1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/interrupt.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_cmnd.h> 48 #include <asm/semaphore.h> 49 50 #include "aacraid.h" 51 52 /** 53 * fib_map_alloc - allocate the fib objects 54 * @dev: Adapter to allocate for 55 * 56 * Allocate and map the shared PCI space for the FIB blocks used to 57 * talk to the Adaptec firmware. 58 */ 59 60 static int fib_map_alloc(struct aac_dev *dev) 61 { 62 dprintk((KERN_INFO 63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 68 &dev->hw_fib_pa))==NULL) 69 return -ENOMEM; 70 return 0; 71 } 72 73 /** 74 * aac_fib_map_free - free the fib objects 75 * @dev: Adapter to free 76 * 77 * Free the PCI mappings and the memory allocated for FIB blocks 78 * on this adapter. 79 */ 80 81 void aac_fib_map_free(struct aac_dev *dev) 82 { 83 pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa); 84 } 85 86 /** 87 * aac_fib_setup - setup the fibs 88 * @dev: Adapter to set up 89 * 90 * Allocate the PCI space for the fibs, map it and then intialise the 91 * fib area, the unmapped fib data and also the free list 92 */ 93 94 int aac_fib_setup(struct aac_dev * dev) 95 { 96 struct fib *fibptr; 97 struct hw_fib *hw_fib; 98 dma_addr_t hw_fib_pa; 99 int i; 100 101 while (((i = fib_map_alloc(dev)) == -ENOMEM) 102 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 103 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 104 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 105 } 106 if (i<0) 107 return -ENOMEM; 108 109 hw_fib = dev->hw_fib_va; 110 hw_fib_pa = dev->hw_fib_pa; 111 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 112 /* 113 * Initialise the fibs 114 */ 115 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 116 { 117 fibptr->dev = dev; 118 fibptr->hw_fib_va = hw_fib; 119 fibptr->data = (void *) fibptr->hw_fib_va->data; 120 fibptr->next = fibptr+1; /* Forward chain the fibs */ 121 init_MUTEX_LOCKED(&fibptr->event_wait); 122 spin_lock_init(&fibptr->event_lock); 123 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 124 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 125 fibptr->hw_fib_pa = hw_fib_pa; 126 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size); 127 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 128 } 129 /* 130 * Add the fib chain to the free list 131 */ 132 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 133 /* 134 * Enable this to debug out of queue space 135 */ 136 dev->free_fib = &dev->fibs[0]; 137 return 0; 138 } 139 140 /** 141 * aac_fib_alloc - allocate a fib 142 * @dev: Adapter to allocate the fib for 143 * 144 * Allocate a fib from the adapter fib pool. If the pool is empty we 145 * return NULL. 146 */ 147 148 struct fib *aac_fib_alloc(struct aac_dev *dev) 149 { 150 struct fib * fibptr; 151 unsigned long flags; 152 spin_lock_irqsave(&dev->fib_lock, flags); 153 fibptr = dev->free_fib; 154 if(!fibptr){ 155 spin_unlock_irqrestore(&dev->fib_lock, flags); 156 return fibptr; 157 } 158 dev->free_fib = fibptr->next; 159 spin_unlock_irqrestore(&dev->fib_lock, flags); 160 /* 161 * Set the proper node type code and node byte size 162 */ 163 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 164 fibptr->size = sizeof(struct fib); 165 /* 166 * Null out fields that depend on being zero at the start of 167 * each I/O 168 */ 169 fibptr->hw_fib_va->header.XferState = 0; 170 fibptr->callback = NULL; 171 fibptr->callback_data = NULL; 172 173 return fibptr; 174 } 175 176 /** 177 * aac_fib_free - free a fib 178 * @fibptr: fib to free up 179 * 180 * Frees up a fib and places it on the appropriate queue 181 */ 182 183 void aac_fib_free(struct fib *fibptr) 184 { 185 unsigned long flags; 186 187 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 188 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 189 aac_config.fib_timeouts++; 190 if (fibptr->hw_fib_va->header.XferState != 0) { 191 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 192 (void*)fibptr, 193 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 194 } 195 fibptr->next = fibptr->dev->free_fib; 196 fibptr->dev->free_fib = fibptr; 197 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 198 } 199 200 /** 201 * aac_fib_init - initialise a fib 202 * @fibptr: The fib to initialize 203 * 204 * Set up the generic fib fields ready for use 205 */ 206 207 void aac_fib_init(struct fib *fibptr) 208 { 209 struct hw_fib *hw_fib = fibptr->hw_fib_va; 210 211 hw_fib->header.StructType = FIB_MAGIC; 212 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 213 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 214 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 215 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 216 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 217 } 218 219 /** 220 * fib_deallocate - deallocate a fib 221 * @fibptr: fib to deallocate 222 * 223 * Will deallocate and return to the free pool the FIB pointed to by the 224 * caller. 225 */ 226 227 static void fib_dealloc(struct fib * fibptr) 228 { 229 struct hw_fib *hw_fib = fibptr->hw_fib_va; 230 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 231 hw_fib->header.XferState = 0; 232 } 233 234 /* 235 * Commuication primitives define and support the queuing method we use to 236 * support host to adapter commuication. All queue accesses happen through 237 * these routines and are the only routines which have a knowledge of the 238 * how these queues are implemented. 239 */ 240 241 /** 242 * aac_get_entry - get a queue entry 243 * @dev: Adapter 244 * @qid: Queue Number 245 * @entry: Entry return 246 * @index: Index return 247 * @nonotify: notification control 248 * 249 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 250 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 251 * returned. 252 */ 253 254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 255 { 256 struct aac_queue * q; 257 unsigned long idx; 258 259 /* 260 * All of the queues wrap when they reach the end, so we check 261 * to see if they have reached the end and if they have we just 262 * set the index back to zero. This is a wrap. You could or off 263 * the high bits in all updates but this is a bit faster I think. 264 */ 265 266 q = &dev->queues->queue[qid]; 267 268 idx = *index = le32_to_cpu(*(q->headers.producer)); 269 /* Interrupt Moderation, only interrupt for first two entries */ 270 if (idx != le32_to_cpu(*(q->headers.consumer))) { 271 if (--idx == 0) { 272 if (qid == AdapNormCmdQueue) 273 idx = ADAP_NORM_CMD_ENTRIES; 274 else 275 idx = ADAP_NORM_RESP_ENTRIES; 276 } 277 if (idx != le32_to_cpu(*(q->headers.consumer))) 278 *nonotify = 1; 279 } 280 281 if (qid == AdapNormCmdQueue) { 282 if (*index >= ADAP_NORM_CMD_ENTRIES) 283 *index = 0; /* Wrap to front of the Producer Queue. */ 284 } else { 285 if (*index >= ADAP_NORM_RESP_ENTRIES) 286 *index = 0; /* Wrap to front of the Producer Queue. */ 287 } 288 289 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 290 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 291 qid, q->numpending); 292 return 0; 293 } else { 294 *entry = q->base + *index; 295 return 1; 296 } 297 } 298 299 /** 300 * aac_queue_get - get the next free QE 301 * @dev: Adapter 302 * @index: Returned index 303 * @priority: Priority of fib 304 * @fib: Fib to associate with the queue entry 305 * @wait: Wait if queue full 306 * @fibptr: Driver fib object to go with fib 307 * @nonotify: Don't notify the adapter 308 * 309 * Gets the next free QE off the requested priorty adapter command 310 * queue and associates the Fib with the QE. The QE represented by 311 * index is ready to insert on the queue when this routine returns 312 * success. 313 */ 314 315 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 316 { 317 struct aac_entry * entry = NULL; 318 int map = 0; 319 320 if (qid == AdapNormCmdQueue) { 321 /* if no entries wait for some if caller wants to */ 322 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 323 { 324 printk(KERN_ERR "GetEntries failed\n"); 325 } 326 /* 327 * Setup queue entry with a command, status and fib mapped 328 */ 329 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 330 map = 1; 331 } else { 332 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 333 { 334 /* if no entries wait for some if caller wants to */ 335 } 336 /* 337 * Setup queue entry with command, status and fib mapped 338 */ 339 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 340 entry->addr = hw_fib->header.SenderFibAddress; 341 /* Restore adapters pointer to the FIB */ 342 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 343 map = 0; 344 } 345 /* 346 * If MapFib is true than we need to map the Fib and put pointers 347 * in the queue entry. 348 */ 349 if (map) 350 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 351 return 0; 352 } 353 354 /* 355 * Define the highest level of host to adapter communication routines. 356 * These routines will support host to adapter FS commuication. These 357 * routines have no knowledge of the commuication method used. This level 358 * sends and receives FIBs. This level has no knowledge of how these FIBs 359 * get passed back and forth. 360 */ 361 362 /** 363 * aac_fib_send - send a fib to the adapter 364 * @command: Command to send 365 * @fibptr: The fib 366 * @size: Size of fib data area 367 * @priority: Priority of Fib 368 * @wait: Async/sync select 369 * @reply: True if a reply is wanted 370 * @callback: Called with reply 371 * @callback_data: Passed to callback 372 * 373 * Sends the requested FIB to the adapter and optionally will wait for a 374 * response FIB. If the caller does not wish to wait for a response than 375 * an event to wait on must be supplied. This event will be set when a 376 * response FIB is received from the adapter. 377 */ 378 379 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 380 int priority, int wait, int reply, fib_callback callback, 381 void *callback_data) 382 { 383 struct aac_dev * dev = fibptr->dev; 384 struct hw_fib * hw_fib = fibptr->hw_fib_va; 385 unsigned long flags = 0; 386 unsigned long qflags; 387 388 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 389 return -EBUSY; 390 /* 391 * There are 5 cases with the wait and reponse requested flags. 392 * The only invalid cases are if the caller requests to wait and 393 * does not request a response and if the caller does not want a 394 * response and the Fib is not allocated from pool. If a response 395 * is not requesed the Fib will just be deallocaed by the DPC 396 * routine when the response comes back from the adapter. No 397 * further processing will be done besides deleting the Fib. We 398 * will have a debug mode where the adapter can notify the host 399 * it had a problem and the host can log that fact. 400 */ 401 if (wait && !reply) { 402 return -EINVAL; 403 } else if (!wait && reply) { 404 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 405 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 406 } else if (!wait && !reply) { 407 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 408 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 409 } else if (wait && reply) { 410 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 411 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 412 } 413 /* 414 * Map the fib into 32bits by using the fib number 415 */ 416 417 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 418 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 419 /* 420 * Set FIB state to indicate where it came from and if we want a 421 * response from the adapter. Also load the command from the 422 * caller. 423 * 424 * Map the hw fib pointer as a 32bit value 425 */ 426 hw_fib->header.Command = cpu_to_le16(command); 427 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 428 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ 429 /* 430 * Set the size of the Fib we want to send to the adapter 431 */ 432 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 433 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 434 return -EMSGSIZE; 435 } 436 /* 437 * Get a queue entry connect the FIB to it and send an notify 438 * the adapter a command is ready. 439 */ 440 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 441 442 /* 443 * Fill in the Callback and CallbackContext if we are not 444 * going to wait. 445 */ 446 if (!wait) { 447 fibptr->callback = callback; 448 fibptr->callback_data = callback_data; 449 } 450 451 fibptr->done = 0; 452 fibptr->flags = 0; 453 454 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 455 456 dprintk((KERN_DEBUG "Fib contents:.\n")); 457 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 458 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 459 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 460 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 461 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 462 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 463 464 if (!dev->queues) 465 return -EBUSY; 466 467 if(wait) 468 spin_lock_irqsave(&fibptr->event_lock, flags); 469 aac_adapter_deliver(fibptr); 470 471 /* 472 * If the caller wanted us to wait for response wait now. 473 */ 474 475 if (wait) { 476 spin_unlock_irqrestore(&fibptr->event_lock, flags); 477 /* Only set for first known interruptable command */ 478 if (wait < 0) { 479 /* 480 * *VERY* Dangerous to time out a command, the 481 * assumption is made that we have no hope of 482 * functioning because an interrupt routing or other 483 * hardware failure has occurred. 484 */ 485 unsigned long count = 36000000L; /* 3 minutes */ 486 while (down_trylock(&fibptr->event_wait)) { 487 int blink; 488 if (--count == 0) { 489 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 490 spin_lock_irqsave(q->lock, qflags); 491 q->numpending--; 492 spin_unlock_irqrestore(q->lock, qflags); 493 if (wait == -1) { 494 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 495 "Usually a result of a PCI interrupt routing problem;\n" 496 "update mother board BIOS or consider utilizing one of\n" 497 "the SAFE mode kernel options (acpi, apic etc)\n"); 498 } 499 return -ETIMEDOUT; 500 } 501 if ((blink = aac_adapter_check_health(dev)) > 0) { 502 if (wait == -1) { 503 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 504 "Usually a result of a serious unrecoverable hardware problem\n", 505 blink); 506 } 507 return -EFAULT; 508 } 509 udelay(5); 510 } 511 } else 512 (void)down_interruptible(&fibptr->event_wait); 513 spin_lock_irqsave(&fibptr->event_lock, flags); 514 if (fibptr->done == 0) { 515 fibptr->done = 2; /* Tell interrupt we aborted */ 516 spin_unlock_irqrestore(&fibptr->event_lock, flags); 517 return -EINTR; 518 } 519 spin_unlock_irqrestore(&fibptr->event_lock, flags); 520 BUG_ON(fibptr->done == 0); 521 522 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 523 return -ETIMEDOUT; 524 return 0; 525 } 526 /* 527 * If the user does not want a response than return success otherwise 528 * return pending 529 */ 530 if (reply) 531 return -EINPROGRESS; 532 else 533 return 0; 534 } 535 536 /** 537 * aac_consumer_get - get the top of the queue 538 * @dev: Adapter 539 * @q: Queue 540 * @entry: Return entry 541 * 542 * Will return a pointer to the entry on the top of the queue requested that 543 * we are a consumer of, and return the address of the queue entry. It does 544 * not change the state of the queue. 545 */ 546 547 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 548 { 549 u32 index; 550 int status; 551 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 552 status = 0; 553 } else { 554 /* 555 * The consumer index must be wrapped if we have reached 556 * the end of the queue, else we just use the entry 557 * pointed to by the header index 558 */ 559 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 560 index = 0; 561 else 562 index = le32_to_cpu(*q->headers.consumer); 563 *entry = q->base + index; 564 status = 1; 565 } 566 return(status); 567 } 568 569 /** 570 * aac_consumer_free - free consumer entry 571 * @dev: Adapter 572 * @q: Queue 573 * @qid: Queue ident 574 * 575 * Frees up the current top of the queue we are a consumer of. If the 576 * queue was full notify the producer that the queue is no longer full. 577 */ 578 579 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 580 { 581 int wasfull = 0; 582 u32 notify; 583 584 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 585 wasfull = 1; 586 587 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 588 *q->headers.consumer = cpu_to_le32(1); 589 else 590 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); 591 592 if (wasfull) { 593 switch (qid) { 594 595 case HostNormCmdQueue: 596 notify = HostNormCmdNotFull; 597 break; 598 case HostNormRespQueue: 599 notify = HostNormRespNotFull; 600 break; 601 default: 602 BUG(); 603 return; 604 } 605 aac_adapter_notify(dev, notify); 606 } 607 } 608 609 /** 610 * aac_fib_adapter_complete - complete adapter issued fib 611 * @fibptr: fib to complete 612 * @size: size of fib 613 * 614 * Will do all necessary work to complete a FIB that was sent from 615 * the adapter. 616 */ 617 618 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 619 { 620 struct hw_fib * hw_fib = fibptr->hw_fib_va; 621 struct aac_dev * dev = fibptr->dev; 622 struct aac_queue * q; 623 unsigned long nointr = 0; 624 unsigned long qflags; 625 626 if (hw_fib->header.XferState == 0) { 627 if (dev->comm_interface == AAC_COMM_MESSAGE) 628 kfree (hw_fib); 629 return 0; 630 } 631 /* 632 * If we plan to do anything check the structure type first. 633 */ 634 if ( hw_fib->header.StructType != FIB_MAGIC ) { 635 if (dev->comm_interface == AAC_COMM_MESSAGE) 636 kfree (hw_fib); 637 return -EINVAL; 638 } 639 /* 640 * This block handles the case where the adapter had sent us a 641 * command and we have finished processing the command. We 642 * call completeFib when we are done processing the command 643 * and want to send a response back to the adapter. This will 644 * send the completed cdb to the adapter. 645 */ 646 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 647 if (dev->comm_interface == AAC_COMM_MESSAGE) { 648 kfree (hw_fib); 649 } else { 650 u32 index; 651 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 652 if (size) { 653 size += sizeof(struct aac_fibhdr); 654 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 655 return -EMSGSIZE; 656 hw_fib->header.Size = cpu_to_le16(size); 657 } 658 q = &dev->queues->queue[AdapNormRespQueue]; 659 spin_lock_irqsave(q->lock, qflags); 660 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 661 *(q->headers.producer) = cpu_to_le32(index + 1); 662 spin_unlock_irqrestore(q->lock, qflags); 663 if (!(nointr & (int)aac_config.irq_mod)) 664 aac_adapter_notify(dev, AdapNormRespQueue); 665 } 666 } 667 else 668 { 669 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); 670 BUG(); 671 } 672 return 0; 673 } 674 675 /** 676 * aac_fib_complete - fib completion handler 677 * @fib: FIB to complete 678 * 679 * Will do all necessary work to complete a FIB. 680 */ 681 682 int aac_fib_complete(struct fib *fibptr) 683 { 684 struct hw_fib * hw_fib = fibptr->hw_fib_va; 685 686 /* 687 * Check for a fib which has already been completed 688 */ 689 690 if (hw_fib->header.XferState == 0) 691 return 0; 692 /* 693 * If we plan to do anything check the structure type first. 694 */ 695 696 if (hw_fib->header.StructType != FIB_MAGIC) 697 return -EINVAL; 698 /* 699 * This block completes a cdb which orginated on the host and we 700 * just need to deallocate the cdb or reinit it. At this point the 701 * command is complete that we had sent to the adapter and this 702 * cdb could be reused. 703 */ 704 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 705 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 706 { 707 fib_dealloc(fibptr); 708 } 709 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 710 { 711 /* 712 * This handles the case when the host has aborted the I/O 713 * to the adapter because the adapter is not responding 714 */ 715 fib_dealloc(fibptr); 716 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 717 fib_dealloc(fibptr); 718 } else { 719 BUG(); 720 } 721 return 0; 722 } 723 724 /** 725 * aac_printf - handle printf from firmware 726 * @dev: Adapter 727 * @val: Message info 728 * 729 * Print a message passed to us by the controller firmware on the 730 * Adaptec board 731 */ 732 733 void aac_printf(struct aac_dev *dev, u32 val) 734 { 735 char *cp = dev->printfbuf; 736 if (dev->printf_enabled) 737 { 738 int length = val & 0xffff; 739 int level = (val >> 16) & 0xffff; 740 741 /* 742 * The size of the printfbuf is set in port.c 743 * There is no variable or define for it 744 */ 745 if (length > 255) 746 length = 255; 747 if (cp[length] != 0) 748 cp[length] = 0; 749 if (level == LOG_AAC_HIGH_ERROR) 750 printk(KERN_WARNING "%s:%s", dev->name, cp); 751 else 752 printk(KERN_INFO "%s:%s", dev->name, cp); 753 } 754 memset(cp, 0, 256); 755 } 756 757 758 /** 759 * aac_handle_aif - Handle a message from the firmware 760 * @dev: Which adapter this fib is from 761 * @fibptr: Pointer to fibptr from adapter 762 * 763 * This routine handles a driver notify fib from the adapter and 764 * dispatches it to the appropriate routine for handling. 765 */ 766 767 #define AIF_SNIFF_TIMEOUT (30*HZ) 768 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 769 { 770 struct hw_fib * hw_fib = fibptr->hw_fib_va; 771 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 772 u32 container; 773 struct scsi_device *device; 774 enum { 775 NOTHING, 776 DELETE, 777 ADD, 778 CHANGE 779 } device_config_needed; 780 781 /* Sniff for container changes */ 782 783 if (!dev || !dev->fsa_dev) 784 return; 785 container = (u32)-1; 786 787 /* 788 * We have set this up to try and minimize the number of 789 * re-configures that take place. As a result of this when 790 * certain AIF's come in we will set a flag waiting for another 791 * type of AIF before setting the re-config flag. 792 */ 793 switch (le32_to_cpu(aifcmd->command)) { 794 case AifCmdDriverNotify: 795 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 796 /* 797 * Morph or Expand complete 798 */ 799 case AifDenMorphComplete: 800 case AifDenVolumeExtendComplete: 801 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 802 if (container >= dev->maximum_num_containers) 803 break; 804 805 /* 806 * Find the scsi_device associated with the SCSI 807 * address. Make sure we have the right array, and if 808 * so set the flag to initiate a new re-config once we 809 * see an AifEnConfigChange AIF come through. 810 */ 811 812 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 813 device = scsi_device_lookup(dev->scsi_host_ptr, 814 CONTAINER_TO_CHANNEL(container), 815 CONTAINER_TO_ID(container), 816 CONTAINER_TO_LUN(container)); 817 if (device) { 818 dev->fsa_dev[container].config_needed = CHANGE; 819 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 820 dev->fsa_dev[container].config_waiting_stamp = jiffies; 821 scsi_device_put(device); 822 } 823 } 824 } 825 826 /* 827 * If we are waiting on something and this happens to be 828 * that thing then set the re-configure flag. 829 */ 830 if (container != (u32)-1) { 831 if (container >= dev->maximum_num_containers) 832 break; 833 if ((dev->fsa_dev[container].config_waiting_on == 834 le32_to_cpu(*(u32 *)aifcmd->data)) && 835 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 836 dev->fsa_dev[container].config_waiting_on = 0; 837 } else for (container = 0; 838 container < dev->maximum_num_containers; ++container) { 839 if ((dev->fsa_dev[container].config_waiting_on == 840 le32_to_cpu(*(u32 *)aifcmd->data)) && 841 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 842 dev->fsa_dev[container].config_waiting_on = 0; 843 } 844 break; 845 846 case AifCmdEventNotify: 847 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 848 /* 849 * Add an Array. 850 */ 851 case AifEnAddContainer: 852 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 853 if (container >= dev->maximum_num_containers) 854 break; 855 dev->fsa_dev[container].config_needed = ADD; 856 dev->fsa_dev[container].config_waiting_on = 857 AifEnConfigChange; 858 dev->fsa_dev[container].config_waiting_stamp = jiffies; 859 break; 860 861 /* 862 * Delete an Array. 863 */ 864 case AifEnDeleteContainer: 865 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 866 if (container >= dev->maximum_num_containers) 867 break; 868 dev->fsa_dev[container].config_needed = DELETE; 869 dev->fsa_dev[container].config_waiting_on = 870 AifEnConfigChange; 871 dev->fsa_dev[container].config_waiting_stamp = jiffies; 872 break; 873 874 /* 875 * Container change detected. If we currently are not 876 * waiting on something else, setup to wait on a Config Change. 877 */ 878 case AifEnContainerChange: 879 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 880 if (container >= dev->maximum_num_containers) 881 break; 882 if (dev->fsa_dev[container].config_waiting_on && 883 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 884 break; 885 dev->fsa_dev[container].config_needed = CHANGE; 886 dev->fsa_dev[container].config_waiting_on = 887 AifEnConfigChange; 888 dev->fsa_dev[container].config_waiting_stamp = jiffies; 889 break; 890 891 case AifEnConfigChange: 892 break; 893 894 } 895 896 /* 897 * If we are waiting on something and this happens to be 898 * that thing then set the re-configure flag. 899 */ 900 if (container != (u32)-1) { 901 if (container >= dev->maximum_num_containers) 902 break; 903 if ((dev->fsa_dev[container].config_waiting_on == 904 le32_to_cpu(*(u32 *)aifcmd->data)) && 905 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 906 dev->fsa_dev[container].config_waiting_on = 0; 907 } else for (container = 0; 908 container < dev->maximum_num_containers; ++container) { 909 if ((dev->fsa_dev[container].config_waiting_on == 910 le32_to_cpu(*(u32 *)aifcmd->data)) && 911 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 912 dev->fsa_dev[container].config_waiting_on = 0; 913 } 914 break; 915 916 case AifCmdJobProgress: 917 /* 918 * These are job progress AIF's. When a Clear is being 919 * done on a container it is initially created then hidden from 920 * the OS. When the clear completes we don't get a config 921 * change so we monitor the job status complete on a clear then 922 * wait for a container change. 923 */ 924 925 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 926 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) 927 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { 928 for (container = 0; 929 container < dev->maximum_num_containers; 930 ++container) { 931 /* 932 * Stomp on all config sequencing for all 933 * containers? 934 */ 935 dev->fsa_dev[container].config_waiting_on = 936 AifEnContainerChange; 937 dev->fsa_dev[container].config_needed = ADD; 938 dev->fsa_dev[container].config_waiting_stamp = 939 jiffies; 940 } 941 } 942 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 943 && (((u32 *)aifcmd->data)[6] == 0) 944 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { 945 for (container = 0; 946 container < dev->maximum_num_containers; 947 ++container) { 948 /* 949 * Stomp on all config sequencing for all 950 * containers? 951 */ 952 dev->fsa_dev[container].config_waiting_on = 953 AifEnContainerChange; 954 dev->fsa_dev[container].config_needed = DELETE; 955 dev->fsa_dev[container].config_waiting_stamp = 956 jiffies; 957 } 958 } 959 break; 960 } 961 962 device_config_needed = NOTHING; 963 for (container = 0; container < dev->maximum_num_containers; 964 ++container) { 965 if ((dev->fsa_dev[container].config_waiting_on == 0) && 966 (dev->fsa_dev[container].config_needed != NOTHING) && 967 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 968 device_config_needed = 969 dev->fsa_dev[container].config_needed; 970 dev->fsa_dev[container].config_needed = NOTHING; 971 break; 972 } 973 } 974 if (device_config_needed == NOTHING) 975 return; 976 977 /* 978 * If we decided that a re-configuration needs to be done, 979 * schedule it here on the way out the door, please close the door 980 * behind you. 981 */ 982 983 /* 984 * Find the scsi_device associated with the SCSI address, 985 * and mark it as changed, invalidating the cache. This deals 986 * with changes to existing device IDs. 987 */ 988 989 if (!dev || !dev->scsi_host_ptr) 990 return; 991 /* 992 * force reload of disk info via aac_probe_container 993 */ 994 if ((device_config_needed == CHANGE) 995 && (dev->fsa_dev[container].valid == 1)) 996 dev->fsa_dev[container].valid = 2; 997 if ((device_config_needed == CHANGE) || 998 (device_config_needed == ADD)) 999 aac_probe_container(dev, container); 1000 device = scsi_device_lookup(dev->scsi_host_ptr, 1001 CONTAINER_TO_CHANNEL(container), 1002 CONTAINER_TO_ID(container), 1003 CONTAINER_TO_LUN(container)); 1004 if (device) { 1005 switch (device_config_needed) { 1006 case DELETE: 1007 case CHANGE: 1008 scsi_rescan_device(&device->sdev_gendev); 1009 1010 default: 1011 break; 1012 } 1013 scsi_device_put(device); 1014 } 1015 if (device_config_needed == ADD) { 1016 scsi_add_device(dev->scsi_host_ptr, 1017 CONTAINER_TO_CHANNEL(container), 1018 CONTAINER_TO_ID(container), 1019 CONTAINER_TO_LUN(container)); 1020 } 1021 1022 } 1023 1024 static int _aac_reset_adapter(struct aac_dev *aac) 1025 { 1026 int index, quirks; 1027 int retval; 1028 struct Scsi_Host *host; 1029 struct scsi_device *dev; 1030 struct scsi_cmnd *command; 1031 struct scsi_cmnd *command_list; 1032 1033 /* 1034 * Assumptions: 1035 * - host is locked. 1036 * - in_reset is asserted, so no new i/o is getting to the 1037 * card. 1038 * - The card is dead. 1039 */ 1040 host = aac->scsi_host_ptr; 1041 scsi_block_requests(host); 1042 aac_adapter_disable_int(aac); 1043 spin_unlock_irq(host->host_lock); 1044 kthread_stop(aac->thread); 1045 1046 /* 1047 * If a positive health, means in a known DEAD PANIC 1048 * state and the adapter could be reset to `try again'. 1049 */ 1050 retval = aac_adapter_restart(aac, aac_adapter_check_health(aac)); 1051 1052 if (retval) 1053 goto out; 1054 1055 /* 1056 * Loop through the fibs, close the synchronous FIBS 1057 */ 1058 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1059 struct fib *fib = &aac->fibs[index]; 1060 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1061 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1062 unsigned long flagv; 1063 spin_lock_irqsave(&fib->event_lock, flagv); 1064 up(&fib->event_wait); 1065 spin_unlock_irqrestore(&fib->event_lock, flagv); 1066 schedule(); 1067 retval = 0; 1068 } 1069 } 1070 /* Give some extra time for ioctls to complete. */ 1071 if (retval == 0) 1072 ssleep(2); 1073 index = aac->cardtype; 1074 1075 /* 1076 * Re-initialize the adapter, first free resources, then carefully 1077 * apply the initialization sequence to come back again. Only risk 1078 * is a change in Firmware dropping cache, it is assumed the caller 1079 * will ensure that i/o is queisced and the card is flushed in that 1080 * case. 1081 */ 1082 aac_fib_map_free(aac); 1083 aac->hw_fib_va = NULL; 1084 aac->hw_fib_pa = 0; 1085 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1086 aac->comm_addr = NULL; 1087 aac->comm_phys = 0; 1088 kfree(aac->queues); 1089 aac->queues = NULL; 1090 free_irq(aac->pdev->irq, aac); 1091 kfree(aac->fsa_dev); 1092 aac->fsa_dev = NULL; 1093 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) { 1094 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || 1095 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) 1096 goto out; 1097 } else { 1098 if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) || 1099 ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL)))) 1100 goto out; 1101 } 1102 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1103 goto out; 1104 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) 1105 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) 1106 goto out; 1107 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1108 if (IS_ERR(aac->thread)) { 1109 retval = PTR_ERR(aac->thread); 1110 goto out; 1111 } 1112 (void)aac_get_adapter_info(aac); 1113 quirks = aac_get_driver_ident(index)->quirks; 1114 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1115 host->sg_tablesize = 34; 1116 host->max_sectors = (host->sg_tablesize * 8) + 112; 1117 } 1118 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1119 host->sg_tablesize = 17; 1120 host->max_sectors = (host->sg_tablesize * 8) + 112; 1121 } 1122 aac_get_config_status(aac, 1); 1123 aac_get_containers(aac); 1124 /* 1125 * This is where the assumption that the Adapter is quiesced 1126 * is important. 1127 */ 1128 command_list = NULL; 1129 __shost_for_each_device(dev, host) { 1130 unsigned long flags; 1131 spin_lock_irqsave(&dev->list_lock, flags); 1132 list_for_each_entry(command, &dev->cmd_list, list) 1133 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1134 command->SCp.buffer = (struct scatterlist *)command_list; 1135 command_list = command; 1136 } 1137 spin_unlock_irqrestore(&dev->list_lock, flags); 1138 } 1139 while ((command = command_list)) { 1140 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1141 command->SCp.buffer = NULL; 1142 command->result = DID_OK << 16 1143 | COMMAND_COMPLETE << 8 1144 | SAM_STAT_TASK_SET_FULL; 1145 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1146 command->scsi_done(command); 1147 } 1148 retval = 0; 1149 1150 out: 1151 aac->in_reset = 0; 1152 scsi_unblock_requests(host); 1153 spin_lock_irq(host->host_lock); 1154 return retval; 1155 } 1156 1157 int aac_check_health(struct aac_dev * aac) 1158 { 1159 int BlinkLED; 1160 unsigned long time_now, flagv = 0; 1161 struct list_head * entry; 1162 struct Scsi_Host * host; 1163 1164 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1165 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1166 return 0; 1167 1168 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1169 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1170 return 0; /* OK */ 1171 } 1172 1173 aac->in_reset = 1; 1174 1175 /* Fake up an AIF: 1176 * aac_aifcmd.command = AifCmdEventNotify = 1 1177 * aac_aifcmd.seqnum = 0xFFFFFFFF 1178 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1179 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1180 * aac.aifcmd.data[2] = AifHighPriority = 3 1181 * aac.aifcmd.data[3] = BlinkLED 1182 */ 1183 1184 time_now = jiffies/HZ; 1185 entry = aac->fib_list.next; 1186 1187 /* 1188 * For each Context that is on the 1189 * fibctxList, make a copy of the 1190 * fib, and then set the event to wake up the 1191 * thread that is waiting for it. 1192 */ 1193 while (entry != &aac->fib_list) { 1194 /* 1195 * Extract the fibctx 1196 */ 1197 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1198 struct hw_fib * hw_fib; 1199 struct fib * fib; 1200 /* 1201 * Check if the queue is getting 1202 * backlogged 1203 */ 1204 if (fibctx->count > 20) { 1205 /* 1206 * It's *not* jiffies folks, 1207 * but jiffies / HZ, so do not 1208 * panic ... 1209 */ 1210 u32 time_last = fibctx->jiffies; 1211 /* 1212 * Has it been > 2 minutes 1213 * since the last read off 1214 * the queue? 1215 */ 1216 if ((time_now - time_last) > aif_timeout) { 1217 entry = entry->next; 1218 aac_close_fib_context(aac, fibctx); 1219 continue; 1220 } 1221 } 1222 /* 1223 * Warning: no sleep allowed while 1224 * holding spinlock 1225 */ 1226 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1227 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1228 if (fib && hw_fib) { 1229 struct aac_aifcmd * aif; 1230 1231 fib->hw_fib_va = hw_fib; 1232 fib->dev = aac; 1233 aac_fib_init(fib); 1234 fib->type = FSAFS_NTC_FIB_CONTEXT; 1235 fib->size = sizeof (struct fib); 1236 fib->data = hw_fib->data; 1237 aif = (struct aac_aifcmd *)hw_fib->data; 1238 aif->command = cpu_to_le32(AifCmdEventNotify); 1239 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1240 aif->data[0] = cpu_to_le32(AifEnExpEvent); 1241 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic); 1242 aif->data[2] = cpu_to_le32(AifHighPriority); 1243 aif->data[3] = cpu_to_le32(BlinkLED); 1244 1245 /* 1246 * Put the FIB onto the 1247 * fibctx's fibs 1248 */ 1249 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1250 fibctx->count++; 1251 /* 1252 * Set the event to wake up the 1253 * thread that will waiting. 1254 */ 1255 up(&fibctx->wait_sem); 1256 } else { 1257 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1258 kfree(fib); 1259 kfree(hw_fib); 1260 } 1261 entry = entry->next; 1262 } 1263 1264 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1265 1266 if (BlinkLED < 0) { 1267 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1268 goto out; 1269 } 1270 1271 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1272 1273 host = aac->scsi_host_ptr; 1274 spin_lock_irqsave(host->host_lock, flagv); 1275 BlinkLED = _aac_reset_adapter(aac); 1276 spin_unlock_irqrestore(host->host_lock, flagv); 1277 return BlinkLED; 1278 1279 out: 1280 aac->in_reset = 0; 1281 return BlinkLED; 1282 } 1283 1284 1285 /** 1286 * aac_command_thread - command processing thread 1287 * @dev: Adapter to monitor 1288 * 1289 * Waits on the commandready event in it's queue. When the event gets set 1290 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1291 * until the queue is empty. When the queue is empty it will wait for 1292 * more FIBs. 1293 */ 1294 1295 int aac_command_thread(void *data) 1296 { 1297 struct aac_dev *dev = data; 1298 struct hw_fib *hw_fib, *hw_newfib; 1299 struct fib *fib, *newfib; 1300 struct aac_fib_context *fibctx; 1301 unsigned long flags; 1302 DECLARE_WAITQUEUE(wait, current); 1303 1304 /* 1305 * We can only have one thread per adapter for AIF's. 1306 */ 1307 if (dev->aif_thread) 1308 return -EINVAL; 1309 1310 /* 1311 * Let the DPC know it has a place to send the AIF's to. 1312 */ 1313 dev->aif_thread = 1; 1314 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1315 set_current_state(TASK_INTERRUPTIBLE); 1316 dprintk ((KERN_INFO "aac_command_thread start\n")); 1317 while(1) 1318 { 1319 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1320 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1321 struct list_head *entry; 1322 struct aac_aifcmd * aifcmd; 1323 1324 set_current_state(TASK_RUNNING); 1325 1326 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1327 list_del(entry); 1328 1329 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1330 fib = list_entry(entry, struct fib, fiblink); 1331 /* 1332 * We will process the FIB here or pass it to a 1333 * worker thread that is TBD. We Really can't 1334 * do anything at this point since we don't have 1335 * anything defined for this thread to do. 1336 */ 1337 hw_fib = fib->hw_fib_va; 1338 memset(fib, 0, sizeof(struct fib)); 1339 fib->type = FSAFS_NTC_FIB_CONTEXT; 1340 fib->size = sizeof( struct fib ); 1341 fib->hw_fib_va = hw_fib; 1342 fib->data = hw_fib->data; 1343 fib->dev = dev; 1344 /* 1345 * We only handle AifRequest fibs from the adapter. 1346 */ 1347 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1348 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1349 /* Handle Driver Notify Events */ 1350 aac_handle_aif(dev, fib); 1351 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1352 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1353 } else { 1354 struct list_head *entry; 1355 /* The u32 here is important and intended. We are using 1356 32bit wrapping time to fit the adapter field */ 1357 1358 u32 time_now, time_last; 1359 unsigned long flagv; 1360 unsigned num; 1361 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1362 struct fib ** fib_pool, ** fib_p; 1363 1364 /* Sniff events */ 1365 if ((aifcmd->command == 1366 cpu_to_le32(AifCmdEventNotify)) || 1367 (aifcmd->command == 1368 cpu_to_le32(AifCmdJobProgress))) { 1369 aac_handle_aif(dev, fib); 1370 } 1371 1372 time_now = jiffies/HZ; 1373 1374 /* 1375 * Warning: no sleep allowed while 1376 * holding spinlock. We take the estimate 1377 * and pre-allocate a set of fibs outside the 1378 * lock. 1379 */ 1380 num = le32_to_cpu(dev->init->AdapterFibsSize) 1381 / sizeof(struct hw_fib); /* some extra */ 1382 spin_lock_irqsave(&dev->fib_lock, flagv); 1383 entry = dev->fib_list.next; 1384 while (entry != &dev->fib_list) { 1385 entry = entry->next; 1386 ++num; 1387 } 1388 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1389 hw_fib_pool = NULL; 1390 fib_pool = NULL; 1391 if (num 1392 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1393 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1394 hw_fib_p = hw_fib_pool; 1395 fib_p = fib_pool; 1396 while (hw_fib_p < &hw_fib_pool[num]) { 1397 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1398 --hw_fib_p; 1399 break; 1400 } 1401 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1402 kfree(*(--hw_fib_p)); 1403 break; 1404 } 1405 } 1406 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1407 kfree(fib_pool); 1408 fib_pool = NULL; 1409 kfree(hw_fib_pool); 1410 hw_fib_pool = NULL; 1411 } 1412 } else { 1413 kfree(hw_fib_pool); 1414 hw_fib_pool = NULL; 1415 } 1416 spin_lock_irqsave(&dev->fib_lock, flagv); 1417 entry = dev->fib_list.next; 1418 /* 1419 * For each Context that is on the 1420 * fibctxList, make a copy of the 1421 * fib, and then set the event to wake up the 1422 * thread that is waiting for it. 1423 */ 1424 hw_fib_p = hw_fib_pool; 1425 fib_p = fib_pool; 1426 while (entry != &dev->fib_list) { 1427 /* 1428 * Extract the fibctx 1429 */ 1430 fibctx = list_entry(entry, struct aac_fib_context, next); 1431 /* 1432 * Check if the queue is getting 1433 * backlogged 1434 */ 1435 if (fibctx->count > 20) 1436 { 1437 /* 1438 * It's *not* jiffies folks, 1439 * but jiffies / HZ so do not 1440 * panic ... 1441 */ 1442 time_last = fibctx->jiffies; 1443 /* 1444 * Has it been > 2 minutes 1445 * since the last read off 1446 * the queue? 1447 */ 1448 if ((time_now - time_last) > aif_timeout) { 1449 entry = entry->next; 1450 aac_close_fib_context(dev, fibctx); 1451 continue; 1452 } 1453 } 1454 /* 1455 * Warning: no sleep allowed while 1456 * holding spinlock 1457 */ 1458 if (hw_fib_p < &hw_fib_pool[num]) { 1459 hw_newfib = *hw_fib_p; 1460 *(hw_fib_p++) = NULL; 1461 newfib = *fib_p; 1462 *(fib_p++) = NULL; 1463 /* 1464 * Make the copy of the FIB 1465 */ 1466 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1467 memcpy(newfib, fib, sizeof(struct fib)); 1468 newfib->hw_fib_va = hw_newfib; 1469 /* 1470 * Put the FIB onto the 1471 * fibctx's fibs 1472 */ 1473 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1474 fibctx->count++; 1475 /* 1476 * Set the event to wake up the 1477 * thread that is waiting. 1478 */ 1479 up(&fibctx->wait_sem); 1480 } else { 1481 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1482 } 1483 entry = entry->next; 1484 } 1485 /* 1486 * Set the status of this FIB 1487 */ 1488 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1489 aac_fib_adapter_complete(fib, sizeof(u32)); 1490 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1491 /* Free up the remaining resources */ 1492 hw_fib_p = hw_fib_pool; 1493 fib_p = fib_pool; 1494 while (hw_fib_p < &hw_fib_pool[num]) { 1495 kfree(*hw_fib_p); 1496 kfree(*fib_p); 1497 ++fib_p; 1498 ++hw_fib_p; 1499 } 1500 kfree(hw_fib_pool); 1501 kfree(fib_pool); 1502 } 1503 kfree(fib); 1504 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1505 } 1506 /* 1507 * There are no more AIF's 1508 */ 1509 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1510 schedule(); 1511 1512 if (kthread_should_stop()) 1513 break; 1514 set_current_state(TASK_INTERRUPTIBLE); 1515 } 1516 if (dev->queues) 1517 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1518 dev->aif_thread = 0; 1519 return 0; 1520 } 1521