xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 63dc02bd)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50 
51 #include "aacraid.h"
52 
53 /**
54  *	fib_map_alloc		-	allocate the fib objects
55  *	@dev: Adapter to allocate for
56  *
57  *	Allocate and map the shared PCI space for the FIB blocks used to
58  *	talk to the Adaptec firmware.
59  */
60 
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 	dprintk((KERN_INFO
64 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 		&dev->hw_fib_pa);
71 	if (dev->hw_fib_va == NULL)
72 		return -ENOMEM;
73 	return 0;
74 }
75 
76 /**
77  *	aac_fib_map_free		-	free the fib objects
78  *	@dev: Adapter to free
79  *
80  *	Free the PCI mappings and the memory allocated for FIB blocks
81  *	on this adapter.
82  */
83 
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 	pci_free_consistent(dev->pdev,
87 	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 	  dev->hw_fib_va, dev->hw_fib_pa);
89 	dev->hw_fib_va = NULL;
90 	dev->hw_fib_pa = 0;
91 }
92 
93 /**
94  *	aac_fib_setup	-	setup the fibs
95  *	@dev: Adapter to set up
96  *
97  *	Allocate the PCI space for the fibs, map it and then initialise the
98  *	fib area, the unmapped fib data and also the free list
99  */
100 
101 int aac_fib_setup(struct aac_dev * dev)
102 {
103 	struct fib *fibptr;
104 	struct hw_fib *hw_fib;
105 	dma_addr_t hw_fib_pa;
106 	int i;
107 
108 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112 	}
113 	if (i<0)
114 		return -ENOMEM;
115 
116 	/* 32 byte alignment for PMC */
117 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 		(hw_fib_pa - dev->hw_fib_pa));
120 	dev->hw_fib_pa = hw_fib_pa;
121 	memset(dev->hw_fib_va, 0,
122 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124 
125 	/* add Xport header */
126 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 		sizeof(struct aac_fib_xporthdr));
128 	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129 
130 	hw_fib = dev->hw_fib_va;
131 	hw_fib_pa = dev->hw_fib_pa;
132 	/*
133 	 *	Initialise the fibs
134 	 */
135 	for (i = 0, fibptr = &dev->fibs[i];
136 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 		i++, fibptr++)
138 	{
139 		fibptr->dev = dev;
140 		fibptr->hw_fib_va = hw_fib;
141 		fibptr->data = (void *) fibptr->hw_fib_va->data;
142 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
143 		sema_init(&fibptr->event_wait, 0);
144 		spin_lock_init(&fibptr->event_lock);
145 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
146 		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
147 		fibptr->hw_fib_pa = hw_fib_pa;
148 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
149 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
150 		hw_fib_pa = hw_fib_pa +
151 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
152 	}
153 	/*
154 	 *	Add the fib chain to the free list
155 	 */
156 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
157 	/*
158 	 *	Enable this to debug out of queue space
159 	 */
160 	dev->free_fib = &dev->fibs[0];
161 	return 0;
162 }
163 
164 /**
165  *	aac_fib_alloc	-	allocate a fib
166  *	@dev: Adapter to allocate the fib for
167  *
168  *	Allocate a fib from the adapter fib pool. If the pool is empty we
169  *	return NULL.
170  */
171 
172 struct fib *aac_fib_alloc(struct aac_dev *dev)
173 {
174 	struct fib * fibptr;
175 	unsigned long flags;
176 	spin_lock_irqsave(&dev->fib_lock, flags);
177 	fibptr = dev->free_fib;
178 	if(!fibptr){
179 		spin_unlock_irqrestore(&dev->fib_lock, flags);
180 		return fibptr;
181 	}
182 	dev->free_fib = fibptr->next;
183 	spin_unlock_irqrestore(&dev->fib_lock, flags);
184 	/*
185 	 *	Set the proper node type code and node byte size
186 	 */
187 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
188 	fibptr->size = sizeof(struct fib);
189 	/*
190 	 *	Null out fields that depend on being zero at the start of
191 	 *	each I/O
192 	 */
193 	fibptr->hw_fib_va->header.XferState = 0;
194 	fibptr->flags = 0;
195 	fibptr->callback = NULL;
196 	fibptr->callback_data = NULL;
197 
198 	return fibptr;
199 }
200 
201 /**
202  *	aac_fib_free	-	free a fib
203  *	@fibptr: fib to free up
204  *
205  *	Frees up a fib and places it on the appropriate queue
206  */
207 
208 void aac_fib_free(struct fib *fibptr)
209 {
210 	unsigned long flags, flagsv;
211 
212 	spin_lock_irqsave(&fibptr->event_lock, flagsv);
213 	if (fibptr->done == 2) {
214 		spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
215 		return;
216 	}
217 	spin_unlock_irqrestore(&fibptr->event_lock, flagsv);
218 
219 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
220 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
221 		aac_config.fib_timeouts++;
222 	if (fibptr->hw_fib_va->header.XferState != 0) {
223 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
224 			 (void*)fibptr,
225 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
226 	}
227 	fibptr->next = fibptr->dev->free_fib;
228 	fibptr->dev->free_fib = fibptr;
229 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
230 }
231 
232 /**
233  *	aac_fib_init	-	initialise a fib
234  *	@fibptr: The fib to initialize
235  *
236  *	Set up the generic fib fields ready for use
237  */
238 
239 void aac_fib_init(struct fib *fibptr)
240 {
241 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
242 
243 	hw_fib->header.StructType = FIB_MAGIC;
244 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
245 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
246 	hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
247 	hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
248 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
249 }
250 
251 /**
252  *	fib_deallocate		-	deallocate a fib
253  *	@fibptr: fib to deallocate
254  *
255  *	Will deallocate and return to the free pool the FIB pointed to by the
256  *	caller.
257  */
258 
259 static void fib_dealloc(struct fib * fibptr)
260 {
261 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
262 	BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
263 	hw_fib->header.XferState = 0;
264 }
265 
266 /*
267  *	Commuication primitives define and support the queuing method we use to
268  *	support host to adapter commuication. All queue accesses happen through
269  *	these routines and are the only routines which have a knowledge of the
270  *	 how these queues are implemented.
271  */
272 
273 /**
274  *	aac_get_entry		-	get a queue entry
275  *	@dev: Adapter
276  *	@qid: Queue Number
277  *	@entry: Entry return
278  *	@index: Index return
279  *	@nonotify: notification control
280  *
281  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
282  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
283  *	returned.
284  */
285 
286 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
287 {
288 	struct aac_queue * q;
289 	unsigned long idx;
290 
291 	/*
292 	 *	All of the queues wrap when they reach the end, so we check
293 	 *	to see if they have reached the end and if they have we just
294 	 *	set the index back to zero. This is a wrap. You could or off
295 	 *	the high bits in all updates but this is a bit faster I think.
296 	 */
297 
298 	q = &dev->queues->queue[qid];
299 
300 	idx = *index = le32_to_cpu(*(q->headers.producer));
301 	/* Interrupt Moderation, only interrupt for first two entries */
302 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
303 		if (--idx == 0) {
304 			if (qid == AdapNormCmdQueue)
305 				idx = ADAP_NORM_CMD_ENTRIES;
306 			else
307 				idx = ADAP_NORM_RESP_ENTRIES;
308 		}
309 		if (idx != le32_to_cpu(*(q->headers.consumer)))
310 			*nonotify = 1;
311 	}
312 
313 	if (qid == AdapNormCmdQueue) {
314 		if (*index >= ADAP_NORM_CMD_ENTRIES)
315 			*index = 0; /* Wrap to front of the Producer Queue. */
316 	} else {
317 		if (*index >= ADAP_NORM_RESP_ENTRIES)
318 			*index = 0; /* Wrap to front of the Producer Queue. */
319 	}
320 
321 	/* Queue is full */
322 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
323 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
324 				qid, q->numpending);
325 		return 0;
326 	} else {
327 		*entry = q->base + *index;
328 		return 1;
329 	}
330 }
331 
332 /**
333  *	aac_queue_get		-	get the next free QE
334  *	@dev: Adapter
335  *	@index: Returned index
336  *	@priority: Priority of fib
337  *	@fib: Fib to associate with the queue entry
338  *	@wait: Wait if queue full
339  *	@fibptr: Driver fib object to go with fib
340  *	@nonotify: Don't notify the adapter
341  *
342  *	Gets the next free QE off the requested priorty adapter command
343  *	queue and associates the Fib with the QE. The QE represented by
344  *	index is ready to insert on the queue when this routine returns
345  *	success.
346  */
347 
348 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
349 {
350 	struct aac_entry * entry = NULL;
351 	int map = 0;
352 
353 	if (qid == AdapNormCmdQueue) {
354 		/*  if no entries wait for some if caller wants to */
355 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
356 			printk(KERN_ERR "GetEntries failed\n");
357 		}
358 		/*
359 		 *	Setup queue entry with a command, status and fib mapped
360 		 */
361 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
362 		map = 1;
363 	} else {
364 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
365 			/* if no entries wait for some if caller wants to */
366 		}
367 		/*
368 		 *	Setup queue entry with command, status and fib mapped
369 		 */
370 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
371 		entry->addr = hw_fib->header.SenderFibAddress;
372 			/* Restore adapters pointer to the FIB */
373 		hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;	/* Let the adapter now where to find its data */
374 		map = 0;
375 	}
376 	/*
377 	 *	If MapFib is true than we need to map the Fib and put pointers
378 	 *	in the queue entry.
379 	 */
380 	if (map)
381 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
382 	return 0;
383 }
384 
385 /*
386  *	Define the highest level of host to adapter communication routines.
387  *	These routines will support host to adapter FS commuication. These
388  *	routines have no knowledge of the commuication method used. This level
389  *	sends and receives FIBs. This level has no knowledge of how these FIBs
390  *	get passed back and forth.
391  */
392 
393 /**
394  *	aac_fib_send	-	send a fib to the adapter
395  *	@command: Command to send
396  *	@fibptr: The fib
397  *	@size: Size of fib data area
398  *	@priority: Priority of Fib
399  *	@wait: Async/sync select
400  *	@reply: True if a reply is wanted
401  *	@callback: Called with reply
402  *	@callback_data: Passed to callback
403  *
404  *	Sends the requested FIB to the adapter and optionally will wait for a
405  *	response FIB. If the caller does not wish to wait for a response than
406  *	an event to wait on must be supplied. This event will be set when a
407  *	response FIB is received from the adapter.
408  */
409 
410 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
411 		int priority, int wait, int reply, fib_callback callback,
412 		void *callback_data)
413 {
414 	struct aac_dev * dev = fibptr->dev;
415 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
416 	unsigned long flags = 0;
417 	unsigned long qflags;
418 	unsigned long mflags = 0;
419 	unsigned long sflags = 0;
420 
421 
422 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
423 		return -EBUSY;
424 	/*
425 	 *	There are 5 cases with the wait and response requested flags.
426 	 *	The only invalid cases are if the caller requests to wait and
427 	 *	does not request a response and if the caller does not want a
428 	 *	response and the Fib is not allocated from pool. If a response
429 	 *	is not requesed the Fib will just be deallocaed by the DPC
430 	 *	routine when the response comes back from the adapter. No
431 	 *	further processing will be done besides deleting the Fib. We
432 	 *	will have a debug mode where the adapter can notify the host
433 	 *	it had a problem and the host can log that fact.
434 	 */
435 	fibptr->flags = 0;
436 	if (wait && !reply) {
437 		return -EINVAL;
438 	} else if (!wait && reply) {
439 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
440 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
441 	} else if (!wait && !reply) {
442 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
443 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
444 	} else if (wait && reply) {
445 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
446 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
447 	}
448 	/*
449 	 *	Map the fib into 32bits by using the fib number
450 	 */
451 
452 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
453 	hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
454 	/*
455 	 *	Set FIB state to indicate where it came from and if we want a
456 	 *	response from the adapter. Also load the command from the
457 	 *	caller.
458 	 *
459 	 *	Map the hw fib pointer as a 32bit value
460 	 */
461 	hw_fib->header.Command = cpu_to_le16(command);
462 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
463 	fibptr->hw_fib_va->header.Flags = 0;	/* 0 the flags field - internal only*/
464 	/*
465 	 *	Set the size of the Fib we want to send to the adapter
466 	 */
467 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
468 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
469 		return -EMSGSIZE;
470 	}
471 	/*
472 	 *	Get a queue entry connect the FIB to it and send an notify
473 	 *	the adapter a command is ready.
474 	 */
475 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
476 
477 	/*
478 	 *	Fill in the Callback and CallbackContext if we are not
479 	 *	going to wait.
480 	 */
481 	if (!wait) {
482 		fibptr->callback = callback;
483 		fibptr->callback_data = callback_data;
484 		fibptr->flags = FIB_CONTEXT_FLAG;
485 	}
486 
487 	fibptr->done = 0;
488 
489 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
490 
491 	dprintk((KERN_DEBUG "Fib contents:.\n"));
492 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
493 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
494 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
495 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
496 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
497 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
498 
499 	if (!dev->queues)
500 		return -EBUSY;
501 
502 	if (wait) {
503 
504 		spin_lock_irqsave(&dev->manage_lock, mflags);
505 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
506 			printk(KERN_INFO "No management Fibs Available:%d\n",
507 						dev->management_fib_count);
508 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
509 			return -EBUSY;
510 		}
511 		dev->management_fib_count++;
512 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
513 		spin_lock_irqsave(&fibptr->event_lock, flags);
514 	}
515 
516 	if (dev->sync_mode) {
517 		if (wait)
518 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
519 		spin_lock_irqsave(&dev->sync_lock, sflags);
520 		if (dev->sync_fib) {
521 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
522 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
523 		} else {
524 			dev->sync_fib = fibptr;
525 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
526 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
527 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
528 				NULL, NULL, NULL, NULL, NULL);
529 		}
530 		if (wait) {
531 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
532 			if (down_interruptible(&fibptr->event_wait)) {
533 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
534 				return -EFAULT;
535 			}
536 			return 0;
537 		}
538 		return -EINPROGRESS;
539 	}
540 
541 	if (aac_adapter_deliver(fibptr) != 0) {
542 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
543 		if (wait) {
544 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
545 			spin_lock_irqsave(&dev->manage_lock, mflags);
546 			dev->management_fib_count--;
547 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
548 		}
549 		return -EBUSY;
550 	}
551 
552 
553 	/*
554 	 *	If the caller wanted us to wait for response wait now.
555 	 */
556 
557 	if (wait) {
558 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
559 		/* Only set for first known interruptable command */
560 		if (wait < 0) {
561 			/*
562 			 * *VERY* Dangerous to time out a command, the
563 			 * assumption is made that we have no hope of
564 			 * functioning because an interrupt routing or other
565 			 * hardware failure has occurred.
566 			 */
567 			unsigned long count = 36000000L; /* 3 minutes */
568 			while (down_trylock(&fibptr->event_wait)) {
569 				int blink;
570 				if (--count == 0) {
571 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
572 					spin_lock_irqsave(q->lock, qflags);
573 					q->numpending--;
574 					spin_unlock_irqrestore(q->lock, qflags);
575 					if (wait == -1) {
576 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
577 						  "Usually a result of a PCI interrupt routing problem;\n"
578 						  "update mother board BIOS or consider utilizing one of\n"
579 						  "the SAFE mode kernel options (acpi, apic etc)\n");
580 					}
581 					return -ETIMEDOUT;
582 				}
583 				if ((blink = aac_adapter_check_health(dev)) > 0) {
584 					if (wait == -1) {
585 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
586 						  "Usually a result of a serious unrecoverable hardware problem\n",
587 						  blink);
588 					}
589 					return -EFAULT;
590 				}
591 				udelay(5);
592 			}
593 		} else if (down_interruptible(&fibptr->event_wait)) {
594 			/* Do nothing ... satisfy
595 			 * down_interruptible must_check */
596 		}
597 
598 		spin_lock_irqsave(&fibptr->event_lock, flags);
599 		if (fibptr->done == 0) {
600 			fibptr->done = 2; /* Tell interrupt we aborted */
601 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
602 			return -ERESTARTSYS;
603 		}
604 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
605 		BUG_ON(fibptr->done == 0);
606 
607 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
608 			return -ETIMEDOUT;
609 		return 0;
610 	}
611 	/*
612 	 *	If the user does not want a response than return success otherwise
613 	 *	return pending
614 	 */
615 	if (reply)
616 		return -EINPROGRESS;
617 	else
618 		return 0;
619 }
620 
621 /**
622  *	aac_consumer_get	-	get the top of the queue
623  *	@dev: Adapter
624  *	@q: Queue
625  *	@entry: Return entry
626  *
627  *	Will return a pointer to the entry on the top of the queue requested that
628  *	we are a consumer of, and return the address of the queue entry. It does
629  *	not change the state of the queue.
630  */
631 
632 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
633 {
634 	u32 index;
635 	int status;
636 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
637 		status = 0;
638 	} else {
639 		/*
640 		 *	The consumer index must be wrapped if we have reached
641 		 *	the end of the queue, else we just use the entry
642 		 *	pointed to by the header index
643 		 */
644 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
645 			index = 0;
646 		else
647 			index = le32_to_cpu(*q->headers.consumer);
648 		*entry = q->base + index;
649 		status = 1;
650 	}
651 	return(status);
652 }
653 
654 /**
655  *	aac_consumer_free	-	free consumer entry
656  *	@dev: Adapter
657  *	@q: Queue
658  *	@qid: Queue ident
659  *
660  *	Frees up the current top of the queue we are a consumer of. If the
661  *	queue was full notify the producer that the queue is no longer full.
662  */
663 
664 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
665 {
666 	int wasfull = 0;
667 	u32 notify;
668 
669 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
670 		wasfull = 1;
671 
672 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
673 		*q->headers.consumer = cpu_to_le32(1);
674 	else
675 		le32_add_cpu(q->headers.consumer, 1);
676 
677 	if (wasfull) {
678 		switch (qid) {
679 
680 		case HostNormCmdQueue:
681 			notify = HostNormCmdNotFull;
682 			break;
683 		case HostNormRespQueue:
684 			notify = HostNormRespNotFull;
685 			break;
686 		default:
687 			BUG();
688 			return;
689 		}
690 		aac_adapter_notify(dev, notify);
691 	}
692 }
693 
694 /**
695  *	aac_fib_adapter_complete	-	complete adapter issued fib
696  *	@fibptr: fib to complete
697  *	@size: size of fib
698  *
699  *	Will do all necessary work to complete a FIB that was sent from
700  *	the adapter.
701  */
702 
703 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
704 {
705 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
706 	struct aac_dev * dev = fibptr->dev;
707 	struct aac_queue * q;
708 	unsigned long nointr = 0;
709 	unsigned long qflags;
710 
711 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
712 		kfree(hw_fib);
713 		return 0;
714 	}
715 
716 	if (hw_fib->header.XferState == 0) {
717 		if (dev->comm_interface == AAC_COMM_MESSAGE)
718 			kfree(hw_fib);
719 		return 0;
720 	}
721 	/*
722 	 *	If we plan to do anything check the structure type first.
723 	 */
724 	if (hw_fib->header.StructType != FIB_MAGIC) {
725 		if (dev->comm_interface == AAC_COMM_MESSAGE)
726 			kfree(hw_fib);
727 		return -EINVAL;
728 	}
729 	/*
730 	 *	This block handles the case where the adapter had sent us a
731 	 *	command and we have finished processing the command. We
732 	 *	call completeFib when we are done processing the command
733 	 *	and want to send a response back to the adapter. This will
734 	 *	send the completed cdb to the adapter.
735 	 */
736 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
737 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
738 			kfree (hw_fib);
739 		} else {
740 			u32 index;
741 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
742 			if (size) {
743 				size += sizeof(struct aac_fibhdr);
744 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
745 					return -EMSGSIZE;
746 				hw_fib->header.Size = cpu_to_le16(size);
747 			}
748 			q = &dev->queues->queue[AdapNormRespQueue];
749 			spin_lock_irqsave(q->lock, qflags);
750 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
751 			*(q->headers.producer) = cpu_to_le32(index + 1);
752 			spin_unlock_irqrestore(q->lock, qflags);
753 			if (!(nointr & (int)aac_config.irq_mod))
754 				aac_adapter_notify(dev, AdapNormRespQueue);
755 		}
756 	} else {
757 		printk(KERN_WARNING "aac_fib_adapter_complete: "
758 			"Unknown xferstate detected.\n");
759 		BUG();
760 	}
761 	return 0;
762 }
763 
764 /**
765  *	aac_fib_complete	-	fib completion handler
766  *	@fib: FIB to complete
767  *
768  *	Will do all necessary work to complete a FIB.
769  */
770 
771 int aac_fib_complete(struct fib *fibptr)
772 {
773 	unsigned long flags;
774 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
775 
776 	/*
777 	 *	Check for a fib which has already been completed
778 	 */
779 
780 	if (hw_fib->header.XferState == 0)
781 		return 0;
782 	/*
783 	 *	If we plan to do anything check the structure type first.
784 	 */
785 
786 	if (hw_fib->header.StructType != FIB_MAGIC)
787 		return -EINVAL;
788 	/*
789 	 *	This block completes a cdb which orginated on the host and we
790 	 *	just need to deallocate the cdb or reinit it. At this point the
791 	 *	command is complete that we had sent to the adapter and this
792 	 *	cdb could be reused.
793 	 */
794 	spin_lock_irqsave(&fibptr->event_lock, flags);
795 	if (fibptr->done == 2) {
796 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
797 		return 0;
798 	}
799 	spin_unlock_irqrestore(&fibptr->event_lock, flags);
800 
801 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
802 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
803 	{
804 		fib_dealloc(fibptr);
805 	}
806 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
807 	{
808 		/*
809 		 *	This handles the case when the host has aborted the I/O
810 		 *	to the adapter because the adapter is not responding
811 		 */
812 		fib_dealloc(fibptr);
813 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
814 		fib_dealloc(fibptr);
815 	} else {
816 		BUG();
817 	}
818 	return 0;
819 }
820 
821 /**
822  *	aac_printf	-	handle printf from firmware
823  *	@dev: Adapter
824  *	@val: Message info
825  *
826  *	Print a message passed to us by the controller firmware on the
827  *	Adaptec board
828  */
829 
830 void aac_printf(struct aac_dev *dev, u32 val)
831 {
832 	char *cp = dev->printfbuf;
833 	if (dev->printf_enabled)
834 	{
835 		int length = val & 0xffff;
836 		int level = (val >> 16) & 0xffff;
837 
838 		/*
839 		 *	The size of the printfbuf is set in port.c
840 		 *	There is no variable or define for it
841 		 */
842 		if (length > 255)
843 			length = 255;
844 		if (cp[length] != 0)
845 			cp[length] = 0;
846 		if (level == LOG_AAC_HIGH_ERROR)
847 			printk(KERN_WARNING "%s:%s", dev->name, cp);
848 		else
849 			printk(KERN_INFO "%s:%s", dev->name, cp);
850 	}
851 	memset(cp, 0, 256);
852 }
853 
854 
855 /**
856  *	aac_handle_aif		-	Handle a message from the firmware
857  *	@dev: Which adapter this fib is from
858  *	@fibptr: Pointer to fibptr from adapter
859  *
860  *	This routine handles a driver notify fib from the adapter and
861  *	dispatches it to the appropriate routine for handling.
862  */
863 
864 #define AIF_SNIFF_TIMEOUT	(30*HZ)
865 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
866 {
867 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
868 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
869 	u32 channel, id, lun, container;
870 	struct scsi_device *device;
871 	enum {
872 		NOTHING,
873 		DELETE,
874 		ADD,
875 		CHANGE
876 	} device_config_needed = NOTHING;
877 
878 	/* Sniff for container changes */
879 
880 	if (!dev || !dev->fsa_dev)
881 		return;
882 	container = channel = id = lun = (u32)-1;
883 
884 	/*
885 	 *	We have set this up to try and minimize the number of
886 	 * re-configures that take place. As a result of this when
887 	 * certain AIF's come in we will set a flag waiting for another
888 	 * type of AIF before setting the re-config flag.
889 	 */
890 	switch (le32_to_cpu(aifcmd->command)) {
891 	case AifCmdDriverNotify:
892 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
893 		/*
894 		 *	Morph or Expand complete
895 		 */
896 		case AifDenMorphComplete:
897 		case AifDenVolumeExtendComplete:
898 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
899 			if (container >= dev->maximum_num_containers)
900 				break;
901 
902 			/*
903 			 *	Find the scsi_device associated with the SCSI
904 			 * address. Make sure we have the right array, and if
905 			 * so set the flag to initiate a new re-config once we
906 			 * see an AifEnConfigChange AIF come through.
907 			 */
908 
909 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
910 				device = scsi_device_lookup(dev->scsi_host_ptr,
911 					CONTAINER_TO_CHANNEL(container),
912 					CONTAINER_TO_ID(container),
913 					CONTAINER_TO_LUN(container));
914 				if (device) {
915 					dev->fsa_dev[container].config_needed = CHANGE;
916 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
917 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
918 					scsi_device_put(device);
919 				}
920 			}
921 		}
922 
923 		/*
924 		 *	If we are waiting on something and this happens to be
925 		 * that thing then set the re-configure flag.
926 		 */
927 		if (container != (u32)-1) {
928 			if (container >= dev->maximum_num_containers)
929 				break;
930 			if ((dev->fsa_dev[container].config_waiting_on ==
931 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
932 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
933 				dev->fsa_dev[container].config_waiting_on = 0;
934 		} else for (container = 0;
935 		    container < dev->maximum_num_containers; ++container) {
936 			if ((dev->fsa_dev[container].config_waiting_on ==
937 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
938 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
939 				dev->fsa_dev[container].config_waiting_on = 0;
940 		}
941 		break;
942 
943 	case AifCmdEventNotify:
944 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
945 		case AifEnBatteryEvent:
946 			dev->cache_protected =
947 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
948 			break;
949 		/*
950 		 *	Add an Array.
951 		 */
952 		case AifEnAddContainer:
953 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
954 			if (container >= dev->maximum_num_containers)
955 				break;
956 			dev->fsa_dev[container].config_needed = ADD;
957 			dev->fsa_dev[container].config_waiting_on =
958 				AifEnConfigChange;
959 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
960 			break;
961 
962 		/*
963 		 *	Delete an Array.
964 		 */
965 		case AifEnDeleteContainer:
966 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
967 			if (container >= dev->maximum_num_containers)
968 				break;
969 			dev->fsa_dev[container].config_needed = DELETE;
970 			dev->fsa_dev[container].config_waiting_on =
971 				AifEnConfigChange;
972 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
973 			break;
974 
975 		/*
976 		 *	Container change detected. If we currently are not
977 		 * waiting on something else, setup to wait on a Config Change.
978 		 */
979 		case AifEnContainerChange:
980 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
981 			if (container >= dev->maximum_num_containers)
982 				break;
983 			if (dev->fsa_dev[container].config_waiting_on &&
984 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
985 				break;
986 			dev->fsa_dev[container].config_needed = CHANGE;
987 			dev->fsa_dev[container].config_waiting_on =
988 				AifEnConfigChange;
989 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
990 			break;
991 
992 		case AifEnConfigChange:
993 			break;
994 
995 		case AifEnAddJBOD:
996 		case AifEnDeleteJBOD:
997 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
998 			if ((container >> 28)) {
999 				container = (u32)-1;
1000 				break;
1001 			}
1002 			channel = (container >> 24) & 0xF;
1003 			if (channel >= dev->maximum_num_channels) {
1004 				container = (u32)-1;
1005 				break;
1006 			}
1007 			id = container & 0xFFFF;
1008 			if (id >= dev->maximum_num_physicals) {
1009 				container = (u32)-1;
1010 				break;
1011 			}
1012 			lun = (container >> 16) & 0xFF;
1013 			container = (u32)-1;
1014 			channel = aac_phys_to_logical(channel);
1015 			device_config_needed =
1016 			  (((__le32 *)aifcmd->data)[0] ==
1017 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1018 			if (device_config_needed == ADD) {
1019 				device = scsi_device_lookup(dev->scsi_host_ptr,
1020 					channel,
1021 					id,
1022 					lun);
1023 				if (device) {
1024 					scsi_remove_device(device);
1025 					scsi_device_put(device);
1026 				}
1027 			}
1028 			break;
1029 
1030 		case AifEnEnclosureManagement:
1031 			/*
1032 			 * If in JBOD mode, automatic exposure of new
1033 			 * physical target to be suppressed until configured.
1034 			 */
1035 			if (dev->jbod)
1036 				break;
1037 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1038 			case EM_DRIVE_INSERTION:
1039 			case EM_DRIVE_REMOVAL:
1040 				container = le32_to_cpu(
1041 					((__le32 *)aifcmd->data)[2]);
1042 				if ((container >> 28)) {
1043 					container = (u32)-1;
1044 					break;
1045 				}
1046 				channel = (container >> 24) & 0xF;
1047 				if (channel >= dev->maximum_num_channels) {
1048 					container = (u32)-1;
1049 					break;
1050 				}
1051 				id = container & 0xFFFF;
1052 				lun = (container >> 16) & 0xFF;
1053 				container = (u32)-1;
1054 				if (id >= dev->maximum_num_physicals) {
1055 					/* legacy dev_t ? */
1056 					if ((0x2000 <= id) || lun || channel ||
1057 					  ((channel = (id >> 7) & 0x3F) >=
1058 					  dev->maximum_num_channels))
1059 						break;
1060 					lun = (id >> 4) & 7;
1061 					id &= 0xF;
1062 				}
1063 				channel = aac_phys_to_logical(channel);
1064 				device_config_needed =
1065 				  (((__le32 *)aifcmd->data)[3]
1066 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ?
1067 				  ADD : DELETE;
1068 				break;
1069 			}
1070 			break;
1071 		}
1072 
1073 		/*
1074 		 *	If we are waiting on something and this happens to be
1075 		 * that thing then set the re-configure flag.
1076 		 */
1077 		if (container != (u32)-1) {
1078 			if (container >= dev->maximum_num_containers)
1079 				break;
1080 			if ((dev->fsa_dev[container].config_waiting_on ==
1081 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1082 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1083 				dev->fsa_dev[container].config_waiting_on = 0;
1084 		} else for (container = 0;
1085 		    container < dev->maximum_num_containers; ++container) {
1086 			if ((dev->fsa_dev[container].config_waiting_on ==
1087 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1088 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1089 				dev->fsa_dev[container].config_waiting_on = 0;
1090 		}
1091 		break;
1092 
1093 	case AifCmdJobProgress:
1094 		/*
1095 		 *	These are job progress AIF's. When a Clear is being
1096 		 * done on a container it is initially created then hidden from
1097 		 * the OS. When the clear completes we don't get a config
1098 		 * change so we monitor the job status complete on a clear then
1099 		 * wait for a container change.
1100 		 */
1101 
1102 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1103 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1104 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1105 			for (container = 0;
1106 			    container < dev->maximum_num_containers;
1107 			    ++container) {
1108 				/*
1109 				 * Stomp on all config sequencing for all
1110 				 * containers?
1111 				 */
1112 				dev->fsa_dev[container].config_waiting_on =
1113 					AifEnContainerChange;
1114 				dev->fsa_dev[container].config_needed = ADD;
1115 				dev->fsa_dev[container].config_waiting_stamp =
1116 					jiffies;
1117 			}
1118 		}
1119 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1120 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1121 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1122 			for (container = 0;
1123 			    container < dev->maximum_num_containers;
1124 			    ++container) {
1125 				/*
1126 				 * Stomp on all config sequencing for all
1127 				 * containers?
1128 				 */
1129 				dev->fsa_dev[container].config_waiting_on =
1130 					AifEnContainerChange;
1131 				dev->fsa_dev[container].config_needed = DELETE;
1132 				dev->fsa_dev[container].config_waiting_stamp =
1133 					jiffies;
1134 			}
1135 		}
1136 		break;
1137 	}
1138 
1139 	container = 0;
1140 retry_next:
1141 	if (device_config_needed == NOTHING)
1142 	for (; container < dev->maximum_num_containers; ++container) {
1143 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1144 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1145 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1146 			device_config_needed =
1147 				dev->fsa_dev[container].config_needed;
1148 			dev->fsa_dev[container].config_needed = NOTHING;
1149 			channel = CONTAINER_TO_CHANNEL(container);
1150 			id = CONTAINER_TO_ID(container);
1151 			lun = CONTAINER_TO_LUN(container);
1152 			break;
1153 		}
1154 	}
1155 	if (device_config_needed == NOTHING)
1156 		return;
1157 
1158 	/*
1159 	 *	If we decided that a re-configuration needs to be done,
1160 	 * schedule it here on the way out the door, please close the door
1161 	 * behind you.
1162 	 */
1163 
1164 	/*
1165 	 *	Find the scsi_device associated with the SCSI address,
1166 	 * and mark it as changed, invalidating the cache. This deals
1167 	 * with changes to existing device IDs.
1168 	 */
1169 
1170 	if (!dev || !dev->scsi_host_ptr)
1171 		return;
1172 	/*
1173 	 * force reload of disk info via aac_probe_container
1174 	 */
1175 	if ((channel == CONTAINER_CHANNEL) &&
1176 	  (device_config_needed != NOTHING)) {
1177 		if (dev->fsa_dev[container].valid == 1)
1178 			dev->fsa_dev[container].valid = 2;
1179 		aac_probe_container(dev, container);
1180 	}
1181 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1182 	if (device) {
1183 		switch (device_config_needed) {
1184 		case DELETE:
1185 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1186 			scsi_remove_device(device);
1187 #else
1188 			if (scsi_device_online(device)) {
1189 				scsi_device_set_state(device, SDEV_OFFLINE);
1190 				sdev_printk(KERN_INFO, device,
1191 					"Device offlined - %s\n",
1192 					(channel == CONTAINER_CHANNEL) ?
1193 						"array deleted" :
1194 						"enclosure services event");
1195 			}
1196 #endif
1197 			break;
1198 		case ADD:
1199 			if (!scsi_device_online(device)) {
1200 				sdev_printk(KERN_INFO, device,
1201 					"Device online - %s\n",
1202 					(channel == CONTAINER_CHANNEL) ?
1203 						"array created" :
1204 						"enclosure services event");
1205 				scsi_device_set_state(device, SDEV_RUNNING);
1206 			}
1207 			/* FALLTHRU */
1208 		case CHANGE:
1209 			if ((channel == CONTAINER_CHANNEL)
1210 			 && (!dev->fsa_dev[container].valid)) {
1211 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1212 				scsi_remove_device(device);
1213 #else
1214 				if (!scsi_device_online(device))
1215 					break;
1216 				scsi_device_set_state(device, SDEV_OFFLINE);
1217 				sdev_printk(KERN_INFO, device,
1218 					"Device offlined - %s\n",
1219 					"array failed");
1220 #endif
1221 				break;
1222 			}
1223 			scsi_rescan_device(&device->sdev_gendev);
1224 
1225 		default:
1226 			break;
1227 		}
1228 		scsi_device_put(device);
1229 		device_config_needed = NOTHING;
1230 	}
1231 	if (device_config_needed == ADD)
1232 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1233 	if (channel == CONTAINER_CHANNEL) {
1234 		container++;
1235 		device_config_needed = NOTHING;
1236 		goto retry_next;
1237 	}
1238 }
1239 
1240 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1241 {
1242 	int index, quirks;
1243 	int retval;
1244 	struct Scsi_Host *host;
1245 	struct scsi_device *dev;
1246 	struct scsi_cmnd *command;
1247 	struct scsi_cmnd *command_list;
1248 	int jafo = 0;
1249 
1250 	/*
1251 	 * Assumptions:
1252 	 *	- host is locked, unless called by the aacraid thread.
1253 	 *	  (a matter of convenience, due to legacy issues surrounding
1254 	 *	  eh_host_adapter_reset).
1255 	 *	- in_reset is asserted, so no new i/o is getting to the
1256 	 *	  card.
1257 	 *	- The card is dead, or will be very shortly ;-/ so no new
1258 	 *	  commands are completing in the interrupt service.
1259 	 */
1260 	host = aac->scsi_host_ptr;
1261 	scsi_block_requests(host);
1262 	aac_adapter_disable_int(aac);
1263 	if (aac->thread->pid != current->pid) {
1264 		spin_unlock_irq(host->host_lock);
1265 		kthread_stop(aac->thread);
1266 		jafo = 1;
1267 	}
1268 
1269 	/*
1270 	 *	If a positive health, means in a known DEAD PANIC
1271 	 * state and the adapter could be reset to `try again'.
1272 	 */
1273 	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1274 
1275 	if (retval)
1276 		goto out;
1277 
1278 	/*
1279 	 *	Loop through the fibs, close the synchronous FIBS
1280 	 */
1281 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1282 		struct fib *fib = &aac->fibs[index];
1283 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1284 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1285 			unsigned long flagv;
1286 			spin_lock_irqsave(&fib->event_lock, flagv);
1287 			up(&fib->event_wait);
1288 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1289 			schedule();
1290 			retval = 0;
1291 		}
1292 	}
1293 	/* Give some extra time for ioctls to complete. */
1294 	if (retval == 0)
1295 		ssleep(2);
1296 	index = aac->cardtype;
1297 
1298 	/*
1299 	 * Re-initialize the adapter, first free resources, then carefully
1300 	 * apply the initialization sequence to come back again. Only risk
1301 	 * is a change in Firmware dropping cache, it is assumed the caller
1302 	 * will ensure that i/o is queisced and the card is flushed in that
1303 	 * case.
1304 	 */
1305 	aac_fib_map_free(aac);
1306 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1307 	aac->comm_addr = NULL;
1308 	aac->comm_phys = 0;
1309 	kfree(aac->queues);
1310 	aac->queues = NULL;
1311 	free_irq(aac->pdev->irq, aac);
1312 	if (aac->msi)
1313 		pci_disable_msi(aac->pdev);
1314 	kfree(aac->fsa_dev);
1315 	aac->fsa_dev = NULL;
1316 	quirks = aac_get_driver_ident(index)->quirks;
1317 	if (quirks & AAC_QUIRK_31BIT) {
1318 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1319 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1320 			goto out;
1321 	} else {
1322 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1323 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1324 			goto out;
1325 	}
1326 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1327 		goto out;
1328 	if (quirks & AAC_QUIRK_31BIT)
1329 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1330 			goto out;
1331 	if (jafo) {
1332 		aac->thread = kthread_run(aac_command_thread, aac, aac->name);
1333 		if (IS_ERR(aac->thread)) {
1334 			retval = PTR_ERR(aac->thread);
1335 			goto out;
1336 		}
1337 	}
1338 	(void)aac_get_adapter_info(aac);
1339 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1340 		host->sg_tablesize = 34;
1341 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1342 	}
1343 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1344 		host->sg_tablesize = 17;
1345 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1346 	}
1347 	aac_get_config_status(aac, 1);
1348 	aac_get_containers(aac);
1349 	/*
1350 	 * This is where the assumption that the Adapter is quiesced
1351 	 * is important.
1352 	 */
1353 	command_list = NULL;
1354 	__shost_for_each_device(dev, host) {
1355 		unsigned long flags;
1356 		spin_lock_irqsave(&dev->list_lock, flags);
1357 		list_for_each_entry(command, &dev->cmd_list, list)
1358 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1359 				command->SCp.buffer = (struct scatterlist *)command_list;
1360 				command_list = command;
1361 			}
1362 		spin_unlock_irqrestore(&dev->list_lock, flags);
1363 	}
1364 	while ((command = command_list)) {
1365 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1366 		command->SCp.buffer = NULL;
1367 		command->result = DID_OK << 16
1368 		  | COMMAND_COMPLETE << 8
1369 		  | SAM_STAT_TASK_SET_FULL;
1370 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1371 		command->scsi_done(command);
1372 	}
1373 	retval = 0;
1374 
1375 out:
1376 	aac->in_reset = 0;
1377 	scsi_unblock_requests(host);
1378 	if (jafo) {
1379 		spin_lock_irq(host->host_lock);
1380 	}
1381 	return retval;
1382 }
1383 
1384 int aac_reset_adapter(struct aac_dev * aac, int forced)
1385 {
1386 	unsigned long flagv = 0;
1387 	int retval;
1388 	struct Scsi_Host * host;
1389 
1390 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1391 		return -EBUSY;
1392 
1393 	if (aac->in_reset) {
1394 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1395 		return -EBUSY;
1396 	}
1397 	aac->in_reset = 1;
1398 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1399 
1400 	/*
1401 	 * Wait for all commands to complete to this specific
1402 	 * target (block maximum 60 seconds). Although not necessary,
1403 	 * it does make us a good storage citizen.
1404 	 */
1405 	host = aac->scsi_host_ptr;
1406 	scsi_block_requests(host);
1407 	if (forced < 2) for (retval = 60; retval; --retval) {
1408 		struct scsi_device * dev;
1409 		struct scsi_cmnd * command;
1410 		int active = 0;
1411 
1412 		__shost_for_each_device(dev, host) {
1413 			spin_lock_irqsave(&dev->list_lock, flagv);
1414 			list_for_each_entry(command, &dev->cmd_list, list) {
1415 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1416 					active++;
1417 					break;
1418 				}
1419 			}
1420 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1421 			if (active)
1422 				break;
1423 
1424 		}
1425 		/*
1426 		 * We can exit If all the commands are complete
1427 		 */
1428 		if (active == 0)
1429 			break;
1430 		ssleep(1);
1431 	}
1432 
1433 	/* Quiesce build, flush cache, write through mode */
1434 	if (forced < 2)
1435 		aac_send_shutdown(aac);
1436 	spin_lock_irqsave(host->host_lock, flagv);
1437 	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1438 	spin_unlock_irqrestore(host->host_lock, flagv);
1439 
1440 	if ((forced < 2) && (retval == -ENODEV)) {
1441 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1442 		struct fib * fibctx = aac_fib_alloc(aac);
1443 		if (fibctx) {
1444 			struct aac_pause *cmd;
1445 			int status;
1446 
1447 			aac_fib_init(fibctx);
1448 
1449 			cmd = (struct aac_pause *) fib_data(fibctx);
1450 
1451 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1452 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1453 			cmd->timeout = cpu_to_le32(1);
1454 			cmd->min = cpu_to_le32(1);
1455 			cmd->noRescan = cpu_to_le32(1);
1456 			cmd->count = cpu_to_le32(0);
1457 
1458 			status = aac_fib_send(ContainerCommand,
1459 			  fibctx,
1460 			  sizeof(struct aac_pause),
1461 			  FsaNormal,
1462 			  -2 /* Timeout silently */, 1,
1463 			  NULL, NULL);
1464 
1465 			if (status >= 0)
1466 				aac_fib_complete(fibctx);
1467 			/* FIB should be freed only after getting
1468 			 * the response from the F/W */
1469 			if (status != -ERESTARTSYS)
1470 				aac_fib_free(fibctx);
1471 		}
1472 	}
1473 
1474 	return retval;
1475 }
1476 
1477 int aac_check_health(struct aac_dev * aac)
1478 {
1479 	int BlinkLED;
1480 	unsigned long time_now, flagv = 0;
1481 	struct list_head * entry;
1482 	struct Scsi_Host * host;
1483 
1484 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1485 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1486 		return 0;
1487 
1488 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1489 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1490 		return 0; /* OK */
1491 	}
1492 
1493 	aac->in_reset = 1;
1494 
1495 	/* Fake up an AIF:
1496 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1497 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1498 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1499 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1500 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1501 	 *	aac.aifcmd.data[3] = BlinkLED
1502 	 */
1503 
1504 	time_now = jiffies/HZ;
1505 	entry = aac->fib_list.next;
1506 
1507 	/*
1508 	 * For each Context that is on the
1509 	 * fibctxList, make a copy of the
1510 	 * fib, and then set the event to wake up the
1511 	 * thread that is waiting for it.
1512 	 */
1513 	while (entry != &aac->fib_list) {
1514 		/*
1515 		 * Extract the fibctx
1516 		 */
1517 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1518 		struct hw_fib * hw_fib;
1519 		struct fib * fib;
1520 		/*
1521 		 * Check if the queue is getting
1522 		 * backlogged
1523 		 */
1524 		if (fibctx->count > 20) {
1525 			/*
1526 			 * It's *not* jiffies folks,
1527 			 * but jiffies / HZ, so do not
1528 			 * panic ...
1529 			 */
1530 			u32 time_last = fibctx->jiffies;
1531 			/*
1532 			 * Has it been > 2 minutes
1533 			 * since the last read off
1534 			 * the queue?
1535 			 */
1536 			if ((time_now - time_last) > aif_timeout) {
1537 				entry = entry->next;
1538 				aac_close_fib_context(aac, fibctx);
1539 				continue;
1540 			}
1541 		}
1542 		/*
1543 		 * Warning: no sleep allowed while
1544 		 * holding spinlock
1545 		 */
1546 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1547 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1548 		if (fib && hw_fib) {
1549 			struct aac_aifcmd * aif;
1550 
1551 			fib->hw_fib_va = hw_fib;
1552 			fib->dev = aac;
1553 			aac_fib_init(fib);
1554 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1555 			fib->size = sizeof (struct fib);
1556 			fib->data = hw_fib->data;
1557 			aif = (struct aac_aifcmd *)hw_fib->data;
1558 			aif->command = cpu_to_le32(AifCmdEventNotify);
1559 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1560 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1561 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1562 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1563 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1564 
1565 			/*
1566 			 * Put the FIB onto the
1567 			 * fibctx's fibs
1568 			 */
1569 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1570 			fibctx->count++;
1571 			/*
1572 			 * Set the event to wake up the
1573 			 * thread that will waiting.
1574 			 */
1575 			up(&fibctx->wait_sem);
1576 		} else {
1577 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1578 			kfree(fib);
1579 			kfree(hw_fib);
1580 		}
1581 		entry = entry->next;
1582 	}
1583 
1584 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1585 
1586 	if (BlinkLED < 0) {
1587 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1588 		goto out;
1589 	}
1590 
1591 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1592 
1593 	if (!aac_check_reset || ((aac_check_reset == 1) &&
1594 		(aac->supplement_adapter_info.SupportedOptions2 &
1595 			AAC_OPTION_IGNORE_RESET)))
1596 		goto out;
1597 	host = aac->scsi_host_ptr;
1598 	if (aac->thread->pid != current->pid)
1599 		spin_lock_irqsave(host->host_lock, flagv);
1600 	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1601 	if (aac->thread->pid != current->pid)
1602 		spin_unlock_irqrestore(host->host_lock, flagv);
1603 	return BlinkLED;
1604 
1605 out:
1606 	aac->in_reset = 0;
1607 	return BlinkLED;
1608 }
1609 
1610 
1611 /**
1612  *	aac_command_thread	-	command processing thread
1613  *	@dev: Adapter to monitor
1614  *
1615  *	Waits on the commandready event in it's queue. When the event gets set
1616  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1617  *	until the queue is empty. When the queue is empty it will wait for
1618  *	more FIBs.
1619  */
1620 
1621 int aac_command_thread(void *data)
1622 {
1623 	struct aac_dev *dev = data;
1624 	struct hw_fib *hw_fib, *hw_newfib;
1625 	struct fib *fib, *newfib;
1626 	struct aac_fib_context *fibctx;
1627 	unsigned long flags;
1628 	DECLARE_WAITQUEUE(wait, current);
1629 	unsigned long next_jiffies = jiffies + HZ;
1630 	unsigned long next_check_jiffies = next_jiffies;
1631 	long difference = HZ;
1632 
1633 	/*
1634 	 *	We can only have one thread per adapter for AIF's.
1635 	 */
1636 	if (dev->aif_thread)
1637 		return -EINVAL;
1638 
1639 	/*
1640 	 *	Let the DPC know it has a place to send the AIF's to.
1641 	 */
1642 	dev->aif_thread = 1;
1643 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1644 	set_current_state(TASK_INTERRUPTIBLE);
1645 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1646 	while (1) {
1647 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1648 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1649 			struct list_head *entry;
1650 			struct aac_aifcmd * aifcmd;
1651 
1652 			set_current_state(TASK_RUNNING);
1653 
1654 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1655 			list_del(entry);
1656 
1657 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1658 			fib = list_entry(entry, struct fib, fiblink);
1659 			/*
1660 			 *	We will process the FIB here or pass it to a
1661 			 *	worker thread that is TBD. We Really can't
1662 			 *	do anything at this point since we don't have
1663 			 *	anything defined for this thread to do.
1664 			 */
1665 			hw_fib = fib->hw_fib_va;
1666 			memset(fib, 0, sizeof(struct fib));
1667 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1668 			fib->size = sizeof(struct fib);
1669 			fib->hw_fib_va = hw_fib;
1670 			fib->data = hw_fib->data;
1671 			fib->dev = dev;
1672 			/*
1673 			 *	We only handle AifRequest fibs from the adapter.
1674 			 */
1675 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1676 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1677 				/* Handle Driver Notify Events */
1678 				aac_handle_aif(dev, fib);
1679 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1680 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1681 			} else {
1682 				/* The u32 here is important and intended. We are using
1683 				   32bit wrapping time to fit the adapter field */
1684 
1685 				u32 time_now, time_last;
1686 				unsigned long flagv;
1687 				unsigned num;
1688 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1689 				struct fib ** fib_pool, ** fib_p;
1690 
1691 				/* Sniff events */
1692 				if ((aifcmd->command ==
1693 				     cpu_to_le32(AifCmdEventNotify)) ||
1694 				    (aifcmd->command ==
1695 				     cpu_to_le32(AifCmdJobProgress))) {
1696 					aac_handle_aif(dev, fib);
1697 				}
1698 
1699 				time_now = jiffies/HZ;
1700 
1701 				/*
1702 				 * Warning: no sleep allowed while
1703 				 * holding spinlock. We take the estimate
1704 				 * and pre-allocate a set of fibs outside the
1705 				 * lock.
1706 				 */
1707 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1708 				    / sizeof(struct hw_fib); /* some extra */
1709 				spin_lock_irqsave(&dev->fib_lock, flagv);
1710 				entry = dev->fib_list.next;
1711 				while (entry != &dev->fib_list) {
1712 					entry = entry->next;
1713 					++num;
1714 				}
1715 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1716 				hw_fib_pool = NULL;
1717 				fib_pool = NULL;
1718 				if (num
1719 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1720 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1721 					hw_fib_p = hw_fib_pool;
1722 					fib_p = fib_pool;
1723 					while (hw_fib_p < &hw_fib_pool[num]) {
1724 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1725 							--hw_fib_p;
1726 							break;
1727 						}
1728 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1729 							kfree(*(--hw_fib_p));
1730 							break;
1731 						}
1732 					}
1733 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1734 						kfree(fib_pool);
1735 						fib_pool = NULL;
1736 						kfree(hw_fib_pool);
1737 						hw_fib_pool = NULL;
1738 					}
1739 				} else {
1740 					kfree(hw_fib_pool);
1741 					hw_fib_pool = NULL;
1742 				}
1743 				spin_lock_irqsave(&dev->fib_lock, flagv);
1744 				entry = dev->fib_list.next;
1745 				/*
1746 				 * For each Context that is on the
1747 				 * fibctxList, make a copy of the
1748 				 * fib, and then set the event to wake up the
1749 				 * thread that is waiting for it.
1750 				 */
1751 				hw_fib_p = hw_fib_pool;
1752 				fib_p = fib_pool;
1753 				while (entry != &dev->fib_list) {
1754 					/*
1755 					 * Extract the fibctx
1756 					 */
1757 					fibctx = list_entry(entry, struct aac_fib_context, next);
1758 					/*
1759 					 * Check if the queue is getting
1760 					 * backlogged
1761 					 */
1762 					if (fibctx->count > 20)
1763 					{
1764 						/*
1765 						 * It's *not* jiffies folks,
1766 						 * but jiffies / HZ so do not
1767 						 * panic ...
1768 						 */
1769 						time_last = fibctx->jiffies;
1770 						/*
1771 						 * Has it been > 2 minutes
1772 						 * since the last read off
1773 						 * the queue?
1774 						 */
1775 						if ((time_now - time_last) > aif_timeout) {
1776 							entry = entry->next;
1777 							aac_close_fib_context(dev, fibctx);
1778 							continue;
1779 						}
1780 					}
1781 					/*
1782 					 * Warning: no sleep allowed while
1783 					 * holding spinlock
1784 					 */
1785 					if (hw_fib_p < &hw_fib_pool[num]) {
1786 						hw_newfib = *hw_fib_p;
1787 						*(hw_fib_p++) = NULL;
1788 						newfib = *fib_p;
1789 						*(fib_p++) = NULL;
1790 						/*
1791 						 * Make the copy of the FIB
1792 						 */
1793 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1794 						memcpy(newfib, fib, sizeof(struct fib));
1795 						newfib->hw_fib_va = hw_newfib;
1796 						/*
1797 						 * Put the FIB onto the
1798 						 * fibctx's fibs
1799 						 */
1800 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1801 						fibctx->count++;
1802 						/*
1803 						 * Set the event to wake up the
1804 						 * thread that is waiting.
1805 						 */
1806 						up(&fibctx->wait_sem);
1807 					} else {
1808 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1809 					}
1810 					entry = entry->next;
1811 				}
1812 				/*
1813 				 *	Set the status of this FIB
1814 				 */
1815 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1816 				aac_fib_adapter_complete(fib, sizeof(u32));
1817 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1818 				/* Free up the remaining resources */
1819 				hw_fib_p = hw_fib_pool;
1820 				fib_p = fib_pool;
1821 				while (hw_fib_p < &hw_fib_pool[num]) {
1822 					kfree(*hw_fib_p);
1823 					kfree(*fib_p);
1824 					++fib_p;
1825 					++hw_fib_p;
1826 				}
1827 				kfree(hw_fib_pool);
1828 				kfree(fib_pool);
1829 			}
1830 			kfree(fib);
1831 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1832 		}
1833 		/*
1834 		 *	There are no more AIF's
1835 		 */
1836 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1837 
1838 		/*
1839 		 *	Background activity
1840 		 */
1841 		if ((time_before(next_check_jiffies,next_jiffies))
1842 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1843 			next_check_jiffies = next_jiffies;
1844 			if (aac_check_health(dev) == 0) {
1845 				difference = ((long)(unsigned)check_interval)
1846 					   * HZ;
1847 				next_check_jiffies = jiffies + difference;
1848 			} else if (!dev->queues)
1849 				break;
1850 		}
1851 		if (!time_before(next_check_jiffies,next_jiffies)
1852 		 && ((difference = next_jiffies - jiffies) <= 0)) {
1853 			struct timeval now;
1854 			int ret;
1855 
1856 			/* Don't even try to talk to adapter if its sick */
1857 			ret = aac_check_health(dev);
1858 			if (!ret && !dev->queues)
1859 				break;
1860 			next_check_jiffies = jiffies
1861 					   + ((long)(unsigned)check_interval)
1862 					   * HZ;
1863 			do_gettimeofday(&now);
1864 
1865 			/* Synchronize our watches */
1866 			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1867 			 && (now.tv_usec > (1000000 / HZ)))
1868 				difference = (((1000000 - now.tv_usec) * HZ)
1869 				  + 500000) / 1000000;
1870 			else if (ret == 0) {
1871 				struct fib *fibptr;
1872 
1873 				if ((fibptr = aac_fib_alloc(dev))) {
1874 					int status;
1875 					__le32 *info;
1876 
1877 					aac_fib_init(fibptr);
1878 
1879 					info = (__le32 *) fib_data(fibptr);
1880 					if (now.tv_usec > 500000)
1881 						++now.tv_sec;
1882 
1883 					*info = cpu_to_le32(now.tv_sec);
1884 
1885 					status = aac_fib_send(SendHostTime,
1886 						fibptr,
1887 						sizeof(*info),
1888 						FsaNormal,
1889 						1, 1,
1890 						NULL,
1891 						NULL);
1892 					/* Do not set XferState to zero unless
1893 					 * receives a response from F/W */
1894 					if (status >= 0)
1895 						aac_fib_complete(fibptr);
1896 					/* FIB should be freed only after
1897 					 * getting the response from the F/W */
1898 					if (status != -ERESTARTSYS)
1899 						aac_fib_free(fibptr);
1900 				}
1901 				difference = (long)(unsigned)update_interval*HZ;
1902 			} else {
1903 				/* retry shortly */
1904 				difference = 10 * HZ;
1905 			}
1906 			next_jiffies = jiffies + difference;
1907 			if (time_before(next_check_jiffies,next_jiffies))
1908 				difference = next_check_jiffies - jiffies;
1909 		}
1910 		if (difference <= 0)
1911 			difference = 1;
1912 		set_current_state(TASK_INTERRUPTIBLE);
1913 		schedule_timeout(difference);
1914 
1915 		if (kthread_should_stop())
1916 			break;
1917 	}
1918 	if (dev->queues)
1919 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1920 	dev->aif_thread = 0;
1921 	return 0;
1922 }
1923