1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; see the file COPYING. If not, write to 23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Module Name: 26 * commsup.c 27 * 28 * Abstract: Contain all routines that are required for FSA host/adapter 29 * communication. 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/sched.h> 37 #include <linux/pci.h> 38 #include <linux/spinlock.h> 39 #include <linux/slab.h> 40 #include <linux/completion.h> 41 #include <linux/blkdev.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/interrupt.h> 45 #include <linux/semaphore.h> 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <scsi/scsi_cmnd.h> 50 51 #include "aacraid.h" 52 53 /** 54 * fib_map_alloc - allocate the fib objects 55 * @dev: Adapter to allocate for 56 * 57 * Allocate and map the shared PCI space for the FIB blocks used to 58 * talk to the Adaptec firmware. 59 */ 60 61 static int fib_map_alloc(struct aac_dev *dev) 62 { 63 dprintk((KERN_INFO 64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev, 68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) 69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 70 &dev->hw_fib_pa); 71 if (dev->hw_fib_va == NULL) 72 return -ENOMEM; 73 return 0; 74 } 75 76 /** 77 * aac_fib_map_free - free the fib objects 78 * @dev: Adapter to free 79 * 80 * Free the PCI mappings and the memory allocated for FIB blocks 81 * on this adapter. 82 */ 83 84 void aac_fib_map_free(struct aac_dev *dev) 85 { 86 pci_free_consistent(dev->pdev, 87 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 88 dev->hw_fib_va, dev->hw_fib_pa); 89 dev->hw_fib_va = NULL; 90 dev->hw_fib_pa = 0; 91 } 92 93 /** 94 * aac_fib_setup - setup the fibs 95 * @dev: Adapter to set up 96 * 97 * Allocate the PCI space for the fibs, map it and then initialise the 98 * fib area, the unmapped fib data and also the free list 99 */ 100 101 int aac_fib_setup(struct aac_dev * dev) 102 { 103 struct fib *fibptr; 104 struct hw_fib *hw_fib; 105 dma_addr_t hw_fib_pa; 106 int i; 107 108 while (((i = fib_map_alloc(dev)) == -ENOMEM) 109 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 110 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 111 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 112 } 113 if (i<0) 114 return -ENOMEM; 115 116 /* 32 byte alignment for PMC */ 117 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 118 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 119 (hw_fib_pa - dev->hw_fib_pa)); 120 dev->hw_fib_pa = hw_fib_pa; 121 memset(dev->hw_fib_va, 0, 122 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) * 123 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 124 125 /* add Xport header */ 126 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 127 sizeof(struct aac_fib_xporthdr)); 128 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr); 129 130 hw_fib = dev->hw_fib_va; 131 hw_fib_pa = dev->hw_fib_pa; 132 /* 133 * Initialise the fibs 134 */ 135 for (i = 0, fibptr = &dev->fibs[i]; 136 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 137 i++, fibptr++) 138 { 139 fibptr->dev = dev; 140 fibptr->hw_fib_va = hw_fib; 141 fibptr->data = (void *) fibptr->hw_fib_va->data; 142 fibptr->next = fibptr+1; /* Forward chain the fibs */ 143 sema_init(&fibptr->event_wait, 0); 144 spin_lock_init(&fibptr->event_lock); 145 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 146 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 147 fibptr->hw_fib_pa = hw_fib_pa; 148 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 149 dev->max_fib_size + sizeof(struct aac_fib_xporthdr)); 150 hw_fib_pa = hw_fib_pa + 151 dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 152 } 153 /* 154 * Add the fib chain to the free list 155 */ 156 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 157 /* 158 * Enable this to debug out of queue space 159 */ 160 dev->free_fib = &dev->fibs[0]; 161 return 0; 162 } 163 164 /** 165 * aac_fib_alloc - allocate a fib 166 * @dev: Adapter to allocate the fib for 167 * 168 * Allocate a fib from the adapter fib pool. If the pool is empty we 169 * return NULL. 170 */ 171 172 struct fib *aac_fib_alloc(struct aac_dev *dev) 173 { 174 struct fib * fibptr; 175 unsigned long flags; 176 spin_lock_irqsave(&dev->fib_lock, flags); 177 fibptr = dev->free_fib; 178 if(!fibptr){ 179 spin_unlock_irqrestore(&dev->fib_lock, flags); 180 return fibptr; 181 } 182 dev->free_fib = fibptr->next; 183 spin_unlock_irqrestore(&dev->fib_lock, flags); 184 /* 185 * Set the proper node type code and node byte size 186 */ 187 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 188 fibptr->size = sizeof(struct fib); 189 /* 190 * Null out fields that depend on being zero at the start of 191 * each I/O 192 */ 193 fibptr->hw_fib_va->header.XferState = 0; 194 fibptr->flags = 0; 195 fibptr->callback = NULL; 196 fibptr->callback_data = NULL; 197 198 return fibptr; 199 } 200 201 /** 202 * aac_fib_free - free a fib 203 * @fibptr: fib to free up 204 * 205 * Frees up a fib and places it on the appropriate queue 206 */ 207 208 void aac_fib_free(struct fib *fibptr) 209 { 210 unsigned long flags, flagsv; 211 212 spin_lock_irqsave(&fibptr->event_lock, flagsv); 213 if (fibptr->done == 2) { 214 spin_unlock_irqrestore(&fibptr->event_lock, flagsv); 215 return; 216 } 217 spin_unlock_irqrestore(&fibptr->event_lock, flagsv); 218 219 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 220 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 221 aac_config.fib_timeouts++; 222 if (fibptr->hw_fib_va->header.XferState != 0) { 223 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 224 (void*)fibptr, 225 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 226 } 227 fibptr->next = fibptr->dev->free_fib; 228 fibptr->dev->free_fib = fibptr; 229 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 230 } 231 232 /** 233 * aac_fib_init - initialise a fib 234 * @fibptr: The fib to initialize 235 * 236 * Set up the generic fib fields ready for use 237 */ 238 239 void aac_fib_init(struct fib *fibptr) 240 { 241 struct hw_fib *hw_fib = fibptr->hw_fib_va; 242 243 hw_fib->header.StructType = FIB_MAGIC; 244 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 245 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 246 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 247 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 248 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 249 } 250 251 /** 252 * fib_deallocate - deallocate a fib 253 * @fibptr: fib to deallocate 254 * 255 * Will deallocate and return to the free pool the FIB pointed to by the 256 * caller. 257 */ 258 259 static void fib_dealloc(struct fib * fibptr) 260 { 261 struct hw_fib *hw_fib = fibptr->hw_fib_va; 262 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 263 hw_fib->header.XferState = 0; 264 } 265 266 /* 267 * Commuication primitives define and support the queuing method we use to 268 * support host to adapter commuication. All queue accesses happen through 269 * these routines and are the only routines which have a knowledge of the 270 * how these queues are implemented. 271 */ 272 273 /** 274 * aac_get_entry - get a queue entry 275 * @dev: Adapter 276 * @qid: Queue Number 277 * @entry: Entry return 278 * @index: Index return 279 * @nonotify: notification control 280 * 281 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 282 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 283 * returned. 284 */ 285 286 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 287 { 288 struct aac_queue * q; 289 unsigned long idx; 290 291 /* 292 * All of the queues wrap when they reach the end, so we check 293 * to see if they have reached the end and if they have we just 294 * set the index back to zero. This is a wrap. You could or off 295 * the high bits in all updates but this is a bit faster I think. 296 */ 297 298 q = &dev->queues->queue[qid]; 299 300 idx = *index = le32_to_cpu(*(q->headers.producer)); 301 /* Interrupt Moderation, only interrupt for first two entries */ 302 if (idx != le32_to_cpu(*(q->headers.consumer))) { 303 if (--idx == 0) { 304 if (qid == AdapNormCmdQueue) 305 idx = ADAP_NORM_CMD_ENTRIES; 306 else 307 idx = ADAP_NORM_RESP_ENTRIES; 308 } 309 if (idx != le32_to_cpu(*(q->headers.consumer))) 310 *nonotify = 1; 311 } 312 313 if (qid == AdapNormCmdQueue) { 314 if (*index >= ADAP_NORM_CMD_ENTRIES) 315 *index = 0; /* Wrap to front of the Producer Queue. */ 316 } else { 317 if (*index >= ADAP_NORM_RESP_ENTRIES) 318 *index = 0; /* Wrap to front of the Producer Queue. */ 319 } 320 321 /* Queue is full */ 322 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 323 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 324 qid, q->numpending); 325 return 0; 326 } else { 327 *entry = q->base + *index; 328 return 1; 329 } 330 } 331 332 /** 333 * aac_queue_get - get the next free QE 334 * @dev: Adapter 335 * @index: Returned index 336 * @priority: Priority of fib 337 * @fib: Fib to associate with the queue entry 338 * @wait: Wait if queue full 339 * @fibptr: Driver fib object to go with fib 340 * @nonotify: Don't notify the adapter 341 * 342 * Gets the next free QE off the requested priorty adapter command 343 * queue and associates the Fib with the QE. The QE represented by 344 * index is ready to insert on the queue when this routine returns 345 * success. 346 */ 347 348 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 349 { 350 struct aac_entry * entry = NULL; 351 int map = 0; 352 353 if (qid == AdapNormCmdQueue) { 354 /* if no entries wait for some if caller wants to */ 355 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 356 printk(KERN_ERR "GetEntries failed\n"); 357 } 358 /* 359 * Setup queue entry with a command, status and fib mapped 360 */ 361 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 362 map = 1; 363 } else { 364 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 365 /* if no entries wait for some if caller wants to */ 366 } 367 /* 368 * Setup queue entry with command, status and fib mapped 369 */ 370 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 371 entry->addr = hw_fib->header.SenderFibAddress; 372 /* Restore adapters pointer to the FIB */ 373 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 374 map = 0; 375 } 376 /* 377 * If MapFib is true than we need to map the Fib and put pointers 378 * in the queue entry. 379 */ 380 if (map) 381 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 382 return 0; 383 } 384 385 /* 386 * Define the highest level of host to adapter communication routines. 387 * These routines will support host to adapter FS commuication. These 388 * routines have no knowledge of the commuication method used. This level 389 * sends and receives FIBs. This level has no knowledge of how these FIBs 390 * get passed back and forth. 391 */ 392 393 /** 394 * aac_fib_send - send a fib to the adapter 395 * @command: Command to send 396 * @fibptr: The fib 397 * @size: Size of fib data area 398 * @priority: Priority of Fib 399 * @wait: Async/sync select 400 * @reply: True if a reply is wanted 401 * @callback: Called with reply 402 * @callback_data: Passed to callback 403 * 404 * Sends the requested FIB to the adapter and optionally will wait for a 405 * response FIB. If the caller does not wish to wait for a response than 406 * an event to wait on must be supplied. This event will be set when a 407 * response FIB is received from the adapter. 408 */ 409 410 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 411 int priority, int wait, int reply, fib_callback callback, 412 void *callback_data) 413 { 414 struct aac_dev * dev = fibptr->dev; 415 struct hw_fib * hw_fib = fibptr->hw_fib_va; 416 unsigned long flags = 0; 417 unsigned long qflags; 418 unsigned long mflags = 0; 419 unsigned long sflags = 0; 420 421 422 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 423 return -EBUSY; 424 /* 425 * There are 5 cases with the wait and response requested flags. 426 * The only invalid cases are if the caller requests to wait and 427 * does not request a response and if the caller does not want a 428 * response and the Fib is not allocated from pool. If a response 429 * is not requesed the Fib will just be deallocaed by the DPC 430 * routine when the response comes back from the adapter. No 431 * further processing will be done besides deleting the Fib. We 432 * will have a debug mode where the adapter can notify the host 433 * it had a problem and the host can log that fact. 434 */ 435 fibptr->flags = 0; 436 if (wait && !reply) { 437 return -EINVAL; 438 } else if (!wait && reply) { 439 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 440 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 441 } else if (!wait && !reply) { 442 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 443 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 444 } else if (wait && reply) { 445 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 446 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 447 } 448 /* 449 * Map the fib into 32bits by using the fib number 450 */ 451 452 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 453 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 454 /* 455 * Set FIB state to indicate where it came from and if we want a 456 * response from the adapter. Also load the command from the 457 * caller. 458 * 459 * Map the hw fib pointer as a 32bit value 460 */ 461 hw_fib->header.Command = cpu_to_le16(command); 462 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 463 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ 464 /* 465 * Set the size of the Fib we want to send to the adapter 466 */ 467 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 468 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 469 return -EMSGSIZE; 470 } 471 /* 472 * Get a queue entry connect the FIB to it and send an notify 473 * the adapter a command is ready. 474 */ 475 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 476 477 /* 478 * Fill in the Callback and CallbackContext if we are not 479 * going to wait. 480 */ 481 if (!wait) { 482 fibptr->callback = callback; 483 fibptr->callback_data = callback_data; 484 fibptr->flags = FIB_CONTEXT_FLAG; 485 } 486 487 fibptr->done = 0; 488 489 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 490 491 dprintk((KERN_DEBUG "Fib contents:.\n")); 492 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 493 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 494 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 495 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 496 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 497 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 498 499 if (!dev->queues) 500 return -EBUSY; 501 502 if (wait) { 503 504 spin_lock_irqsave(&dev->manage_lock, mflags); 505 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 506 printk(KERN_INFO "No management Fibs Available:%d\n", 507 dev->management_fib_count); 508 spin_unlock_irqrestore(&dev->manage_lock, mflags); 509 return -EBUSY; 510 } 511 dev->management_fib_count++; 512 spin_unlock_irqrestore(&dev->manage_lock, mflags); 513 spin_lock_irqsave(&fibptr->event_lock, flags); 514 } 515 516 if (dev->sync_mode) { 517 if (wait) 518 spin_unlock_irqrestore(&fibptr->event_lock, flags); 519 spin_lock_irqsave(&dev->sync_lock, sflags); 520 if (dev->sync_fib) { 521 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 522 spin_unlock_irqrestore(&dev->sync_lock, sflags); 523 } else { 524 dev->sync_fib = fibptr; 525 spin_unlock_irqrestore(&dev->sync_lock, sflags); 526 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 527 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 528 NULL, NULL, NULL, NULL, NULL); 529 } 530 if (wait) { 531 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 532 if (down_interruptible(&fibptr->event_wait)) { 533 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 534 return -EFAULT; 535 } 536 return 0; 537 } 538 return -EINPROGRESS; 539 } 540 541 if (aac_adapter_deliver(fibptr) != 0) { 542 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 543 if (wait) { 544 spin_unlock_irqrestore(&fibptr->event_lock, flags); 545 spin_lock_irqsave(&dev->manage_lock, mflags); 546 dev->management_fib_count--; 547 spin_unlock_irqrestore(&dev->manage_lock, mflags); 548 } 549 return -EBUSY; 550 } 551 552 553 /* 554 * If the caller wanted us to wait for response wait now. 555 */ 556 557 if (wait) { 558 spin_unlock_irqrestore(&fibptr->event_lock, flags); 559 /* Only set for first known interruptable command */ 560 if (wait < 0) { 561 /* 562 * *VERY* Dangerous to time out a command, the 563 * assumption is made that we have no hope of 564 * functioning because an interrupt routing or other 565 * hardware failure has occurred. 566 */ 567 unsigned long count = 36000000L; /* 3 minutes */ 568 while (down_trylock(&fibptr->event_wait)) { 569 int blink; 570 if (--count == 0) { 571 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 572 spin_lock_irqsave(q->lock, qflags); 573 q->numpending--; 574 spin_unlock_irqrestore(q->lock, qflags); 575 if (wait == -1) { 576 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 577 "Usually a result of a PCI interrupt routing problem;\n" 578 "update mother board BIOS or consider utilizing one of\n" 579 "the SAFE mode kernel options (acpi, apic etc)\n"); 580 } 581 return -ETIMEDOUT; 582 } 583 if ((blink = aac_adapter_check_health(dev)) > 0) { 584 if (wait == -1) { 585 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 586 "Usually a result of a serious unrecoverable hardware problem\n", 587 blink); 588 } 589 return -EFAULT; 590 } 591 udelay(5); 592 } 593 } else if (down_interruptible(&fibptr->event_wait)) { 594 /* Do nothing ... satisfy 595 * down_interruptible must_check */ 596 } 597 598 spin_lock_irqsave(&fibptr->event_lock, flags); 599 if (fibptr->done == 0) { 600 fibptr->done = 2; /* Tell interrupt we aborted */ 601 spin_unlock_irqrestore(&fibptr->event_lock, flags); 602 return -ERESTARTSYS; 603 } 604 spin_unlock_irqrestore(&fibptr->event_lock, flags); 605 BUG_ON(fibptr->done == 0); 606 607 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 608 return -ETIMEDOUT; 609 return 0; 610 } 611 /* 612 * If the user does not want a response than return success otherwise 613 * return pending 614 */ 615 if (reply) 616 return -EINPROGRESS; 617 else 618 return 0; 619 } 620 621 /** 622 * aac_consumer_get - get the top of the queue 623 * @dev: Adapter 624 * @q: Queue 625 * @entry: Return entry 626 * 627 * Will return a pointer to the entry on the top of the queue requested that 628 * we are a consumer of, and return the address of the queue entry. It does 629 * not change the state of the queue. 630 */ 631 632 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 633 { 634 u32 index; 635 int status; 636 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 637 status = 0; 638 } else { 639 /* 640 * The consumer index must be wrapped if we have reached 641 * the end of the queue, else we just use the entry 642 * pointed to by the header index 643 */ 644 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 645 index = 0; 646 else 647 index = le32_to_cpu(*q->headers.consumer); 648 *entry = q->base + index; 649 status = 1; 650 } 651 return(status); 652 } 653 654 /** 655 * aac_consumer_free - free consumer entry 656 * @dev: Adapter 657 * @q: Queue 658 * @qid: Queue ident 659 * 660 * Frees up the current top of the queue we are a consumer of. If the 661 * queue was full notify the producer that the queue is no longer full. 662 */ 663 664 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 665 { 666 int wasfull = 0; 667 u32 notify; 668 669 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 670 wasfull = 1; 671 672 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 673 *q->headers.consumer = cpu_to_le32(1); 674 else 675 le32_add_cpu(q->headers.consumer, 1); 676 677 if (wasfull) { 678 switch (qid) { 679 680 case HostNormCmdQueue: 681 notify = HostNormCmdNotFull; 682 break; 683 case HostNormRespQueue: 684 notify = HostNormRespNotFull; 685 break; 686 default: 687 BUG(); 688 return; 689 } 690 aac_adapter_notify(dev, notify); 691 } 692 } 693 694 /** 695 * aac_fib_adapter_complete - complete adapter issued fib 696 * @fibptr: fib to complete 697 * @size: size of fib 698 * 699 * Will do all necessary work to complete a FIB that was sent from 700 * the adapter. 701 */ 702 703 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 704 { 705 struct hw_fib * hw_fib = fibptr->hw_fib_va; 706 struct aac_dev * dev = fibptr->dev; 707 struct aac_queue * q; 708 unsigned long nointr = 0; 709 unsigned long qflags; 710 711 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) { 712 kfree(hw_fib); 713 return 0; 714 } 715 716 if (hw_fib->header.XferState == 0) { 717 if (dev->comm_interface == AAC_COMM_MESSAGE) 718 kfree(hw_fib); 719 return 0; 720 } 721 /* 722 * If we plan to do anything check the structure type first. 723 */ 724 if (hw_fib->header.StructType != FIB_MAGIC) { 725 if (dev->comm_interface == AAC_COMM_MESSAGE) 726 kfree(hw_fib); 727 return -EINVAL; 728 } 729 /* 730 * This block handles the case where the adapter had sent us a 731 * command and we have finished processing the command. We 732 * call completeFib when we are done processing the command 733 * and want to send a response back to the adapter. This will 734 * send the completed cdb to the adapter. 735 */ 736 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 737 if (dev->comm_interface == AAC_COMM_MESSAGE) { 738 kfree (hw_fib); 739 } else { 740 u32 index; 741 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 742 if (size) { 743 size += sizeof(struct aac_fibhdr); 744 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 745 return -EMSGSIZE; 746 hw_fib->header.Size = cpu_to_le16(size); 747 } 748 q = &dev->queues->queue[AdapNormRespQueue]; 749 spin_lock_irqsave(q->lock, qflags); 750 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 751 *(q->headers.producer) = cpu_to_le32(index + 1); 752 spin_unlock_irqrestore(q->lock, qflags); 753 if (!(nointr & (int)aac_config.irq_mod)) 754 aac_adapter_notify(dev, AdapNormRespQueue); 755 } 756 } else { 757 printk(KERN_WARNING "aac_fib_adapter_complete: " 758 "Unknown xferstate detected.\n"); 759 BUG(); 760 } 761 return 0; 762 } 763 764 /** 765 * aac_fib_complete - fib completion handler 766 * @fib: FIB to complete 767 * 768 * Will do all necessary work to complete a FIB. 769 */ 770 771 int aac_fib_complete(struct fib *fibptr) 772 { 773 unsigned long flags; 774 struct hw_fib * hw_fib = fibptr->hw_fib_va; 775 776 /* 777 * Check for a fib which has already been completed 778 */ 779 780 if (hw_fib->header.XferState == 0) 781 return 0; 782 /* 783 * If we plan to do anything check the structure type first. 784 */ 785 786 if (hw_fib->header.StructType != FIB_MAGIC) 787 return -EINVAL; 788 /* 789 * This block completes a cdb which orginated on the host and we 790 * just need to deallocate the cdb or reinit it. At this point the 791 * command is complete that we had sent to the adapter and this 792 * cdb could be reused. 793 */ 794 spin_lock_irqsave(&fibptr->event_lock, flags); 795 if (fibptr->done == 2) { 796 spin_unlock_irqrestore(&fibptr->event_lock, flags); 797 return 0; 798 } 799 spin_unlock_irqrestore(&fibptr->event_lock, flags); 800 801 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 802 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 803 { 804 fib_dealloc(fibptr); 805 } 806 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 807 { 808 /* 809 * This handles the case when the host has aborted the I/O 810 * to the adapter because the adapter is not responding 811 */ 812 fib_dealloc(fibptr); 813 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 814 fib_dealloc(fibptr); 815 } else { 816 BUG(); 817 } 818 return 0; 819 } 820 821 /** 822 * aac_printf - handle printf from firmware 823 * @dev: Adapter 824 * @val: Message info 825 * 826 * Print a message passed to us by the controller firmware on the 827 * Adaptec board 828 */ 829 830 void aac_printf(struct aac_dev *dev, u32 val) 831 { 832 char *cp = dev->printfbuf; 833 if (dev->printf_enabled) 834 { 835 int length = val & 0xffff; 836 int level = (val >> 16) & 0xffff; 837 838 /* 839 * The size of the printfbuf is set in port.c 840 * There is no variable or define for it 841 */ 842 if (length > 255) 843 length = 255; 844 if (cp[length] != 0) 845 cp[length] = 0; 846 if (level == LOG_AAC_HIGH_ERROR) 847 printk(KERN_WARNING "%s:%s", dev->name, cp); 848 else 849 printk(KERN_INFO "%s:%s", dev->name, cp); 850 } 851 memset(cp, 0, 256); 852 } 853 854 855 /** 856 * aac_handle_aif - Handle a message from the firmware 857 * @dev: Which adapter this fib is from 858 * @fibptr: Pointer to fibptr from adapter 859 * 860 * This routine handles a driver notify fib from the adapter and 861 * dispatches it to the appropriate routine for handling. 862 */ 863 864 #define AIF_SNIFF_TIMEOUT (30*HZ) 865 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 866 { 867 struct hw_fib * hw_fib = fibptr->hw_fib_va; 868 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 869 u32 channel, id, lun, container; 870 struct scsi_device *device; 871 enum { 872 NOTHING, 873 DELETE, 874 ADD, 875 CHANGE 876 } device_config_needed = NOTHING; 877 878 /* Sniff for container changes */ 879 880 if (!dev || !dev->fsa_dev) 881 return; 882 container = channel = id = lun = (u32)-1; 883 884 /* 885 * We have set this up to try and minimize the number of 886 * re-configures that take place. As a result of this when 887 * certain AIF's come in we will set a flag waiting for another 888 * type of AIF before setting the re-config flag. 889 */ 890 switch (le32_to_cpu(aifcmd->command)) { 891 case AifCmdDriverNotify: 892 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 893 /* 894 * Morph or Expand complete 895 */ 896 case AifDenMorphComplete: 897 case AifDenVolumeExtendComplete: 898 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 899 if (container >= dev->maximum_num_containers) 900 break; 901 902 /* 903 * Find the scsi_device associated with the SCSI 904 * address. Make sure we have the right array, and if 905 * so set the flag to initiate a new re-config once we 906 * see an AifEnConfigChange AIF come through. 907 */ 908 909 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 910 device = scsi_device_lookup(dev->scsi_host_ptr, 911 CONTAINER_TO_CHANNEL(container), 912 CONTAINER_TO_ID(container), 913 CONTAINER_TO_LUN(container)); 914 if (device) { 915 dev->fsa_dev[container].config_needed = CHANGE; 916 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 917 dev->fsa_dev[container].config_waiting_stamp = jiffies; 918 scsi_device_put(device); 919 } 920 } 921 } 922 923 /* 924 * If we are waiting on something and this happens to be 925 * that thing then set the re-configure flag. 926 */ 927 if (container != (u32)-1) { 928 if (container >= dev->maximum_num_containers) 929 break; 930 if ((dev->fsa_dev[container].config_waiting_on == 931 le32_to_cpu(*(__le32 *)aifcmd->data)) && 932 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 933 dev->fsa_dev[container].config_waiting_on = 0; 934 } else for (container = 0; 935 container < dev->maximum_num_containers; ++container) { 936 if ((dev->fsa_dev[container].config_waiting_on == 937 le32_to_cpu(*(__le32 *)aifcmd->data)) && 938 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 939 dev->fsa_dev[container].config_waiting_on = 0; 940 } 941 break; 942 943 case AifCmdEventNotify: 944 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 945 case AifEnBatteryEvent: 946 dev->cache_protected = 947 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 948 break; 949 /* 950 * Add an Array. 951 */ 952 case AifEnAddContainer: 953 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 954 if (container >= dev->maximum_num_containers) 955 break; 956 dev->fsa_dev[container].config_needed = ADD; 957 dev->fsa_dev[container].config_waiting_on = 958 AifEnConfigChange; 959 dev->fsa_dev[container].config_waiting_stamp = jiffies; 960 break; 961 962 /* 963 * Delete an Array. 964 */ 965 case AifEnDeleteContainer: 966 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 967 if (container >= dev->maximum_num_containers) 968 break; 969 dev->fsa_dev[container].config_needed = DELETE; 970 dev->fsa_dev[container].config_waiting_on = 971 AifEnConfigChange; 972 dev->fsa_dev[container].config_waiting_stamp = jiffies; 973 break; 974 975 /* 976 * Container change detected. If we currently are not 977 * waiting on something else, setup to wait on a Config Change. 978 */ 979 case AifEnContainerChange: 980 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 981 if (container >= dev->maximum_num_containers) 982 break; 983 if (dev->fsa_dev[container].config_waiting_on && 984 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 985 break; 986 dev->fsa_dev[container].config_needed = CHANGE; 987 dev->fsa_dev[container].config_waiting_on = 988 AifEnConfigChange; 989 dev->fsa_dev[container].config_waiting_stamp = jiffies; 990 break; 991 992 case AifEnConfigChange: 993 break; 994 995 case AifEnAddJBOD: 996 case AifEnDeleteJBOD: 997 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 998 if ((container >> 28)) { 999 container = (u32)-1; 1000 break; 1001 } 1002 channel = (container >> 24) & 0xF; 1003 if (channel >= dev->maximum_num_channels) { 1004 container = (u32)-1; 1005 break; 1006 } 1007 id = container & 0xFFFF; 1008 if (id >= dev->maximum_num_physicals) { 1009 container = (u32)-1; 1010 break; 1011 } 1012 lun = (container >> 16) & 0xFF; 1013 container = (u32)-1; 1014 channel = aac_phys_to_logical(channel); 1015 device_config_needed = 1016 (((__le32 *)aifcmd->data)[0] == 1017 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1018 if (device_config_needed == ADD) { 1019 device = scsi_device_lookup(dev->scsi_host_ptr, 1020 channel, 1021 id, 1022 lun); 1023 if (device) { 1024 scsi_remove_device(device); 1025 scsi_device_put(device); 1026 } 1027 } 1028 break; 1029 1030 case AifEnEnclosureManagement: 1031 /* 1032 * If in JBOD mode, automatic exposure of new 1033 * physical target to be suppressed until configured. 1034 */ 1035 if (dev->jbod) 1036 break; 1037 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1038 case EM_DRIVE_INSERTION: 1039 case EM_DRIVE_REMOVAL: 1040 container = le32_to_cpu( 1041 ((__le32 *)aifcmd->data)[2]); 1042 if ((container >> 28)) { 1043 container = (u32)-1; 1044 break; 1045 } 1046 channel = (container >> 24) & 0xF; 1047 if (channel >= dev->maximum_num_channels) { 1048 container = (u32)-1; 1049 break; 1050 } 1051 id = container & 0xFFFF; 1052 lun = (container >> 16) & 0xFF; 1053 container = (u32)-1; 1054 if (id >= dev->maximum_num_physicals) { 1055 /* legacy dev_t ? */ 1056 if ((0x2000 <= id) || lun || channel || 1057 ((channel = (id >> 7) & 0x3F) >= 1058 dev->maximum_num_channels)) 1059 break; 1060 lun = (id >> 4) & 7; 1061 id &= 0xF; 1062 } 1063 channel = aac_phys_to_logical(channel); 1064 device_config_needed = 1065 (((__le32 *)aifcmd->data)[3] 1066 == cpu_to_le32(EM_DRIVE_INSERTION)) ? 1067 ADD : DELETE; 1068 break; 1069 } 1070 break; 1071 } 1072 1073 /* 1074 * If we are waiting on something and this happens to be 1075 * that thing then set the re-configure flag. 1076 */ 1077 if (container != (u32)-1) { 1078 if (container >= dev->maximum_num_containers) 1079 break; 1080 if ((dev->fsa_dev[container].config_waiting_on == 1081 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1082 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1083 dev->fsa_dev[container].config_waiting_on = 0; 1084 } else for (container = 0; 1085 container < dev->maximum_num_containers; ++container) { 1086 if ((dev->fsa_dev[container].config_waiting_on == 1087 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1088 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1089 dev->fsa_dev[container].config_waiting_on = 0; 1090 } 1091 break; 1092 1093 case AifCmdJobProgress: 1094 /* 1095 * These are job progress AIF's. When a Clear is being 1096 * done on a container it is initially created then hidden from 1097 * the OS. When the clear completes we don't get a config 1098 * change so we monitor the job status complete on a clear then 1099 * wait for a container change. 1100 */ 1101 1102 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1103 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1104 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1105 for (container = 0; 1106 container < dev->maximum_num_containers; 1107 ++container) { 1108 /* 1109 * Stomp on all config sequencing for all 1110 * containers? 1111 */ 1112 dev->fsa_dev[container].config_waiting_on = 1113 AifEnContainerChange; 1114 dev->fsa_dev[container].config_needed = ADD; 1115 dev->fsa_dev[container].config_waiting_stamp = 1116 jiffies; 1117 } 1118 } 1119 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1120 ((__le32 *)aifcmd->data)[6] == 0 && 1121 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1122 for (container = 0; 1123 container < dev->maximum_num_containers; 1124 ++container) { 1125 /* 1126 * Stomp on all config sequencing for all 1127 * containers? 1128 */ 1129 dev->fsa_dev[container].config_waiting_on = 1130 AifEnContainerChange; 1131 dev->fsa_dev[container].config_needed = DELETE; 1132 dev->fsa_dev[container].config_waiting_stamp = 1133 jiffies; 1134 } 1135 } 1136 break; 1137 } 1138 1139 container = 0; 1140 retry_next: 1141 if (device_config_needed == NOTHING) 1142 for (; container < dev->maximum_num_containers; ++container) { 1143 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1144 (dev->fsa_dev[container].config_needed != NOTHING) && 1145 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1146 device_config_needed = 1147 dev->fsa_dev[container].config_needed; 1148 dev->fsa_dev[container].config_needed = NOTHING; 1149 channel = CONTAINER_TO_CHANNEL(container); 1150 id = CONTAINER_TO_ID(container); 1151 lun = CONTAINER_TO_LUN(container); 1152 break; 1153 } 1154 } 1155 if (device_config_needed == NOTHING) 1156 return; 1157 1158 /* 1159 * If we decided that a re-configuration needs to be done, 1160 * schedule it here on the way out the door, please close the door 1161 * behind you. 1162 */ 1163 1164 /* 1165 * Find the scsi_device associated with the SCSI address, 1166 * and mark it as changed, invalidating the cache. This deals 1167 * with changes to existing device IDs. 1168 */ 1169 1170 if (!dev || !dev->scsi_host_ptr) 1171 return; 1172 /* 1173 * force reload of disk info via aac_probe_container 1174 */ 1175 if ((channel == CONTAINER_CHANNEL) && 1176 (device_config_needed != NOTHING)) { 1177 if (dev->fsa_dev[container].valid == 1) 1178 dev->fsa_dev[container].valid = 2; 1179 aac_probe_container(dev, container); 1180 } 1181 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1182 if (device) { 1183 switch (device_config_needed) { 1184 case DELETE: 1185 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1186 scsi_remove_device(device); 1187 #else 1188 if (scsi_device_online(device)) { 1189 scsi_device_set_state(device, SDEV_OFFLINE); 1190 sdev_printk(KERN_INFO, device, 1191 "Device offlined - %s\n", 1192 (channel == CONTAINER_CHANNEL) ? 1193 "array deleted" : 1194 "enclosure services event"); 1195 } 1196 #endif 1197 break; 1198 case ADD: 1199 if (!scsi_device_online(device)) { 1200 sdev_printk(KERN_INFO, device, 1201 "Device online - %s\n", 1202 (channel == CONTAINER_CHANNEL) ? 1203 "array created" : 1204 "enclosure services event"); 1205 scsi_device_set_state(device, SDEV_RUNNING); 1206 } 1207 /* FALLTHRU */ 1208 case CHANGE: 1209 if ((channel == CONTAINER_CHANNEL) 1210 && (!dev->fsa_dev[container].valid)) { 1211 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1212 scsi_remove_device(device); 1213 #else 1214 if (!scsi_device_online(device)) 1215 break; 1216 scsi_device_set_state(device, SDEV_OFFLINE); 1217 sdev_printk(KERN_INFO, device, 1218 "Device offlined - %s\n", 1219 "array failed"); 1220 #endif 1221 break; 1222 } 1223 scsi_rescan_device(&device->sdev_gendev); 1224 1225 default: 1226 break; 1227 } 1228 scsi_device_put(device); 1229 device_config_needed = NOTHING; 1230 } 1231 if (device_config_needed == ADD) 1232 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1233 if (channel == CONTAINER_CHANNEL) { 1234 container++; 1235 device_config_needed = NOTHING; 1236 goto retry_next; 1237 } 1238 } 1239 1240 static int _aac_reset_adapter(struct aac_dev *aac, int forced) 1241 { 1242 int index, quirks; 1243 int retval; 1244 struct Scsi_Host *host; 1245 struct scsi_device *dev; 1246 struct scsi_cmnd *command; 1247 struct scsi_cmnd *command_list; 1248 int jafo = 0; 1249 1250 /* 1251 * Assumptions: 1252 * - host is locked, unless called by the aacraid thread. 1253 * (a matter of convenience, due to legacy issues surrounding 1254 * eh_host_adapter_reset). 1255 * - in_reset is asserted, so no new i/o is getting to the 1256 * card. 1257 * - The card is dead, or will be very shortly ;-/ so no new 1258 * commands are completing in the interrupt service. 1259 */ 1260 host = aac->scsi_host_ptr; 1261 scsi_block_requests(host); 1262 aac_adapter_disable_int(aac); 1263 if (aac->thread->pid != current->pid) { 1264 spin_unlock_irq(host->host_lock); 1265 kthread_stop(aac->thread); 1266 jafo = 1; 1267 } 1268 1269 /* 1270 * If a positive health, means in a known DEAD PANIC 1271 * state and the adapter could be reset to `try again'. 1272 */ 1273 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); 1274 1275 if (retval) 1276 goto out; 1277 1278 /* 1279 * Loop through the fibs, close the synchronous FIBS 1280 */ 1281 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1282 struct fib *fib = &aac->fibs[index]; 1283 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1284 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1285 unsigned long flagv; 1286 spin_lock_irqsave(&fib->event_lock, flagv); 1287 up(&fib->event_wait); 1288 spin_unlock_irqrestore(&fib->event_lock, flagv); 1289 schedule(); 1290 retval = 0; 1291 } 1292 } 1293 /* Give some extra time for ioctls to complete. */ 1294 if (retval == 0) 1295 ssleep(2); 1296 index = aac->cardtype; 1297 1298 /* 1299 * Re-initialize the adapter, first free resources, then carefully 1300 * apply the initialization sequence to come back again. Only risk 1301 * is a change in Firmware dropping cache, it is assumed the caller 1302 * will ensure that i/o is queisced and the card is flushed in that 1303 * case. 1304 */ 1305 aac_fib_map_free(aac); 1306 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1307 aac->comm_addr = NULL; 1308 aac->comm_phys = 0; 1309 kfree(aac->queues); 1310 aac->queues = NULL; 1311 free_irq(aac->pdev->irq, aac); 1312 if (aac->msi) 1313 pci_disable_msi(aac->pdev); 1314 kfree(aac->fsa_dev); 1315 aac->fsa_dev = NULL; 1316 quirks = aac_get_driver_ident(index)->quirks; 1317 if (quirks & AAC_QUIRK_31BIT) { 1318 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) || 1319 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31))))) 1320 goto out; 1321 } else { 1322 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) || 1323 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32))))) 1324 goto out; 1325 } 1326 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1327 goto out; 1328 if (quirks & AAC_QUIRK_31BIT) 1329 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) 1330 goto out; 1331 if (jafo) { 1332 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1333 if (IS_ERR(aac->thread)) { 1334 retval = PTR_ERR(aac->thread); 1335 goto out; 1336 } 1337 } 1338 (void)aac_get_adapter_info(aac); 1339 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1340 host->sg_tablesize = 34; 1341 host->max_sectors = (host->sg_tablesize * 8) + 112; 1342 } 1343 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1344 host->sg_tablesize = 17; 1345 host->max_sectors = (host->sg_tablesize * 8) + 112; 1346 } 1347 aac_get_config_status(aac, 1); 1348 aac_get_containers(aac); 1349 /* 1350 * This is where the assumption that the Adapter is quiesced 1351 * is important. 1352 */ 1353 command_list = NULL; 1354 __shost_for_each_device(dev, host) { 1355 unsigned long flags; 1356 spin_lock_irqsave(&dev->list_lock, flags); 1357 list_for_each_entry(command, &dev->cmd_list, list) 1358 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1359 command->SCp.buffer = (struct scatterlist *)command_list; 1360 command_list = command; 1361 } 1362 spin_unlock_irqrestore(&dev->list_lock, flags); 1363 } 1364 while ((command = command_list)) { 1365 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1366 command->SCp.buffer = NULL; 1367 command->result = DID_OK << 16 1368 | COMMAND_COMPLETE << 8 1369 | SAM_STAT_TASK_SET_FULL; 1370 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1371 command->scsi_done(command); 1372 } 1373 retval = 0; 1374 1375 out: 1376 aac->in_reset = 0; 1377 scsi_unblock_requests(host); 1378 if (jafo) { 1379 spin_lock_irq(host->host_lock); 1380 } 1381 return retval; 1382 } 1383 1384 int aac_reset_adapter(struct aac_dev * aac, int forced) 1385 { 1386 unsigned long flagv = 0; 1387 int retval; 1388 struct Scsi_Host * host; 1389 1390 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1391 return -EBUSY; 1392 1393 if (aac->in_reset) { 1394 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1395 return -EBUSY; 1396 } 1397 aac->in_reset = 1; 1398 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1399 1400 /* 1401 * Wait for all commands to complete to this specific 1402 * target (block maximum 60 seconds). Although not necessary, 1403 * it does make us a good storage citizen. 1404 */ 1405 host = aac->scsi_host_ptr; 1406 scsi_block_requests(host); 1407 if (forced < 2) for (retval = 60; retval; --retval) { 1408 struct scsi_device * dev; 1409 struct scsi_cmnd * command; 1410 int active = 0; 1411 1412 __shost_for_each_device(dev, host) { 1413 spin_lock_irqsave(&dev->list_lock, flagv); 1414 list_for_each_entry(command, &dev->cmd_list, list) { 1415 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1416 active++; 1417 break; 1418 } 1419 } 1420 spin_unlock_irqrestore(&dev->list_lock, flagv); 1421 if (active) 1422 break; 1423 1424 } 1425 /* 1426 * We can exit If all the commands are complete 1427 */ 1428 if (active == 0) 1429 break; 1430 ssleep(1); 1431 } 1432 1433 /* Quiesce build, flush cache, write through mode */ 1434 if (forced < 2) 1435 aac_send_shutdown(aac); 1436 spin_lock_irqsave(host->host_lock, flagv); 1437 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1))); 1438 spin_unlock_irqrestore(host->host_lock, flagv); 1439 1440 if ((forced < 2) && (retval == -ENODEV)) { 1441 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1442 struct fib * fibctx = aac_fib_alloc(aac); 1443 if (fibctx) { 1444 struct aac_pause *cmd; 1445 int status; 1446 1447 aac_fib_init(fibctx); 1448 1449 cmd = (struct aac_pause *) fib_data(fibctx); 1450 1451 cmd->command = cpu_to_le32(VM_ContainerConfig); 1452 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1453 cmd->timeout = cpu_to_le32(1); 1454 cmd->min = cpu_to_le32(1); 1455 cmd->noRescan = cpu_to_le32(1); 1456 cmd->count = cpu_to_le32(0); 1457 1458 status = aac_fib_send(ContainerCommand, 1459 fibctx, 1460 sizeof(struct aac_pause), 1461 FsaNormal, 1462 -2 /* Timeout silently */, 1, 1463 NULL, NULL); 1464 1465 if (status >= 0) 1466 aac_fib_complete(fibctx); 1467 /* FIB should be freed only after getting 1468 * the response from the F/W */ 1469 if (status != -ERESTARTSYS) 1470 aac_fib_free(fibctx); 1471 } 1472 } 1473 1474 return retval; 1475 } 1476 1477 int aac_check_health(struct aac_dev * aac) 1478 { 1479 int BlinkLED; 1480 unsigned long time_now, flagv = 0; 1481 struct list_head * entry; 1482 struct Scsi_Host * host; 1483 1484 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1485 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1486 return 0; 1487 1488 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1489 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1490 return 0; /* OK */ 1491 } 1492 1493 aac->in_reset = 1; 1494 1495 /* Fake up an AIF: 1496 * aac_aifcmd.command = AifCmdEventNotify = 1 1497 * aac_aifcmd.seqnum = 0xFFFFFFFF 1498 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1499 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1500 * aac.aifcmd.data[2] = AifHighPriority = 3 1501 * aac.aifcmd.data[3] = BlinkLED 1502 */ 1503 1504 time_now = jiffies/HZ; 1505 entry = aac->fib_list.next; 1506 1507 /* 1508 * For each Context that is on the 1509 * fibctxList, make a copy of the 1510 * fib, and then set the event to wake up the 1511 * thread that is waiting for it. 1512 */ 1513 while (entry != &aac->fib_list) { 1514 /* 1515 * Extract the fibctx 1516 */ 1517 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1518 struct hw_fib * hw_fib; 1519 struct fib * fib; 1520 /* 1521 * Check if the queue is getting 1522 * backlogged 1523 */ 1524 if (fibctx->count > 20) { 1525 /* 1526 * It's *not* jiffies folks, 1527 * but jiffies / HZ, so do not 1528 * panic ... 1529 */ 1530 u32 time_last = fibctx->jiffies; 1531 /* 1532 * Has it been > 2 minutes 1533 * since the last read off 1534 * the queue? 1535 */ 1536 if ((time_now - time_last) > aif_timeout) { 1537 entry = entry->next; 1538 aac_close_fib_context(aac, fibctx); 1539 continue; 1540 } 1541 } 1542 /* 1543 * Warning: no sleep allowed while 1544 * holding spinlock 1545 */ 1546 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1547 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1548 if (fib && hw_fib) { 1549 struct aac_aifcmd * aif; 1550 1551 fib->hw_fib_va = hw_fib; 1552 fib->dev = aac; 1553 aac_fib_init(fib); 1554 fib->type = FSAFS_NTC_FIB_CONTEXT; 1555 fib->size = sizeof (struct fib); 1556 fib->data = hw_fib->data; 1557 aif = (struct aac_aifcmd *)hw_fib->data; 1558 aif->command = cpu_to_le32(AifCmdEventNotify); 1559 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1560 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1561 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1562 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1563 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1564 1565 /* 1566 * Put the FIB onto the 1567 * fibctx's fibs 1568 */ 1569 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1570 fibctx->count++; 1571 /* 1572 * Set the event to wake up the 1573 * thread that will waiting. 1574 */ 1575 up(&fibctx->wait_sem); 1576 } else { 1577 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1578 kfree(fib); 1579 kfree(hw_fib); 1580 } 1581 entry = entry->next; 1582 } 1583 1584 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1585 1586 if (BlinkLED < 0) { 1587 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1588 goto out; 1589 } 1590 1591 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1592 1593 if (!aac_check_reset || ((aac_check_reset == 1) && 1594 (aac->supplement_adapter_info.SupportedOptions2 & 1595 AAC_OPTION_IGNORE_RESET))) 1596 goto out; 1597 host = aac->scsi_host_ptr; 1598 if (aac->thread->pid != current->pid) 1599 spin_lock_irqsave(host->host_lock, flagv); 1600 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1); 1601 if (aac->thread->pid != current->pid) 1602 spin_unlock_irqrestore(host->host_lock, flagv); 1603 return BlinkLED; 1604 1605 out: 1606 aac->in_reset = 0; 1607 return BlinkLED; 1608 } 1609 1610 1611 /** 1612 * aac_command_thread - command processing thread 1613 * @dev: Adapter to monitor 1614 * 1615 * Waits on the commandready event in it's queue. When the event gets set 1616 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1617 * until the queue is empty. When the queue is empty it will wait for 1618 * more FIBs. 1619 */ 1620 1621 int aac_command_thread(void *data) 1622 { 1623 struct aac_dev *dev = data; 1624 struct hw_fib *hw_fib, *hw_newfib; 1625 struct fib *fib, *newfib; 1626 struct aac_fib_context *fibctx; 1627 unsigned long flags; 1628 DECLARE_WAITQUEUE(wait, current); 1629 unsigned long next_jiffies = jiffies + HZ; 1630 unsigned long next_check_jiffies = next_jiffies; 1631 long difference = HZ; 1632 1633 /* 1634 * We can only have one thread per adapter for AIF's. 1635 */ 1636 if (dev->aif_thread) 1637 return -EINVAL; 1638 1639 /* 1640 * Let the DPC know it has a place to send the AIF's to. 1641 */ 1642 dev->aif_thread = 1; 1643 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1644 set_current_state(TASK_INTERRUPTIBLE); 1645 dprintk ((KERN_INFO "aac_command_thread start\n")); 1646 while (1) { 1647 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1648 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1649 struct list_head *entry; 1650 struct aac_aifcmd * aifcmd; 1651 1652 set_current_state(TASK_RUNNING); 1653 1654 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1655 list_del(entry); 1656 1657 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1658 fib = list_entry(entry, struct fib, fiblink); 1659 /* 1660 * We will process the FIB here or pass it to a 1661 * worker thread that is TBD. We Really can't 1662 * do anything at this point since we don't have 1663 * anything defined for this thread to do. 1664 */ 1665 hw_fib = fib->hw_fib_va; 1666 memset(fib, 0, sizeof(struct fib)); 1667 fib->type = FSAFS_NTC_FIB_CONTEXT; 1668 fib->size = sizeof(struct fib); 1669 fib->hw_fib_va = hw_fib; 1670 fib->data = hw_fib->data; 1671 fib->dev = dev; 1672 /* 1673 * We only handle AifRequest fibs from the adapter. 1674 */ 1675 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1676 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1677 /* Handle Driver Notify Events */ 1678 aac_handle_aif(dev, fib); 1679 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1680 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1681 } else { 1682 /* The u32 here is important and intended. We are using 1683 32bit wrapping time to fit the adapter field */ 1684 1685 u32 time_now, time_last; 1686 unsigned long flagv; 1687 unsigned num; 1688 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1689 struct fib ** fib_pool, ** fib_p; 1690 1691 /* Sniff events */ 1692 if ((aifcmd->command == 1693 cpu_to_le32(AifCmdEventNotify)) || 1694 (aifcmd->command == 1695 cpu_to_le32(AifCmdJobProgress))) { 1696 aac_handle_aif(dev, fib); 1697 } 1698 1699 time_now = jiffies/HZ; 1700 1701 /* 1702 * Warning: no sleep allowed while 1703 * holding spinlock. We take the estimate 1704 * and pre-allocate a set of fibs outside the 1705 * lock. 1706 */ 1707 num = le32_to_cpu(dev->init->AdapterFibsSize) 1708 / sizeof(struct hw_fib); /* some extra */ 1709 spin_lock_irqsave(&dev->fib_lock, flagv); 1710 entry = dev->fib_list.next; 1711 while (entry != &dev->fib_list) { 1712 entry = entry->next; 1713 ++num; 1714 } 1715 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1716 hw_fib_pool = NULL; 1717 fib_pool = NULL; 1718 if (num 1719 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1720 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1721 hw_fib_p = hw_fib_pool; 1722 fib_p = fib_pool; 1723 while (hw_fib_p < &hw_fib_pool[num]) { 1724 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1725 --hw_fib_p; 1726 break; 1727 } 1728 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1729 kfree(*(--hw_fib_p)); 1730 break; 1731 } 1732 } 1733 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1734 kfree(fib_pool); 1735 fib_pool = NULL; 1736 kfree(hw_fib_pool); 1737 hw_fib_pool = NULL; 1738 } 1739 } else { 1740 kfree(hw_fib_pool); 1741 hw_fib_pool = NULL; 1742 } 1743 spin_lock_irqsave(&dev->fib_lock, flagv); 1744 entry = dev->fib_list.next; 1745 /* 1746 * For each Context that is on the 1747 * fibctxList, make a copy of the 1748 * fib, and then set the event to wake up the 1749 * thread that is waiting for it. 1750 */ 1751 hw_fib_p = hw_fib_pool; 1752 fib_p = fib_pool; 1753 while (entry != &dev->fib_list) { 1754 /* 1755 * Extract the fibctx 1756 */ 1757 fibctx = list_entry(entry, struct aac_fib_context, next); 1758 /* 1759 * Check if the queue is getting 1760 * backlogged 1761 */ 1762 if (fibctx->count > 20) 1763 { 1764 /* 1765 * It's *not* jiffies folks, 1766 * but jiffies / HZ so do not 1767 * panic ... 1768 */ 1769 time_last = fibctx->jiffies; 1770 /* 1771 * Has it been > 2 minutes 1772 * since the last read off 1773 * the queue? 1774 */ 1775 if ((time_now - time_last) > aif_timeout) { 1776 entry = entry->next; 1777 aac_close_fib_context(dev, fibctx); 1778 continue; 1779 } 1780 } 1781 /* 1782 * Warning: no sleep allowed while 1783 * holding spinlock 1784 */ 1785 if (hw_fib_p < &hw_fib_pool[num]) { 1786 hw_newfib = *hw_fib_p; 1787 *(hw_fib_p++) = NULL; 1788 newfib = *fib_p; 1789 *(fib_p++) = NULL; 1790 /* 1791 * Make the copy of the FIB 1792 */ 1793 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1794 memcpy(newfib, fib, sizeof(struct fib)); 1795 newfib->hw_fib_va = hw_newfib; 1796 /* 1797 * Put the FIB onto the 1798 * fibctx's fibs 1799 */ 1800 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1801 fibctx->count++; 1802 /* 1803 * Set the event to wake up the 1804 * thread that is waiting. 1805 */ 1806 up(&fibctx->wait_sem); 1807 } else { 1808 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1809 } 1810 entry = entry->next; 1811 } 1812 /* 1813 * Set the status of this FIB 1814 */ 1815 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1816 aac_fib_adapter_complete(fib, sizeof(u32)); 1817 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1818 /* Free up the remaining resources */ 1819 hw_fib_p = hw_fib_pool; 1820 fib_p = fib_pool; 1821 while (hw_fib_p < &hw_fib_pool[num]) { 1822 kfree(*hw_fib_p); 1823 kfree(*fib_p); 1824 ++fib_p; 1825 ++hw_fib_p; 1826 } 1827 kfree(hw_fib_pool); 1828 kfree(fib_pool); 1829 } 1830 kfree(fib); 1831 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1832 } 1833 /* 1834 * There are no more AIF's 1835 */ 1836 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1837 1838 /* 1839 * Background activity 1840 */ 1841 if ((time_before(next_check_jiffies,next_jiffies)) 1842 && ((difference = next_check_jiffies - jiffies) <= 0)) { 1843 next_check_jiffies = next_jiffies; 1844 if (aac_check_health(dev) == 0) { 1845 difference = ((long)(unsigned)check_interval) 1846 * HZ; 1847 next_check_jiffies = jiffies + difference; 1848 } else if (!dev->queues) 1849 break; 1850 } 1851 if (!time_before(next_check_jiffies,next_jiffies) 1852 && ((difference = next_jiffies - jiffies) <= 0)) { 1853 struct timeval now; 1854 int ret; 1855 1856 /* Don't even try to talk to adapter if its sick */ 1857 ret = aac_check_health(dev); 1858 if (!ret && !dev->queues) 1859 break; 1860 next_check_jiffies = jiffies 1861 + ((long)(unsigned)check_interval) 1862 * HZ; 1863 do_gettimeofday(&now); 1864 1865 /* Synchronize our watches */ 1866 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 1867 && (now.tv_usec > (1000000 / HZ))) 1868 difference = (((1000000 - now.tv_usec) * HZ) 1869 + 500000) / 1000000; 1870 else if (ret == 0) { 1871 struct fib *fibptr; 1872 1873 if ((fibptr = aac_fib_alloc(dev))) { 1874 int status; 1875 __le32 *info; 1876 1877 aac_fib_init(fibptr); 1878 1879 info = (__le32 *) fib_data(fibptr); 1880 if (now.tv_usec > 500000) 1881 ++now.tv_sec; 1882 1883 *info = cpu_to_le32(now.tv_sec); 1884 1885 status = aac_fib_send(SendHostTime, 1886 fibptr, 1887 sizeof(*info), 1888 FsaNormal, 1889 1, 1, 1890 NULL, 1891 NULL); 1892 /* Do not set XferState to zero unless 1893 * receives a response from F/W */ 1894 if (status >= 0) 1895 aac_fib_complete(fibptr); 1896 /* FIB should be freed only after 1897 * getting the response from the F/W */ 1898 if (status != -ERESTARTSYS) 1899 aac_fib_free(fibptr); 1900 } 1901 difference = (long)(unsigned)update_interval*HZ; 1902 } else { 1903 /* retry shortly */ 1904 difference = 10 * HZ; 1905 } 1906 next_jiffies = jiffies + difference; 1907 if (time_before(next_check_jiffies,next_jiffies)) 1908 difference = next_check_jiffies - jiffies; 1909 } 1910 if (difference <= 0) 1911 difference = 1; 1912 set_current_state(TASK_INTERRUPTIBLE); 1913 schedule_timeout(difference); 1914 1915 if (kthread_should_stop()) 1916 break; 1917 } 1918 if (dev->queues) 1919 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1920 dev->aif_thread = 0; 1921 return 0; 1922 } 1923