferState = 0;
240 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
241 	fibptr->callback_data = NULL;
242 	fibptr->callback = NULL;
243 
244 	return fibptr;
245 }
246 
247 /**
248  *	aac_fib_alloc	-	allocate a fib
249  *	@dev: Adapter to allocate the fib for
250  *
251  *	Allocate a fib from the adapter fib pool. If the pool is empty we
252  *	return NULL.
253  */
254 
255 struct fib *aac_fib_alloc(struct aac_dev *dev)
256 {
257 	struct fib * fibptr;
258 	unsigned long flags;
259 	spin_lock_irqsave(&dev->fib_lock, flags);
260 	fibptr = dev->free_fib;
261 	if(!fibptr){
262 		spin_unlock_irqrestore(&dev->fib_lock, flags);
263 		return fibptr;
264 	}
265 	dev->free_fib = fibptr->next;
266 	spin_unlock_irqrestore(&dev->fib_lock, flags);
267 	/*
268 	 *	Set the proper node type code and node byte size
269 	 */
270 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
271 	fibptr->size = sizeof(struct fib);
272 	/*
273 	 *	Null out fields that depend on being zero at the start of
274 	 *	each I/O
275 	 */
276 	fibptr->hw_fib_va->header.XferState = 0;
277 	fibptr->flags = 0;
278 	fibptr->callback = NULL;
279 	fibptr->callback_data = NULL;
280 
281 	return fibptr;
282 }
283 
284 /**
285  *	aac_fib_free	-	free a fib
286  *	@fibptr: fib to free up
287  *
288  *	Frees up a fib and places it on the appropriate queue
289  */
290 
291 void aac_fib_free(struct fib *fibptr)
292 {
293 	unsigned long flags;
294 
295 	if (fibptr->done == 2)
296 		return;
297 
298 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
299 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
300 		aac_config.fib_timeouts++;
301 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
302 		fibptr->hw_fib_va->header.XferState != 0) {
303 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
304 			 (void*)fibptr,
305 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
306 	}
307 	fibptr->next = fibptr->dev->free_fib;
308 	fibptr->dev->free_fib = fibptr;
309 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
310 }
311 
312 /**
313  *	aac_fib_init	-	initialise a fib
314  *	@fibptr: The fib to initialize
315  *
316  *	Set up the generic fib fields ready for use
317  */
318 
319 void aac_fib_init(struct fib *fibptr)
320 {
321 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
322 
323 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
324 	hw_fib->header.StructType = FIB_MAGIC;
325 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
326 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
327 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
328 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
329 }
330 
331 /**
332  *	fib_deallocate		-	deallocate a fib
333  *	@fibptr: fib to deallocate
334  *
335  *	Will deallocate and return to the free pool the FIB pointed to by the
336  *	caller.
337  */
338 
339 static void fib_dealloc(struct fib * fibptr)
340 {
341 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
342 	hw_fib->header.XferState = 0;
343 }
344 
345 /*
346  *	Commuication primitives define and support the queuing method we use to
347  *	support host to adapter commuication. All queue accesses happen through
348  *	these routines and are the only routines which have a knowledge of the
349  *	 how these queues are implemented.
350  */
351 
352 /**
353  *	aac_get_entry		-	get a queue entry
354  *	@dev: Adapter
355  *	@qid: Queue Number
356  *	@entry: Entry return
357  *	@index: Index return
358  *	@nonotify: notification control
359  *
360  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
361  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
362  *	returned.
363  */
364 
365 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
366 {
367 	struct aac_queue * q;
368 	unsigned long idx;
369 
370 	/*
371 	 *	All of the queues wrap when they reach the end, so we check
372 	 *	to see if they have reached the end and if they have we just
373 	 *	set the index back to zero. This is a wrap. You could or off
374 	 *	the high bits in all updates but this is a bit faster I think.
375 	 */
376 
377 	q = &dev->queues->queue[qid];
378 
379 	idx = *index = le32_to_cpu(*(q->headers.producer));
380 	/* Interrupt Moderation, only interrupt for first two entries */
381 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
382 		if (--idx == 0) {
383 			if (qid == AdapNormCmdQueue)
384 				idx = ADAP_NORM_CMD_ENTRIES;
385 			else
386 				idx = ADAP_NORM_RESP_ENTRIES;
387 		}
388 		if (idx != le32_to_cpu(*(q->headers.consumer)))
389 			*nonotify = 1;
390 	}
391 
392 	if (qid == AdapNormCmdQueue) {
393 		if (*index >= ADAP_NORM_CMD_ENTRIES)
394 			*index = 0; /* Wrap to front of the Producer Queue. */
395 	} else {
396 		if (*index >= ADAP_NORM_RESP_ENTRIES)
397 			*index = 0; /* Wrap to front of the Producer Queue. */
398 	}
399 
400 	/* Queue is full */
401 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
402 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
403 				qid, atomic_read(&q->numpending));
404 		return 0;
405 	} else {
406 		*entry = q->base + *index;
407 		return 1;
408 	}
409 }
410 
411 /**
412  *	aac_queue_get		-	get the next free QE
413  *	@dev: Adapter
414  *	@index: Returned index
415  *	@priority: Priority of fib
416  *	@fib: Fib to associate with the queue entry
417  *	@wait: Wait if queue full
418  *	@fibptr: Driver fib object to go with fib
419  *	@nonotify: Don't notify the adapter
420  *
421  *	Gets the next free QE off the requested priorty adapter command
422  *	queue and associates the Fib with the QE. The QE represented by
423  *	index is ready to insert on the queue when this routine returns
424  *	success.
425  */
426 
427 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
428 {
429 	struct aac_entry * entry = NULL;
430 	int map = 0;
431 
432 	if (qid == AdapNormCmdQueue) {
433 		/*  if no entries wait for some if caller wants to */
434 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
435 			printk(KERN_ERR "GetEntries failed\n");
436 		}
437 		/*
438 		 *	Setup queue entry with a command, status and fib mapped
439 		 */
440 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
441 		map = 1;
442 	} else {
443 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
444 			/* if no entries wait for some if caller wants to */
445 		}
446 		/*
447 		 *	Setup queue entry with command, status and fib mapped
448 		 */
449 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
450 		entry->addr = hw_fib->header.SenderFibAddress;
451 			/* Restore adapters pointer to the FIB */
452 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
453 		map = 0;
454 	}
455 	/*
456 	 *	If MapFib is true than we need to map the Fib and put pointers
457 	 *	in the queue entry.
458 	 */
459 	if (map)
460 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
461 	return 0;
462 }
463 
464 /*
465  *	Define the highest level of host to adapter communication routines.
466  *	These routines will support host to adapter FS commuication. These
467  *	routines have no knowledge of the commuication method used. This level
468  *	sends and receives FIBs. This level has no knowledge of how these FIBs
469  *	get passed back and forth.
470  */
471 
472 /**
473  *	aac_fib_send	-	send a fib to the adapter
474  *	@command: Command to send
475  *	@fibptr: The fib
476  *	@size: Size of fib data area
477  *	@priority: Priority of Fib
478  *	@wait: Async/sync select
479  *	@reply: True if a reply is wanted
480  *	@callback: Called with reply
481  *	@callback_data: Passed to callback
482  *
483  *	Sends the requested FIB to the adapter and optionally will wait for a
484  *	response FIB. If the caller does not wish to wait for a response than
485  *	an event to wait on must be supplied. This event will be set when a
486  *	response FIB is received from the adapter.
487  */
488 
489 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
490 		int priority, int wait, int reply, fib_callback callback,
491 		void *callback_data)
492 {
493 	struct aac_dev * dev = fibptr->dev;
494 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
495 	unsigned long flags = 0;
496 	unsigned long mflags = 0;
497 	unsigned long sflags = 0;
498 
499 
500 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
501 		return -EBUSY;
502 	/*
503 	 *	There are 5 cases with the wait and response requested flags.
504 	 *	The only invalid cases are if the caller requests to wait and
505 	 *	does not request a response and if the caller does not want a
506 	 *	response and the Fib is not allocated from pool. If a response
507 	 *	is not requesed the Fib will just be deallocaed by the DPC
508 	 *	routine when the response comes back from the adapter. No
509 	 *	further processing will be done besides deleting the Fib. We
510 	 *	will have a debug mode where the adapter can notify the host
511 	 *	it had a problem and the host can log that fact.
512 	 */
513 	fibptr->flags = 0;
514 	if (wait && !reply) {
515 		return -EINVAL;
516 	} else if (!wait && reply) {
517 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
518 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
519 	} else if (!wait && !reply) {
520 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
521 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
522 	} else if (wait && reply) {
523 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
524 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
525 	}
526 	/*
527 	 *	Map the fib into 32bits by using the fib number
528 	 */
529 
530 	hw_fib->header.SenderFibAddress =
531 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
532 
533 	/* use the same shifted value for handle to be compatible
534 	 * with the new native hba command handle
535 	 */
536 	hw_fib->header.Handle =
537 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
538 
539 	/*
540 	 *	Set FIB state to indicate where it came from and if we want a
541 	 *	response from the adapter. Also load the command from the
542 	 *	caller.
543 	 *
544 	 *	Map the hw fib pointer as a 32bit value
545 	 */
546 	hw_fib->header.Command = cpu_to_le16(command);
547 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
548 	/*
549 	 *	Set the size of the Fib we want to send to the adapter
550 	 */
551 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
552 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
553 		return -EMSGSIZE;
554 	}
555 	/*
556 	 *	Get a queue entry connect the FIB to it and send an notify
557 	 *	the adapter a command is ready.
558 	 */
559 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
560 
561 	/*
562 	 *	Fill in the Callback and CallbackContext if we are not
563 	 *	going to wait.
564 	 */
565 	if (!wait) {
566 		fibptr->callback = callback;
567 		fibptr->callback_data = callback_data;
568 		fibptr->flags = FIB_CONTEXT_FLAG;
569 	}
570 
571 	fibptr->done = 0;
572 
573 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
574 
575 	dprintk((KERN_DEBUG "Fib contents:.\n"));
576 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
577 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
578 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
579 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
580 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
581 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
582 
583 	if (!dev->queues)
584 		return -EBUSY;
585 
586 	if (wait) {
587 
588 		spin_lock_irqsave(&dev->manage_lock, mflags);
589 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
590 			printk(KERN_INFO "No management Fibs Available:%d\n",
591 						dev->management_fib_count);
592 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
593 			return -EBUSY;
594 		}
595 		dev->management_fib_count++;
596 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
597 		spin_lock_irqsave(&fibptr->event_lock, flags);
598 	}
599 
600 	if (dev->sync_mode) {
601 		if (wait)
602 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
603 		spin_lock_irqsave(&dev->sync_lock, sflags);
604 		if (dev->sync_fib) {
605 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
606 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
607 		} else {
608 			dev->sync_fib = fibptr;
609 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
610 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
611 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
612 				NULL, NULL, NULL, NULL, NULL);
613 		}
614 		if (wait) {
615 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
616 			if (down_interruptible(&fibptr->event_wait)) {
617 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
618 				return -EFAULT;
619 			}
620 			return 0;
621 		}
622 		return -EINPROGRESS;
623 	}
624 
625 	if (aac_adapter_deliver(fibptr) != 0) {
626 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
627 		if (wait) {
628 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
629 			spin_lock_irqsave(&dev->manage_lock, mflags);
630 			dev->management_fib_count--;
631 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
632 		}
633 		return -EBUSY;
634 	}
635 
636 
637 	/*
638 	 *	If the caller wanted us to wait for response wait now.
639 	 */
640 
641 	if (wait) {
642 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
643 		/* Only set for first known interruptable command */
644 		if (wait < 0) {
645 			/*
646 			 * *VERY* Dangerous to time out a command, the
647 			 * assumption is made that we have no hope of
648 			 * functioning because an interrupt routing or other
649 			 * hardware failure has occurred.
650 			 */
651 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
652 			while (down_trylock(&fibptr->event_wait)) {
653 				int blink;
654 				if (time_is_before_eq_jiffies(timeout)) {
655 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
656 					atomic_dec(&q->numpending);
657 					if (wait == -1) {
658 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
659 						  "Usually a result of a PCI interrupt routing problem;\n"
660 						  "update mother board BIOS or consider utilizing one of\n"
661 						  "the SAFE mode kernel options (acpi, apic etc)\n");
662 					}
663 					return -ETIMEDOUT;
664 				}
665 				if ((blink = aac_adapter_check_health(dev)) > 0) {
666 					if (wait == -1) {
667 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
668 						  "Usually a result of a serious unrecoverable hardware problem\n",
669 						  blink);
670 					}
671 					return -EFAULT;
672 				}
673 				/*
674 				 * Allow other processes / CPUS to use core
675 				 */
676 				schedule();
677 			}
678 		} else if (down_interruptible(&fibptr->event_wait)) {
679 			/* Do nothing ... satisfy
680 			 * down_interruptible must_check */
681 		}
682 
683 		spin_lock_irqsave(&fibptr->event_lock, flags);
684 		if (fibptr->done == 0) {
685 			fibptr->done = 2; /* Tell interrupt we aborted */
686 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
687 			return -ERESTARTSYS;
688 		}
689 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
690 		BUG_ON(fibptr->done == 0);
691 
692 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
693 			return -ETIMEDOUT;
694 		return 0;
695 	}
696 	/*
697 	 *	If the user does not want a response than return success otherwise
698 	 *	return pending
699 	 */
700 	if (reply)
701 		return -EINPROGRESS;
702 	else
703 		return 0;
704 }
705 
706 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
707 		void *callback_data)
708 {
709 	struct aac_dev *dev = fibptr->dev;
710 	int wait;
711 	unsigned long flags = 0;
712 	unsigned long mflags = 0;
713 
714 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
715 	if (callback) {
716 		wait = 0;
717 		fibptr->callback = callback;
718 		fibptr->callback_data = callback_data;
719 	} else
720 		wait = 1;
721 
722 
723 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
724 		struct aac_hba_cmd_req *hbacmd =
725 			(struct aac_hba_cmd_req *)fibptr->hw_fib_va;
726 
727 		hbacmd->iu_type = command;
728 		/* bit1 of request_id must be 0 */
729 		hbacmd->request_id =
730 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
731 	} else
732 		return -EINVAL;
733 
734 
735 	if (wait) {
736 		spin_lock_irqsave(&dev->manage_lock, mflags);
737 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
738 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
739 			return -EBUSY;
740 		}
741 		dev->management_fib_count++;
742 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
743 		spin_lock_irqsave(&fibptr->event_lock, flags);
744 	}
745 
746 	if (aac_adapter_deliver(fibptr) != 0) {
747 		if (wait) {
748 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
749 			spin_lock_irqsave(&dev->manage_lock, mflags);
750 			dev->management_fib_count--;
751 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
752 		}
753 		return -EBUSY;
754 	}
755 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
756 
757 	if (wait) {
758 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
759 		/* Only set for first known interruptable command */
760 		if (down_interruptible(&fibptr->event_wait)) {
761 			fibptr->done = 2;
762 			up(&fibptr->event_wait);
763 		}
764 		spin_lock_irqsave(&fibptr->event_lock, flags);
765 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
766 			fibptr->done = 2; /* Tell interrupt we aborted */
767 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
768 			return -ERESTARTSYS;
769 		}
770 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
771 		WARN_ON(fibptr->done == 0);
772 
773 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
774 			return -ETIMEDOUT;
775 
776 		return 0;
777 	}
778 
779 	return -EINPROGRESS;
780 }
781 
782 /**
783  *	aac_consumer_get	-	get the top of the queue
784  *	@dev: Adapter
785  *	@q: Queue
786  *	@entry: Return entry
787  *
788  *	Will return a pointer to the entry on the top of the queue requested that
789  *	we are a consumer of, and return the address of the queue entry. It does
790  *	not change the state of the queue.
791  */
792 
793 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
794 {
795 	u32 index;
796 	int status;
797 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
798 		status = 0;
799 	} else {
800 		/*
801 		 *	The consumer index must be wrapped if we have reached
802 		 *	the end of the queue, else we just use the entry
803 		 *	pointed to by the header index
804 		 */
805 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
806 			index = 0;
807 		else
808 			index = le32_to_cpu(*q->headers.consumer);
809 		*entry = q->base + index;
810 		status = 1;
811 	}
812 	return(status);
813 }
814 
815 /**
816  *	aac_consumer_free	-	free consumer entry
817  *	@dev: Adapter
818  *	@q: Queue
819  *	@qid: Queue ident
820  *
821  *	Frees up the current top of the queue we are a consumer of. If the
822  *	queue was full notify the producer that the queue is no longer full.
823  */
824 
825 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
826 {
827 	int wasfull = 0;
828 	u32 notify;
829 
830 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
831 		wasfull = 1;
832 
833 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
834 		*q->headers.consumer = cpu_to_le32(1);
835 	else
836 		le32_add_cpu(q->headers.consumer, 1);
837 
838 	if (wasfull) {
839 		switch (qid) {
840 
841 		case HostNormCmdQueue:
842 			notify = HostNormCmdNotFull;
843 			break;
844 		case HostNormRespQueue:
845 			notify = HostNormRespNotFull;
846 			break;
847 		default:
848 			BUG();
849 			return;
850 		}
851 		aac_adapter_notify(dev, notify);
852 	}
853 }
854 
855 /**
856  *	aac_fib_adapter_complete	-	complete adapter issued fib
857  *	@fibptr: fib to complete
858  *	@size: size of fib
859  *
860  *	Will do all necessary work to complete a FIB that was sent from
861  *	the adapter.
862  */
863 
864 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
865 {
866 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
867 	struct aac_dev * dev = fibptr->dev;
868 	struct aac_queue * q;
869 	unsigned long nointr = 0;
870 	unsigned long qflags;
871 
872 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
873 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
874 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
875 		kfree(hw_fib);
876 		return 0;
877 	}
878 
879 	if (hw_fib->header.XferState == 0) {
880 		if (dev->comm_interface == AAC_COMM_MESSAGE)
881 			kfree(hw_fib);
882 		return 0;
883 	}
884 	/*
885 	 *	If we plan to do anything check the structure type first.
886 	 */
887 	if (hw_fib->header.StructType != FIB_MAGIC &&
888 	    hw_fib->header.StructType != FIB_MAGIC2 &&
889 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
890 		if (dev->comm_interface == AAC_COMM_MESSAGE)
891 			kfree(hw_fib);
892 		return -EINVAL;
893 	}
894 	/*
895 	 *	This block handles the case where the adapter had sent us a
896 	 *	command and we have finished processing the command. We
897 	 *	call completeFib when we are done processing the command
898 	 *	and want to send a response back to the adapter. This will
899 	 *	send the completed cdb to the adapter.
900 	 */
901 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
902 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
903 			kfree (hw_fib);
904 		} else {
905 			u32 index;
906 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
907 			if (size) {
908 				size += sizeof(struct aac_fibhdr);
909 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
910 					return -EMSGSIZE;
911 				hw_fib->header.Size = cpu_to_le16(size);
912 			}
913 			q = &dev->queues->queue[AdapNormRespQueue];
914 			spin_lock_irqsave(q->lock, qflags);
915 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
916 			*(q->headers.producer) = cpu_to_le32(index + 1);
917 			spin_unlock_irqrestore(q->lock, qflags);
918 			if (!(nointr & (int)aac_config.irq_mod))
919 				aac_adapter_notify(dev, AdapNormRespQueue);
920 		}
921 	} else {
922 		printk(KERN_WARNING "aac_fib_adapter_complete: "
923 			"Unknown xferstate detected.\n");
924 		BUG();
925 	}
926 	return 0;
927 }
928 
929 /**
930  *	aac_fib_complete	-	fib completion handler
931  *	@fib: FIB to complete
932  *
933  *	Will do all necessary work to complete a FIB.
934  */
935 
936 int aac_fib_complete(struct fib *fibptr)
937 {
938 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
939 
940 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
941 		fib_dealloc(fibptr);
942 		return 0;
943 	}
944 
945 	/*
946 	 *	Check for a fib which has already been completed or with a
947 	 *	status wait timeout
948 	 */
949 
950 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
951 		return 0;
952 	/*
953 	 *	If we plan to do anything check the structure type first.
954 	 */
955 
956 	if (hw_fib->header.StructType != FIB_MAGIC &&
957 	    hw_fib->header.StructType != FIB_MAGIC2 &&
958 	    hw_fib->header.StructType != FIB_MAGIC2_64)
959 		return -EINVAL;
960 	/*
961 	 *	This block completes a cdb which orginated on the host and we
962 	 *	just need to deallocate the cdb or reinit it. At this point the
963 	 *	command is complete that we had sent to the adapter and this
964 	 *	cdb could be reused.
965 	 */
966 
967 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
968 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
969 	{
970 		fib_dealloc(fibptr);
971 	}
972 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
973 	{
974 		/*
975 		 *	This handles the case when the host has aborted the I/O
976 		 *	to the adapter because the adapter is not responding
977 		 */
978 		fib_dealloc(fibptr);
979 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
980 		fib_dealloc(fibptr);
981 	} else {
982 		BUG();
983 	}
984 	return 0;
985 }
986 
987 /**
988  *	aac_printf	-	handle printf from firmware
989  *	@dev: Adapter
990  *	@val: Message info
991  *
992  *	Print a message passed to us by the controller firmware on the
993  *	Adaptec board
994  */
995 
996 void aac_printf(struct aac_dev *dev, u32 val)
997 {
998 	char *cp = dev->printfbuf;
999 	if (dev->printf_enabled)
1000 	{
1001 		int length = val & 0xffff;
1002 		int level = (val >> 16) & 0xffff;
1003 
1004 		/*
1005 		 *	The size of the printfbuf is set in port.c
1006 		 *	There is no variable or define for it
1007 		 */
1008 		if (length > 255)
1009 			length = 255;
1010 		if (cp[length] != 0)
1011 			cp[length] = 0;
1012 		if (level == LOG_AAC_HIGH_ERROR)
1013 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1014 		else
1015 			printk(KERN_INFO "%s:%s", dev->name, cp);
1016 	}
1017 	memset(cp, 0, 256);
1018 }
1019 
1020 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1021 {
1022 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1023 }
1024 
1025 
1026 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1027 {
1028 	switch (aac_aif_data(aifcmd, 1)) {
1029 	case AifBuCacheDataLoss:
1030 		if (aac_aif_data(aifcmd, 2))
1031 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1032 			aac_aif_data(aifcmd, 2));
1033 		else
1034 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1035 		break;
1036 	case AifBuCacheDataRecover:
1037 		if (aac_aif_data(aifcmd, 2))
1038 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1039 			aac_aif_data(aifcmd, 2));
1040 		else
1041 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1042 		break;
1043 	}
1044 }
1045 
1046 /**
1047  *	aac_handle_aif		-	Handle a message from the firmware
1048  *	@dev: Which adapter this fib is from
1049  *	@fibptr: Pointer to fibptr from adapter
1050  *
1051  *	This routine handles a driver notify fib from the adapter and
1052  *	dispatches it to the appropriate routine for handling.
1053  */
1054 
1055 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1056 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1057 {
1058 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1059 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1060 	u32 channel, id, lun, container;
1061 	struct scsi_device *device;
1062 	enum {
1063 		NOTHING,
1064 		DELETE,
1065 		ADD,
1066 		CHANGE
1067 	} device_config_needed = NOTHING;
1068 
1069 	/* Sniff for container changes */
1070 
1071 	if (!dev || !dev->fsa_dev)
1072 		return;
1073 	container = channel = id = lun = (u32)-1;
1074 
1075 	/*
1076 	 *	We have set this up to try and minimize the number of
1077 	 * re-configures that take place. As a result of this when
1078 	 * certain AIF's come in we will set a flag waiting for another
1079 	 * type of AIF before setting the re-config flag.
1080 	 */
1081 	switch (le32_to_cpu(aifcmd->command)) {
1082 	case AifCmdDriverNotify:
1083 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1084 		case AifRawDeviceRemove:
1085 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1086 			if ((container >> 28)) {
1087 				container = (u32)-1;
1088 				break;
1089 			}
1090 			channel = (container >> 24) & 0xF;
1091 			if (channel >= dev->maximum_num_channels) {
1092 				container = (u32)-1;
1093 				break;
1094 			}
1095 			id = container & 0xFFFF;
1096 			if (id >= dev->maximum_num_physicals) {
1097 				container = (u32)-1;
1098 				break;
1099 			}
1100 			lun = (container >> 16) & 0xFF;
1101 			container = (u32)-1;
1102 			channel = aac_phys_to_logical(channel);
1103 			device_config_needed = DELETE;
1104 			break;
1105 
1106 		/*
1107 		 *	Morph or Expand complete
1108 		 */
1109 		case AifDenMorphComplete:
1110 		case AifDenVolumeExtendComplete:
1111 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1112 			if (container >= dev->maximum_num_containers)
1113 				break;
1114 
1115 			/*
1116 			 *	Find the scsi_device associated with the SCSI
1117 			 * address. Make sure we have the right array, and if
1118 			 * so set the flag to initiate a new re-config once we
1119 			 * see an AifEnConfigChange AIF come through.
1120 			 */
1121 
1122 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1123 				device = scsi_device_lookup(dev->scsi_host_ptr,
1124 					CONTAINER_TO_CHANNEL(container),
1125 					CONTAINER_TO_ID(container),
1126 					CONTAINER_TO_LUN(container));
1127 				if (device) {
1128 					dev->fsa_dev[container].config_needed = CHANGE;
1129 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1130 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1131 					scsi_device_put(device);
1132 				}
1133 			}
1134 		}
1135 
1136 		/*
1137 		 *	If we are waiting on something and this happens to be
1138 		 * that thing then set the re-configure flag.
1139 		 */
1140 		if (container != (u32)-1) {
1141 			if (container >= dev->maximum_num_containers)
1142 				break;
1143 			if ((dev->fsa_dev[container].config_waiting_on ==
1144 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1145 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1146 				dev->fsa_dev[container].config_waiting_on = 0;
1147 		} else for (container = 0;
1148 		    container < dev->maximum_num_containers; ++container) {
1149 			if ((dev->fsa_dev[container].config_waiting_on ==
1150 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152 				dev->fsa_dev[container].config_waiting_on = 0;
1153 		}
1154 		break;
1155 
1156 	case AifCmdEventNotify:
1157 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1158 		case AifEnBatteryEvent:
1159 			dev->cache_protected =
1160 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1161 			break;
1162 		/*
1163 		 *	Add an Array.
1164 		 */
1165 		case AifEnAddContainer:
1166 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1167 			if (container >= dev->maximum_num_containers)
1168 				break;
1169 			dev->fsa_dev[container].config_needed = ADD;
1170 			dev->fsa_dev[container].config_waiting_on =
1171 				AifEnConfigChange;
1172 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1173 			break;
1174 
1175 		/*
1176 		 *	Delete an Array.
1177 		 */
1178 		case AifEnDeleteContainer:
1179 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1180 			if (container >= dev->maximum_num_containers)
1181 				break;
1182 			dev->fsa_dev[container].config_needed = DELETE;
1183 			dev->fsa_dev[container].config_waiting_on =
1184 				AifEnConfigChange;
1185 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1186 			break;
1187 
1188 		/*
1189 		 *	Container change detected. If we currently are not
1190 		 * waiting on something else, setup to wait on a Config Change.
1191 		 */
1192 		case AifEnContainerChange:
1193 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1194 			if (container >= dev->maximum_num_containers)
1195 				break;
1196 			if (dev->fsa_dev[container].config_waiting_on &&
1197 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1198 				break;
1199 			dev->fsa_dev[container].config_needed = CHANGE;
1200 			dev->fsa_dev[container].config_waiting_on =
1201 				AifEnConfigChange;
1202 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1203 			break;
1204 
1205 		case AifEnConfigChange:
1206 			break;
1207 
1208 		case AifEnAddJBOD:
1209 		case AifEnDeleteJBOD:
1210 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1211 			if ((container >> 28)) {
1212 				container = (u32)-1;
1213 				break;
1214 			}
1215 			channel = (container >> 24) & 0xF;
1216 			if (channel >= dev->maximum_num_channels) {
1217 				container = (u32)-1;
1218 				break;
1219 			}
1220 			id = container & 0xFFFF;
1221 			if (id >= dev->maximum_num_physicals) {
1222 				container = (u32)-1;
1223 				break;
1224 			}
1225 			lun = (container >> 16) & 0xFF;
1226 			container = (u32)-1;
1227 			channel = aac_phys_to_logical(channel);
1228 			device_config_needed =
1229 			  (((__le32 *)aifcmd->data)[0] ==
1230 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1231 			if (device_config_needed == ADD) {
1232 				device = scsi_device_lookup(dev->scsi_host_ptr,
1233 					channel,
1234 					id,
1235 					lun);
1236 				if (device) {
1237 					scsi_remove_device(device);
1238 					scsi_device_put(device);
1239 				}
1240 			}
1241 			break;
1242 
1243 		case AifEnEnclosureManagement:
1244 			/*
1245 			 * If in JBOD mode, automatic exposure of new
1246 			 * physical target to be suppressed until configured.
1247 			 */
1248 			if (dev->jbod)
1249 				break;
1250 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1251 			case EM_DRIVE_INSERTION:
1252 			case EM_DRIVE_REMOVAL:
1253 			case EM_SES_DRIVE_INSERTION:
1254 			case EM_SES_DRIVE_REMOVAL:
1255 				container = le32_to_cpu(
1256 					((__le32 *)aifcmd->data)[2]);
1257 				if ((container >> 28)) {
1258 					container = (u32)-1;
1259 					break;
1260 				}
1261 				channel = (container >> 24) & 0xF;
1262 				if (channel >= dev->maximum_num_channels) {
1263 					container = (u32)-1;
1264 					break;
1265 				}
1266 				id = container & 0xFFFF;
1267 				lun = (container >> 16) & 0xFF;
1268 				container = (u32)-1;
1269 				if (id >= dev->maximum_num_physicals) {
1270 					/* legacy dev_t ? */
1271 					if ((0x2000 <= id) || lun || channel ||
1272 					  ((channel = (id >> 7) & 0x3F) >=
1273 					  dev->maximum_num_channels))
1274 						break;
1275 					lun = (id >> 4) & 7;
1276 					id &= 0xF;
1277 				}
1278 				channel = aac_phys_to_logical(channel);
1279 				device_config_needed =
1280 				  ((((__le32 *)aifcmd->data)[3]
1281 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1282 				    (((__le32 *)aifcmd->data)[3]
1283 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1284 				  ADD : DELETE;
1285 				break;
1286 			}
1287 			case AifBuManagerEvent:
1288 				aac_handle_aif_bu(dev, aifcmd);
1289 			break;
1290 		}
1291 
1292 		/*
1293 		 *	If we are waiting on something and this happens to be
1294 		 * that thing then set the re-configure flag.
1295 		 */
1296 		if (container != (u32)-1) {
1297 			if (container >= dev->maximum_num_containers)
1298 				break;
1299 			if ((dev->fsa_dev[container].config_waiting_on ==
1300 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1301 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1302 				dev->fsa_dev[container].config_waiting_on = 0;
1303 		} else for (container = 0;
1304 		    container < dev->maximum_num_containers; ++container) {
1305 			if ((dev->fsa_dev[container].config_waiting_on ==
1306 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1307 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1308 				dev->fsa_dev[container].config_waiting_on = 0;
1309 		}
1310 		break;
1311 
1312 	case AifCmdJobProgress:
1313 		/*
1314 		 *	These are job progress AIF's. When a Clear is being
1315 		 * done on a container it is initially created then hidden from
1316 		 * the OS. When the clear completes we don't get a config
1317 		 * change so we monitor the job status complete on a clear then
1318 		 * wait for a container change.
1319 		 */
1320 
1321 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1322 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1323 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1324 			for (container = 0;
1325 			    container < dev->maximum_num_containers;
1326 			    ++container) {
1327 				/*
1328 				 * Stomp on all config sequencing for all
1329 				 * containers?
1330 				 */
1331 				dev->fsa_dev[container].config_waiting_on =
1332 					AifEnContainerChange;
1333 				dev->fsa_dev[container].config_needed = ADD;
1334 				dev->fsa_dev[container].config_waiting_stamp =
1335 					jiffies;
1336 			}
1337 		}
1338 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1339 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1340 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1341 			for (container = 0;
1342 			    container < dev->maximum_num_containers;
1343 			    ++container) {
1344 				/*
1345 				 * Stomp on all config sequencing for all
1346 				 * containers?
1347 				 */
1348 				dev->fsa_dev[container].config_waiting_on =
1349 					AifEnContainerChange;
1350 				dev->fsa_dev[container].config_needed = DELETE;
1351 				dev->fsa_dev[container].config_waiting_stamp =
1352 					jiffies;
1353 			}
1354 		}
1355 		break;
1356 	}
1357 
1358 	container = 0;
1359 retry_next:
1360 	if (device_config_needed == NOTHING)
1361 	for (; container < dev->maximum_num_containers; ++container) {
1362 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1363 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1364 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1365 			device_config_needed =
1366 				dev->fsa_dev[container].config_needed;
1367 			dev->fsa_dev[container].config_needed = NOTHING;
1368 			channel = CONTAINER_TO_CHANNEL(container);
1369 			id = CONTAINER_TO_ID(container);
1370 			lun = CONTAINER_TO_LUN(container);
1371 			break;
1372 		}
1373 	}
1374 	if (device_config_needed == NOTHING)
1375 		return;
1376 
1377 	/*
1378 	 *	If we decided that a re-configuration needs to be done,
1379 	 * schedule it here on the way out the door, please close the door
1380 	 * behind you.
1381 	 */
1382 
1383 	/*
1384 	 *	Find the scsi_device associated with the SCSI address,
1385 	 * and mark it as changed, invalidating the cache. This deals
1386 	 * with changes to existing device IDs.
1387 	 */
1388 
1389 	if (!dev || !dev->scsi_host_ptr)
1390 		return;
1391 	/*
1392 	 * force reload of disk info via aac_probe_container
1393 	 */
1394 	if ((channel == CONTAINER_CHANNEL) &&
1395 	  (device_config_needed != NOTHING)) {
1396 		if (dev->fsa_dev[container].valid == 1)
1397 			dev->fsa_dev[container].valid = 2;
1398 		aac_probe_container(dev, container);
1399 	}
1400 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1401 	if (device) {
1402 		switch (device_config_needed) {
1403 		case DELETE:
1404 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1405 			scsi_remove_device(device);
1406 #else
1407 			if (scsi_device_online(device)) {
1408 				scsi_device_set_state(device, SDEV_OFFLINE);
1409 				sdev_printk(KERN_INFO, device,
1410 					"Device offlined - %s\n",
1411 					(channel == CONTAINER_CHANNEL) ?
1412 						"array deleted" :
1413 						"enclosure services event");
1414 			}
1415 #endif
1416 			break;
1417 		case ADD:
1418 			if (!scsi_device_online(device)) {
1419 				sdev_printk(KERN_INFO, device,
1420 					"Device online - %s\n",
1421 					(channel == CONTAINER_CHANNEL) ?
1422 						"array created" :
1423 						"enclosure services event");
1424 				scsi_device_set_state(device, SDEV_RUNNING);
1425 			}
1426 			/* FALLTHRU */
1427 		case CHANGE:
1428 			if ((channel == CONTAINER_CHANNEL)
1429 			 && (!dev->fsa_dev[container].valid)) {
1430 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1431 				scsi_remove_device(device);
1432 #else
1433 				if (!scsi_device_online(device))
1434 					break;
1435 				scsi_device_set_state(device, SDEV_OFFLINE);
1436 				sdev_printk(KERN_INFO, device,
1437 					"Device offlined - %s\n",
1438 					"array failed");
1439 #endif
1440 				break;
1441 			}
1442 			scsi_rescan_device(&device->sdev_gendev);
1443 
1444 		default:
1445 			break;
1446 		}
1447 		scsi_device_put(device);
1448 		device_config_needed = NOTHING;
1449 	}
1450 	if (device_config_needed == ADD)
1451 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1452 	if (channel == CONTAINER_CHANNEL) {
1453 		container++;
1454 		device_config_needed = NOTHING;
1455 		goto retry_next;
1456 	}
1457 }
1458 
1459 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1460 {
1461 	int index, quirks;
1462 	int retval;
1463 	struct Scsi_Host *host;
1464 	struct scsi_device *dev;
1465 	struct scsi_cmnd *command;
1466 	struct scsi_cmnd *command_list;
1467 	int jafo = 0;
1468 	int bled;
1469 
1470 	/*
1471 	 * Assumptions:
1472 	 *	- host is locked, unless called by the aacraid thread.
1473 	 *	  (a matter of convenience, due to legacy issues surrounding
1474 	 *	  eh_host_adapter_reset).
1475 	 *	- in_reset is asserted, so no new i/o is getting to the
1476 	 *	  card.
1477 	 *	- The card is dead, or will be very shortly ;-/ so no new
1478 	 *	  commands are completing in the interrupt service.
1479 	 */
1480 	host = aac->scsi_host_ptr;
1481 	scsi_block_requests(host);
1482 	aac_adapter_disable_int(aac);
1483 	if (aac->thread->pid != current->pid) {
1484 		spin_unlock_irq(host->host_lock);
1485 		kthread_stop(aac->thread);
1486 		jafo = 1;
1487 	}
1488 
1489 	/*
1490 	 *	If a positive health, means in a known DEAD PANIC
1491 	 * state and the adapter could be reset to `try again'.
1492 	 */
1493 	bled = forced ? 0 : aac_adapter_check_health(aac);
1494 	retval = aac_adapter_restart(aac, bled, reset_type);
1495 
1496 	if (retval)
1497 		goto out;
1498 
1499 	/*
1500 	 *	Loop through the fibs, close the synchronous FIBS
1501 	 */
1502 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1503 		struct fib *fib = &aac->fibs[index];
1504 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1505 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1506 			unsigned long flagv;
1507 			spin_lock_irqsave(&fib->event_lock, flagv);
1508 			up(&fib->event_wait);
1509 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1510 			schedule();
1511 			retval = 0;
1512 		}
1513 	}
1514 	/* Give some extra time for ioctls to complete. */
1515 	if (retval == 0)
1516 		ssleep(2);
1517 	index = aac->cardtype;
1518 
1519 	/*
1520 	 * Re-initialize the adapter, first free resources, then carefully
1521 	 * apply the initialization sequence to come back again. Only risk
1522 	 * is a change in Firmware dropping cache, it is assumed the caller
1523 	 * will ensure that i/o is queisced and the card is flushed in that
1524 	 * case.
1525 	 */
1526 	aac_fib_map_free(aac);
1527 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1528 	aac->comm_addr = NULL;
1529 	aac->comm_phys = 0;
1530 	kfree(aac->queues);
1531 	aac->queues = NULL;
1532 	aac_free_irq(aac);
1533 	kfree(aac->fsa_dev);
1534 	aac->fsa_dev = NULL;
1535 	quirks = aac_get_driver_ident(index)->quirks;
1536 	if (quirks & AAC_QUIRK_31BIT) {
1537 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1538 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1539 			goto out;
1540 	} else {
1541 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1542 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1543 			goto out;
1544 	}
1545 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1546 		goto out;
1547 	if (quirks & AAC_QUIRK_31BIT)
1548 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1549 			goto out;
1550 	if (jafo) {
1551 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1552 					  aac->name);
1553 		if (IS_ERR(aac->thread)) {
1554 			retval = PTR_ERR(aac->thread);
1555 			goto out;
1556 		}
1557 	}
1558 	(void)aac_get_adapter_info(aac);
1559 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1560 		host->sg_tablesize = 34;
1561 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1562 	}
1563 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1564 		host->sg_tablesize = 17;
1565 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1566 	}
1567 	aac_get_config_status(aac, 1);
1568 	aac_get_containers(aac);
1569 	/*
1570 	 * This is where the assumption that the Adapter is quiesced
1571 	 * is important.
1572 	 */
1573 	command_list = NULL;
1574 	__shost_for_each_device(dev, host) {
1575 		unsigned long flags;
1576 		spin_lock_irqsave(&dev->list_lock, flags);
1577 		list_for_each_entry(command, &dev->cmd_list, list)
1578 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1579 				command->SCp.buffer = (struct scatterlist *)command_list;
1580 				command_list = command;
1581 			}
1582 		spin_unlock_irqrestore(&dev->list_lock, flags);
1583 	}
1584 	while ((command = command_list)) {
1585 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1586 		command->SCp.buffer = NULL;
1587 		command->result = DID_OK << 16
1588 		  | COMMAND_COMPLETE << 8
1589 		  | SAM_STAT_TASK_SET_FULL;
1590 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1591 		command->scsi_done(command);
1592 	}
1593 	retval = 0;
1594 
1595 out:
1596 	aac->in_reset = 0;
1597 	scsi_unblock_requests(host);
1598 	if (jafo) {
1599 		spin_lock_irq(host->host_lock);
1600 	}
1601 	return retval;
1602 }
1603 
1604 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1605 {
1606 	unsigned long flagv = 0;
1607 	int retval;
1608 	struct Scsi_Host * host;
1609 	int bled;
1610 
1611 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1612 		return -EBUSY;
1613 
1614 	if (aac->in_reset) {
1615 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1616 		return -EBUSY;
1617 	}
1618 	aac->in_reset = 1;
1619 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1620 
1621 	/*
1622 	 * Wait for all commands to complete to this specific
1623 	 * target (block maximum 60 seconds). Although not necessary,
1624 	 * it does make us a good storage citizen.
1625 	 */
1626 	host = aac->scsi_host_ptr;
1627 	scsi_block_requests(host);
1628 	if (forced < 2) for (retval = 60; retval; --retval) {
1629 		struct scsi_device * dev;
1630 		struct scsi_cmnd * command;
1631 		int active = 0;
1632 
1633 		__shost_for_each_device(dev, host) {
1634 			spin_lock_irqsave(&dev->list_lock, flagv);
1635 			list_for_each_entry(command, &dev->cmd_list, list) {
1636 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1637 					active++;
1638 					break;
1639 				}
1640 			}
1641 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1642 			if (active)
1643 				break;
1644 
1645 		}
1646 		/*
1647 		 * We can exit If all the commands are complete
1648 		 */
1649 		if (active == 0)
1650 			break;
1651 		ssleep(1);
1652 	}
1653 
1654 	/* Quiesce build, flush cache, write through mode */
1655 	if (forced < 2)
1656 		aac_send_shutdown(aac);
1657 	spin_lock_irqsave(host->host_lock, flagv);
1658 	bled = forced ? forced :
1659 			(aac_check_reset != 0 && aac_check_reset != 1);
1660 	retval = _aac_reset_adapter(aac, bled, reset_type);
1661 	spin_unlock_irqrestore(host->host_lock, flagv);
1662 
1663 	if ((forced < 2) && (retval == -ENODEV)) {
1664 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1665 		struct fib * fibctx = aac_fib_alloc(aac);
1666 		if (fibctx) {
1667 			struct aac_pause *cmd;
1668 			int status;
1669 
1670 			aac_fib_init(fibctx);
1671 
1672 			cmd = (struct aac_pause *) fib_data(fibctx);
1673 
1674 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1675 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1676 			cmd->timeout = cpu_to_le32(1);
1677 			cmd->min = cpu_to_le32(1);
1678 			cmd->noRescan = cpu_to_le32(1);
1679 			cmd->count = cpu_to_le32(0);
1680 
1681 			status = aac_fib_send(ContainerCommand,
1682 			  fibctx,
1683 			  sizeof(struct aac_pause),
1684 			  FsaNormal,
1685 			  -2 /* Timeout silently */, 1,
1686 			  NULL, NULL);
1687 
1688 			if (status >= 0)
1689 				aac_fib_complete(fibctx);
1690 			/* FIB should be freed only after getting
1691 			 * the response from the F/W */
1692 			if (status != -ERESTARTSYS)
1693 				aac_fib_free(fibctx);
1694 		}
1695 	}
1696 
1697 	return retval;
1698 }
1699 
1700 int aac_check_health(struct aac_dev * aac)
1701 {
1702 	int BlinkLED;
1703 	unsigned long time_now, flagv = 0;
1704 	struct list_head * entry;
1705 	struct Scsi_Host * host;
1706 	int bled;
1707 
1708 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1709 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1710 		return 0;
1711 
1712 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1713 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1714 		return 0; /* OK */
1715 	}
1716 
1717 	aac->in_reset = 1;
1718 
1719 	/* Fake up an AIF:
1720 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1721 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1722 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1723 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1724 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1725 	 *	aac.aifcmd.data[3] = BlinkLED
1726 	 */
1727 
1728 	time_now = jiffies/HZ;
1729 	entry = aac->fib_list.next;
1730 
1731 	/*
1732 	 * For each Context that is on the
1733 	 * fibctxList, make a copy of the
1734 	 * fib, and then set the event to wake up the
1735 	 * thread that is waiting for it.
1736 	 */
1737 	while (entry != &aac->fib_list) {
1738 		/*
1739 		 * Extract the fibctx
1740 		 */
1741 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1742 		struct hw_fib * hw_fib;
1743 		struct fib * fib;
1744 		/*
1745 		 * Check if the queue is getting
1746 		 * backlogged
1747 		 */
1748 		if (fibctx->count > 20) {
1749 			/*
1750 			 * It's *not* jiffies folks,
1751 			 * but jiffies / HZ, so do not
1752 			 * panic ...
1753 			 */
1754 			u32 time_last = fibctx->jiffies;
1755 			/*
1756 			 * Has it been > 2 minutes
1757 			 * since the last read off
1758 			 * the queue?
1759 			 */
1760 			if ((time_now - time_last) > aif_timeout) {
1761 				entry = entry->next;
1762 				aac_close_fib_context(aac, fibctx);
1763 				continue;
1764 			}
1765 		}
1766 		/*
1767 		 * Warning: no sleep allowed while
1768 		 * holding spinlock
1769 		 */
1770 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1771 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1772 		if (fib && hw_fib) {
1773 			struct aac_aifcmd * aif;
1774 
1775 			fib->hw_fib_va = hw_fib;
1776 			fib->dev = aac;
1777 			aac_fib_init(fib);
1778 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1779 			fib->size = sizeof (struct fib);
1780 			fib->data = hw_fib->data;
1781 			aif = (struct aac_aifcmd *)hw_fib->data;
1782 			aif->command = cpu_to_le32(AifCmdEventNotify);
1783 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1784 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1785 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1786 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1787 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1788 
1789 			/*
1790 			 * Put the FIB onto the
1791 			 * fibctx's fibs
1792 			 */
1793 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1794 			fibctx->count++;
1795 			/*
1796 			 * Set the event to wake up the
1797 			 * thread that will waiting.
1798 			 */
1799 			up(&fibctx->wait_sem);
1800 		} else {
1801 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1802 			kfree(fib);
1803 			kfree(hw_fib);
1804 		}
1805 		entry = entry->next;
1806 	}
1807 
1808 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1809 
1810 	if (BlinkLED < 0) {
1811 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1812 		goto out;
1813 	}
1814 
1815 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1816 
1817 	if (!aac_check_reset || ((aac_check_reset == 1) &&
1818 		(aac->supplement_adapter_info.SupportedOptions2 &
1819 			AAC_OPTION_IGNORE_RESET)))
1820 		goto out;
1821 	host = aac->scsi_host_ptr;
1822 	if (aac->thread->pid != current->pid)
1823 		spin_lock_irqsave(host->host_lock, flagv);
1824 	bled = aac_check_reset != 1 ? 1 : 0;
1825 	_aac_reset_adapter(aac, bled, IOP_HWSOFT_RESET);
1826 	if (aac->thread->pid != current->pid)
1827 		spin_unlock_irqrestore(host->host_lock, flagv);
1828 	return BlinkLED;
1829 
1830 out:
1831 	aac->in_reset = 0;
1832 	return BlinkLED;
1833 }
1834 
1835 
1836 static void aac_resolve_luns(struct aac_dev *dev)
1837 {
1838 	int bus, target, channel;
1839 	struct scsi_device *sdev;
1840 	u8 devtype;
1841 	u8 new_devtype;
1842 
1843 	for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1844 		for (target = 0; target < AAC_MAX_TARGETS; target++) {
1845 
1846 			if (aac_phys_to_logical(bus) == ENCLOSURE_CHANNEL)
1847 				continue;
1848 
1849 			if (bus == CONTAINER_CHANNEL)
1850 				channel = CONTAINER_CHANNEL;
1851 			else
1852 				channel = aac_phys_to_logical(bus);
1853 
1854 			devtype = dev->hba_map[bus][target].devtype;
1855 			new_devtype = dev->hba_map[bus][target].new_devtype;
1856 
1857 			sdev = scsi_device_lookup(dev->scsi_host_ptr, channel,
1858 					target, 0);
1859 
1860 			if (!sdev && devtype)
1861 				scsi_add_device(dev->scsi_host_ptr, channel,
1862 						target, 0);
1863 			else if (sdev && new_devtype != devtype)
1864 				scsi_remove_device(sdev);
1865 			else if (sdev && new_devtype == devtype)
1866 				scsi_rescan_device(&sdev->sdev_gendev);
1867 
1868 			if (sdev)
1869 				scsi_device_put(sdev);
1870 
1871 			dev->hba_map[bus][target].devtype = new_devtype;
1872 		}
1873 	}
1874 }
1875 
1876 /**
1877  *	aac_handle_sa_aif	Handle a message from the firmware
1878  *	@dev: Which adapter this fib is from
1879  *	@fibptr: Pointer to fibptr from adapter
1880  *
1881  *	This routine handles a driver notify fib from the adapter and
1882  *	dispatches it to the appropriate routine for handling.
1883  */
1884 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1885 {
1886 	int i, bus, target, container, rcode = 0;
1887 	u32 events = 0;
1888 	struct fib *fib;
1889 	struct scsi_device *sdev;
1890 
1891 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1892 		events = SA_AIF_HOTPLUG;
1893 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1894 		events = SA_AIF_HARDWARE;
1895 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1896 		events = SA_AIF_PDEV_CHANGE;
1897 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1898 		events = SA_AIF_LDEV_CHANGE;
1899 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1900 		events = SA_AIF_BPSTAT_CHANGE;
1901 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1902 		events = SA_AIF_BPCFG_CHANGE;
1903 
1904 	switch (events) {
1905 	case SA_AIF_HOTPLUG:
1906 	case SA_AIF_HARDWARE:
1907 	case SA_AIF_PDEV_CHANGE:
1908 	case SA_AIF_LDEV_CHANGE:
1909 	case SA_AIF_BPCFG_CHANGE:
1910 
1911 		fib = aac_fib_alloc(dev);
1912 		if (!fib) {
1913 			pr_err("aac_handle_sa_aif: out of memory\n");
1914 			return;
1915 		}
1916 		for (bus = 0; bus < AAC_MAX_BUSES; bus++)
1917 			for (target = 0; target < AAC_MAX_TARGETS; target++)
1918 				dev->hba_map[bus][target].new_devtype = 0;
1919 
1920 		rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN);
1921 
1922 		if (rcode != -ERESTARTSYS)
1923 			aac_fib_free(fib);
1924 
1925 		aac_resolve_luns(dev);
1926 
1927 		if (events == SA_AIF_LDEV_CHANGE ||
1928 		    events == SA_AIF_BPCFG_CHANGE) {
1929 			aac_get_containers(dev);
1930 			for (container = 0; container <
1931 			dev->maximum_num_containers; ++container) {
1932 				sdev = scsi_device_lookup(dev->scsi_host_ptr,
1933 						CONTAINER_CHANNEL,
1934 						container, 0);
1935 				if (dev->fsa_dev[container].valid && !sdev) {
1936 					scsi_add_device(dev->scsi_host_ptr,
1937 						CONTAINER_CHANNEL,
1938 						container, 0);
1939 				} else if (!dev->fsa_dev[container].valid &&
1940 					sdev) {
1941 					scsi_remove_device(sdev);
1942 					scsi_device_put(sdev);
1943 				} else if (sdev) {
1944 					scsi_rescan_device(&sdev->sdev_gendev);
1945 					scsi_device_put(sdev);
1946 				}
1947 			}
1948 		}
1949 		break;
1950 
1951 	case SA_AIF_BPSTAT_CHANGE:
1952 		/* currently do nothing */
1953 		break;
1954 	}
1955 
1956 	for (i = 1; i <= 10; ++i) {
1957 		events = src_readl(dev, MUnit.IDR);
1958 		if (events & (1<<23)) {
1959 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1960 				i, 10);
1961 			ssleep(1);
1962 		}
1963 	}
1964 }
1965 
1966 static int get_fib_count(struct aac_dev *dev)
1967 {
1968 	unsigned int num = 0;
1969 	struct list_head *entry;
1970 	unsigned long flagv;
1971 
1972 	/*
1973 	 * Warning: no sleep allowed while
1974 	 * holding spinlock. We take the estimate
1975 	 * and pre-allocate a set of fibs outside the
1976 	 * lock.
1977 	 */
1978 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
1979 			/ sizeof(struct hw_fib); /* some extra */
1980 	spin_lock_irqsave(&dev->fib_lock, flagv);
1981 	entry = dev->fib_list.next;
1982 	while (entry != &dev->fib_list) {
1983 		entry = entry->next;
1984 		++num;
1985 	}
1986 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
1987 
1988 	return num;
1989 }
1990 
1991 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
1992 						struct fib **fib_pool,
1993 						unsigned int num)
1994 {
1995 	struct hw_fib **hw_fib_p;
1996 	struct fib **fib_p;
1997 	int rcode = 1;
1998 
1999 	hw_fib_p = hw_fib_pool;
2000 	fib_p = fib_pool;
2001 	while (hw_fib_p < &hw_fib_pool[num]) {
2002 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2003 		if (!(*(hw_fib_p++))) {
2004 			--hw_fib_p;
2005 			break;
2006 		}
2007 
2008 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2009 		if (!(*(fib_p++))) {
2010 			kfree(*(--hw_fib_p));
2011 			break;
2012 		}
2013 	}
2014 
2015 	num = hw_fib_p - hw_fib_pool;
2016 	if (!num)
2017 		rcode = 0;
2018 
2019 	return rcode;
2020 }
2021 
2022 static void wakeup_fibctx_threads(struct aac_dev *dev,
2023 						struct hw_fib **hw_fib_pool,
2024 						struct fib **fib_pool,
2025 						struct fib *fib,
2026 						struct hw_fib *hw_fib,
2027 						unsigned int num)
2028 {
2029 	unsigned long flagv;
2030 	struct list_head *entry;
2031 	struct hw_fib **hw_fib_p;
2032 	struct fib **fib_p;
2033 	u32 time_now, time_last;
2034 	struct hw_fib *hw_newfib;
2035 	struct fib *newfib;
2036 	struct aac_fib_context *fibctx;
2037 
2038 	time_now = jiffies/HZ;
2039 	spin_lock_irqsave(&dev->fib_lock, flagv);
2040 	entry = dev->fib_list.next;
2041 	/*
2042 	 * For each Context that is on the
2043 	 * fibctxList, make a copy of the
2044 	 * fib, and then set the event to wake up the
2045 	 * thread that is waiting for it.
2046 	 */
2047 
2048 	hw_fib_p = hw_fib_pool;
2049 	fib_p = fib_pool;
2050 	while (entry != &dev->fib_list) {
2051 		/*
2052 		 * Extract the fibctx
2053 		 */
2054 		fibctx = list_entry(entry, struct aac_fib_context,
2055 				next);
2056 		/*
2057 		 * Check if the queue is getting
2058 		 * backlogged
2059 		 */
2060 		if (fibctx->count > 20) {
2061 			/*
2062 			 * It's *not* jiffies folks,
2063 			 * but jiffies / HZ so do not
2064 			 * panic ...
2065 			 */
2066 			time_last = fibctx->jiffies;
2067 			/*
2068 			 * Has it been > 2 minutes
2069 			 * since the last read off
2070 			 * the queue?
2071 			 */
2072 			if ((time_now - time_last) > aif_timeout) {
2073 				entry = entry->next;
2074 				aac_close_fib_context(dev, fibctx);
2075 				continue;
2076 			}
2077 		}
2078 		/*
2079 		 * Warning: no sleep allowed while
2080 		 * holding spinlock
2081 		 */
2082 		if (hw_fib_p >= &hw_fib_pool[num]) {
2083 			pr_warn("aifd: didn't allocate NewFib\n");
2084 			entry = entry->next;
2085 			continue;
2086 		}
2087 
2088 		hw_newfib = *hw_fib_p;
2089 		*(hw_fib_p++) = NULL;
2090 		newfib = *fib_p;
2091 		*(fib_p++) = NULL;
2092 		/*
2093 		 * Make the copy of the FIB
2094 		 */
2095 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2096 		memcpy(newfib, fib, sizeof(struct fib));
2097 		newfib->hw_fib_va = hw_newfib;
2098 		/*
2099 		 * Put the FIB onto the
2100 		 * fibctx's fibs
2101 		 */
2102 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2103 		fibctx->count++;
2104 		/*
2105 		 * Set the event to wake up the
2106 		 * thread that is waiting.
2107 		 */
2108 		up(&fibctx->wait_sem);
2109 
2110 		entry = entry->next;
2111 	}
2112 	/*
2113 	 *	Set the status of this FIB
2114 	 */
2115 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2116 	aac_fib_adapter_complete(fib, sizeof(u32));
2117 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2118 
2119 }
2120 
2121 static void aac_process_events(struct aac_dev *dev)
2122 {
2123 	struct hw_fib *hw_fib;
2124 	struct fib *fib;
2125 	unsigned long flags;
2126 	spinlock_t *t_lock;
2127 	unsigned int rcode;
2128 
2129 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2130 	spin_lock_irqsave(t_lock, flags);
2131 
2132 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2133 		struct list_head *entry;
2134 		struct aac_aifcmd *aifcmd;
2135 		unsigned int  num;
2136 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2137 		struct fib **fib_pool, **fib_p;
2138 
2139 		set_current_state(TASK_RUNNING);
2140 
2141 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2142 		list_del(entry);
2143 
2144 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2145 		spin_unlock_irqrestore(t_lock, flags);
2146 
2147 		fib = list_entry(entry, struct fib, fiblink);
2148 		hw_fib = fib->hw_fib_va;
2149 		if (dev->sa_firmware) {
2150 			/* Thor AIF */
2151 			aac_handle_sa_aif(dev, fib);
2152 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2153 			continue;
2154 		}
2155 		/*
2156 		 *	We will process the FIB here or pass it to a
2157 		 *	worker thread that is TBD. We Really can't
2158 		 *	do anything at this point since we don't have
2159 		 *	anything defined for this thread to do.
2160 		 */
2161 		memset(fib, 0, sizeof(struct fib));
2162 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2163 		fib->size = sizeof(struct fib);
2164 		fib->hw_fib_va = hw_fib;
2165 		fib->data = hw_fib->data;
2166 		fib->dev = dev;
2167 		/*
2168 		 *	We only handle AifRequest fibs from the adapter.
2169 		 */
2170 
2171 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2172 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2173 			/* Handle Driver Notify Events */
2174 			aac_handle_aif(dev, fib);
2175 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2176 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2177 			goto free_fib;
2178 		}
2179 		/*
2180 		 * The u32 here is important and intended. We are using
2181 		 * 32bit wrapping time to fit the adapter field
2182 		 */
2183 
2184 		/* Sniff events */
2185 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2186 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2187 			aac_handle_aif(dev, fib);
2188 		}
2189 
2190 		/*
2191 		 * get number of fibs to process
2192 		 */
2193 		num = get_fib_count(dev);
2194 		if (!num)
2195 			goto free_fib;
2196 
2197 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2198 						GFP_KERNEL);
2199 		if (!hw_fib_pool)
2200 			goto free_fib;
2201 
2202 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2203 		if (!fib_pool)
2204 			goto free_hw_fib_pool;
2205 
2206 		/*
2207 		 * Fill up fib pointer pools with actual fibs
2208 		 * and hw_fibs
2209 		 */
2210 		rcode = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2211 		if (!rcode)
2212 			goto free_mem;
2213 
2214 		/*
2215 		 * wakeup the thread that is waiting for
2216 		 * the response from fw (ioctl)
2217 		 */
2218 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2219 							    fib, hw_fib, num);
2220 
2221 free_mem:
2222 		/* Free up the remaining resources */
2223 		hw_fib_p = hw_fib_pool;
2224 		fib_p = fib_pool;
2225 		while (hw_fib_p < &hw_fib_pool[num]) {
2226 			kfree(*hw_fib_p);
2227 			kfree(*fib_p);
2228 			++fib_p;
2229 			++hw_fib_p;
2230 		}
2231 		kfree(fib_pool);
2232 free_hw_fib_pool:
2233 		kfree(hw_fib_pool);
2234 free_fib:
2235 		kfree(fib);
2236 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2237 		spin_lock_irqsave(t_lock, flags);
2238 	}
2239 	/*
2240 	 *	There are no more AIF's
2241 	 */
2242 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2243 	spin_unlock_irqrestore(t_lock, flags);
2244 }
2245 
2246 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2247 							u32 datasize)
2248 {
2249 	struct aac_srb *srbcmd;
2250 	struct sgmap64 *sg64;
2251 	dma_addr_t addr;
2252 	char *dma_buf;
2253 	struct fib *fibptr;
2254 	int ret = -ENOMEM;
2255 	u32 vbus, vid;
2256 
2257 	fibptr = aac_fib_alloc(dev);
2258 	if (!fibptr)
2259 		goto out;
2260 
2261 	dma_buf = pci_alloc_consistent(dev->pdev, datasize, &addr);
2262 	if (!dma_buf)
2263 		goto fib_free_out;
2264 
2265 	aac_fib_init(fibptr);
2266 
2267 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.VirtDeviceBus);
2268 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.VirtDeviceTarget);
2269 
2270 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2271 
2272 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2273 	srbcmd->channel = cpu_to_le32(vbus);
2274 	srbcmd->id = cpu_to_le32(vid);
2275 	srbcmd->lun = 0;
2276 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2277 	srbcmd->timeout = cpu_to_le32(10);
2278 	srbcmd->retry_limit = 0;
2279 	srbcmd->cdb_size = cpu_to_le32(12);
2280 	srbcmd->count = cpu_to_le32(datasize);
2281 
2282 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2283 	srbcmd->cdb[0] = BMIC_OUT;
2284 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2285 	memcpy(dma_buf, (char *)wellness_str, datasize);
2286 
2287 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2288 	sg64->count = cpu_to_le32(1);
2289 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2290 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2291 	sg64->sg[0].count = cpu_to_le32(datasize);
2292 
2293 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2294 				FsaNormal, 1, 1, NULL, NULL);
2295 
2296 	pci_free_consistent(dev->pdev, datasize, (void *)dma_buf, addr);
2297 
2298 	/*
2299 	 * Do not set XferState to zero unless
2300 	 * receives a response from F/W
2301 	 */
2302 	if (ret >= 0)
2303 		aac_fib_complete(fibptr);
2304 
2305 	/*
2306 	 * FIB should be freed only after
2307 	 * getting the response from the F/W
2308 	 */
2309 	if (ret != -ERESTARTSYS)
2310 		goto fib_free_out;
2311 
2312 out:
2313 	return ret;
2314 fib_free_out:
2315 	aac_fib_free(fibptr);
2316 	goto out;
2317 }
2318 
2319 int aac_send_safw_hostttime(struct aac_dev *dev, struct timeval *now)
2320 {
2321 	struct tm cur_tm;
2322 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2323 	u32 datasize = sizeof(wellness_str);
2324 	unsigned long local_time;
2325 	int ret = -ENODEV;
2326 
2327 	if (!dev->sa_firmware)
2328 		goto out;
2329 
2330 	local_time = (u32)(now->tv_sec - (sys_tz.tz_minuteswest * 60));
2331 	time_to_tm(local_time, 0, &cur_tm);
2332 	cur_tm.tm_mon += 1;
2333 	cur_tm.tm_year += 1900;
2334 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2335 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2336 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2337 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2338 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2339 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2340 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2341 
2342 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2343 
2344 out:
2345 	return ret;
2346 }
2347 
2348 int aac_send_hosttime(struct aac_dev *dev, struct timeval *now)
2349 {
2350 	int ret = -ENOMEM;
2351 	struct fib *fibptr;
2352 	__le32 *info;
2353 
2354 	fibptr = aac_fib_alloc(dev);
2355 	if (!fibptr)
2356 		goto out;
2357 
2358 	aac_fib_init(fibptr);
2359 	info = (__le32 *)fib_data(fibptr);
2360 	*info = cpu_to_le32(now->tv_sec);
2361 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2362 					1, 1, NULL, NULL);
2363 
2364 	/*
2365 	 * Do not set XferState to zero unless
2366 	 * receives a response from F/W
2367 	 */
2368 	if (ret >= 0)
2369 		aac_fib_complete(fibptr);
2370 
2371 	/*
2372 	 * FIB should be freed only after
2373 	 * getting the response from the F/W
2374 	 */
2375 	if (ret != -ERESTARTSYS)
2376 		aac_fib_free(fibptr);
2377 
2378 out:
2379 	return ret;
2380 }
2381 
2382 /**
2383  *	aac_command_thread	-	command processing thread
2384  *	@dev: Adapter to monitor
2385  *
2386  *	Waits on the commandready event in it's queue. When the event gets set
2387  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2388  *	until the queue is empty. When the queue is empty it will wait for
2389  *	more FIBs.
2390  */
2391 
2392 int aac_command_thread(void *data)
2393 {
2394 	struct aac_dev *dev = data;
2395 	DECLARE_WAITQUEUE(wait, current);
2396 	unsigned long next_jiffies = jiffies + HZ;
2397 	unsigned long next_check_jiffies = next_jiffies;
2398 	long difference = HZ;
2399 
2400 	/*
2401 	 *	We can only have one thread per adapter for AIF's.
2402 	 */
2403 	if (dev->aif_thread)
2404 		return -EINVAL;
2405 
2406 	/*
2407 	 *	Let the DPC know it has a place to send the AIF's to.
2408 	 */
2409 	dev->aif_thread = 1;
2410 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2411 	set_current_state(TASK_INTERRUPTIBLE);
2412 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2413 	while (1) {
2414 
2415 		aac_process_events(dev);
2416 
2417 		/*
2418 		 *	Background activity
2419 		 */
2420 		if ((time_before(next_check_jiffies,next_jiffies))
2421 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2422 			next_check_jiffies = next_jiffies;
2423 			if (aac_check_health(dev) == 0) {
2424 				difference = ((long)(unsigned)check_interval)
2425 					   * HZ;
2426 				next_check_jiffies = jiffies + difference;
2427 			} else if (!dev->queues)
2428 				break;
2429 		}
2430 		if (!time_before(next_check_jiffies,next_jiffies)
2431 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2432 			struct timeval now;
2433 			int ret;
2434 
2435 			/* Don't even try to talk to adapter if its sick */
2436 			ret = aac_check_health(dev);
2437 			if (!dev->queues)
2438 				break;
2439 			next_check_jiffies = jiffies
2440 					   + ((long)(unsigned)check_interval)
2441 					   * HZ;
2442 			do_gettimeofday(&now);
2443 
2444 			/* Synchronize our watches */
2445 			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
2446 			 && (now.tv_usec > (1000000 / HZ)))
2447 				difference = (((1000000 - now.tv_usec) * HZ)
2448 				  + 500000) / 1000000;
2449 			else if (ret == 0) {
2450 
2451 				if (now.tv_usec > 500000)
2452 					++now.tv_sec;
2453 
2454 				if (dev->sa_firmware)
2455 					ret =
2456 					aac_send_safw_hostttime(dev, &now);
2457 				else
2458 					ret = aac_send_hosttime(dev, &now);
2459 
2460 				difference = (long)(unsigned)update_interval*HZ;
2461 			} else {
2462 				/* retry shortly */
2463 				difference = 10 * HZ;
2464 			}
2465 			next_jiffies = jiffies + difference;
2466 			if (time_before(next_check_jiffies,next_jiffies))
2467 				difference = next_check_jiffies - jiffies;
2468 		}
2469 		if (difference <= 0)
2470 			difference = 1;
2471 		set_current_state(TASK_INTERRUPTIBLE);
2472 
2473 		if (kthread_should_stop())
2474 			break;
2475 
2476 		schedule_timeout(difference);
2477 
2478 		if (kthread_should_stop())
2479 			break;
2480 	}
2481 	if (dev->queues)
2482 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2483 	dev->aif_thread = 0;
2484 	return 0;
2485 }
2486 
2487 int aac_acquire_irq(struct aac_dev *dev)
2488 {
2489 	int i;
2490 	int j;
2491 	int ret = 0;
2492 
2493 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2494 		for (i = 0; i < dev->max_msix; i++) {
2495 			dev->aac_msix[i].vector_no = i;
2496 			dev->aac_msix[i].dev = dev;
2497 			if (request_irq(pci_irq_vector(dev->pdev, i),
2498 					dev->a_ops.adapter_intr,
2499 					0, "aacraid", &(dev->aac_msix[i]))) {
2500 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2501 						dev->name, dev->id, i);
2502 				for (j = 0 ; j < i ; j++)
2503 					free_irq(pci_irq_vector(dev->pdev, j),
2504 						 &(dev->aac_msix[j]));
2505 				pci_disable_msix(dev->pdev);
2506 				ret = -1;
2507 			}
2508 		}
2509 	} else {
2510 		dev->aac_msix[0].vector_no = 0;
2511 		dev->aac_msix[0].dev = dev;
2512 
2513 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2514 			IRQF_SHARED, "aacraid",
2515 			&(dev->aac_msix[0])) < 0) {
2516 			if (dev->msi)
2517 				pci_disable_msi(dev->pdev);
2518 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2519 					dev->name, dev->id);
2520 			ret = -1;
2521 		}
2522 	}
2523 	return ret;
2524 }
2525 
2526 void aac_free_irq(struct aac_dev *dev)
2527 {
2528 	int i;
2529 	int cpu;
2530 
2531 	cpu = cpumask_first(cpu_online_mask);
2532 	if (dev->pdev->device == PMC_DEVICE_S6 ||
2533 	    dev->pdev->device == PMC_DEVICE_S7 ||
2534 	    dev->pdev->device == PMC_DEVICE_S8 ||
2535 	    dev->pdev->device == PMC_DEVICE_S9) {
2536 		if (dev->max_msix > 1) {
2537 			for (i = 0; i < dev->max_msix; i++)
2538 				free_irq(pci_irq_vector(dev->pdev, i),
2539 					 &(dev->aac_msix[i]));
2540 		} else {
2541 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2542 		}
2543 	} else {
2544 		free_irq(dev->pdev->irq, dev);
2545 	}
2546 	if (dev->msi)
2547 		pci_disable_msi(dev->pdev);
2548 	else if (dev->max_msix > 1)
2549 		pci_disable_msix(dev->pdev);
2550 }
2551