xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 64c70b1c)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <asm/semaphore.h>
49 
50 #include "aacraid.h"
51 
52 /**
53  *	fib_map_alloc		-	allocate the fib objects
54  *	@dev: Adapter to allocate for
55  *
56  *	Allocate and map the shared PCI space for the FIB blocks used to
57  *	talk to the Adaptec firmware.
58  */
59 
60 static int fib_map_alloc(struct aac_dev *dev)
61 {
62 	dprintk((KERN_INFO
63 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
64 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
65 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
66 	if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
67 	  * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
68 	  &dev->hw_fib_pa))==NULL)
69 		return -ENOMEM;
70 	return 0;
71 }
72 
73 /**
74  *	aac_fib_map_free		-	free the fib objects
75  *	@dev: Adapter to free
76  *
77  *	Free the PCI mappings and the memory allocated for FIB blocks
78  *	on this adapter.
79  */
80 
81 void aac_fib_map_free(struct aac_dev *dev)
82 {
83 	pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
84 }
85 
86 /**
87  *	aac_fib_setup	-	setup the fibs
88  *	@dev: Adapter to set up
89  *
90  *	Allocate the PCI space for the fibs, map it and then intialise the
91  *	fib area, the unmapped fib data and also the free list
92  */
93 
94 int aac_fib_setup(struct aac_dev * dev)
95 {
96 	struct fib *fibptr;
97 	struct hw_fib *hw_fib;
98 	dma_addr_t hw_fib_pa;
99 	int i;
100 
101 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
102 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
103 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
104 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
105 	}
106 	if (i<0)
107 		return -ENOMEM;
108 
109 	hw_fib = dev->hw_fib_va;
110 	hw_fib_pa = dev->hw_fib_pa;
111 	memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
112 	/*
113 	 *	Initialise the fibs
114 	 */
115 	for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
116 	{
117 		fibptr->dev = dev;
118 		fibptr->hw_fib_va = hw_fib;
119 		fibptr->data = (void *) fibptr->hw_fib_va->data;
120 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
121 		init_MUTEX_LOCKED(&fibptr->event_wait);
122 		spin_lock_init(&fibptr->event_lock);
123 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
124 		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
125 		fibptr->hw_fib_pa = hw_fib_pa;
126 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size);
127 		hw_fib_pa = hw_fib_pa + dev->max_fib_size;
128 	}
129 	/*
130 	 *	Add the fib chain to the free list
131 	 */
132 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
133 	/*
134 	 *	Enable this to debug out of queue space
135 	 */
136 	dev->free_fib = &dev->fibs[0];
137 	return 0;
138 }
139 
140 /**
141  *	aac_fib_alloc	-	allocate a fib
142  *	@dev: Adapter to allocate the fib for
143  *
144  *	Allocate a fib from the adapter fib pool. If the pool is empty we
145  *	return NULL.
146  */
147 
148 struct fib *aac_fib_alloc(struct aac_dev *dev)
149 {
150 	struct fib * fibptr;
151 	unsigned long flags;
152 	spin_lock_irqsave(&dev->fib_lock, flags);
153 	fibptr = dev->free_fib;
154 	if(!fibptr){
155 		spin_unlock_irqrestore(&dev->fib_lock, flags);
156 		return fibptr;
157 	}
158 	dev->free_fib = fibptr->next;
159 	spin_unlock_irqrestore(&dev->fib_lock, flags);
160 	/*
161 	 *	Set the proper node type code and node byte size
162 	 */
163 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
164 	fibptr->size = sizeof(struct fib);
165 	/*
166 	 *	Null out fields that depend on being zero at the start of
167 	 *	each I/O
168 	 */
169 	fibptr->hw_fib_va->header.XferState = 0;
170 	fibptr->callback = NULL;
171 	fibptr->callback_data = NULL;
172 
173 	return fibptr;
174 }
175 
176 /**
177  *	aac_fib_free	-	free a fib
178  *	@fibptr: fib to free up
179  *
180  *	Frees up a fib and places it on the appropriate queue
181  */
182 
183 void aac_fib_free(struct fib *fibptr)
184 {
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
188 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
189 		aac_config.fib_timeouts++;
190 	if (fibptr->hw_fib_va->header.XferState != 0) {
191 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
192 			 (void*)fibptr,
193 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
194 	}
195 	fibptr->next = fibptr->dev->free_fib;
196 	fibptr->dev->free_fib = fibptr;
197 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
198 }
199 
200 /**
201  *	aac_fib_init	-	initialise a fib
202  *	@fibptr: The fib to initialize
203  *
204  *	Set up the generic fib fields ready for use
205  */
206 
207 void aac_fib_init(struct fib *fibptr)
208 {
209 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
210 
211 	hw_fib->header.StructType = FIB_MAGIC;
212 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
213 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
214 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
215 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
217 }
218 
219 /**
220  *	fib_deallocate		-	deallocate a fib
221  *	@fibptr: fib to deallocate
222  *
223  *	Will deallocate and return to the free pool the FIB pointed to by the
224  *	caller.
225  */
226 
227 static void fib_dealloc(struct fib * fibptr)
228 {
229 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
230 	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
231 	hw_fib->header.XferState = 0;
232 }
233 
234 /*
235  *	Commuication primitives define and support the queuing method we use to
236  *	support host to adapter commuication. All queue accesses happen through
237  *	these routines and are the only routines which have a knowledge of the
238  *	 how these queues are implemented.
239  */
240 
241 /**
242  *	aac_get_entry		-	get a queue entry
243  *	@dev: Adapter
244  *	@qid: Queue Number
245  *	@entry: Entry return
246  *	@index: Index return
247  *	@nonotify: notification control
248  *
249  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
250  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
251  *	returned.
252  */
253 
254 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
255 {
256 	struct aac_queue * q;
257 	unsigned long idx;
258 
259 	/*
260 	 *	All of the queues wrap when they reach the end, so we check
261 	 *	to see if they have reached the end and if they have we just
262 	 *	set the index back to zero. This is a wrap. You could or off
263 	 *	the high bits in all updates but this is a bit faster I think.
264 	 */
265 
266 	q = &dev->queues->queue[qid];
267 
268 	idx = *index = le32_to_cpu(*(q->headers.producer));
269 	/* Interrupt Moderation, only interrupt for first two entries */
270 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
271 		if (--idx == 0) {
272 			if (qid == AdapNormCmdQueue)
273 				idx = ADAP_NORM_CMD_ENTRIES;
274 			else
275 				idx = ADAP_NORM_RESP_ENTRIES;
276 		}
277 		if (idx != le32_to_cpu(*(q->headers.consumer)))
278 			*nonotify = 1;
279 	}
280 
281 	if (qid == AdapNormCmdQueue) {
282 	        if (*index >= ADAP_NORM_CMD_ENTRIES)
283 			*index = 0; /* Wrap to front of the Producer Queue. */
284 	} else {
285 		if (*index >= ADAP_NORM_RESP_ENTRIES)
286 			*index = 0; /* Wrap to front of the Producer Queue. */
287 	}
288 
289         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
290 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
291 				qid, q->numpending);
292 		return 0;
293 	} else {
294 	        *entry = q->base + *index;
295 		return 1;
296 	}
297 }
298 
299 /**
300  *	aac_queue_get		-	get the next free QE
301  *	@dev: Adapter
302  *	@index: Returned index
303  *	@priority: Priority of fib
304  *	@fib: Fib to associate with the queue entry
305  *	@wait: Wait if queue full
306  *	@fibptr: Driver fib object to go with fib
307  *	@nonotify: Don't notify the adapter
308  *
309  *	Gets the next free QE off the requested priorty adapter command
310  *	queue and associates the Fib with the QE. The QE represented by
311  *	index is ready to insert on the queue when this routine returns
312  *	success.
313  */
314 
315 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
316 {
317 	struct aac_entry * entry = NULL;
318 	int map = 0;
319 
320 	if (qid == AdapNormCmdQueue) {
321 		/*  if no entries wait for some if caller wants to */
322         	while (!aac_get_entry(dev, qid, &entry, index, nonotify))
323         	{
324 			printk(KERN_ERR "GetEntries failed\n");
325 		}
326 	        /*
327 	         *	Setup queue entry with a command, status and fib mapped
328 	         */
329 	        entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
330 	        map = 1;
331 	} else {
332 	        while(!aac_get_entry(dev, qid, &entry, index, nonotify))
333 	        {
334 			/* if no entries wait for some if caller wants to */
335 		}
336         	/*
337         	 *	Setup queue entry with command, status and fib mapped
338         	 */
339         	entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
340         	entry->addr = hw_fib->header.SenderFibAddress;
341      			/* Restore adapters pointer to the FIB */
342 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
343         	map = 0;
344 	}
345 	/*
346 	 *	If MapFib is true than we need to map the Fib and put pointers
347 	 *	in the queue entry.
348 	 */
349 	if (map)
350 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
351 	return 0;
352 }
353 
354 /*
355  *	Define the highest level of host to adapter communication routines.
356  *	These routines will support host to adapter FS commuication. These
357  *	routines have no knowledge of the commuication method used. This level
358  *	sends and receives FIBs. This level has no knowledge of how these FIBs
359  *	get passed back and forth.
360  */
361 
362 /**
363  *	aac_fib_send	-	send a fib to the adapter
364  *	@command: Command to send
365  *	@fibptr: The fib
366  *	@size: Size of fib data area
367  *	@priority: Priority of Fib
368  *	@wait: Async/sync select
369  *	@reply: True if a reply is wanted
370  *	@callback: Called with reply
371  *	@callback_data: Passed to callback
372  *
373  *	Sends the requested FIB to the adapter and optionally will wait for a
374  *	response FIB. If the caller does not wish to wait for a response than
375  *	an event to wait on must be supplied. This event will be set when a
376  *	response FIB is received from the adapter.
377  */
378 
379 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
380 		int priority, int wait, int reply, fib_callback callback,
381 		void *callback_data)
382 {
383 	struct aac_dev * dev = fibptr->dev;
384 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
385 	unsigned long flags = 0;
386 	unsigned long qflags;
387 
388 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
389 		return -EBUSY;
390 	/*
391 	 *	There are 5 cases with the wait and reponse requested flags.
392 	 *	The only invalid cases are if the caller requests to wait and
393 	 *	does not request a response and if the caller does not want a
394 	 *	response and the Fib is not allocated from pool. If a response
395 	 *	is not requesed the Fib will just be deallocaed by the DPC
396 	 *	routine when the response comes back from the adapter. No
397 	 *	further processing will be done besides deleting the Fib. We
398 	 *	will have a debug mode where the adapter can notify the host
399 	 *	it had a problem and the host can log that fact.
400 	 */
401 	if (wait && !reply) {
402 		return -EINVAL;
403 	} else if (!wait && reply) {
404 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
405 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
406 	} else if (!wait && !reply) {
407 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
408 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
409 	} else if (wait && reply) {
410 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
411 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
412 	}
413 	/*
414 	 *	Map the fib into 32bits by using the fib number
415 	 */
416 
417 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
418 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
419 	/*
420 	 *	Set FIB state to indicate where it came from and if we want a
421 	 *	response from the adapter. Also load the command from the
422 	 *	caller.
423 	 *
424 	 *	Map the hw fib pointer as a 32bit value
425 	 */
426 	hw_fib->header.Command = cpu_to_le16(command);
427 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
428 	fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/
429 	/*
430 	 *	Set the size of the Fib we want to send to the adapter
431 	 */
432 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
433 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
434 		return -EMSGSIZE;
435 	}
436 	/*
437 	 *	Get a queue entry connect the FIB to it and send an notify
438 	 *	the adapter a command is ready.
439 	 */
440 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
441 
442 	/*
443 	 *	Fill in the Callback and CallbackContext if we are not
444 	 *	going to wait.
445 	 */
446 	if (!wait) {
447 		fibptr->callback = callback;
448 		fibptr->callback_data = callback_data;
449 	}
450 
451 	fibptr->done = 0;
452 	fibptr->flags = 0;
453 
454 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
455 
456 	dprintk((KERN_DEBUG "Fib contents:.\n"));
457 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
458 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
459 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
460 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
461 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
462 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
463 
464 	if (!dev->queues)
465 		return -EBUSY;
466 
467 	if(wait)
468 		spin_lock_irqsave(&fibptr->event_lock, flags);
469 	aac_adapter_deliver(fibptr);
470 
471 	/*
472 	 *	If the caller wanted us to wait for response wait now.
473 	 */
474 
475 	if (wait) {
476 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
477 		/* Only set for first known interruptable command */
478 		if (wait < 0) {
479 			/*
480 			 * *VERY* Dangerous to time out a command, the
481 			 * assumption is made that we have no hope of
482 			 * functioning because an interrupt routing or other
483 			 * hardware failure has occurred.
484 			 */
485 			unsigned long count = 36000000L; /* 3 minutes */
486 			while (down_trylock(&fibptr->event_wait)) {
487 				int blink;
488 				if (--count == 0) {
489 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
490 					spin_lock_irqsave(q->lock, qflags);
491 					q->numpending--;
492 					spin_unlock_irqrestore(q->lock, qflags);
493 					if (wait == -1) {
494 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
495 						  "Usually a result of a PCI interrupt routing problem;\n"
496 						  "update mother board BIOS or consider utilizing one of\n"
497 						  "the SAFE mode kernel options (acpi, apic etc)\n");
498 					}
499 					return -ETIMEDOUT;
500 				}
501 				if ((blink = aac_adapter_check_health(dev)) > 0) {
502 					if (wait == -1) {
503 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
504 						  "Usually a result of a serious unrecoverable hardware problem\n",
505 						  blink);
506 					}
507 					return -EFAULT;
508 				}
509 				udelay(5);
510 			}
511 		} else
512 			(void)down_interruptible(&fibptr->event_wait);
513 		spin_lock_irqsave(&fibptr->event_lock, flags);
514 		if (fibptr->done == 0) {
515 			fibptr->done = 2; /* Tell interrupt we aborted */
516 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
517 			return -EINTR;
518 		}
519 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
520 		BUG_ON(fibptr->done == 0);
521 
522 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
523 			return -ETIMEDOUT;
524 		return 0;
525 	}
526 	/*
527 	 *	If the user does not want a response than return success otherwise
528 	 *	return pending
529 	 */
530 	if (reply)
531 		return -EINPROGRESS;
532 	else
533 		return 0;
534 }
535 
536 /**
537  *	aac_consumer_get	-	get the top of the queue
538  *	@dev: Adapter
539  *	@q: Queue
540  *	@entry: Return entry
541  *
542  *	Will return a pointer to the entry on the top of the queue requested that
543  * 	we are a consumer of, and return the address of the queue entry. It does
544  *	not change the state of the queue.
545  */
546 
547 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
548 {
549 	u32 index;
550 	int status;
551 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
552 		status = 0;
553 	} else {
554 		/*
555 		 *	The consumer index must be wrapped if we have reached
556 		 *	the end of the queue, else we just use the entry
557 		 *	pointed to by the header index
558 		 */
559 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
560 			index = 0;
561 		else
562 		        index = le32_to_cpu(*q->headers.consumer);
563 		*entry = q->base + index;
564 		status = 1;
565 	}
566 	return(status);
567 }
568 
569 /**
570  *	aac_consumer_free	-	free consumer entry
571  *	@dev: Adapter
572  *	@q: Queue
573  *	@qid: Queue ident
574  *
575  *	Frees up the current top of the queue we are a consumer of. If the
576  *	queue was full notify the producer that the queue is no longer full.
577  */
578 
579 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
580 {
581 	int wasfull = 0;
582 	u32 notify;
583 
584 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
585 		wasfull = 1;
586 
587 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
588 		*q->headers.consumer = cpu_to_le32(1);
589 	else
590 		*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
591 
592 	if (wasfull) {
593 		switch (qid) {
594 
595 		case HostNormCmdQueue:
596 			notify = HostNormCmdNotFull;
597 			break;
598 		case HostNormRespQueue:
599 			notify = HostNormRespNotFull;
600 			break;
601 		default:
602 			BUG();
603 			return;
604 		}
605 		aac_adapter_notify(dev, notify);
606 	}
607 }
608 
609 /**
610  *	aac_fib_adapter_complete	-	complete adapter issued fib
611  *	@fibptr: fib to complete
612  *	@size: size of fib
613  *
614  *	Will do all necessary work to complete a FIB that was sent from
615  *	the adapter.
616  */
617 
618 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
619 {
620 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
621 	struct aac_dev * dev = fibptr->dev;
622 	struct aac_queue * q;
623 	unsigned long nointr = 0;
624 	unsigned long qflags;
625 
626 	if (hw_fib->header.XferState == 0) {
627 		if (dev->comm_interface == AAC_COMM_MESSAGE)
628 			kfree (hw_fib);
629         	return 0;
630 	}
631 	/*
632 	 *	If we plan to do anything check the structure type first.
633 	 */
634 	if ( hw_fib->header.StructType != FIB_MAGIC ) {
635 		if (dev->comm_interface == AAC_COMM_MESSAGE)
636 			kfree (hw_fib);
637         	return -EINVAL;
638 	}
639 	/*
640 	 *	This block handles the case where the adapter had sent us a
641 	 *	command and we have finished processing the command. We
642 	 *	call completeFib when we are done processing the command
643 	 *	and want to send a response back to the adapter. This will
644 	 *	send the completed cdb to the adapter.
645 	 */
646 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
647 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
648 			kfree (hw_fib);
649 		} else {
650 	       		u32 index;
651 		        hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
652 			if (size) {
653 				size += sizeof(struct aac_fibhdr);
654 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
655 					return -EMSGSIZE;
656 				hw_fib->header.Size = cpu_to_le16(size);
657 			}
658 			q = &dev->queues->queue[AdapNormRespQueue];
659 			spin_lock_irqsave(q->lock, qflags);
660 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
661 			*(q->headers.producer) = cpu_to_le32(index + 1);
662 			spin_unlock_irqrestore(q->lock, qflags);
663 			if (!(nointr & (int)aac_config.irq_mod))
664 				aac_adapter_notify(dev, AdapNormRespQueue);
665 		}
666 	}
667 	else
668 	{
669         	printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
670         	BUG();
671 	}
672 	return 0;
673 }
674 
675 /**
676  *	aac_fib_complete	-	fib completion handler
677  *	@fib: FIB to complete
678  *
679  *	Will do all necessary work to complete a FIB.
680  */
681 
682 int aac_fib_complete(struct fib *fibptr)
683 {
684 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
685 
686 	/*
687 	 *	Check for a fib which has already been completed
688 	 */
689 
690 	if (hw_fib->header.XferState == 0)
691         	return 0;
692 	/*
693 	 *	If we plan to do anything check the structure type first.
694 	 */
695 
696 	if (hw_fib->header.StructType != FIB_MAGIC)
697 	        return -EINVAL;
698 	/*
699 	 *	This block completes a cdb which orginated on the host and we
700 	 *	just need to deallocate the cdb or reinit it. At this point the
701 	 *	command is complete that we had sent to the adapter and this
702 	 *	cdb could be reused.
703 	 */
704 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
705 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
706 	{
707 		fib_dealloc(fibptr);
708 	}
709 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
710 	{
711 		/*
712 		 *	This handles the case when the host has aborted the I/O
713 		 *	to the adapter because the adapter is not responding
714 		 */
715 		fib_dealloc(fibptr);
716 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
717 		fib_dealloc(fibptr);
718 	} else {
719 		BUG();
720 	}
721 	return 0;
722 }
723 
724 /**
725  *	aac_printf	-	handle printf from firmware
726  *	@dev: Adapter
727  *	@val: Message info
728  *
729  *	Print a message passed to us by the controller firmware on the
730  *	Adaptec board
731  */
732 
733 void aac_printf(struct aac_dev *dev, u32 val)
734 {
735 	char *cp = dev->printfbuf;
736 	if (dev->printf_enabled)
737 	{
738 		int length = val & 0xffff;
739 		int level = (val >> 16) & 0xffff;
740 
741 		/*
742 		 *	The size of the printfbuf is set in port.c
743 		 *	There is no variable or define for it
744 		 */
745 		if (length > 255)
746 			length = 255;
747 		if (cp[length] != 0)
748 			cp[length] = 0;
749 		if (level == LOG_AAC_HIGH_ERROR)
750 			printk(KERN_WARNING "%s:%s", dev->name, cp);
751 		else
752 			printk(KERN_INFO "%s:%s", dev->name, cp);
753 	}
754 	memset(cp, 0,  256);
755 }
756 
757 
758 /**
759  *	aac_handle_aif		-	Handle a message from the firmware
760  *	@dev: Which adapter this fib is from
761  *	@fibptr: Pointer to fibptr from adapter
762  *
763  *	This routine handles a driver notify fib from the adapter and
764  *	dispatches it to the appropriate routine for handling.
765  */
766 
767 #define AIF_SNIFF_TIMEOUT	(30*HZ)
768 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
769 {
770 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
771 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
772 	u32 container;
773 	struct scsi_device *device;
774 	enum {
775 		NOTHING,
776 		DELETE,
777 		ADD,
778 		CHANGE
779 	} device_config_needed;
780 
781 	/* Sniff for container changes */
782 
783 	if (!dev || !dev->fsa_dev)
784 		return;
785 	container = (u32)-1;
786 
787 	/*
788 	 *	We have set this up to try and minimize the number of
789 	 * re-configures that take place. As a result of this when
790 	 * certain AIF's come in we will set a flag waiting for another
791 	 * type of AIF before setting the re-config flag.
792 	 */
793 	switch (le32_to_cpu(aifcmd->command)) {
794 	case AifCmdDriverNotify:
795 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
796 		/*
797 		 *	Morph or Expand complete
798 		 */
799 		case AifDenMorphComplete:
800 		case AifDenVolumeExtendComplete:
801 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
802 			if (container >= dev->maximum_num_containers)
803 				break;
804 
805 			/*
806 			 *	Find the scsi_device associated with the SCSI
807 			 * address. Make sure we have the right array, and if
808 			 * so set the flag to initiate a new re-config once we
809 			 * see an AifEnConfigChange AIF come through.
810 			 */
811 
812 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
813 				device = scsi_device_lookup(dev->scsi_host_ptr,
814 					CONTAINER_TO_CHANNEL(container),
815 					CONTAINER_TO_ID(container),
816 					CONTAINER_TO_LUN(container));
817 				if (device) {
818 					dev->fsa_dev[container].config_needed = CHANGE;
819 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
820 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
821 					scsi_device_put(device);
822 				}
823 			}
824 		}
825 
826 		/*
827 		 *	If we are waiting on something and this happens to be
828 		 * that thing then set the re-configure flag.
829 		 */
830 		if (container != (u32)-1) {
831 			if (container >= dev->maximum_num_containers)
832 				break;
833 			if ((dev->fsa_dev[container].config_waiting_on ==
834 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
835 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
836 				dev->fsa_dev[container].config_waiting_on = 0;
837 		} else for (container = 0;
838 		    container < dev->maximum_num_containers; ++container) {
839 			if ((dev->fsa_dev[container].config_waiting_on ==
840 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
841 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
842 				dev->fsa_dev[container].config_waiting_on = 0;
843 		}
844 		break;
845 
846 	case AifCmdEventNotify:
847 		switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
848 		/*
849 		 *	Add an Array.
850 		 */
851 		case AifEnAddContainer:
852 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
853 			if (container >= dev->maximum_num_containers)
854 				break;
855 			dev->fsa_dev[container].config_needed = ADD;
856 			dev->fsa_dev[container].config_waiting_on =
857 				AifEnConfigChange;
858 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
859 			break;
860 
861 		/*
862 		 *	Delete an Array.
863 		 */
864 		case AifEnDeleteContainer:
865 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
866 			if (container >= dev->maximum_num_containers)
867 				break;
868 			dev->fsa_dev[container].config_needed = DELETE;
869 			dev->fsa_dev[container].config_waiting_on =
870 				AifEnConfigChange;
871 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
872 			break;
873 
874 		/*
875 		 *	Container change detected. If we currently are not
876 		 * waiting on something else, setup to wait on a Config Change.
877 		 */
878 		case AifEnContainerChange:
879 			container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
880 			if (container >= dev->maximum_num_containers)
881 				break;
882 			if (dev->fsa_dev[container].config_waiting_on &&
883 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
884 				break;
885 			dev->fsa_dev[container].config_needed = CHANGE;
886 			dev->fsa_dev[container].config_waiting_on =
887 				AifEnConfigChange;
888 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
889 			break;
890 
891 		case AifEnConfigChange:
892 			break;
893 
894 		}
895 
896 		/*
897 		 *	If we are waiting on something and this happens to be
898 		 * that thing then set the re-configure flag.
899 		 */
900 		if (container != (u32)-1) {
901 			if (container >= dev->maximum_num_containers)
902 				break;
903 			if ((dev->fsa_dev[container].config_waiting_on ==
904 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
905 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
906 				dev->fsa_dev[container].config_waiting_on = 0;
907 		} else for (container = 0;
908 		    container < dev->maximum_num_containers; ++container) {
909 			if ((dev->fsa_dev[container].config_waiting_on ==
910 			    le32_to_cpu(*(u32 *)aifcmd->data)) &&
911 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
912 				dev->fsa_dev[container].config_waiting_on = 0;
913 		}
914 		break;
915 
916 	case AifCmdJobProgress:
917 		/*
918 		 *	These are job progress AIF's. When a Clear is being
919 		 * done on a container it is initially created then hidden from
920 		 * the OS. When the clear completes we don't get a config
921 		 * change so we monitor the job status complete on a clear then
922 		 * wait for a container change.
923 		 */
924 
925 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
926 		 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
927 		  || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
928 			for (container = 0;
929 			    container < dev->maximum_num_containers;
930 			    ++container) {
931 				/*
932 				 * Stomp on all config sequencing for all
933 				 * containers?
934 				 */
935 				dev->fsa_dev[container].config_waiting_on =
936 					AifEnContainerChange;
937 				dev->fsa_dev[container].config_needed = ADD;
938 				dev->fsa_dev[container].config_waiting_stamp =
939 					jiffies;
940 			}
941 		}
942 		if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
943 		 && (((u32 *)aifcmd->data)[6] == 0)
944 		 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
945 			for (container = 0;
946 			    container < dev->maximum_num_containers;
947 			    ++container) {
948 				/*
949 				 * Stomp on all config sequencing for all
950 				 * containers?
951 				 */
952 				dev->fsa_dev[container].config_waiting_on =
953 					AifEnContainerChange;
954 				dev->fsa_dev[container].config_needed = DELETE;
955 				dev->fsa_dev[container].config_waiting_stamp =
956 					jiffies;
957 			}
958 		}
959 		break;
960 	}
961 
962 	device_config_needed = NOTHING;
963 	for (container = 0; container < dev->maximum_num_containers;
964 	    ++container) {
965 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
966 			(dev->fsa_dev[container].config_needed != NOTHING) &&
967 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
968 			device_config_needed =
969 				dev->fsa_dev[container].config_needed;
970 			dev->fsa_dev[container].config_needed = NOTHING;
971 			break;
972 		}
973 	}
974 	if (device_config_needed == NOTHING)
975 		return;
976 
977 	/*
978 	 *	If we decided that a re-configuration needs to be done,
979 	 * schedule it here on the way out the door, please close the door
980 	 * behind you.
981 	 */
982 
983 	/*
984 	 *	Find the scsi_device associated with the SCSI address,
985 	 * and mark it as changed, invalidating the cache. This deals
986 	 * with changes to existing device IDs.
987 	 */
988 
989 	if (!dev || !dev->scsi_host_ptr)
990 		return;
991 	/*
992 	 * force reload of disk info via aac_probe_container
993 	 */
994 	if ((device_config_needed == CHANGE)
995 	 && (dev->fsa_dev[container].valid == 1))
996 		dev->fsa_dev[container].valid = 2;
997 	if ((device_config_needed == CHANGE) ||
998 			(device_config_needed == ADD))
999 		aac_probe_container(dev, container);
1000 	device = scsi_device_lookup(dev->scsi_host_ptr,
1001 		CONTAINER_TO_CHANNEL(container),
1002 		CONTAINER_TO_ID(container),
1003 		CONTAINER_TO_LUN(container));
1004 	if (device) {
1005 		switch (device_config_needed) {
1006 		case DELETE:
1007 		case CHANGE:
1008 			scsi_rescan_device(&device->sdev_gendev);
1009 
1010 		default:
1011 			break;
1012 		}
1013 		scsi_device_put(device);
1014 	}
1015 	if (device_config_needed == ADD) {
1016 		scsi_add_device(dev->scsi_host_ptr,
1017 		  CONTAINER_TO_CHANNEL(container),
1018 		  CONTAINER_TO_ID(container),
1019 		  CONTAINER_TO_LUN(container));
1020 	}
1021 
1022 }
1023 
1024 static int _aac_reset_adapter(struct aac_dev *aac)
1025 {
1026 	int index, quirks;
1027 	int retval;
1028 	struct Scsi_Host *host;
1029 	struct scsi_device *dev;
1030 	struct scsi_cmnd *command;
1031 	struct scsi_cmnd *command_list;
1032 
1033 	/*
1034 	 * Assumptions:
1035 	 *	- host is locked.
1036 	 *	- in_reset is asserted, so no new i/o is getting to the
1037 	 *	  card.
1038 	 *	- The card is dead.
1039 	 */
1040 	host = aac->scsi_host_ptr;
1041 	scsi_block_requests(host);
1042 	aac_adapter_disable_int(aac);
1043 	spin_unlock_irq(host->host_lock);
1044 	kthread_stop(aac->thread);
1045 
1046 	/*
1047 	 *	If a positive health, means in a known DEAD PANIC
1048 	 * state and the adapter could be reset to `try again'.
1049 	 */
1050 	retval = aac_adapter_restart(aac, aac_adapter_check_health(aac));
1051 
1052 	if (retval)
1053 		goto out;
1054 
1055 	/*
1056 	 *	Loop through the fibs, close the synchronous FIBS
1057 	 */
1058 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1059 		struct fib *fib = &aac->fibs[index];
1060 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1061 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1062 			unsigned long flagv;
1063 			spin_lock_irqsave(&fib->event_lock, flagv);
1064 			up(&fib->event_wait);
1065 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1066 			schedule();
1067 			retval = 0;
1068 		}
1069 	}
1070 	/* Give some extra time for ioctls to complete. */
1071 	if (retval == 0)
1072 		ssleep(2);
1073 	index = aac->cardtype;
1074 
1075 	/*
1076 	 * Re-initialize the adapter, first free resources, then carefully
1077 	 * apply the initialization sequence to come back again. Only risk
1078 	 * is a change in Firmware dropping cache, it is assumed the caller
1079 	 * will ensure that i/o is queisced and the card is flushed in that
1080 	 * case.
1081 	 */
1082 	aac_fib_map_free(aac);
1083 	aac->hw_fib_va = NULL;
1084 	aac->hw_fib_pa = 0;
1085 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1086 	aac->comm_addr = NULL;
1087 	aac->comm_phys = 0;
1088 	kfree(aac->queues);
1089 	aac->queues = NULL;
1090 	free_irq(aac->pdev->irq, aac);
1091 	kfree(aac->fsa_dev);
1092 	aac->fsa_dev = NULL;
1093 	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
1094 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
1095 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
1096 			goto out;
1097 	} else {
1098 		if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
1099 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
1100 			goto out;
1101 	}
1102 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1103 		goto out;
1104 	if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
1105 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
1106 			goto out;
1107 	aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1108 	if (IS_ERR(aac->thread)) {
1109 		retval = PTR_ERR(aac->thread);
1110 		goto out;
1111 	}
1112 	(void)aac_get_adapter_info(aac);
1113 	quirks = aac_get_driver_ident(index)->quirks;
1114 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1115  		host->sg_tablesize = 34;
1116  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1117  	}
1118  	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1119  		host->sg_tablesize = 17;
1120  		host->max_sectors = (host->sg_tablesize * 8) + 112;
1121  	}
1122 	aac_get_config_status(aac, 1);
1123 	aac_get_containers(aac);
1124 	/*
1125 	 * This is where the assumption that the Adapter is quiesced
1126 	 * is important.
1127 	 */
1128 	command_list = NULL;
1129 	__shost_for_each_device(dev, host) {
1130 		unsigned long flags;
1131 		spin_lock_irqsave(&dev->list_lock, flags);
1132 		list_for_each_entry(command, &dev->cmd_list, list)
1133 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1134 				command->SCp.buffer = (struct scatterlist *)command_list;
1135 				command_list = command;
1136 			}
1137 		spin_unlock_irqrestore(&dev->list_lock, flags);
1138 	}
1139 	while ((command = command_list)) {
1140 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1141 		command->SCp.buffer = NULL;
1142 		command->result = DID_OK << 16
1143 		  | COMMAND_COMPLETE << 8
1144 		  | SAM_STAT_TASK_SET_FULL;
1145 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1146 		command->scsi_done(command);
1147 	}
1148 	retval = 0;
1149 
1150 out:
1151 	aac->in_reset = 0;
1152 	scsi_unblock_requests(host);
1153 	spin_lock_irq(host->host_lock);
1154 	return retval;
1155 }
1156 
1157 int aac_check_health(struct aac_dev * aac)
1158 {
1159 	int BlinkLED;
1160 	unsigned long time_now, flagv = 0;
1161 	struct list_head * entry;
1162 	struct Scsi_Host * host;
1163 
1164 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1165 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1166 		return 0;
1167 
1168 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1169 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1170 		return 0; /* OK */
1171 	}
1172 
1173 	aac->in_reset = 1;
1174 
1175 	/* Fake up an AIF:
1176 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1177 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1178 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1179 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1180 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1181 	 *	aac.aifcmd.data[3] = BlinkLED
1182 	 */
1183 
1184 	time_now = jiffies/HZ;
1185 	entry = aac->fib_list.next;
1186 
1187 	/*
1188 	 * For each Context that is on the
1189 	 * fibctxList, make a copy of the
1190 	 * fib, and then set the event to wake up the
1191 	 * thread that is waiting for it.
1192 	 */
1193 	while (entry != &aac->fib_list) {
1194 		/*
1195 		 * Extract the fibctx
1196 		 */
1197 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1198 		struct hw_fib * hw_fib;
1199 		struct fib * fib;
1200 		/*
1201 		 * Check if the queue is getting
1202 		 * backlogged
1203 		 */
1204 		if (fibctx->count > 20) {
1205 			/*
1206 			 * It's *not* jiffies folks,
1207 			 * but jiffies / HZ, so do not
1208 			 * panic ...
1209 			 */
1210 			u32 time_last = fibctx->jiffies;
1211 			/*
1212 			 * Has it been > 2 minutes
1213 			 * since the last read off
1214 			 * the queue?
1215 			 */
1216 			if ((time_now - time_last) > aif_timeout) {
1217 				entry = entry->next;
1218 				aac_close_fib_context(aac, fibctx);
1219 				continue;
1220 			}
1221 		}
1222 		/*
1223 		 * Warning: no sleep allowed while
1224 		 * holding spinlock
1225 		 */
1226 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1227 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1228 		if (fib && hw_fib) {
1229 			struct aac_aifcmd * aif;
1230 
1231 			fib->hw_fib_va = hw_fib;
1232 			fib->dev = aac;
1233 			aac_fib_init(fib);
1234 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1235 			fib->size = sizeof (struct fib);
1236 			fib->data = hw_fib->data;
1237 			aif = (struct aac_aifcmd *)hw_fib->data;
1238 			aif->command = cpu_to_le32(AifCmdEventNotify);
1239 		 	aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1240 		 	aif->data[0] = cpu_to_le32(AifEnExpEvent);
1241 			aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
1242 		 	aif->data[2] = cpu_to_le32(AifHighPriority);
1243 			aif->data[3] = cpu_to_le32(BlinkLED);
1244 
1245 			/*
1246 			 * Put the FIB onto the
1247 			 * fibctx's fibs
1248 			 */
1249 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1250 			fibctx->count++;
1251 			/*
1252 			 * Set the event to wake up the
1253 			 * thread that will waiting.
1254 			 */
1255 			up(&fibctx->wait_sem);
1256 		} else {
1257 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1258 			kfree(fib);
1259 			kfree(hw_fib);
1260 		}
1261 		entry = entry->next;
1262 	}
1263 
1264 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1265 
1266 	if (BlinkLED < 0) {
1267 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1268 		goto out;
1269 	}
1270 
1271 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1272 
1273 	host = aac->scsi_host_ptr;
1274 	spin_lock_irqsave(host->host_lock, flagv);
1275 	BlinkLED = _aac_reset_adapter(aac);
1276 	spin_unlock_irqrestore(host->host_lock, flagv);
1277 	return BlinkLED;
1278 
1279 out:
1280 	aac->in_reset = 0;
1281 	return BlinkLED;
1282 }
1283 
1284 
1285 /**
1286  *	aac_command_thread	-	command processing thread
1287  *	@dev: Adapter to monitor
1288  *
1289  *	Waits on the commandready event in it's queue. When the event gets set
1290  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1291  *	until the queue is empty. When the queue is empty it will wait for
1292  *	more FIBs.
1293  */
1294 
1295 int aac_command_thread(void *data)
1296 {
1297 	struct aac_dev *dev = data;
1298 	struct hw_fib *hw_fib, *hw_newfib;
1299 	struct fib *fib, *newfib;
1300 	struct aac_fib_context *fibctx;
1301 	unsigned long flags;
1302 	DECLARE_WAITQUEUE(wait, current);
1303 
1304 	/*
1305 	 *	We can only have one thread per adapter for AIF's.
1306 	 */
1307 	if (dev->aif_thread)
1308 		return -EINVAL;
1309 
1310 	/*
1311 	 *	Let the DPC know it has a place to send the AIF's to.
1312 	 */
1313 	dev->aif_thread = 1;
1314 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1315 	set_current_state(TASK_INTERRUPTIBLE);
1316 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1317 	while(1)
1318 	{
1319 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1320 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1321 			struct list_head *entry;
1322 			struct aac_aifcmd * aifcmd;
1323 
1324 			set_current_state(TASK_RUNNING);
1325 
1326 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1327 			list_del(entry);
1328 
1329 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1330 			fib = list_entry(entry, struct fib, fiblink);
1331 			/*
1332 			 *	We will process the FIB here or pass it to a
1333 			 *	worker thread that is TBD. We Really can't
1334 			 *	do anything at this point since we don't have
1335 			 *	anything defined for this thread to do.
1336 			 */
1337 			hw_fib = fib->hw_fib_va;
1338 			memset(fib, 0, sizeof(struct fib));
1339 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1340 			fib->size = sizeof( struct fib );
1341 			fib->hw_fib_va = hw_fib;
1342 			fib->data = hw_fib->data;
1343 			fib->dev = dev;
1344 			/*
1345 			 *	We only handle AifRequest fibs from the adapter.
1346 			 */
1347 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1348 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1349 				/* Handle Driver Notify Events */
1350 				aac_handle_aif(dev, fib);
1351 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1352 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1353 			} else {
1354 				struct list_head *entry;
1355 				/* The u32 here is important and intended. We are using
1356 				   32bit wrapping time to fit the adapter field */
1357 
1358 				u32 time_now, time_last;
1359 				unsigned long flagv;
1360 				unsigned num;
1361 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1362 				struct fib ** fib_pool, ** fib_p;
1363 
1364 				/* Sniff events */
1365 				if ((aifcmd->command ==
1366 				     cpu_to_le32(AifCmdEventNotify)) ||
1367 				    (aifcmd->command ==
1368 				     cpu_to_le32(AifCmdJobProgress))) {
1369 					aac_handle_aif(dev, fib);
1370 				}
1371 
1372 				time_now = jiffies/HZ;
1373 
1374 				/*
1375 				 * Warning: no sleep allowed while
1376 				 * holding spinlock. We take the estimate
1377 				 * and pre-allocate a set of fibs outside the
1378 				 * lock.
1379 				 */
1380 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1381 				    / sizeof(struct hw_fib); /* some extra */
1382 				spin_lock_irqsave(&dev->fib_lock, flagv);
1383 				entry = dev->fib_list.next;
1384 				while (entry != &dev->fib_list) {
1385 					entry = entry->next;
1386 					++num;
1387 				}
1388 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1389 				hw_fib_pool = NULL;
1390 				fib_pool = NULL;
1391 				if (num
1392 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1393 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1394 					hw_fib_p = hw_fib_pool;
1395 					fib_p = fib_pool;
1396 					while (hw_fib_p < &hw_fib_pool[num]) {
1397 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1398 							--hw_fib_p;
1399 							break;
1400 						}
1401 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1402 							kfree(*(--hw_fib_p));
1403 							break;
1404 						}
1405 					}
1406 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1407 						kfree(fib_pool);
1408 						fib_pool = NULL;
1409 						kfree(hw_fib_pool);
1410 						hw_fib_pool = NULL;
1411 					}
1412 				} else {
1413 					kfree(hw_fib_pool);
1414 					hw_fib_pool = NULL;
1415 				}
1416 				spin_lock_irqsave(&dev->fib_lock, flagv);
1417 				entry = dev->fib_list.next;
1418 				/*
1419 				 * For each Context that is on the
1420 				 * fibctxList, make a copy of the
1421 				 * fib, and then set the event to wake up the
1422 				 * thread that is waiting for it.
1423 				 */
1424 				hw_fib_p = hw_fib_pool;
1425 				fib_p = fib_pool;
1426 				while (entry != &dev->fib_list) {
1427 					/*
1428 					 * Extract the fibctx
1429 					 */
1430 					fibctx = list_entry(entry, struct aac_fib_context, next);
1431 					/*
1432 					 * Check if the queue is getting
1433 					 * backlogged
1434 					 */
1435 					if (fibctx->count > 20)
1436 					{
1437 						/*
1438 						 * It's *not* jiffies folks,
1439 						 * but jiffies / HZ so do not
1440 						 * panic ...
1441 						 */
1442 						time_last = fibctx->jiffies;
1443 						/*
1444 						 * Has it been > 2 minutes
1445 						 * since the last read off
1446 						 * the queue?
1447 						 */
1448 						if ((time_now - time_last) > aif_timeout) {
1449 							entry = entry->next;
1450 							aac_close_fib_context(dev, fibctx);
1451 							continue;
1452 						}
1453 					}
1454 					/*
1455 					 * Warning: no sleep allowed while
1456 					 * holding spinlock
1457 					 */
1458 					if (hw_fib_p < &hw_fib_pool[num]) {
1459 						hw_newfib = *hw_fib_p;
1460 						*(hw_fib_p++) = NULL;
1461 						newfib = *fib_p;
1462 						*(fib_p++) = NULL;
1463 						/*
1464 						 * Make the copy of the FIB
1465 						 */
1466 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1467 						memcpy(newfib, fib, sizeof(struct fib));
1468 						newfib->hw_fib_va = hw_newfib;
1469 						/*
1470 						 * Put the FIB onto the
1471 						 * fibctx's fibs
1472 						 */
1473 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1474 						fibctx->count++;
1475 						/*
1476 						 * Set the event to wake up the
1477 						 * thread that is waiting.
1478 						 */
1479 						up(&fibctx->wait_sem);
1480 					} else {
1481 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1482 					}
1483 					entry = entry->next;
1484 				}
1485 				/*
1486 				 *	Set the status of this FIB
1487 				 */
1488 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1489 				aac_fib_adapter_complete(fib, sizeof(u32));
1490 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1491 				/* Free up the remaining resources */
1492 				hw_fib_p = hw_fib_pool;
1493 				fib_p = fib_pool;
1494 				while (hw_fib_p < &hw_fib_pool[num]) {
1495 					kfree(*hw_fib_p);
1496 					kfree(*fib_p);
1497 					++fib_p;
1498 					++hw_fib_p;
1499 				}
1500 				kfree(hw_fib_pool);
1501 				kfree(fib_pool);
1502 			}
1503 			kfree(fib);
1504 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1505 		}
1506 		/*
1507 		 *	There are no more AIF's
1508 		 */
1509 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1510 		schedule();
1511 
1512 		if (kthread_should_stop())
1513 			break;
1514 		set_current_state(TASK_INTERRUPTIBLE);
1515 	}
1516 	if (dev->queues)
1517 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1518 	dev->aif_thread = 0;
1519 	return 0;
1520 }
1521