1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * commsup.c 28 * 29 * Abstract: Contain all routines that are required for FSA host/adapter 30 * communication. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/sched.h> 38 #include <linux/pci.h> 39 #include <linux/spinlock.h> 40 #include <linux/slab.h> 41 #include <linux/completion.h> 42 #include <linux/blkdev.h> 43 #include <linux/delay.h> 44 #include <linux/kthread.h> 45 #include <linux/interrupt.h> 46 #include <linux/semaphore.h> 47 #include <linux/bcd.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_host.h> 50 #include <scsi/scsi_device.h> 51 #include <scsi/scsi_cmnd.h> 52 53 #include "aacraid.h" 54 55 /** 56 * fib_map_alloc - allocate the fib objects 57 * @dev: Adapter to allocate for 58 * 59 * Allocate and map the shared PCI space for the FIB blocks used to 60 * talk to the Adaptec firmware. 61 */ 62 63 static int fib_map_alloc(struct aac_dev *dev) 64 { 65 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 66 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 67 else 68 dev->max_cmd_size = dev->max_fib_size; 69 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 70 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 71 } else { 72 dev->max_cmd_size = dev->max_fib_size; 73 } 74 75 dprintk((KERN_INFO 76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 77 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 78 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 79 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 80 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 81 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 82 &dev->hw_fib_pa, GFP_KERNEL); 83 if (dev->hw_fib_va == NULL) 84 return -ENOMEM; 85 return 0; 86 } 87 88 /** 89 * aac_fib_map_free - free the fib objects 90 * @dev: Adapter to free 91 * 92 * Free the PCI mappings and the memory allocated for FIB blocks 93 * on this adapter. 94 */ 95 96 void aac_fib_map_free(struct aac_dev *dev) 97 { 98 size_t alloc_size; 99 size_t fib_size; 100 int num_fibs; 101 102 if(!dev->hw_fib_va || !dev->max_cmd_size) 103 return; 104 105 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 106 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 107 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 108 109 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 110 dev->hw_fib_pa); 111 112 dev->hw_fib_va = NULL; 113 dev->hw_fib_pa = 0; 114 } 115 116 void aac_fib_vector_assign(struct aac_dev *dev) 117 { 118 u32 i = 0; 119 u32 vector = 1; 120 struct fib *fibptr = NULL; 121 122 for (i = 0, fibptr = &dev->fibs[i]; 123 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 124 i++, fibptr++) { 125 if ((dev->max_msix == 1) || 126 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 127 - dev->vector_cap))) { 128 fibptr->vector_no = 0; 129 } else { 130 fibptr->vector_no = vector; 131 vector++; 132 if (vector == dev->max_msix) 133 vector = 1; 134 } 135 } 136 } 137 138 /** 139 * aac_fib_setup - setup the fibs 140 * @dev: Adapter to set up 141 * 142 * Allocate the PCI space for the fibs, map it and then initialise the 143 * fib area, the unmapped fib data and also the free list 144 */ 145 146 int aac_fib_setup(struct aac_dev * dev) 147 { 148 struct fib *fibptr; 149 struct hw_fib *hw_fib; 150 dma_addr_t hw_fib_pa; 151 int i; 152 u32 max_cmds; 153 154 while (((i = fib_map_alloc(dev)) == -ENOMEM) 155 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 156 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 157 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 158 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 159 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 160 } 161 if (i<0) 162 return -ENOMEM; 163 164 memset(dev->hw_fib_va, 0, 165 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 166 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 167 168 /* 32 byte alignment for PMC */ 169 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 170 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 171 (hw_fib_pa - dev->hw_fib_pa)); 172 173 /* add Xport header */ 174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 175 sizeof(struct aac_fib_xporthdr)); 176 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 177 178 /* 179 * Initialise the fibs 180 */ 181 for (i = 0, fibptr = &dev->fibs[i]; 182 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 183 i++, fibptr++) 184 { 185 fibptr->flags = 0; 186 fibptr->size = sizeof(struct fib); 187 fibptr->dev = dev; 188 fibptr->hw_fib_va = hw_fib; 189 fibptr->data = (void *) fibptr->hw_fib_va->data; 190 fibptr->next = fibptr+1; /* Forward chain the fibs */ 191 sema_init(&fibptr->event_wait, 0); 192 spin_lock_init(&fibptr->event_lock); 193 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 194 hw_fib->header.SenderSize = 195 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 196 fibptr->hw_fib_pa = hw_fib_pa; 197 fibptr->hw_sgl_pa = hw_fib_pa + 198 offsetof(struct aac_hba_cmd_req, sge[2]); 199 /* 200 * one element is for the ptr to the separate sg list, 201 * second element for 32 byte alignment 202 */ 203 fibptr->hw_error_pa = hw_fib_pa + 204 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 205 206 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 207 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 208 hw_fib_pa = hw_fib_pa + 209 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 210 } 211 212 /* 213 *Assign vector numbers to fibs 214 */ 215 aac_fib_vector_assign(dev); 216 217 /* 218 * Add the fib chain to the free list 219 */ 220 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 221 /* 222 * Set 8 fibs aside for management tools 223 */ 224 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 225 return 0; 226 } 227 228 /** 229 * aac_fib_alloc_tag-allocate a fib using tags 230 * @dev: Adapter to allocate the fib for 231 * 232 * Allocate a fib from the adapter fib pool using tags 233 * from the blk layer. 234 */ 235 236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 237 { 238 struct fib *fibptr; 239 240 fibptr = &dev->fibs[scmd->request->tag]; 241 /* 242 * Null out fields that depend on being zero at the start of 243 * each I/O 244 */ 245 fibptr->hw_fib_va->header.XferState = 0; 246 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 247 fibptr->callback_data = NULL; 248 fibptr->callback = NULL; 249 250 return fibptr; 251 } 252 253 /** 254 * aac_fib_alloc - allocate a fib 255 * @dev: Adapter to allocate the fib for 256 * 257 * Allocate a fib from the adapter fib pool. If the pool is empty we 258 * return NULL. 259 */ 260 261 struct fib *aac_fib_alloc(struct aac_dev *dev) 262 { 263 struct fib * fibptr; 264 unsigned long flags; 265 spin_lock_irqsave(&dev->fib_lock, flags); 266 fibptr = dev->free_fib; 267 if(!fibptr){ 268 spin_unlock_irqrestore(&dev->fib_lock, flags); 269 return fibptr; 270 } 271 dev->free_fib = fibptr->next; 272 spin_unlock_irqrestore(&dev->fib_lock, flags); 273 /* 274 * Set the proper node type code and node byte size 275 */ 276 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 277 fibptr->size = sizeof(struct fib); 278 /* 279 * Null out fields that depend on being zero at the start of 280 * each I/O 281 */ 282 fibptr->hw_fib_va->header.XferState = 0; 283 fibptr->flags = 0; 284 fibptr->callback = NULL; 285 fibptr->callback_data = NULL; 286 287 return fibptr; 288 } 289 290 /** 291 * aac_fib_free - free a fib 292 * @fibptr: fib to free up 293 * 294 * Frees up a fib and places it on the appropriate queue 295 */ 296 297 void aac_fib_free(struct fib *fibptr) 298 { 299 unsigned long flags; 300 301 if (fibptr->done == 2) 302 return; 303 304 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 305 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 306 aac_config.fib_timeouts++; 307 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 308 fibptr->hw_fib_va->header.XferState != 0) { 309 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 310 (void*)fibptr, 311 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 312 } 313 fibptr->next = fibptr->dev->free_fib; 314 fibptr->dev->free_fib = fibptr; 315 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 316 } 317 318 /** 319 * aac_fib_init - initialise a fib 320 * @fibptr: The fib to initialize 321 * 322 * Set up the generic fib fields ready for use 323 */ 324 325 void aac_fib_init(struct fib *fibptr) 326 { 327 struct hw_fib *hw_fib = fibptr->hw_fib_va; 328 329 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 330 hw_fib->header.StructType = FIB_MAGIC; 331 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 332 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 333 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 334 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 335 } 336 337 /** 338 * fib_deallocate - deallocate a fib 339 * @fibptr: fib to deallocate 340 * 341 * Will deallocate and return to the free pool the FIB pointed to by the 342 * caller. 343 */ 344 345 static void fib_dealloc(struct fib * fibptr) 346 { 347 struct hw_fib *hw_fib = fibptr->hw_fib_va; 348 hw_fib->header.XferState = 0; 349 } 350 351 /* 352 * Commuication primitives define and support the queuing method we use to 353 * support host to adapter commuication. All queue accesses happen through 354 * these routines and are the only routines which have a knowledge of the 355 * how these queues are implemented. 356 */ 357 358 /** 359 * aac_get_entry - get a queue entry 360 * @dev: Adapter 361 * @qid: Queue Number 362 * @entry: Entry return 363 * @index: Index return 364 * @nonotify: notification control 365 * 366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 368 * returned. 369 */ 370 371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 372 { 373 struct aac_queue * q; 374 unsigned long idx; 375 376 /* 377 * All of the queues wrap when they reach the end, so we check 378 * to see if they have reached the end and if they have we just 379 * set the index back to zero. This is a wrap. You could or off 380 * the high bits in all updates but this is a bit faster I think. 381 */ 382 383 q = &dev->queues->queue[qid]; 384 385 idx = *index = le32_to_cpu(*(q->headers.producer)); 386 /* Interrupt Moderation, only interrupt for first two entries */ 387 if (idx != le32_to_cpu(*(q->headers.consumer))) { 388 if (--idx == 0) { 389 if (qid == AdapNormCmdQueue) 390 idx = ADAP_NORM_CMD_ENTRIES; 391 else 392 idx = ADAP_NORM_RESP_ENTRIES; 393 } 394 if (idx != le32_to_cpu(*(q->headers.consumer))) 395 *nonotify = 1; 396 } 397 398 if (qid == AdapNormCmdQueue) { 399 if (*index >= ADAP_NORM_CMD_ENTRIES) 400 *index = 0; /* Wrap to front of the Producer Queue. */ 401 } else { 402 if (*index >= ADAP_NORM_RESP_ENTRIES) 403 *index = 0; /* Wrap to front of the Producer Queue. */ 404 } 405 406 /* Queue is full */ 407 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 408 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 409 qid, atomic_read(&q->numpending)); 410 return 0; 411 } else { 412 *entry = q->base + *index; 413 return 1; 414 } 415 } 416 417 /** 418 * aac_queue_get - get the next free QE 419 * @dev: Adapter 420 * @index: Returned index 421 * @priority: Priority of fib 422 * @fib: Fib to associate with the queue entry 423 * @wait: Wait if queue full 424 * @fibptr: Driver fib object to go with fib 425 * @nonotify: Don't notify the adapter 426 * 427 * Gets the next free QE off the requested priorty adapter command 428 * queue and associates the Fib with the QE. The QE represented by 429 * index is ready to insert on the queue when this routine returns 430 * success. 431 */ 432 433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 434 { 435 struct aac_entry * entry = NULL; 436 int map = 0; 437 438 if (qid == AdapNormCmdQueue) { 439 /* if no entries wait for some if caller wants to */ 440 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 441 printk(KERN_ERR "GetEntries failed\n"); 442 } 443 /* 444 * Setup queue entry with a command, status and fib mapped 445 */ 446 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 447 map = 1; 448 } else { 449 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 450 /* if no entries wait for some if caller wants to */ 451 } 452 /* 453 * Setup queue entry with command, status and fib mapped 454 */ 455 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 456 entry->addr = hw_fib->header.SenderFibAddress; 457 /* Restore adapters pointer to the FIB */ 458 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 459 map = 0; 460 } 461 /* 462 * If MapFib is true than we need to map the Fib and put pointers 463 * in the queue entry. 464 */ 465 if (map) 466 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 467 return 0; 468 } 469 470 #ifdef CONFIG_EEH 471 static inline int aac_check_eeh_failure(struct aac_dev *dev) 472 { 473 /* Check for an EEH failure for the given 474 * device node. Function eeh_dev_check_failure() 475 * returns 0 if there has not been an EEH error 476 * otherwise returns a non-zero value. 477 * 478 * Need to be called before any PCI operation, 479 * i.e.,before aac_adapter_check_health() 480 */ 481 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev->pdev); 482 483 if (eeh_dev_check_failure(edev)) { 484 /* The EEH mechanisms will handle this 485 * error and reset the device if 486 * necessary. 487 */ 488 return 1; 489 } 490 return 0; 491 } 492 #else 493 static inline int aac_check_eeh_failure(struct aac_dev *dev) 494 { 495 return 0; 496 } 497 #endif 498 499 /* 500 * Define the highest level of host to adapter communication routines. 501 * These routines will support host to adapter FS commuication. These 502 * routines have no knowledge of the commuication method used. This level 503 * sends and receives FIBs. This level has no knowledge of how these FIBs 504 * get passed back and forth. 505 */ 506 507 /** 508 * aac_fib_send - send a fib to the adapter 509 * @command: Command to send 510 * @fibptr: The fib 511 * @size: Size of fib data area 512 * @priority: Priority of Fib 513 * @wait: Async/sync select 514 * @reply: True if a reply is wanted 515 * @callback: Called with reply 516 * @callback_data: Passed to callback 517 * 518 * Sends the requested FIB to the adapter and optionally will wait for a 519 * response FIB. If the caller does not wish to wait for a response than 520 * an event to wait on must be supplied. This event will be set when a 521 * response FIB is received from the adapter. 522 */ 523 524 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 525 int priority, int wait, int reply, fib_callback callback, 526 void *callback_data) 527 { 528 struct aac_dev * dev = fibptr->dev; 529 struct hw_fib * hw_fib = fibptr->hw_fib_va; 530 unsigned long flags = 0; 531 unsigned long mflags = 0; 532 unsigned long sflags = 0; 533 534 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 535 return -EBUSY; 536 537 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 538 return -EINVAL; 539 540 /* 541 * There are 5 cases with the wait and response requested flags. 542 * The only invalid cases are if the caller requests to wait and 543 * does not request a response and if the caller does not want a 544 * response and the Fib is not allocated from pool. If a response 545 * is not requesed the Fib will just be deallocaed by the DPC 546 * routine when the response comes back from the adapter. No 547 * further processing will be done besides deleting the Fib. We 548 * will have a debug mode where the adapter can notify the host 549 * it had a problem and the host can log that fact. 550 */ 551 fibptr->flags = 0; 552 if (wait && !reply) { 553 return -EINVAL; 554 } else if (!wait && reply) { 555 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 556 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 557 } else if (!wait && !reply) { 558 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 559 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 560 } else if (wait && reply) { 561 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 562 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 563 } 564 /* 565 * Map the fib into 32bits by using the fib number 566 */ 567 568 hw_fib->header.SenderFibAddress = 569 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 570 571 /* use the same shifted value for handle to be compatible 572 * with the new native hba command handle 573 */ 574 hw_fib->header.Handle = 575 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 576 577 /* 578 * Set FIB state to indicate where it came from and if we want a 579 * response from the adapter. Also load the command from the 580 * caller. 581 * 582 * Map the hw fib pointer as a 32bit value 583 */ 584 hw_fib->header.Command = cpu_to_le16(command); 585 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 586 /* 587 * Set the size of the Fib we want to send to the adapter 588 */ 589 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 590 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 591 return -EMSGSIZE; 592 } 593 /* 594 * Get a queue entry connect the FIB to it and send an notify 595 * the adapter a command is ready. 596 */ 597 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 598 599 /* 600 * Fill in the Callback and CallbackContext if we are not 601 * going to wait. 602 */ 603 if (!wait) { 604 fibptr->callback = callback; 605 fibptr->callback_data = callback_data; 606 fibptr->flags = FIB_CONTEXT_FLAG; 607 } 608 609 fibptr->done = 0; 610 611 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 612 613 dprintk((KERN_DEBUG "Fib contents:.\n")); 614 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 615 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 616 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 617 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 618 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 619 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 620 621 if (!dev->queues) 622 return -EBUSY; 623 624 if (wait) { 625 626 spin_lock_irqsave(&dev->manage_lock, mflags); 627 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 628 printk(KERN_INFO "No management Fibs Available:%d\n", 629 dev->management_fib_count); 630 spin_unlock_irqrestore(&dev->manage_lock, mflags); 631 return -EBUSY; 632 } 633 dev->management_fib_count++; 634 spin_unlock_irqrestore(&dev->manage_lock, mflags); 635 spin_lock_irqsave(&fibptr->event_lock, flags); 636 } 637 638 if (dev->sync_mode) { 639 if (wait) 640 spin_unlock_irqrestore(&fibptr->event_lock, flags); 641 spin_lock_irqsave(&dev->sync_lock, sflags); 642 if (dev->sync_fib) { 643 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 644 spin_unlock_irqrestore(&dev->sync_lock, sflags); 645 } else { 646 dev->sync_fib = fibptr; 647 spin_unlock_irqrestore(&dev->sync_lock, sflags); 648 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 649 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 650 NULL, NULL, NULL, NULL, NULL); 651 } 652 if (wait) { 653 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 654 if (down_interruptible(&fibptr->event_wait)) { 655 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 656 return -EFAULT; 657 } 658 return 0; 659 } 660 return -EINPROGRESS; 661 } 662 663 if (aac_adapter_deliver(fibptr) != 0) { 664 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 665 if (wait) { 666 spin_unlock_irqrestore(&fibptr->event_lock, flags); 667 spin_lock_irqsave(&dev->manage_lock, mflags); 668 dev->management_fib_count--; 669 spin_unlock_irqrestore(&dev->manage_lock, mflags); 670 } 671 return -EBUSY; 672 } 673 674 675 /* 676 * If the caller wanted us to wait for response wait now. 677 */ 678 679 if (wait) { 680 spin_unlock_irqrestore(&fibptr->event_lock, flags); 681 /* Only set for first known interruptable command */ 682 if (wait < 0) { 683 /* 684 * *VERY* Dangerous to time out a command, the 685 * assumption is made that we have no hope of 686 * functioning because an interrupt routing or other 687 * hardware failure has occurred. 688 */ 689 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 690 while (down_trylock(&fibptr->event_wait)) { 691 int blink; 692 if (time_is_before_eq_jiffies(timeout)) { 693 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 694 atomic_dec(&q->numpending); 695 if (wait == -1) { 696 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 697 "Usually a result of a PCI interrupt routing problem;\n" 698 "update mother board BIOS or consider utilizing one of\n" 699 "the SAFE mode kernel options (acpi, apic etc)\n"); 700 } 701 return -ETIMEDOUT; 702 } 703 704 if (aac_check_eeh_failure(dev)) 705 return -EFAULT; 706 707 if ((blink = aac_adapter_check_health(dev)) > 0) { 708 if (wait == -1) { 709 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 710 "Usually a result of a serious unrecoverable hardware problem\n", 711 blink); 712 } 713 return -EFAULT; 714 } 715 /* 716 * Allow other processes / CPUS to use core 717 */ 718 schedule(); 719 } 720 } else if (down_interruptible(&fibptr->event_wait)) { 721 /* Do nothing ... satisfy 722 * down_interruptible must_check */ 723 } 724 725 spin_lock_irqsave(&fibptr->event_lock, flags); 726 if (fibptr->done == 0) { 727 fibptr->done = 2; /* Tell interrupt we aborted */ 728 spin_unlock_irqrestore(&fibptr->event_lock, flags); 729 return -ERESTARTSYS; 730 } 731 spin_unlock_irqrestore(&fibptr->event_lock, flags); 732 BUG_ON(fibptr->done == 0); 733 734 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 735 return -ETIMEDOUT; 736 return 0; 737 } 738 /* 739 * If the user does not want a response than return success otherwise 740 * return pending 741 */ 742 if (reply) 743 return -EINPROGRESS; 744 else 745 return 0; 746 } 747 748 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 749 void *callback_data) 750 { 751 struct aac_dev *dev = fibptr->dev; 752 int wait; 753 unsigned long flags = 0; 754 unsigned long mflags = 0; 755 756 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 757 if (callback) { 758 wait = 0; 759 fibptr->callback = callback; 760 fibptr->callback_data = callback_data; 761 } else 762 wait = 1; 763 764 765 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 766 struct aac_hba_cmd_req *hbacmd = 767 (struct aac_hba_cmd_req *)fibptr->hw_fib_va; 768 769 hbacmd->iu_type = command; 770 /* bit1 of request_id must be 0 */ 771 hbacmd->request_id = 772 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 773 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 774 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ) 775 return -EINVAL; 776 777 778 if (wait) { 779 spin_lock_irqsave(&dev->manage_lock, mflags); 780 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 781 spin_unlock_irqrestore(&dev->manage_lock, mflags); 782 return -EBUSY; 783 } 784 dev->management_fib_count++; 785 spin_unlock_irqrestore(&dev->manage_lock, mflags); 786 spin_lock_irqsave(&fibptr->event_lock, flags); 787 } 788 789 if (aac_adapter_deliver(fibptr) != 0) { 790 if (wait) { 791 spin_unlock_irqrestore(&fibptr->event_lock, flags); 792 spin_lock_irqsave(&dev->manage_lock, mflags); 793 dev->management_fib_count--; 794 spin_unlock_irqrestore(&dev->manage_lock, mflags); 795 } 796 return -EBUSY; 797 } 798 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 799 800 if (wait) { 801 802 spin_unlock_irqrestore(&fibptr->event_lock, flags); 803 804 if (aac_check_eeh_failure(dev)) 805 return -EFAULT; 806 807 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 808 if (down_interruptible(&fibptr->event_wait)) 809 fibptr->done = 2; 810 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 811 812 spin_lock_irqsave(&fibptr->event_lock, flags); 813 if ((fibptr->done == 0) || (fibptr->done == 2)) { 814 fibptr->done = 2; /* Tell interrupt we aborted */ 815 spin_unlock_irqrestore(&fibptr->event_lock, flags); 816 return -ERESTARTSYS; 817 } 818 spin_unlock_irqrestore(&fibptr->event_lock, flags); 819 WARN_ON(fibptr->done == 0); 820 821 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 822 return -ETIMEDOUT; 823 824 return 0; 825 } 826 827 return -EINPROGRESS; 828 } 829 830 /** 831 * aac_consumer_get - get the top of the queue 832 * @dev: Adapter 833 * @q: Queue 834 * @entry: Return entry 835 * 836 * Will return a pointer to the entry on the top of the queue requested that 837 * we are a consumer of, and return the address of the queue entry. It does 838 * not change the state of the queue. 839 */ 840 841 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 842 { 843 u32 index; 844 int status; 845 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 846 status = 0; 847 } else { 848 /* 849 * The consumer index must be wrapped if we have reached 850 * the end of the queue, else we just use the entry 851 * pointed to by the header index 852 */ 853 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 854 index = 0; 855 else 856 index = le32_to_cpu(*q->headers.consumer); 857 *entry = q->base + index; 858 status = 1; 859 } 860 return(status); 861 } 862 863 /** 864 * aac_consumer_free - free consumer entry 865 * @dev: Adapter 866 * @q: Queue 867 * @qid: Queue ident 868 * 869 * Frees up the current top of the queue we are a consumer of. If the 870 * queue was full notify the producer that the queue is no longer full. 871 */ 872 873 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 874 { 875 int wasfull = 0; 876 u32 notify; 877 878 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 879 wasfull = 1; 880 881 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 882 *q->headers.consumer = cpu_to_le32(1); 883 else 884 le32_add_cpu(q->headers.consumer, 1); 885 886 if (wasfull) { 887 switch (qid) { 888 889 case HostNormCmdQueue: 890 notify = HostNormCmdNotFull; 891 break; 892 case HostNormRespQueue: 893 notify = HostNormRespNotFull; 894 break; 895 default: 896 BUG(); 897 return; 898 } 899 aac_adapter_notify(dev, notify); 900 } 901 } 902 903 /** 904 * aac_fib_adapter_complete - complete adapter issued fib 905 * @fibptr: fib to complete 906 * @size: size of fib 907 * 908 * Will do all necessary work to complete a FIB that was sent from 909 * the adapter. 910 */ 911 912 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 913 { 914 struct hw_fib * hw_fib = fibptr->hw_fib_va; 915 struct aac_dev * dev = fibptr->dev; 916 struct aac_queue * q; 917 unsigned long nointr = 0; 918 unsigned long qflags; 919 920 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 921 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 922 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 923 kfree(hw_fib); 924 return 0; 925 } 926 927 if (hw_fib->header.XferState == 0) { 928 if (dev->comm_interface == AAC_COMM_MESSAGE) 929 kfree(hw_fib); 930 return 0; 931 } 932 /* 933 * If we plan to do anything check the structure type first. 934 */ 935 if (hw_fib->header.StructType != FIB_MAGIC && 936 hw_fib->header.StructType != FIB_MAGIC2 && 937 hw_fib->header.StructType != FIB_MAGIC2_64) { 938 if (dev->comm_interface == AAC_COMM_MESSAGE) 939 kfree(hw_fib); 940 return -EINVAL; 941 } 942 /* 943 * This block handles the case where the adapter had sent us a 944 * command and we have finished processing the command. We 945 * call completeFib when we are done processing the command 946 * and want to send a response back to the adapter. This will 947 * send the completed cdb to the adapter. 948 */ 949 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 950 if (dev->comm_interface == AAC_COMM_MESSAGE) { 951 kfree (hw_fib); 952 } else { 953 u32 index; 954 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 955 if (size) { 956 size += sizeof(struct aac_fibhdr); 957 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 958 return -EMSGSIZE; 959 hw_fib->header.Size = cpu_to_le16(size); 960 } 961 q = &dev->queues->queue[AdapNormRespQueue]; 962 spin_lock_irqsave(q->lock, qflags); 963 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 964 *(q->headers.producer) = cpu_to_le32(index + 1); 965 spin_unlock_irqrestore(q->lock, qflags); 966 if (!(nointr & (int)aac_config.irq_mod)) 967 aac_adapter_notify(dev, AdapNormRespQueue); 968 } 969 } else { 970 printk(KERN_WARNING "aac_fib_adapter_complete: " 971 "Unknown xferstate detected.\n"); 972 BUG(); 973 } 974 return 0; 975 } 976 977 /** 978 * aac_fib_complete - fib completion handler 979 * @fib: FIB to complete 980 * 981 * Will do all necessary work to complete a FIB. 982 */ 983 984 int aac_fib_complete(struct fib *fibptr) 985 { 986 struct hw_fib * hw_fib = fibptr->hw_fib_va; 987 988 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 989 fib_dealloc(fibptr); 990 return 0; 991 } 992 993 /* 994 * Check for a fib which has already been completed or with a 995 * status wait timeout 996 */ 997 998 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 999 return 0; 1000 /* 1001 * If we plan to do anything check the structure type first. 1002 */ 1003 1004 if (hw_fib->header.StructType != FIB_MAGIC && 1005 hw_fib->header.StructType != FIB_MAGIC2 && 1006 hw_fib->header.StructType != FIB_MAGIC2_64) 1007 return -EINVAL; 1008 /* 1009 * This block completes a cdb which orginated on the host and we 1010 * just need to deallocate the cdb or reinit it. At this point the 1011 * command is complete that we had sent to the adapter and this 1012 * cdb could be reused. 1013 */ 1014 1015 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 1016 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 1017 { 1018 fib_dealloc(fibptr); 1019 } 1020 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 1021 { 1022 /* 1023 * This handles the case when the host has aborted the I/O 1024 * to the adapter because the adapter is not responding 1025 */ 1026 fib_dealloc(fibptr); 1027 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 1028 fib_dealloc(fibptr); 1029 } else { 1030 BUG(); 1031 } 1032 return 0; 1033 } 1034 1035 /** 1036 * aac_printf - handle printf from firmware 1037 * @dev: Adapter 1038 * @val: Message info 1039 * 1040 * Print a message passed to us by the controller firmware on the 1041 * Adaptec board 1042 */ 1043 1044 void aac_printf(struct aac_dev *dev, u32 val) 1045 { 1046 char *cp = dev->printfbuf; 1047 if (dev->printf_enabled) 1048 { 1049 int length = val & 0xffff; 1050 int level = (val >> 16) & 0xffff; 1051 1052 /* 1053 * The size of the printfbuf is set in port.c 1054 * There is no variable or define for it 1055 */ 1056 if (length > 255) 1057 length = 255; 1058 if (cp[length] != 0) 1059 cp[length] = 0; 1060 if (level == LOG_AAC_HIGH_ERROR) 1061 printk(KERN_WARNING "%s:%s", dev->name, cp); 1062 else 1063 printk(KERN_INFO "%s:%s", dev->name, cp); 1064 } 1065 memset(cp, 0, 256); 1066 } 1067 1068 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1069 { 1070 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1071 } 1072 1073 1074 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1075 { 1076 switch (aac_aif_data(aifcmd, 1)) { 1077 case AifBuCacheDataLoss: 1078 if (aac_aif_data(aifcmd, 2)) 1079 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1080 aac_aif_data(aifcmd, 2)); 1081 else 1082 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1083 break; 1084 case AifBuCacheDataRecover: 1085 if (aac_aif_data(aifcmd, 2)) 1086 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1087 aac_aif_data(aifcmd, 2)); 1088 else 1089 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1090 break; 1091 } 1092 } 1093 1094 /** 1095 * aac_handle_aif - Handle a message from the firmware 1096 * @dev: Which adapter this fib is from 1097 * @fibptr: Pointer to fibptr from adapter 1098 * 1099 * This routine handles a driver notify fib from the adapter and 1100 * dispatches it to the appropriate routine for handling. 1101 */ 1102 1103 #define AIF_SNIFF_TIMEOUT (500*HZ) 1104 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1105 { 1106 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1107 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1108 u32 channel, id, lun, container; 1109 struct scsi_device *device; 1110 enum { 1111 NOTHING, 1112 DELETE, 1113 ADD, 1114 CHANGE 1115 } device_config_needed = NOTHING; 1116 1117 /* Sniff for container changes */ 1118 1119 if (!dev || !dev->fsa_dev) 1120 return; 1121 container = channel = id = lun = (u32)-1; 1122 1123 /* 1124 * We have set this up to try and minimize the number of 1125 * re-configures that take place. As a result of this when 1126 * certain AIF's come in we will set a flag waiting for another 1127 * type of AIF before setting the re-config flag. 1128 */ 1129 switch (le32_to_cpu(aifcmd->command)) { 1130 case AifCmdDriverNotify: 1131 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1132 case AifRawDeviceRemove: 1133 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1134 if ((container >> 28)) { 1135 container = (u32)-1; 1136 break; 1137 } 1138 channel = (container >> 24) & 0xF; 1139 if (channel >= dev->maximum_num_channels) { 1140 container = (u32)-1; 1141 break; 1142 } 1143 id = container & 0xFFFF; 1144 if (id >= dev->maximum_num_physicals) { 1145 container = (u32)-1; 1146 break; 1147 } 1148 lun = (container >> 16) & 0xFF; 1149 container = (u32)-1; 1150 channel = aac_phys_to_logical(channel); 1151 device_config_needed = DELETE; 1152 break; 1153 1154 /* 1155 * Morph or Expand complete 1156 */ 1157 case AifDenMorphComplete: 1158 case AifDenVolumeExtendComplete: 1159 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1160 if (container >= dev->maximum_num_containers) 1161 break; 1162 1163 /* 1164 * Find the scsi_device associated with the SCSI 1165 * address. Make sure we have the right array, and if 1166 * so set the flag to initiate a new re-config once we 1167 * see an AifEnConfigChange AIF come through. 1168 */ 1169 1170 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1171 device = scsi_device_lookup(dev->scsi_host_ptr, 1172 CONTAINER_TO_CHANNEL(container), 1173 CONTAINER_TO_ID(container), 1174 CONTAINER_TO_LUN(container)); 1175 if (device) { 1176 dev->fsa_dev[container].config_needed = CHANGE; 1177 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1178 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1179 scsi_device_put(device); 1180 } 1181 } 1182 } 1183 1184 /* 1185 * If we are waiting on something and this happens to be 1186 * that thing then set the re-configure flag. 1187 */ 1188 if (container != (u32)-1) { 1189 if (container >= dev->maximum_num_containers) 1190 break; 1191 if ((dev->fsa_dev[container].config_waiting_on == 1192 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1193 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1194 dev->fsa_dev[container].config_waiting_on = 0; 1195 } else for (container = 0; 1196 container < dev->maximum_num_containers; ++container) { 1197 if ((dev->fsa_dev[container].config_waiting_on == 1198 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1199 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1200 dev->fsa_dev[container].config_waiting_on = 0; 1201 } 1202 break; 1203 1204 case AifCmdEventNotify: 1205 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1206 case AifEnBatteryEvent: 1207 dev->cache_protected = 1208 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1209 break; 1210 /* 1211 * Add an Array. 1212 */ 1213 case AifEnAddContainer: 1214 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1215 if (container >= dev->maximum_num_containers) 1216 break; 1217 dev->fsa_dev[container].config_needed = ADD; 1218 dev->fsa_dev[container].config_waiting_on = 1219 AifEnConfigChange; 1220 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1221 break; 1222 1223 /* 1224 * Delete an Array. 1225 */ 1226 case AifEnDeleteContainer: 1227 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1228 if (container >= dev->maximum_num_containers) 1229 break; 1230 dev->fsa_dev[container].config_needed = DELETE; 1231 dev->fsa_dev[container].config_waiting_on = 1232 AifEnConfigChange; 1233 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1234 break; 1235 1236 /* 1237 * Container change detected. If we currently are not 1238 * waiting on something else, setup to wait on a Config Change. 1239 */ 1240 case AifEnContainerChange: 1241 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1242 if (container >= dev->maximum_num_containers) 1243 break; 1244 if (dev->fsa_dev[container].config_waiting_on && 1245 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1246 break; 1247 dev->fsa_dev[container].config_needed = CHANGE; 1248 dev->fsa_dev[container].config_waiting_on = 1249 AifEnConfigChange; 1250 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1251 break; 1252 1253 case AifEnConfigChange: 1254 break; 1255 1256 case AifEnAddJBOD: 1257 case AifEnDeleteJBOD: 1258 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1259 if ((container >> 28)) { 1260 container = (u32)-1; 1261 break; 1262 } 1263 channel = (container >> 24) & 0xF; 1264 if (channel >= dev->maximum_num_channels) { 1265 container = (u32)-1; 1266 break; 1267 } 1268 id = container & 0xFFFF; 1269 if (id >= dev->maximum_num_physicals) { 1270 container = (u32)-1; 1271 break; 1272 } 1273 lun = (container >> 16) & 0xFF; 1274 container = (u32)-1; 1275 channel = aac_phys_to_logical(channel); 1276 device_config_needed = 1277 (((__le32 *)aifcmd->data)[0] == 1278 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1279 if (device_config_needed == ADD) { 1280 device = scsi_device_lookup(dev->scsi_host_ptr, 1281 channel, 1282 id, 1283 lun); 1284 if (device) { 1285 scsi_remove_device(device); 1286 scsi_device_put(device); 1287 } 1288 } 1289 break; 1290 1291 case AifEnEnclosureManagement: 1292 /* 1293 * If in JBOD mode, automatic exposure of new 1294 * physical target to be suppressed until configured. 1295 */ 1296 if (dev->jbod) 1297 break; 1298 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1299 case EM_DRIVE_INSERTION: 1300 case EM_DRIVE_REMOVAL: 1301 case EM_SES_DRIVE_INSERTION: 1302 case EM_SES_DRIVE_REMOVAL: 1303 container = le32_to_cpu( 1304 ((__le32 *)aifcmd->data)[2]); 1305 if ((container >> 28)) { 1306 container = (u32)-1; 1307 break; 1308 } 1309 channel = (container >> 24) & 0xF; 1310 if (channel >= dev->maximum_num_channels) { 1311 container = (u32)-1; 1312 break; 1313 } 1314 id = container & 0xFFFF; 1315 lun = (container >> 16) & 0xFF; 1316 container = (u32)-1; 1317 if (id >= dev->maximum_num_physicals) { 1318 /* legacy dev_t ? */ 1319 if ((0x2000 <= id) || lun || channel || 1320 ((channel = (id >> 7) & 0x3F) >= 1321 dev->maximum_num_channels)) 1322 break; 1323 lun = (id >> 4) & 7; 1324 id &= 0xF; 1325 } 1326 channel = aac_phys_to_logical(channel); 1327 device_config_needed = 1328 ((((__le32 *)aifcmd->data)[3] 1329 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1330 (((__le32 *)aifcmd->data)[3] 1331 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1332 ADD : DELETE; 1333 break; 1334 } 1335 case AifBuManagerEvent: 1336 aac_handle_aif_bu(dev, aifcmd); 1337 break; 1338 } 1339 1340 /* 1341 * If we are waiting on something and this happens to be 1342 * that thing then set the re-configure flag. 1343 */ 1344 if (container != (u32)-1) { 1345 if (container >= dev->maximum_num_containers) 1346 break; 1347 if ((dev->fsa_dev[container].config_waiting_on == 1348 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1349 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1350 dev->fsa_dev[container].config_waiting_on = 0; 1351 } else for (container = 0; 1352 container < dev->maximum_num_containers; ++container) { 1353 if ((dev->fsa_dev[container].config_waiting_on == 1354 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1355 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1356 dev->fsa_dev[container].config_waiting_on = 0; 1357 } 1358 break; 1359 1360 case AifCmdJobProgress: 1361 /* 1362 * These are job progress AIF's. When a Clear is being 1363 * done on a container it is initially created then hidden from 1364 * the OS. When the clear completes we don't get a config 1365 * change so we monitor the job status complete on a clear then 1366 * wait for a container change. 1367 */ 1368 1369 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1370 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1371 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1372 for (container = 0; 1373 container < dev->maximum_num_containers; 1374 ++container) { 1375 /* 1376 * Stomp on all config sequencing for all 1377 * containers? 1378 */ 1379 dev->fsa_dev[container].config_waiting_on = 1380 AifEnContainerChange; 1381 dev->fsa_dev[container].config_needed = ADD; 1382 dev->fsa_dev[container].config_waiting_stamp = 1383 jiffies; 1384 } 1385 } 1386 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1387 ((__le32 *)aifcmd->data)[6] == 0 && 1388 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1389 for (container = 0; 1390 container < dev->maximum_num_containers; 1391 ++container) { 1392 /* 1393 * Stomp on all config sequencing for all 1394 * containers? 1395 */ 1396 dev->fsa_dev[container].config_waiting_on = 1397 AifEnContainerChange; 1398 dev->fsa_dev[container].config_needed = DELETE; 1399 dev->fsa_dev[container].config_waiting_stamp = 1400 jiffies; 1401 } 1402 } 1403 break; 1404 } 1405 1406 container = 0; 1407 retry_next: 1408 if (device_config_needed == NOTHING) 1409 for (; container < dev->maximum_num_containers; ++container) { 1410 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1411 (dev->fsa_dev[container].config_needed != NOTHING) && 1412 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1413 device_config_needed = 1414 dev->fsa_dev[container].config_needed; 1415 dev->fsa_dev[container].config_needed = NOTHING; 1416 channel = CONTAINER_TO_CHANNEL(container); 1417 id = CONTAINER_TO_ID(container); 1418 lun = CONTAINER_TO_LUN(container); 1419 break; 1420 } 1421 } 1422 if (device_config_needed == NOTHING) 1423 return; 1424 1425 /* 1426 * If we decided that a re-configuration needs to be done, 1427 * schedule it here on the way out the door, please close the door 1428 * behind you. 1429 */ 1430 1431 /* 1432 * Find the scsi_device associated with the SCSI address, 1433 * and mark it as changed, invalidating the cache. This deals 1434 * with changes to existing device IDs. 1435 */ 1436 1437 if (!dev || !dev->scsi_host_ptr) 1438 return; 1439 /* 1440 * force reload of disk info via aac_probe_container 1441 */ 1442 if ((channel == CONTAINER_CHANNEL) && 1443 (device_config_needed != NOTHING)) { 1444 if (dev->fsa_dev[container].valid == 1) 1445 dev->fsa_dev[container].valid = 2; 1446 aac_probe_container(dev, container); 1447 } 1448 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1449 if (device) { 1450 switch (device_config_needed) { 1451 case DELETE: 1452 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1453 scsi_remove_device(device); 1454 #else 1455 if (scsi_device_online(device)) { 1456 scsi_device_set_state(device, SDEV_OFFLINE); 1457 sdev_printk(KERN_INFO, device, 1458 "Device offlined - %s\n", 1459 (channel == CONTAINER_CHANNEL) ? 1460 "array deleted" : 1461 "enclosure services event"); 1462 } 1463 #endif 1464 break; 1465 case ADD: 1466 if (!scsi_device_online(device)) { 1467 sdev_printk(KERN_INFO, device, 1468 "Device online - %s\n", 1469 (channel == CONTAINER_CHANNEL) ? 1470 "array created" : 1471 "enclosure services event"); 1472 scsi_device_set_state(device, SDEV_RUNNING); 1473 } 1474 /* FALLTHRU */ 1475 case CHANGE: 1476 if ((channel == CONTAINER_CHANNEL) 1477 && (!dev->fsa_dev[container].valid)) { 1478 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1479 scsi_remove_device(device); 1480 #else 1481 if (!scsi_device_online(device)) 1482 break; 1483 scsi_device_set_state(device, SDEV_OFFLINE); 1484 sdev_printk(KERN_INFO, device, 1485 "Device offlined - %s\n", 1486 "array failed"); 1487 #endif 1488 break; 1489 } 1490 scsi_rescan_device(&device->sdev_gendev); 1491 1492 default: 1493 break; 1494 } 1495 scsi_device_put(device); 1496 device_config_needed = NOTHING; 1497 } 1498 if (device_config_needed == ADD) 1499 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1500 if (channel == CONTAINER_CHANNEL) { 1501 container++; 1502 device_config_needed = NOTHING; 1503 goto retry_next; 1504 } 1505 } 1506 1507 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1508 { 1509 int index, quirks; 1510 int retval; 1511 struct Scsi_Host *host; 1512 struct scsi_device *dev; 1513 struct scsi_cmnd *command; 1514 struct scsi_cmnd *command_list; 1515 int jafo = 0; 1516 int bled; 1517 u64 dmamask; 1518 int num_of_fibs = 0; 1519 1520 /* 1521 * Assumptions: 1522 * - host is locked, unless called by the aacraid thread. 1523 * (a matter of convenience, due to legacy issues surrounding 1524 * eh_host_adapter_reset). 1525 * - in_reset is asserted, so no new i/o is getting to the 1526 * card. 1527 * - The card is dead, or will be very shortly ;-/ so no new 1528 * commands are completing in the interrupt service. 1529 */ 1530 host = aac->scsi_host_ptr; 1531 scsi_block_requests(host); 1532 aac_adapter_disable_int(aac); 1533 if (aac->thread->pid != current->pid) { 1534 spin_unlock_irq(host->host_lock); 1535 kthread_stop(aac->thread); 1536 jafo = 1; 1537 } 1538 1539 /* 1540 * If a positive health, means in a known DEAD PANIC 1541 * state and the adapter could be reset to `try again'. 1542 */ 1543 bled = forced ? 0 : aac_adapter_check_health(aac); 1544 retval = aac_adapter_restart(aac, bled, reset_type); 1545 1546 if (retval) 1547 goto out; 1548 1549 /* 1550 * Loop through the fibs, close the synchronous FIBS 1551 */ 1552 retval = 1; 1553 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1554 for (index = 0; index < num_of_fibs; index++) { 1555 1556 struct fib *fib = &aac->fibs[index]; 1557 __le32 XferState = fib->hw_fib_va->header.XferState; 1558 bool is_response_expected = false; 1559 1560 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1561 (XferState & cpu_to_le32(ResponseExpected))) 1562 is_response_expected = true; 1563 1564 if (is_response_expected 1565 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1566 unsigned long flagv; 1567 spin_lock_irqsave(&fib->event_lock, flagv); 1568 up(&fib->event_wait); 1569 spin_unlock_irqrestore(&fib->event_lock, flagv); 1570 schedule(); 1571 retval = 0; 1572 } 1573 } 1574 /* Give some extra time for ioctls to complete. */ 1575 if (retval == 0) 1576 ssleep(2); 1577 index = aac->cardtype; 1578 1579 /* 1580 * Re-initialize the adapter, first free resources, then carefully 1581 * apply the initialization sequence to come back again. Only risk 1582 * is a change in Firmware dropping cache, it is assumed the caller 1583 * will ensure that i/o is queisced and the card is flushed in that 1584 * case. 1585 */ 1586 aac_fib_map_free(aac); 1587 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1588 aac->comm_phys); 1589 aac->comm_addr = NULL; 1590 aac->comm_phys = 0; 1591 kfree(aac->queues); 1592 aac->queues = NULL; 1593 aac_free_irq(aac); 1594 kfree(aac->fsa_dev); 1595 aac->fsa_dev = NULL; 1596 1597 dmamask = DMA_BIT_MASK(32); 1598 quirks = aac_get_driver_ident(index)->quirks; 1599 if (quirks & AAC_QUIRK_31BIT) 1600 retval = pci_set_dma_mask(aac->pdev, dmamask); 1601 else if (!(quirks & AAC_QUIRK_SRC)) 1602 retval = pci_set_dma_mask(aac->pdev, dmamask); 1603 else 1604 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1605 1606 if (quirks & AAC_QUIRK_31BIT && !retval) { 1607 dmamask = DMA_BIT_MASK(31); 1608 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1609 } 1610 1611 if (retval) 1612 goto out; 1613 1614 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1615 goto out; 1616 1617 if (jafo) { 1618 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1619 aac->name); 1620 if (IS_ERR(aac->thread)) { 1621 retval = PTR_ERR(aac->thread); 1622 goto out; 1623 } 1624 } 1625 (void)aac_get_adapter_info(aac); 1626 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1627 host->sg_tablesize = 34; 1628 host->max_sectors = (host->sg_tablesize * 8) + 112; 1629 } 1630 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1631 host->sg_tablesize = 17; 1632 host->max_sectors = (host->sg_tablesize * 8) + 112; 1633 } 1634 aac_get_config_status(aac, 1); 1635 aac_get_containers(aac); 1636 /* 1637 * This is where the assumption that the Adapter is quiesced 1638 * is important. 1639 */ 1640 command_list = NULL; 1641 __shost_for_each_device(dev, host) { 1642 unsigned long flags; 1643 spin_lock_irqsave(&dev->list_lock, flags); 1644 list_for_each_entry(command, &dev->cmd_list, list) 1645 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1646 command->SCp.buffer = (struct scatterlist *)command_list; 1647 command_list = command; 1648 } 1649 spin_unlock_irqrestore(&dev->list_lock, flags); 1650 } 1651 while ((command = command_list)) { 1652 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1653 command->SCp.buffer = NULL; 1654 command->result = DID_OK << 16 1655 | COMMAND_COMPLETE << 8 1656 | SAM_STAT_TASK_SET_FULL; 1657 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1658 command->scsi_done(command); 1659 } 1660 /* 1661 * Any Device that was already marked offline needs to be cleaned up 1662 */ 1663 __shost_for_each_device(dev, host) { 1664 if (!scsi_device_online(dev)) { 1665 sdev_printk(KERN_INFO, dev, "Removing offline device\n"); 1666 scsi_remove_device(dev); 1667 scsi_device_put(dev); 1668 } 1669 } 1670 retval = 0; 1671 1672 out: 1673 aac->in_reset = 0; 1674 scsi_unblock_requests(host); 1675 /* 1676 * Issue bus rescan to catch any configuration that might have 1677 * occurred 1678 */ 1679 if (!retval) { 1680 dev_info(&aac->pdev->dev, "Issuing bus rescan\n"); 1681 scsi_scan_host(host); 1682 } 1683 if (jafo) { 1684 spin_lock_irq(host->host_lock); 1685 } 1686 return retval; 1687 } 1688 1689 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1690 { 1691 unsigned long flagv = 0; 1692 int retval; 1693 struct Scsi_Host * host; 1694 int bled; 1695 1696 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1697 return -EBUSY; 1698 1699 if (aac->in_reset) { 1700 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1701 return -EBUSY; 1702 } 1703 aac->in_reset = 1; 1704 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1705 1706 /* 1707 * Wait for all commands to complete to this specific 1708 * target (block maximum 60 seconds). Although not necessary, 1709 * it does make us a good storage citizen. 1710 */ 1711 host = aac->scsi_host_ptr; 1712 scsi_block_requests(host); 1713 if (forced < 2) for (retval = 60; retval; --retval) { 1714 struct scsi_device * dev; 1715 struct scsi_cmnd * command; 1716 int active = 0; 1717 1718 __shost_for_each_device(dev, host) { 1719 spin_lock_irqsave(&dev->list_lock, flagv); 1720 list_for_each_entry(command, &dev->cmd_list, list) { 1721 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1722 active++; 1723 break; 1724 } 1725 } 1726 spin_unlock_irqrestore(&dev->list_lock, flagv); 1727 if (active) 1728 break; 1729 1730 } 1731 /* 1732 * We can exit If all the commands are complete 1733 */ 1734 if (active == 0) 1735 break; 1736 ssleep(1); 1737 } 1738 1739 /* Quiesce build, flush cache, write through mode */ 1740 if (forced < 2) 1741 aac_send_shutdown(aac); 1742 spin_lock_irqsave(host->host_lock, flagv); 1743 bled = forced ? forced : 1744 (aac_check_reset != 0 && aac_check_reset != 1); 1745 retval = _aac_reset_adapter(aac, bled, reset_type); 1746 spin_unlock_irqrestore(host->host_lock, flagv); 1747 1748 if ((forced < 2) && (retval == -ENODEV)) { 1749 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1750 struct fib * fibctx = aac_fib_alloc(aac); 1751 if (fibctx) { 1752 struct aac_pause *cmd; 1753 int status; 1754 1755 aac_fib_init(fibctx); 1756 1757 cmd = (struct aac_pause *) fib_data(fibctx); 1758 1759 cmd->command = cpu_to_le32(VM_ContainerConfig); 1760 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1761 cmd->timeout = cpu_to_le32(1); 1762 cmd->min = cpu_to_le32(1); 1763 cmd->noRescan = cpu_to_le32(1); 1764 cmd->count = cpu_to_le32(0); 1765 1766 status = aac_fib_send(ContainerCommand, 1767 fibctx, 1768 sizeof(struct aac_pause), 1769 FsaNormal, 1770 -2 /* Timeout silently */, 1, 1771 NULL, NULL); 1772 1773 if (status >= 0) 1774 aac_fib_complete(fibctx); 1775 /* FIB should be freed only after getting 1776 * the response from the F/W */ 1777 if (status != -ERESTARTSYS) 1778 aac_fib_free(fibctx); 1779 } 1780 } 1781 1782 return retval; 1783 } 1784 1785 int aac_check_health(struct aac_dev * aac) 1786 { 1787 int BlinkLED; 1788 unsigned long time_now, flagv = 0; 1789 struct list_head * entry; 1790 1791 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1792 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1793 return 0; 1794 1795 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1796 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1797 return 0; /* OK */ 1798 } 1799 1800 aac->in_reset = 1; 1801 1802 /* Fake up an AIF: 1803 * aac_aifcmd.command = AifCmdEventNotify = 1 1804 * aac_aifcmd.seqnum = 0xFFFFFFFF 1805 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1806 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1807 * aac.aifcmd.data[2] = AifHighPriority = 3 1808 * aac.aifcmd.data[3] = BlinkLED 1809 */ 1810 1811 time_now = jiffies/HZ; 1812 entry = aac->fib_list.next; 1813 1814 /* 1815 * For each Context that is on the 1816 * fibctxList, make a copy of the 1817 * fib, and then set the event to wake up the 1818 * thread that is waiting for it. 1819 */ 1820 while (entry != &aac->fib_list) { 1821 /* 1822 * Extract the fibctx 1823 */ 1824 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1825 struct hw_fib * hw_fib; 1826 struct fib * fib; 1827 /* 1828 * Check if the queue is getting 1829 * backlogged 1830 */ 1831 if (fibctx->count > 20) { 1832 /* 1833 * It's *not* jiffies folks, 1834 * but jiffies / HZ, so do not 1835 * panic ... 1836 */ 1837 u32 time_last = fibctx->jiffies; 1838 /* 1839 * Has it been > 2 minutes 1840 * since the last read off 1841 * the queue? 1842 */ 1843 if ((time_now - time_last) > aif_timeout) { 1844 entry = entry->next; 1845 aac_close_fib_context(aac, fibctx); 1846 continue; 1847 } 1848 } 1849 /* 1850 * Warning: no sleep allowed while 1851 * holding spinlock 1852 */ 1853 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1854 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1855 if (fib && hw_fib) { 1856 struct aac_aifcmd * aif; 1857 1858 fib->hw_fib_va = hw_fib; 1859 fib->dev = aac; 1860 aac_fib_init(fib); 1861 fib->type = FSAFS_NTC_FIB_CONTEXT; 1862 fib->size = sizeof (struct fib); 1863 fib->data = hw_fib->data; 1864 aif = (struct aac_aifcmd *)hw_fib->data; 1865 aif->command = cpu_to_le32(AifCmdEventNotify); 1866 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1867 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1868 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1869 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1870 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1871 1872 /* 1873 * Put the FIB onto the 1874 * fibctx's fibs 1875 */ 1876 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1877 fibctx->count++; 1878 /* 1879 * Set the event to wake up the 1880 * thread that will waiting. 1881 */ 1882 up(&fibctx->wait_sem); 1883 } else { 1884 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1885 kfree(fib); 1886 kfree(hw_fib); 1887 } 1888 entry = entry->next; 1889 } 1890 1891 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1892 1893 if (BlinkLED < 0) { 1894 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1895 aac->name, BlinkLED); 1896 goto out; 1897 } 1898 1899 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1900 1901 out: 1902 aac->in_reset = 0; 1903 return BlinkLED; 1904 } 1905 1906 1907 static void aac_resolve_luns(struct aac_dev *dev) 1908 { 1909 int bus, target, channel; 1910 struct scsi_device *sdev; 1911 u8 devtype; 1912 u8 new_devtype; 1913 1914 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1915 for (target = 0; target < AAC_MAX_TARGETS; target++) { 1916 1917 if (bus == CONTAINER_CHANNEL) 1918 channel = CONTAINER_CHANNEL; 1919 else 1920 channel = aac_phys_to_logical(bus); 1921 1922 devtype = dev->hba_map[bus][target].devtype; 1923 new_devtype = dev->hba_map[bus][target].new_devtype; 1924 1925 sdev = scsi_device_lookup(dev->scsi_host_ptr, channel, 1926 target, 0); 1927 1928 if (!sdev && new_devtype) 1929 scsi_add_device(dev->scsi_host_ptr, channel, 1930 target, 0); 1931 else if (sdev && new_devtype != devtype) 1932 scsi_remove_device(sdev); 1933 else if (sdev && new_devtype == devtype) 1934 scsi_rescan_device(&sdev->sdev_gendev); 1935 1936 if (sdev) 1937 scsi_device_put(sdev); 1938 1939 dev->hba_map[bus][target].devtype = new_devtype; 1940 } 1941 } 1942 } 1943 1944 /** 1945 * aac_handle_sa_aif Handle a message from the firmware 1946 * @dev: Which adapter this fib is from 1947 * @fibptr: Pointer to fibptr from adapter 1948 * 1949 * This routine handles a driver notify fib from the adapter and 1950 * dispatches it to the appropriate routine for handling. 1951 */ 1952 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1953 { 1954 int i, bus, target, container, rcode = 0; 1955 u32 events = 0; 1956 struct fib *fib; 1957 struct scsi_device *sdev; 1958 1959 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1960 events = SA_AIF_HOTPLUG; 1961 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1962 events = SA_AIF_HARDWARE; 1963 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1964 events = SA_AIF_PDEV_CHANGE; 1965 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1966 events = SA_AIF_LDEV_CHANGE; 1967 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1968 events = SA_AIF_BPSTAT_CHANGE; 1969 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1970 events = SA_AIF_BPCFG_CHANGE; 1971 1972 switch (events) { 1973 case SA_AIF_HOTPLUG: 1974 case SA_AIF_HARDWARE: 1975 case SA_AIF_PDEV_CHANGE: 1976 case SA_AIF_LDEV_CHANGE: 1977 case SA_AIF_BPCFG_CHANGE: 1978 1979 fib = aac_fib_alloc(dev); 1980 if (!fib) { 1981 pr_err("aac_handle_sa_aif: out of memory\n"); 1982 return; 1983 } 1984 for (bus = 0; bus < AAC_MAX_BUSES; bus++) 1985 for (target = 0; target < AAC_MAX_TARGETS; target++) 1986 dev->hba_map[bus][target].new_devtype = 0; 1987 1988 rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN); 1989 1990 if (rcode != -ERESTARTSYS) 1991 aac_fib_free(fib); 1992 1993 aac_resolve_luns(dev); 1994 1995 if (events == SA_AIF_LDEV_CHANGE || 1996 events == SA_AIF_BPCFG_CHANGE) { 1997 aac_get_containers(dev); 1998 for (container = 0; container < 1999 dev->maximum_num_containers; ++container) { 2000 sdev = scsi_device_lookup(dev->scsi_host_ptr, 2001 CONTAINER_CHANNEL, 2002 container, 0); 2003 if (dev->fsa_dev[container].valid && !sdev) { 2004 scsi_add_device(dev->scsi_host_ptr, 2005 CONTAINER_CHANNEL, 2006 container, 0); 2007 } else if (!dev->fsa_dev[container].valid && 2008 sdev) { 2009 scsi_remove_device(sdev); 2010 scsi_device_put(sdev); 2011 } else if (sdev) { 2012 scsi_rescan_device(&sdev->sdev_gendev); 2013 scsi_device_put(sdev); 2014 } 2015 } 2016 } 2017 break; 2018 2019 case SA_AIF_BPSTAT_CHANGE: 2020 /* currently do nothing */ 2021 break; 2022 } 2023 2024 for (i = 1; i <= 10; ++i) { 2025 events = src_readl(dev, MUnit.IDR); 2026 if (events & (1<<23)) { 2027 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2028 i, 10); 2029 ssleep(1); 2030 } 2031 } 2032 } 2033 2034 static int get_fib_count(struct aac_dev *dev) 2035 { 2036 unsigned int num = 0; 2037 struct list_head *entry; 2038 unsigned long flagv; 2039 2040 /* 2041 * Warning: no sleep allowed while 2042 * holding spinlock. We take the estimate 2043 * and pre-allocate a set of fibs outside the 2044 * lock. 2045 */ 2046 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2047 / sizeof(struct hw_fib); /* some extra */ 2048 spin_lock_irqsave(&dev->fib_lock, flagv); 2049 entry = dev->fib_list.next; 2050 while (entry != &dev->fib_list) { 2051 entry = entry->next; 2052 ++num; 2053 } 2054 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2055 2056 return num; 2057 } 2058 2059 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2060 struct fib **fib_pool, 2061 unsigned int num) 2062 { 2063 struct hw_fib **hw_fib_p; 2064 struct fib **fib_p; 2065 2066 hw_fib_p = hw_fib_pool; 2067 fib_p = fib_pool; 2068 while (hw_fib_p < &hw_fib_pool[num]) { 2069 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2070 if (!(*(hw_fib_p++))) { 2071 --hw_fib_p; 2072 break; 2073 } 2074 2075 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2076 if (!(*(fib_p++))) { 2077 kfree(*(--hw_fib_p)); 2078 break; 2079 } 2080 } 2081 2082 /* 2083 * Get the actual number of allocated fibs 2084 */ 2085 num = hw_fib_p - hw_fib_pool; 2086 return num; 2087 } 2088 2089 static void wakeup_fibctx_threads(struct aac_dev *dev, 2090 struct hw_fib **hw_fib_pool, 2091 struct fib **fib_pool, 2092 struct fib *fib, 2093 struct hw_fib *hw_fib, 2094 unsigned int num) 2095 { 2096 unsigned long flagv; 2097 struct list_head *entry; 2098 struct hw_fib **hw_fib_p; 2099 struct fib **fib_p; 2100 u32 time_now, time_last; 2101 struct hw_fib *hw_newfib; 2102 struct fib *newfib; 2103 struct aac_fib_context *fibctx; 2104 2105 time_now = jiffies/HZ; 2106 spin_lock_irqsave(&dev->fib_lock, flagv); 2107 entry = dev->fib_list.next; 2108 /* 2109 * For each Context that is on the 2110 * fibctxList, make a copy of the 2111 * fib, and then set the event to wake up the 2112 * thread that is waiting for it. 2113 */ 2114 2115 hw_fib_p = hw_fib_pool; 2116 fib_p = fib_pool; 2117 while (entry != &dev->fib_list) { 2118 /* 2119 * Extract the fibctx 2120 */ 2121 fibctx = list_entry(entry, struct aac_fib_context, 2122 next); 2123 /* 2124 * Check if the queue is getting 2125 * backlogged 2126 */ 2127 if (fibctx->count > 20) { 2128 /* 2129 * It's *not* jiffies folks, 2130 * but jiffies / HZ so do not 2131 * panic ... 2132 */ 2133 time_last = fibctx->jiffies; 2134 /* 2135 * Has it been > 2 minutes 2136 * since the last read off 2137 * the queue? 2138 */ 2139 if ((time_now - time_last) > aif_timeout) { 2140 entry = entry->next; 2141 aac_close_fib_context(dev, fibctx); 2142 continue; 2143 } 2144 } 2145 /* 2146 * Warning: no sleep allowed while 2147 * holding spinlock 2148 */ 2149 if (hw_fib_p >= &hw_fib_pool[num]) { 2150 pr_warn("aifd: didn't allocate NewFib\n"); 2151 entry = entry->next; 2152 continue; 2153 } 2154 2155 hw_newfib = *hw_fib_p; 2156 *(hw_fib_p++) = NULL; 2157 newfib = *fib_p; 2158 *(fib_p++) = NULL; 2159 /* 2160 * Make the copy of the FIB 2161 */ 2162 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2163 memcpy(newfib, fib, sizeof(struct fib)); 2164 newfib->hw_fib_va = hw_newfib; 2165 /* 2166 * Put the FIB onto the 2167 * fibctx's fibs 2168 */ 2169 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2170 fibctx->count++; 2171 /* 2172 * Set the event to wake up the 2173 * thread that is waiting. 2174 */ 2175 up(&fibctx->wait_sem); 2176 2177 entry = entry->next; 2178 } 2179 /* 2180 * Set the status of this FIB 2181 */ 2182 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2183 aac_fib_adapter_complete(fib, sizeof(u32)); 2184 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2185 2186 } 2187 2188 static void aac_process_events(struct aac_dev *dev) 2189 { 2190 struct hw_fib *hw_fib; 2191 struct fib *fib; 2192 unsigned long flags; 2193 spinlock_t *t_lock; 2194 2195 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2196 spin_lock_irqsave(t_lock, flags); 2197 2198 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2199 struct list_head *entry; 2200 struct aac_aifcmd *aifcmd; 2201 unsigned int num; 2202 struct hw_fib **hw_fib_pool, **hw_fib_p; 2203 struct fib **fib_pool, **fib_p; 2204 2205 set_current_state(TASK_RUNNING); 2206 2207 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2208 list_del(entry); 2209 2210 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2211 spin_unlock_irqrestore(t_lock, flags); 2212 2213 fib = list_entry(entry, struct fib, fiblink); 2214 hw_fib = fib->hw_fib_va; 2215 if (dev->sa_firmware) { 2216 /* Thor AIF */ 2217 aac_handle_sa_aif(dev, fib); 2218 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2219 goto free_fib; 2220 } 2221 /* 2222 * We will process the FIB here or pass it to a 2223 * worker thread that is TBD. We Really can't 2224 * do anything at this point since we don't have 2225 * anything defined for this thread to do. 2226 */ 2227 memset(fib, 0, sizeof(struct fib)); 2228 fib->type = FSAFS_NTC_FIB_CONTEXT; 2229 fib->size = sizeof(struct fib); 2230 fib->hw_fib_va = hw_fib; 2231 fib->data = hw_fib->data; 2232 fib->dev = dev; 2233 /* 2234 * We only handle AifRequest fibs from the adapter. 2235 */ 2236 2237 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2238 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2239 /* Handle Driver Notify Events */ 2240 aac_handle_aif(dev, fib); 2241 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2242 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2243 goto free_fib; 2244 } 2245 /* 2246 * The u32 here is important and intended. We are using 2247 * 32bit wrapping time to fit the adapter field 2248 */ 2249 2250 /* Sniff events */ 2251 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2252 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2253 aac_handle_aif(dev, fib); 2254 } 2255 2256 /* 2257 * get number of fibs to process 2258 */ 2259 num = get_fib_count(dev); 2260 if (!num) 2261 goto free_fib; 2262 2263 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2264 GFP_KERNEL); 2265 if (!hw_fib_pool) 2266 goto free_fib; 2267 2268 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2269 if (!fib_pool) 2270 goto free_hw_fib_pool; 2271 2272 /* 2273 * Fill up fib pointer pools with actual fibs 2274 * and hw_fibs 2275 */ 2276 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2277 if (!num) 2278 goto free_mem; 2279 2280 /* 2281 * wakeup the thread that is waiting for 2282 * the response from fw (ioctl) 2283 */ 2284 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2285 fib, hw_fib, num); 2286 2287 free_mem: 2288 /* Free up the remaining resources */ 2289 hw_fib_p = hw_fib_pool; 2290 fib_p = fib_pool; 2291 while (hw_fib_p < &hw_fib_pool[num]) { 2292 kfree(*hw_fib_p); 2293 kfree(*fib_p); 2294 ++fib_p; 2295 ++hw_fib_p; 2296 } 2297 kfree(fib_pool); 2298 free_hw_fib_pool: 2299 kfree(hw_fib_pool); 2300 free_fib: 2301 kfree(fib); 2302 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2303 spin_lock_irqsave(t_lock, flags); 2304 } 2305 /* 2306 * There are no more AIF's 2307 */ 2308 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2309 spin_unlock_irqrestore(t_lock, flags); 2310 } 2311 2312 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2313 u32 datasize) 2314 { 2315 struct aac_srb *srbcmd; 2316 struct sgmap64 *sg64; 2317 dma_addr_t addr; 2318 char *dma_buf; 2319 struct fib *fibptr; 2320 int ret = -ENOMEM; 2321 u32 vbus, vid; 2322 2323 fibptr = aac_fib_alloc(dev); 2324 if (!fibptr) 2325 goto out; 2326 2327 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2328 GFP_KERNEL); 2329 if (!dma_buf) 2330 goto fib_free_out; 2331 2332 aac_fib_init(fibptr); 2333 2334 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2335 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2336 2337 srbcmd = (struct aac_srb *)fib_data(fibptr); 2338 2339 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2340 srbcmd->channel = cpu_to_le32(vbus); 2341 srbcmd->id = cpu_to_le32(vid); 2342 srbcmd->lun = 0; 2343 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2344 srbcmd->timeout = cpu_to_le32(10); 2345 srbcmd->retry_limit = 0; 2346 srbcmd->cdb_size = cpu_to_le32(12); 2347 srbcmd->count = cpu_to_le32(datasize); 2348 2349 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2350 srbcmd->cdb[0] = BMIC_OUT; 2351 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2352 memcpy(dma_buf, (char *)wellness_str, datasize); 2353 2354 sg64 = (struct sgmap64 *)&srbcmd->sg; 2355 sg64->count = cpu_to_le32(1); 2356 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2357 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2358 sg64->sg[0].count = cpu_to_le32(datasize); 2359 2360 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2361 FsaNormal, 1, 1, NULL, NULL); 2362 2363 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2364 2365 /* 2366 * Do not set XferState to zero unless 2367 * receives a response from F/W 2368 */ 2369 if (ret >= 0) 2370 aac_fib_complete(fibptr); 2371 2372 /* 2373 * FIB should be freed only after 2374 * getting the response from the F/W 2375 */ 2376 if (ret != -ERESTARTSYS) 2377 goto fib_free_out; 2378 2379 out: 2380 return ret; 2381 fib_free_out: 2382 aac_fib_free(fibptr); 2383 goto out; 2384 } 2385 2386 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2387 { 2388 struct tm cur_tm; 2389 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2390 u32 datasize = sizeof(wellness_str); 2391 time64_t local_time; 2392 int ret = -ENODEV; 2393 2394 if (!dev->sa_firmware) 2395 goto out; 2396 2397 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2398 time64_to_tm(local_time, 0, &cur_tm); 2399 cur_tm.tm_mon += 1; 2400 cur_tm.tm_year += 1900; 2401 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2402 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2403 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2404 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2405 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2406 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2407 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2408 2409 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2410 2411 out: 2412 return ret; 2413 } 2414 2415 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2416 { 2417 int ret = -ENOMEM; 2418 struct fib *fibptr; 2419 __le32 *info; 2420 2421 fibptr = aac_fib_alloc(dev); 2422 if (!fibptr) 2423 goto out; 2424 2425 aac_fib_init(fibptr); 2426 info = (__le32 *)fib_data(fibptr); 2427 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2428 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2429 1, 1, NULL, NULL); 2430 2431 /* 2432 * Do not set XferState to zero unless 2433 * receives a response from F/W 2434 */ 2435 if (ret >= 0) 2436 aac_fib_complete(fibptr); 2437 2438 /* 2439 * FIB should be freed only after 2440 * getting the response from the F/W 2441 */ 2442 if (ret != -ERESTARTSYS) 2443 aac_fib_free(fibptr); 2444 2445 out: 2446 return ret; 2447 } 2448 2449 /** 2450 * aac_command_thread - command processing thread 2451 * @dev: Adapter to monitor 2452 * 2453 * Waits on the commandready event in it's queue. When the event gets set 2454 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2455 * until the queue is empty. When the queue is empty it will wait for 2456 * more FIBs. 2457 */ 2458 2459 int aac_command_thread(void *data) 2460 { 2461 struct aac_dev *dev = data; 2462 DECLARE_WAITQUEUE(wait, current); 2463 unsigned long next_jiffies = jiffies + HZ; 2464 unsigned long next_check_jiffies = next_jiffies; 2465 long difference = HZ; 2466 2467 /* 2468 * We can only have one thread per adapter for AIF's. 2469 */ 2470 if (dev->aif_thread) 2471 return -EINVAL; 2472 2473 /* 2474 * Let the DPC know it has a place to send the AIF's to. 2475 */ 2476 dev->aif_thread = 1; 2477 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2478 set_current_state(TASK_INTERRUPTIBLE); 2479 dprintk ((KERN_INFO "aac_command_thread start\n")); 2480 while (1) { 2481 2482 aac_process_events(dev); 2483 2484 /* 2485 * Background activity 2486 */ 2487 if ((time_before(next_check_jiffies,next_jiffies)) 2488 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2489 next_check_jiffies = next_jiffies; 2490 if (aac_adapter_check_health(dev) == 0) { 2491 difference = ((long)(unsigned)check_interval) 2492 * HZ; 2493 next_check_jiffies = jiffies + difference; 2494 } else if (!dev->queues) 2495 break; 2496 } 2497 if (!time_before(next_check_jiffies,next_jiffies) 2498 && ((difference = next_jiffies - jiffies) <= 0)) { 2499 struct timespec64 now; 2500 int ret; 2501 2502 /* Don't even try to talk to adapter if its sick */ 2503 ret = aac_adapter_check_health(dev); 2504 if (ret || !dev->queues) 2505 break; 2506 next_check_jiffies = jiffies 2507 + ((long)(unsigned)check_interval) 2508 * HZ; 2509 ktime_get_real_ts64(&now); 2510 2511 /* Synchronize our watches */ 2512 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2513 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2514 difference = (((NSEC_PER_SEC - now.tv_nsec) * HZ) 2515 + NSEC_PER_SEC / 2) / NSEC_PER_SEC; 2516 else { 2517 if (now.tv_nsec > NSEC_PER_SEC / 2) 2518 ++now.tv_sec; 2519 2520 if (dev->sa_firmware) 2521 ret = 2522 aac_send_safw_hostttime(dev, &now); 2523 else 2524 ret = aac_send_hosttime(dev, &now); 2525 2526 difference = (long)(unsigned)update_interval*HZ; 2527 } 2528 next_jiffies = jiffies + difference; 2529 if (time_before(next_check_jiffies,next_jiffies)) 2530 difference = next_check_jiffies - jiffies; 2531 } 2532 if (difference <= 0) 2533 difference = 1; 2534 set_current_state(TASK_INTERRUPTIBLE); 2535 2536 if (kthread_should_stop()) 2537 break; 2538 2539 schedule_timeout(difference); 2540 2541 if (kthread_should_stop()) 2542 break; 2543 } 2544 if (dev->queues) 2545 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2546 dev->aif_thread = 0; 2547 return 0; 2548 } 2549 2550 int aac_acquire_irq(struct aac_dev *dev) 2551 { 2552 int i; 2553 int j; 2554 int ret = 0; 2555 2556 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2557 for (i = 0; i < dev->max_msix; i++) { 2558 dev->aac_msix[i].vector_no = i; 2559 dev->aac_msix[i].dev = dev; 2560 if (request_irq(pci_irq_vector(dev->pdev, i), 2561 dev->a_ops.adapter_intr, 2562 0, "aacraid", &(dev->aac_msix[i]))) { 2563 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2564 dev->name, dev->id, i); 2565 for (j = 0 ; j < i ; j++) 2566 free_irq(pci_irq_vector(dev->pdev, j), 2567 &(dev->aac_msix[j])); 2568 pci_disable_msix(dev->pdev); 2569 ret = -1; 2570 } 2571 } 2572 } else { 2573 dev->aac_msix[0].vector_no = 0; 2574 dev->aac_msix[0].dev = dev; 2575 2576 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2577 IRQF_SHARED, "aacraid", 2578 &(dev->aac_msix[0])) < 0) { 2579 if (dev->msi) 2580 pci_disable_msi(dev->pdev); 2581 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2582 dev->name, dev->id); 2583 ret = -1; 2584 } 2585 } 2586 return ret; 2587 } 2588 2589 void aac_free_irq(struct aac_dev *dev) 2590 { 2591 int i; 2592 int cpu; 2593 2594 cpu = cpumask_first(cpu_online_mask); 2595 if (aac_is_src(dev)) { 2596 if (dev->max_msix > 1) { 2597 for (i = 0; i < dev->max_msix; i++) 2598 free_irq(pci_irq_vector(dev->pdev, i), 2599 &(dev->aac_msix[i])); 2600 } else { 2601 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2602 } 2603 } else { 2604 free_irq(dev->pdev->irq, dev); 2605 } 2606 if (dev->msi) 2607 pci_disable_msi(dev->pdev); 2608 else if (dev->max_msix > 1) 2609 pci_disable_msix(dev->pdev); 2610 } 2611