1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * commsup.c 28 * 29 * Abstract: Contain all routines that are required for FSA host/adapter 30 * communication. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/crash_dump.h> 37 #include <linux/types.h> 38 #include <linux/sched.h> 39 #include <linux/pci.h> 40 #include <linux/spinlock.h> 41 #include <linux/slab.h> 42 #include <linux/completion.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/kthread.h> 46 #include <linux/interrupt.h> 47 #include <linux/semaphore.h> 48 #include <linux/bcd.h> 49 #include <scsi/scsi.h> 50 #include <scsi/scsi_host.h> 51 #include <scsi/scsi_device.h> 52 #include <scsi/scsi_cmnd.h> 53 54 #include "aacraid.h" 55 56 /** 57 * fib_map_alloc - allocate the fib objects 58 * @dev: Adapter to allocate for 59 * 60 * Allocate and map the shared PCI space for the FIB blocks used to 61 * talk to the Adaptec firmware. 62 */ 63 64 static int fib_map_alloc(struct aac_dev *dev) 65 { 66 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 67 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 68 else 69 dev->max_cmd_size = dev->max_fib_size; 70 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 71 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 72 } else { 73 dev->max_cmd_size = dev->max_fib_size; 74 } 75 76 dprintk((KERN_INFO 77 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 78 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 79 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 80 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 81 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 82 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 83 &dev->hw_fib_pa, GFP_KERNEL); 84 if (dev->hw_fib_va == NULL) 85 return -ENOMEM; 86 return 0; 87 } 88 89 /** 90 * aac_fib_map_free - free the fib objects 91 * @dev: Adapter to free 92 * 93 * Free the PCI mappings and the memory allocated for FIB blocks 94 * on this adapter. 95 */ 96 97 void aac_fib_map_free(struct aac_dev *dev) 98 { 99 size_t alloc_size; 100 size_t fib_size; 101 int num_fibs; 102 103 if(!dev->hw_fib_va || !dev->max_cmd_size) 104 return; 105 106 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 107 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 108 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 109 110 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 111 dev->hw_fib_pa); 112 113 dev->hw_fib_va = NULL; 114 dev->hw_fib_pa = 0; 115 } 116 117 void aac_fib_vector_assign(struct aac_dev *dev) 118 { 119 u32 i = 0; 120 u32 vector = 1; 121 struct fib *fibptr = NULL; 122 123 for (i = 0, fibptr = &dev->fibs[i]; 124 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 125 i++, fibptr++) { 126 if ((dev->max_msix == 1) || 127 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 128 - dev->vector_cap))) { 129 fibptr->vector_no = 0; 130 } else { 131 fibptr->vector_no = vector; 132 vector++; 133 if (vector == dev->max_msix) 134 vector = 1; 135 } 136 } 137 } 138 139 /** 140 * aac_fib_setup - setup the fibs 141 * @dev: Adapter to set up 142 * 143 * Allocate the PCI space for the fibs, map it and then initialise the 144 * fib area, the unmapped fib data and also the free list 145 */ 146 147 int aac_fib_setup(struct aac_dev * dev) 148 { 149 struct fib *fibptr; 150 struct hw_fib *hw_fib; 151 dma_addr_t hw_fib_pa; 152 int i; 153 u32 max_cmds; 154 155 while (((i = fib_map_alloc(dev)) == -ENOMEM) 156 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 157 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 158 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 159 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 160 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 161 } 162 if (i<0) 163 return -ENOMEM; 164 165 memset(dev->hw_fib_va, 0, 166 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 167 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 168 169 /* 32 byte alignment for PMC */ 170 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 171 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 172 (hw_fib_pa - dev->hw_fib_pa)); 173 174 /* add Xport header */ 175 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 176 sizeof(struct aac_fib_xporthdr)); 177 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 178 179 /* 180 * Initialise the fibs 181 */ 182 for (i = 0, fibptr = &dev->fibs[i]; 183 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 184 i++, fibptr++) 185 { 186 fibptr->flags = 0; 187 fibptr->size = sizeof(struct fib); 188 fibptr->dev = dev; 189 fibptr->hw_fib_va = hw_fib; 190 fibptr->data = (void *) fibptr->hw_fib_va->data; 191 fibptr->next = fibptr+1; /* Forward chain the fibs */ 192 sema_init(&fibptr->event_wait, 0); 193 spin_lock_init(&fibptr->event_lock); 194 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 195 hw_fib->header.SenderSize = 196 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 197 fibptr->hw_fib_pa = hw_fib_pa; 198 fibptr->hw_sgl_pa = hw_fib_pa + 199 offsetof(struct aac_hba_cmd_req, sge[2]); 200 /* 201 * one element is for the ptr to the separate sg list, 202 * second element for 32 byte alignment 203 */ 204 fibptr->hw_error_pa = hw_fib_pa + 205 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 206 207 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 208 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 209 hw_fib_pa = hw_fib_pa + 210 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 211 } 212 213 /* 214 *Assign vector numbers to fibs 215 */ 216 aac_fib_vector_assign(dev); 217 218 /* 219 * Add the fib chain to the free list 220 */ 221 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 222 /* 223 * Set 8 fibs aside for management tools 224 */ 225 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 226 return 0; 227 } 228 229 /** 230 * aac_fib_alloc_tag-allocate a fib using tags 231 * @dev: Adapter to allocate the fib for 232 * 233 * Allocate a fib from the adapter fib pool using tags 234 * from the blk layer. 235 */ 236 237 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 238 { 239 struct fib *fibptr; 240 241 fibptr = &dev->fibs[scmd->request->tag]; 242 /* 243 * Null out fields that depend on being zero at the start of 244 * each I/O 245 */ 246 fibptr->hw_fib_va->header.XferState = 0; 247 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 248 fibptr->callback_data = NULL; 249 fibptr->callback = NULL; 250 251 return fibptr; 252 } 253 254 /** 255 * aac_fib_alloc - allocate a fib 256 * @dev: Adapter to allocate the fib for 257 * 258 * Allocate a fib from the adapter fib pool. If the pool is empty we 259 * return NULL. 260 */ 261 262 struct fib *aac_fib_alloc(struct aac_dev *dev) 263 { 264 struct fib * fibptr; 265 unsigned long flags; 266 spin_lock_irqsave(&dev->fib_lock, flags); 267 fibptr = dev->free_fib; 268 if(!fibptr){ 269 spin_unlock_irqrestore(&dev->fib_lock, flags); 270 return fibptr; 271 } 272 dev->free_fib = fibptr->next; 273 spin_unlock_irqrestore(&dev->fib_lock, flags); 274 /* 275 * Set the proper node type code and node byte size 276 */ 277 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 278 fibptr->size = sizeof(struct fib); 279 /* 280 * Null out fields that depend on being zero at the start of 281 * each I/O 282 */ 283 fibptr->hw_fib_va->header.XferState = 0; 284 fibptr->flags = 0; 285 fibptr->callback = NULL; 286 fibptr->callback_data = NULL; 287 288 return fibptr; 289 } 290 291 /** 292 * aac_fib_free - free a fib 293 * @fibptr: fib to free up 294 * 295 * Frees up a fib and places it on the appropriate queue 296 */ 297 298 void aac_fib_free(struct fib *fibptr) 299 { 300 unsigned long flags; 301 302 if (fibptr->done == 2) 303 return; 304 305 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 306 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 307 aac_config.fib_timeouts++; 308 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 309 fibptr->hw_fib_va->header.XferState != 0) { 310 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 311 (void*)fibptr, 312 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 313 } 314 fibptr->next = fibptr->dev->free_fib; 315 fibptr->dev->free_fib = fibptr; 316 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 317 } 318 319 /** 320 * aac_fib_init - initialise a fib 321 * @fibptr: The fib to initialize 322 * 323 * Set up the generic fib fields ready for use 324 */ 325 326 void aac_fib_init(struct fib *fibptr) 327 { 328 struct hw_fib *hw_fib = fibptr->hw_fib_va; 329 330 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 331 hw_fib->header.StructType = FIB_MAGIC; 332 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 333 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 334 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 335 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 336 } 337 338 /** 339 * fib_deallocate - deallocate a fib 340 * @fibptr: fib to deallocate 341 * 342 * Will deallocate and return to the free pool the FIB pointed to by the 343 * caller. 344 */ 345 346 static void fib_dealloc(struct fib * fibptr) 347 { 348 struct hw_fib *hw_fib = fibptr->hw_fib_va; 349 hw_fib->header.XferState = 0; 350 } 351 352 /* 353 * Commuication primitives define and support the queuing method we use to 354 * support host to adapter commuication. All queue accesses happen through 355 * these routines and are the only routines which have a knowledge of the 356 * how these queues are implemented. 357 */ 358 359 /** 360 * aac_get_entry - get a queue entry 361 * @dev: Adapter 362 * @qid: Queue Number 363 * @entry: Entry return 364 * @index: Index return 365 * @nonotify: notification control 366 * 367 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 368 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 369 * returned. 370 */ 371 372 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 373 { 374 struct aac_queue * q; 375 unsigned long idx; 376 377 /* 378 * All of the queues wrap when they reach the end, so we check 379 * to see if they have reached the end and if they have we just 380 * set the index back to zero. This is a wrap. You could or off 381 * the high bits in all updates but this is a bit faster I think. 382 */ 383 384 q = &dev->queues->queue[qid]; 385 386 idx = *index = le32_to_cpu(*(q->headers.producer)); 387 /* Interrupt Moderation, only interrupt for first two entries */ 388 if (idx != le32_to_cpu(*(q->headers.consumer))) { 389 if (--idx == 0) { 390 if (qid == AdapNormCmdQueue) 391 idx = ADAP_NORM_CMD_ENTRIES; 392 else 393 idx = ADAP_NORM_RESP_ENTRIES; 394 } 395 if (idx != le32_to_cpu(*(q->headers.consumer))) 396 *nonotify = 1; 397 } 398 399 if (qid == AdapNormCmdQueue) { 400 if (*index >= ADAP_NORM_CMD_ENTRIES) 401 *index = 0; /* Wrap to front of the Producer Queue. */ 402 } else { 403 if (*index >= ADAP_NORM_RESP_ENTRIES) 404 *index = 0; /* Wrap to front of the Producer Queue. */ 405 } 406 407 /* Queue is full */ 408 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 409 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 410 qid, atomic_read(&q->numpending)); 411 return 0; 412 } else { 413 *entry = q->base + *index; 414 return 1; 415 } 416 } 417 418 /** 419 * aac_queue_get - get the next free QE 420 * @dev: Adapter 421 * @index: Returned index 422 * @priority: Priority of fib 423 * @fib: Fib to associate with the queue entry 424 * @wait: Wait if queue full 425 * @fibptr: Driver fib object to go with fib 426 * @nonotify: Don't notify the adapter 427 * 428 * Gets the next free QE off the requested priorty adapter command 429 * queue and associates the Fib with the QE. The QE represented by 430 * index is ready to insert on the queue when this routine returns 431 * success. 432 */ 433 434 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 435 { 436 struct aac_entry * entry = NULL; 437 int map = 0; 438 439 if (qid == AdapNormCmdQueue) { 440 /* if no entries wait for some if caller wants to */ 441 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 442 printk(KERN_ERR "GetEntries failed\n"); 443 } 444 /* 445 * Setup queue entry with a command, status and fib mapped 446 */ 447 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 448 map = 1; 449 } else { 450 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 451 /* if no entries wait for some if caller wants to */ 452 } 453 /* 454 * Setup queue entry with command, status and fib mapped 455 */ 456 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 457 entry->addr = hw_fib->header.SenderFibAddress; 458 /* Restore adapters pointer to the FIB */ 459 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 460 map = 0; 461 } 462 /* 463 * If MapFib is true than we need to map the Fib and put pointers 464 * in the queue entry. 465 */ 466 if (map) 467 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 468 return 0; 469 } 470 471 /* 472 * Define the highest level of host to adapter communication routines. 473 * These routines will support host to adapter FS commuication. These 474 * routines have no knowledge of the commuication method used. This level 475 * sends and receives FIBs. This level has no knowledge of how these FIBs 476 * get passed back and forth. 477 */ 478 479 /** 480 * aac_fib_send - send a fib to the adapter 481 * @command: Command to send 482 * @fibptr: The fib 483 * @size: Size of fib data area 484 * @priority: Priority of Fib 485 * @wait: Async/sync select 486 * @reply: True if a reply is wanted 487 * @callback: Called with reply 488 * @callback_data: Passed to callback 489 * 490 * Sends the requested FIB to the adapter and optionally will wait for a 491 * response FIB. If the caller does not wish to wait for a response than 492 * an event to wait on must be supplied. This event will be set when a 493 * response FIB is received from the adapter. 494 */ 495 496 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 497 int priority, int wait, int reply, fib_callback callback, 498 void *callback_data) 499 { 500 struct aac_dev * dev = fibptr->dev; 501 struct hw_fib * hw_fib = fibptr->hw_fib_va; 502 unsigned long flags = 0; 503 unsigned long mflags = 0; 504 unsigned long sflags = 0; 505 506 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 507 return -EBUSY; 508 509 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 510 return -EINVAL; 511 512 /* 513 * There are 5 cases with the wait and response requested flags. 514 * The only invalid cases are if the caller requests to wait and 515 * does not request a response and if the caller does not want a 516 * response and the Fib is not allocated from pool. If a response 517 * is not requesed the Fib will just be deallocaed by the DPC 518 * routine when the response comes back from the adapter. No 519 * further processing will be done besides deleting the Fib. We 520 * will have a debug mode where the adapter can notify the host 521 * it had a problem and the host can log that fact. 522 */ 523 fibptr->flags = 0; 524 if (wait && !reply) { 525 return -EINVAL; 526 } else if (!wait && reply) { 527 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 528 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 529 } else if (!wait && !reply) { 530 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 531 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 532 } else if (wait && reply) { 533 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 534 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 535 } 536 /* 537 * Map the fib into 32bits by using the fib number 538 */ 539 540 hw_fib->header.SenderFibAddress = 541 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 542 543 /* use the same shifted value for handle to be compatible 544 * with the new native hba command handle 545 */ 546 hw_fib->header.Handle = 547 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 548 549 /* 550 * Set FIB state to indicate where it came from and if we want a 551 * response from the adapter. Also load the command from the 552 * caller. 553 * 554 * Map the hw fib pointer as a 32bit value 555 */ 556 hw_fib->header.Command = cpu_to_le16(command); 557 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 558 /* 559 * Set the size of the Fib we want to send to the adapter 560 */ 561 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 562 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 563 return -EMSGSIZE; 564 } 565 /* 566 * Get a queue entry connect the FIB to it and send an notify 567 * the adapter a command is ready. 568 */ 569 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 570 571 /* 572 * Fill in the Callback and CallbackContext if we are not 573 * going to wait. 574 */ 575 if (!wait) { 576 fibptr->callback = callback; 577 fibptr->callback_data = callback_data; 578 fibptr->flags = FIB_CONTEXT_FLAG; 579 } 580 581 fibptr->done = 0; 582 583 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 584 585 dprintk((KERN_DEBUG "Fib contents:.\n")); 586 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 587 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 588 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 589 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 590 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 591 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 592 593 if (!dev->queues) 594 return -EBUSY; 595 596 if (wait) { 597 598 spin_lock_irqsave(&dev->manage_lock, mflags); 599 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 600 printk(KERN_INFO "No management Fibs Available:%d\n", 601 dev->management_fib_count); 602 spin_unlock_irqrestore(&dev->manage_lock, mflags); 603 return -EBUSY; 604 } 605 dev->management_fib_count++; 606 spin_unlock_irqrestore(&dev->manage_lock, mflags); 607 spin_lock_irqsave(&fibptr->event_lock, flags); 608 } 609 610 if (dev->sync_mode) { 611 if (wait) 612 spin_unlock_irqrestore(&fibptr->event_lock, flags); 613 spin_lock_irqsave(&dev->sync_lock, sflags); 614 if (dev->sync_fib) { 615 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 616 spin_unlock_irqrestore(&dev->sync_lock, sflags); 617 } else { 618 dev->sync_fib = fibptr; 619 spin_unlock_irqrestore(&dev->sync_lock, sflags); 620 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 621 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 622 NULL, NULL, NULL, NULL, NULL); 623 } 624 if (wait) { 625 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 626 if (down_interruptible(&fibptr->event_wait)) { 627 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 628 return -EFAULT; 629 } 630 return 0; 631 } 632 return -EINPROGRESS; 633 } 634 635 if (aac_adapter_deliver(fibptr) != 0) { 636 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 637 if (wait) { 638 spin_unlock_irqrestore(&fibptr->event_lock, flags); 639 spin_lock_irqsave(&dev->manage_lock, mflags); 640 dev->management_fib_count--; 641 spin_unlock_irqrestore(&dev->manage_lock, mflags); 642 } 643 return -EBUSY; 644 } 645 646 647 /* 648 * If the caller wanted us to wait for response wait now. 649 */ 650 651 if (wait) { 652 spin_unlock_irqrestore(&fibptr->event_lock, flags); 653 /* Only set for first known interruptable command */ 654 if (wait < 0) { 655 /* 656 * *VERY* Dangerous to time out a command, the 657 * assumption is made that we have no hope of 658 * functioning because an interrupt routing or other 659 * hardware failure has occurred. 660 */ 661 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 662 while (down_trylock(&fibptr->event_wait)) { 663 int blink; 664 if (time_is_before_eq_jiffies(timeout)) { 665 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 666 atomic_dec(&q->numpending); 667 if (wait == -1) { 668 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 669 "Usually a result of a PCI interrupt routing problem;\n" 670 "update mother board BIOS or consider utilizing one of\n" 671 "the SAFE mode kernel options (acpi, apic etc)\n"); 672 } 673 return -ETIMEDOUT; 674 } 675 676 if (unlikely(pci_channel_offline(dev->pdev))) 677 return -EFAULT; 678 679 if ((blink = aac_adapter_check_health(dev)) > 0) { 680 if (wait == -1) { 681 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 682 "Usually a result of a serious unrecoverable hardware problem\n", 683 blink); 684 } 685 return -EFAULT; 686 } 687 /* 688 * Allow other processes / CPUS to use core 689 */ 690 schedule(); 691 } 692 } else if (down_interruptible(&fibptr->event_wait)) { 693 /* Do nothing ... satisfy 694 * down_interruptible must_check */ 695 } 696 697 spin_lock_irqsave(&fibptr->event_lock, flags); 698 if (fibptr->done == 0) { 699 fibptr->done = 2; /* Tell interrupt we aborted */ 700 spin_unlock_irqrestore(&fibptr->event_lock, flags); 701 return -ERESTARTSYS; 702 } 703 spin_unlock_irqrestore(&fibptr->event_lock, flags); 704 BUG_ON(fibptr->done == 0); 705 706 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 707 return -ETIMEDOUT; 708 return 0; 709 } 710 /* 711 * If the user does not want a response than return success otherwise 712 * return pending 713 */ 714 if (reply) 715 return -EINPROGRESS; 716 else 717 return 0; 718 } 719 720 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 721 void *callback_data) 722 { 723 struct aac_dev *dev = fibptr->dev; 724 int wait; 725 unsigned long flags = 0; 726 unsigned long mflags = 0; 727 728 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 729 if (callback) { 730 wait = 0; 731 fibptr->callback = callback; 732 fibptr->callback_data = callback_data; 733 } else 734 wait = 1; 735 736 737 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 738 struct aac_hba_cmd_req *hbacmd = 739 (struct aac_hba_cmd_req *)fibptr->hw_fib_va; 740 741 hbacmd->iu_type = command; 742 /* bit1 of request_id must be 0 */ 743 hbacmd->request_id = 744 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 745 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 746 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ) 747 return -EINVAL; 748 749 750 if (wait) { 751 spin_lock_irqsave(&dev->manage_lock, mflags); 752 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 753 spin_unlock_irqrestore(&dev->manage_lock, mflags); 754 return -EBUSY; 755 } 756 dev->management_fib_count++; 757 spin_unlock_irqrestore(&dev->manage_lock, mflags); 758 spin_lock_irqsave(&fibptr->event_lock, flags); 759 } 760 761 if (aac_adapter_deliver(fibptr) != 0) { 762 if (wait) { 763 spin_unlock_irqrestore(&fibptr->event_lock, flags); 764 spin_lock_irqsave(&dev->manage_lock, mflags); 765 dev->management_fib_count--; 766 spin_unlock_irqrestore(&dev->manage_lock, mflags); 767 } 768 return -EBUSY; 769 } 770 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 771 772 if (wait) { 773 774 spin_unlock_irqrestore(&fibptr->event_lock, flags); 775 776 if (unlikely(pci_channel_offline(dev->pdev))) 777 return -EFAULT; 778 779 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 780 if (down_interruptible(&fibptr->event_wait)) 781 fibptr->done = 2; 782 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 783 784 spin_lock_irqsave(&fibptr->event_lock, flags); 785 if ((fibptr->done == 0) || (fibptr->done == 2)) { 786 fibptr->done = 2; /* Tell interrupt we aborted */ 787 spin_unlock_irqrestore(&fibptr->event_lock, flags); 788 return -ERESTARTSYS; 789 } 790 spin_unlock_irqrestore(&fibptr->event_lock, flags); 791 WARN_ON(fibptr->done == 0); 792 793 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 794 return -ETIMEDOUT; 795 796 return 0; 797 } 798 799 return -EINPROGRESS; 800 } 801 802 /** 803 * aac_consumer_get - get the top of the queue 804 * @dev: Adapter 805 * @q: Queue 806 * @entry: Return entry 807 * 808 * Will return a pointer to the entry on the top of the queue requested that 809 * we are a consumer of, and return the address of the queue entry. It does 810 * not change the state of the queue. 811 */ 812 813 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 814 { 815 u32 index; 816 int status; 817 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 818 status = 0; 819 } else { 820 /* 821 * The consumer index must be wrapped if we have reached 822 * the end of the queue, else we just use the entry 823 * pointed to by the header index 824 */ 825 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 826 index = 0; 827 else 828 index = le32_to_cpu(*q->headers.consumer); 829 *entry = q->base + index; 830 status = 1; 831 } 832 return(status); 833 } 834 835 /** 836 * aac_consumer_free - free consumer entry 837 * @dev: Adapter 838 * @q: Queue 839 * @qid: Queue ident 840 * 841 * Frees up the current top of the queue we are a consumer of. If the 842 * queue was full notify the producer that the queue is no longer full. 843 */ 844 845 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 846 { 847 int wasfull = 0; 848 u32 notify; 849 850 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 851 wasfull = 1; 852 853 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 854 *q->headers.consumer = cpu_to_le32(1); 855 else 856 le32_add_cpu(q->headers.consumer, 1); 857 858 if (wasfull) { 859 switch (qid) { 860 861 case HostNormCmdQueue: 862 notify = HostNormCmdNotFull; 863 break; 864 case HostNormRespQueue: 865 notify = HostNormRespNotFull; 866 break; 867 default: 868 BUG(); 869 return; 870 } 871 aac_adapter_notify(dev, notify); 872 } 873 } 874 875 /** 876 * aac_fib_adapter_complete - complete adapter issued fib 877 * @fibptr: fib to complete 878 * @size: size of fib 879 * 880 * Will do all necessary work to complete a FIB that was sent from 881 * the adapter. 882 */ 883 884 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 885 { 886 struct hw_fib * hw_fib = fibptr->hw_fib_va; 887 struct aac_dev * dev = fibptr->dev; 888 struct aac_queue * q; 889 unsigned long nointr = 0; 890 unsigned long qflags; 891 892 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 893 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 894 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 895 kfree(hw_fib); 896 return 0; 897 } 898 899 if (hw_fib->header.XferState == 0) { 900 if (dev->comm_interface == AAC_COMM_MESSAGE) 901 kfree(hw_fib); 902 return 0; 903 } 904 /* 905 * If we plan to do anything check the structure type first. 906 */ 907 if (hw_fib->header.StructType != FIB_MAGIC && 908 hw_fib->header.StructType != FIB_MAGIC2 && 909 hw_fib->header.StructType != FIB_MAGIC2_64) { 910 if (dev->comm_interface == AAC_COMM_MESSAGE) 911 kfree(hw_fib); 912 return -EINVAL; 913 } 914 /* 915 * This block handles the case where the adapter had sent us a 916 * command and we have finished processing the command. We 917 * call completeFib when we are done processing the command 918 * and want to send a response back to the adapter. This will 919 * send the completed cdb to the adapter. 920 */ 921 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 922 if (dev->comm_interface == AAC_COMM_MESSAGE) { 923 kfree (hw_fib); 924 } else { 925 u32 index; 926 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 927 if (size) { 928 size += sizeof(struct aac_fibhdr); 929 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 930 return -EMSGSIZE; 931 hw_fib->header.Size = cpu_to_le16(size); 932 } 933 q = &dev->queues->queue[AdapNormRespQueue]; 934 spin_lock_irqsave(q->lock, qflags); 935 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 936 *(q->headers.producer) = cpu_to_le32(index + 1); 937 spin_unlock_irqrestore(q->lock, qflags); 938 if (!(nointr & (int)aac_config.irq_mod)) 939 aac_adapter_notify(dev, AdapNormRespQueue); 940 } 941 } else { 942 printk(KERN_WARNING "aac_fib_adapter_complete: " 943 "Unknown xferstate detected.\n"); 944 BUG(); 945 } 946 return 0; 947 } 948 949 /** 950 * aac_fib_complete - fib completion handler 951 * @fib: FIB to complete 952 * 953 * Will do all necessary work to complete a FIB. 954 */ 955 956 int aac_fib_complete(struct fib *fibptr) 957 { 958 struct hw_fib * hw_fib = fibptr->hw_fib_va; 959 960 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 961 fib_dealloc(fibptr); 962 return 0; 963 } 964 965 /* 966 * Check for a fib which has already been completed or with a 967 * status wait timeout 968 */ 969 970 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 971 return 0; 972 /* 973 * If we plan to do anything check the structure type first. 974 */ 975 976 if (hw_fib->header.StructType != FIB_MAGIC && 977 hw_fib->header.StructType != FIB_MAGIC2 && 978 hw_fib->header.StructType != FIB_MAGIC2_64) 979 return -EINVAL; 980 /* 981 * This block completes a cdb which orginated on the host and we 982 * just need to deallocate the cdb or reinit it. At this point the 983 * command is complete that we had sent to the adapter and this 984 * cdb could be reused. 985 */ 986 987 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 988 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 989 { 990 fib_dealloc(fibptr); 991 } 992 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 993 { 994 /* 995 * This handles the case when the host has aborted the I/O 996 * to the adapter because the adapter is not responding 997 */ 998 fib_dealloc(fibptr); 999 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 1000 fib_dealloc(fibptr); 1001 } else { 1002 BUG(); 1003 } 1004 return 0; 1005 } 1006 1007 /** 1008 * aac_printf - handle printf from firmware 1009 * @dev: Adapter 1010 * @val: Message info 1011 * 1012 * Print a message passed to us by the controller firmware on the 1013 * Adaptec board 1014 */ 1015 1016 void aac_printf(struct aac_dev *dev, u32 val) 1017 { 1018 char *cp = dev->printfbuf; 1019 if (dev->printf_enabled) 1020 { 1021 int length = val & 0xffff; 1022 int level = (val >> 16) & 0xffff; 1023 1024 /* 1025 * The size of the printfbuf is set in port.c 1026 * There is no variable or define for it 1027 */ 1028 if (length > 255) 1029 length = 255; 1030 if (cp[length] != 0) 1031 cp[length] = 0; 1032 if (level == LOG_AAC_HIGH_ERROR) 1033 printk(KERN_WARNING "%s:%s", dev->name, cp); 1034 else 1035 printk(KERN_INFO "%s:%s", dev->name, cp); 1036 } 1037 memset(cp, 0, 256); 1038 } 1039 1040 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1041 { 1042 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1043 } 1044 1045 1046 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1047 { 1048 switch (aac_aif_data(aifcmd, 1)) { 1049 case AifBuCacheDataLoss: 1050 if (aac_aif_data(aifcmd, 2)) 1051 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1052 aac_aif_data(aifcmd, 2)); 1053 else 1054 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1055 break; 1056 case AifBuCacheDataRecover: 1057 if (aac_aif_data(aifcmd, 2)) 1058 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1059 aac_aif_data(aifcmd, 2)); 1060 else 1061 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1062 break; 1063 } 1064 } 1065 1066 /** 1067 * aac_handle_aif - Handle a message from the firmware 1068 * @dev: Which adapter this fib is from 1069 * @fibptr: Pointer to fibptr from adapter 1070 * 1071 * This routine handles a driver notify fib from the adapter and 1072 * dispatches it to the appropriate routine for handling. 1073 */ 1074 1075 #define AIF_SNIFF_TIMEOUT (500*HZ) 1076 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1077 { 1078 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1079 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1080 u32 channel, id, lun, container; 1081 struct scsi_device *device; 1082 enum { 1083 NOTHING, 1084 DELETE, 1085 ADD, 1086 CHANGE 1087 } device_config_needed = NOTHING; 1088 1089 /* Sniff for container changes */ 1090 1091 if (!dev || !dev->fsa_dev) 1092 return; 1093 container = channel = id = lun = (u32)-1; 1094 1095 /* 1096 * We have set this up to try and minimize the number of 1097 * re-configures that take place. As a result of this when 1098 * certain AIF's come in we will set a flag waiting for another 1099 * type of AIF before setting the re-config flag. 1100 */ 1101 switch (le32_to_cpu(aifcmd->command)) { 1102 case AifCmdDriverNotify: 1103 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1104 case AifRawDeviceRemove: 1105 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1106 if ((container >> 28)) { 1107 container = (u32)-1; 1108 break; 1109 } 1110 channel = (container >> 24) & 0xF; 1111 if (channel >= dev->maximum_num_channels) { 1112 container = (u32)-1; 1113 break; 1114 } 1115 id = container & 0xFFFF; 1116 if (id >= dev->maximum_num_physicals) { 1117 container = (u32)-1; 1118 break; 1119 } 1120 lun = (container >> 16) & 0xFF; 1121 container = (u32)-1; 1122 channel = aac_phys_to_logical(channel); 1123 device_config_needed = DELETE; 1124 break; 1125 1126 /* 1127 * Morph or Expand complete 1128 */ 1129 case AifDenMorphComplete: 1130 case AifDenVolumeExtendComplete: 1131 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1132 if (container >= dev->maximum_num_containers) 1133 break; 1134 1135 /* 1136 * Find the scsi_device associated with the SCSI 1137 * address. Make sure we have the right array, and if 1138 * so set the flag to initiate a new re-config once we 1139 * see an AifEnConfigChange AIF come through. 1140 */ 1141 1142 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1143 device = scsi_device_lookup(dev->scsi_host_ptr, 1144 CONTAINER_TO_CHANNEL(container), 1145 CONTAINER_TO_ID(container), 1146 CONTAINER_TO_LUN(container)); 1147 if (device) { 1148 dev->fsa_dev[container].config_needed = CHANGE; 1149 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1150 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1151 scsi_device_put(device); 1152 } 1153 } 1154 } 1155 1156 /* 1157 * If we are waiting on something and this happens to be 1158 * that thing then set the re-configure flag. 1159 */ 1160 if (container != (u32)-1) { 1161 if (container >= dev->maximum_num_containers) 1162 break; 1163 if ((dev->fsa_dev[container].config_waiting_on == 1164 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1165 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1166 dev->fsa_dev[container].config_waiting_on = 0; 1167 } else for (container = 0; 1168 container < dev->maximum_num_containers; ++container) { 1169 if ((dev->fsa_dev[container].config_waiting_on == 1170 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1171 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1172 dev->fsa_dev[container].config_waiting_on = 0; 1173 } 1174 break; 1175 1176 case AifCmdEventNotify: 1177 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1178 case AifEnBatteryEvent: 1179 dev->cache_protected = 1180 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1181 break; 1182 /* 1183 * Add an Array. 1184 */ 1185 case AifEnAddContainer: 1186 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1187 if (container >= dev->maximum_num_containers) 1188 break; 1189 dev->fsa_dev[container].config_needed = ADD; 1190 dev->fsa_dev[container].config_waiting_on = 1191 AifEnConfigChange; 1192 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1193 break; 1194 1195 /* 1196 * Delete an Array. 1197 */ 1198 case AifEnDeleteContainer: 1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1200 if (container >= dev->maximum_num_containers) 1201 break; 1202 dev->fsa_dev[container].config_needed = DELETE; 1203 dev->fsa_dev[container].config_waiting_on = 1204 AifEnConfigChange; 1205 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1206 break; 1207 1208 /* 1209 * Container change detected. If we currently are not 1210 * waiting on something else, setup to wait on a Config Change. 1211 */ 1212 case AifEnContainerChange: 1213 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1214 if (container >= dev->maximum_num_containers) 1215 break; 1216 if (dev->fsa_dev[container].config_waiting_on && 1217 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1218 break; 1219 dev->fsa_dev[container].config_needed = CHANGE; 1220 dev->fsa_dev[container].config_waiting_on = 1221 AifEnConfigChange; 1222 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1223 break; 1224 1225 case AifEnConfigChange: 1226 break; 1227 1228 case AifEnAddJBOD: 1229 case AifEnDeleteJBOD: 1230 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1231 if ((container >> 28)) { 1232 container = (u32)-1; 1233 break; 1234 } 1235 channel = (container >> 24) & 0xF; 1236 if (channel >= dev->maximum_num_channels) { 1237 container = (u32)-1; 1238 break; 1239 } 1240 id = container & 0xFFFF; 1241 if (id >= dev->maximum_num_physicals) { 1242 container = (u32)-1; 1243 break; 1244 } 1245 lun = (container >> 16) & 0xFF; 1246 container = (u32)-1; 1247 channel = aac_phys_to_logical(channel); 1248 device_config_needed = 1249 (((__le32 *)aifcmd->data)[0] == 1250 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1251 if (device_config_needed == ADD) { 1252 device = scsi_device_lookup(dev->scsi_host_ptr, 1253 channel, 1254 id, 1255 lun); 1256 if (device) { 1257 scsi_remove_device(device); 1258 scsi_device_put(device); 1259 } 1260 } 1261 break; 1262 1263 case AifEnEnclosureManagement: 1264 /* 1265 * If in JBOD mode, automatic exposure of new 1266 * physical target to be suppressed until configured. 1267 */ 1268 if (dev->jbod) 1269 break; 1270 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1271 case EM_DRIVE_INSERTION: 1272 case EM_DRIVE_REMOVAL: 1273 case EM_SES_DRIVE_INSERTION: 1274 case EM_SES_DRIVE_REMOVAL: 1275 container = le32_to_cpu( 1276 ((__le32 *)aifcmd->data)[2]); 1277 if ((container >> 28)) { 1278 container = (u32)-1; 1279 break; 1280 } 1281 channel = (container >> 24) & 0xF; 1282 if (channel >= dev->maximum_num_channels) { 1283 container = (u32)-1; 1284 break; 1285 } 1286 id = container & 0xFFFF; 1287 lun = (container >> 16) & 0xFF; 1288 container = (u32)-1; 1289 if (id >= dev->maximum_num_physicals) { 1290 /* legacy dev_t ? */ 1291 if ((0x2000 <= id) || lun || channel || 1292 ((channel = (id >> 7) & 0x3F) >= 1293 dev->maximum_num_channels)) 1294 break; 1295 lun = (id >> 4) & 7; 1296 id &= 0xF; 1297 } 1298 channel = aac_phys_to_logical(channel); 1299 device_config_needed = 1300 ((((__le32 *)aifcmd->data)[3] 1301 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1302 (((__le32 *)aifcmd->data)[3] 1303 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1304 ADD : DELETE; 1305 break; 1306 } 1307 case AifBuManagerEvent: 1308 aac_handle_aif_bu(dev, aifcmd); 1309 break; 1310 } 1311 1312 /* 1313 * If we are waiting on something and this happens to be 1314 * that thing then set the re-configure flag. 1315 */ 1316 if (container != (u32)-1) { 1317 if (container >= dev->maximum_num_containers) 1318 break; 1319 if ((dev->fsa_dev[container].config_waiting_on == 1320 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1321 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1322 dev->fsa_dev[container].config_waiting_on = 0; 1323 } else for (container = 0; 1324 container < dev->maximum_num_containers; ++container) { 1325 if ((dev->fsa_dev[container].config_waiting_on == 1326 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1327 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1328 dev->fsa_dev[container].config_waiting_on = 0; 1329 } 1330 break; 1331 1332 case AifCmdJobProgress: 1333 /* 1334 * These are job progress AIF's. When a Clear is being 1335 * done on a container it is initially created then hidden from 1336 * the OS. When the clear completes we don't get a config 1337 * change so we monitor the job status complete on a clear then 1338 * wait for a container change. 1339 */ 1340 1341 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1342 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1343 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1344 for (container = 0; 1345 container < dev->maximum_num_containers; 1346 ++container) { 1347 /* 1348 * Stomp on all config sequencing for all 1349 * containers? 1350 */ 1351 dev->fsa_dev[container].config_waiting_on = 1352 AifEnContainerChange; 1353 dev->fsa_dev[container].config_needed = ADD; 1354 dev->fsa_dev[container].config_waiting_stamp = 1355 jiffies; 1356 } 1357 } 1358 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1359 ((__le32 *)aifcmd->data)[6] == 0 && 1360 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1361 for (container = 0; 1362 container < dev->maximum_num_containers; 1363 ++container) { 1364 /* 1365 * Stomp on all config sequencing for all 1366 * containers? 1367 */ 1368 dev->fsa_dev[container].config_waiting_on = 1369 AifEnContainerChange; 1370 dev->fsa_dev[container].config_needed = DELETE; 1371 dev->fsa_dev[container].config_waiting_stamp = 1372 jiffies; 1373 } 1374 } 1375 break; 1376 } 1377 1378 container = 0; 1379 retry_next: 1380 if (device_config_needed == NOTHING) 1381 for (; container < dev->maximum_num_containers; ++container) { 1382 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1383 (dev->fsa_dev[container].config_needed != NOTHING) && 1384 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1385 device_config_needed = 1386 dev->fsa_dev[container].config_needed; 1387 dev->fsa_dev[container].config_needed = NOTHING; 1388 channel = CONTAINER_TO_CHANNEL(container); 1389 id = CONTAINER_TO_ID(container); 1390 lun = CONTAINER_TO_LUN(container); 1391 break; 1392 } 1393 } 1394 if (device_config_needed == NOTHING) 1395 return; 1396 1397 /* 1398 * If we decided that a re-configuration needs to be done, 1399 * schedule it here on the way out the door, please close the door 1400 * behind you. 1401 */ 1402 1403 /* 1404 * Find the scsi_device associated with the SCSI address, 1405 * and mark it as changed, invalidating the cache. This deals 1406 * with changes to existing device IDs. 1407 */ 1408 1409 if (!dev || !dev->scsi_host_ptr) 1410 return; 1411 /* 1412 * force reload of disk info via aac_probe_container 1413 */ 1414 if ((channel == CONTAINER_CHANNEL) && 1415 (device_config_needed != NOTHING)) { 1416 if (dev->fsa_dev[container].valid == 1) 1417 dev->fsa_dev[container].valid = 2; 1418 aac_probe_container(dev, container); 1419 } 1420 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1421 if (device) { 1422 switch (device_config_needed) { 1423 case DELETE: 1424 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1425 scsi_remove_device(device); 1426 #else 1427 if (scsi_device_online(device)) { 1428 scsi_device_set_state(device, SDEV_OFFLINE); 1429 sdev_printk(KERN_INFO, device, 1430 "Device offlined - %s\n", 1431 (channel == CONTAINER_CHANNEL) ? 1432 "array deleted" : 1433 "enclosure services event"); 1434 } 1435 #endif 1436 break; 1437 case ADD: 1438 if (!scsi_device_online(device)) { 1439 sdev_printk(KERN_INFO, device, 1440 "Device online - %s\n", 1441 (channel == CONTAINER_CHANNEL) ? 1442 "array created" : 1443 "enclosure services event"); 1444 scsi_device_set_state(device, SDEV_RUNNING); 1445 } 1446 /* FALLTHRU */ 1447 case CHANGE: 1448 if ((channel == CONTAINER_CHANNEL) 1449 && (!dev->fsa_dev[container].valid)) { 1450 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1451 scsi_remove_device(device); 1452 #else 1453 if (!scsi_device_online(device)) 1454 break; 1455 scsi_device_set_state(device, SDEV_OFFLINE); 1456 sdev_printk(KERN_INFO, device, 1457 "Device offlined - %s\n", 1458 "array failed"); 1459 #endif 1460 break; 1461 } 1462 scsi_rescan_device(&device->sdev_gendev); 1463 1464 default: 1465 break; 1466 } 1467 scsi_device_put(device); 1468 device_config_needed = NOTHING; 1469 } 1470 if (device_config_needed == ADD) 1471 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1472 if (channel == CONTAINER_CHANNEL) { 1473 container++; 1474 device_config_needed = NOTHING; 1475 goto retry_next; 1476 } 1477 } 1478 1479 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1480 { 1481 int index, quirks; 1482 int retval; 1483 struct Scsi_Host *host; 1484 struct scsi_device *dev; 1485 struct scsi_cmnd *command; 1486 struct scsi_cmnd *command_list; 1487 int jafo = 0; 1488 int bled; 1489 u64 dmamask; 1490 int num_of_fibs = 0; 1491 1492 /* 1493 * Assumptions: 1494 * - host is locked, unless called by the aacraid thread. 1495 * (a matter of convenience, due to legacy issues surrounding 1496 * eh_host_adapter_reset). 1497 * - in_reset is asserted, so no new i/o is getting to the 1498 * card. 1499 * - The card is dead, or will be very shortly ;-/ so no new 1500 * commands are completing in the interrupt service. 1501 */ 1502 host = aac->scsi_host_ptr; 1503 scsi_block_requests(host); 1504 aac_adapter_disable_int(aac); 1505 if (aac->thread->pid != current->pid) { 1506 spin_unlock_irq(host->host_lock); 1507 kthread_stop(aac->thread); 1508 jafo = 1; 1509 } 1510 1511 /* 1512 * If a positive health, means in a known DEAD PANIC 1513 * state and the adapter could be reset to `try again'. 1514 */ 1515 bled = forced ? 0 : aac_adapter_check_health(aac); 1516 retval = aac_adapter_restart(aac, bled, reset_type); 1517 1518 if (retval) 1519 goto out; 1520 1521 /* 1522 * Loop through the fibs, close the synchronous FIBS 1523 */ 1524 retval = 1; 1525 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1526 for (index = 0; index < num_of_fibs; index++) { 1527 1528 struct fib *fib = &aac->fibs[index]; 1529 __le32 XferState = fib->hw_fib_va->header.XferState; 1530 bool is_response_expected = false; 1531 1532 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1533 (XferState & cpu_to_le32(ResponseExpected))) 1534 is_response_expected = true; 1535 1536 if (is_response_expected 1537 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1538 unsigned long flagv; 1539 spin_lock_irqsave(&fib->event_lock, flagv); 1540 up(&fib->event_wait); 1541 spin_unlock_irqrestore(&fib->event_lock, flagv); 1542 schedule(); 1543 retval = 0; 1544 } 1545 } 1546 /* Give some extra time for ioctls to complete. */ 1547 if (retval == 0) 1548 ssleep(2); 1549 index = aac->cardtype; 1550 1551 /* 1552 * Re-initialize the adapter, first free resources, then carefully 1553 * apply the initialization sequence to come back again. Only risk 1554 * is a change in Firmware dropping cache, it is assumed the caller 1555 * will ensure that i/o is queisced and the card is flushed in that 1556 * case. 1557 */ 1558 aac_free_irq(aac); 1559 aac_fib_map_free(aac); 1560 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1561 aac->comm_phys); 1562 aac->comm_addr = NULL; 1563 aac->comm_phys = 0; 1564 kfree(aac->queues); 1565 aac->queues = NULL; 1566 kfree(aac->fsa_dev); 1567 aac->fsa_dev = NULL; 1568 1569 dmamask = DMA_BIT_MASK(32); 1570 quirks = aac_get_driver_ident(index)->quirks; 1571 if (quirks & AAC_QUIRK_31BIT) 1572 retval = pci_set_dma_mask(aac->pdev, dmamask); 1573 else if (!(quirks & AAC_QUIRK_SRC)) 1574 retval = pci_set_dma_mask(aac->pdev, dmamask); 1575 else 1576 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1577 1578 if (quirks & AAC_QUIRK_31BIT && !retval) { 1579 dmamask = DMA_BIT_MASK(31); 1580 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1581 } 1582 1583 if (retval) 1584 goto out; 1585 1586 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1587 goto out; 1588 1589 if (jafo) { 1590 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1591 aac->name); 1592 if (IS_ERR(aac->thread)) { 1593 retval = PTR_ERR(aac->thread); 1594 goto out; 1595 } 1596 } 1597 (void)aac_get_adapter_info(aac); 1598 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1599 host->sg_tablesize = 34; 1600 host->max_sectors = (host->sg_tablesize * 8) + 112; 1601 } 1602 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1603 host->sg_tablesize = 17; 1604 host->max_sectors = (host->sg_tablesize * 8) + 112; 1605 } 1606 aac_get_config_status(aac, 1); 1607 aac_get_containers(aac); 1608 /* 1609 * This is where the assumption that the Adapter is quiesced 1610 * is important. 1611 */ 1612 command_list = NULL; 1613 __shost_for_each_device(dev, host) { 1614 unsigned long flags; 1615 spin_lock_irqsave(&dev->list_lock, flags); 1616 list_for_each_entry(command, &dev->cmd_list, list) 1617 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1618 command->SCp.buffer = (struct scatterlist *)command_list; 1619 command_list = command; 1620 } 1621 spin_unlock_irqrestore(&dev->list_lock, flags); 1622 } 1623 while ((command = command_list)) { 1624 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1625 command->SCp.buffer = NULL; 1626 command->result = DID_OK << 16 1627 | COMMAND_COMPLETE << 8 1628 | SAM_STAT_TASK_SET_FULL; 1629 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1630 command->scsi_done(command); 1631 } 1632 /* 1633 * Any Device that was already marked offline needs to be marked 1634 * running 1635 */ 1636 __shost_for_each_device(dev, host) { 1637 if (!scsi_device_online(dev)) 1638 scsi_device_set_state(dev, SDEV_RUNNING); 1639 } 1640 retval = 0; 1641 1642 out: 1643 aac->in_reset = 0; 1644 scsi_unblock_requests(host); 1645 1646 /* 1647 * Issue bus rescan to catch any configuration that might have 1648 * occurred 1649 */ 1650 if (!retval && !is_kdump_kernel()) { 1651 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1652 aac_schedule_safw_scan_worker(aac); 1653 } 1654 1655 if (jafo) { 1656 spin_lock_irq(host->host_lock); 1657 } 1658 return retval; 1659 } 1660 1661 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1662 { 1663 unsigned long flagv = 0; 1664 int retval; 1665 struct Scsi_Host * host; 1666 int bled; 1667 1668 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1669 return -EBUSY; 1670 1671 if (aac->in_reset) { 1672 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1673 return -EBUSY; 1674 } 1675 aac->in_reset = 1; 1676 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1677 1678 /* 1679 * Wait for all commands to complete to this specific 1680 * target (block maximum 60 seconds). Although not necessary, 1681 * it does make us a good storage citizen. 1682 */ 1683 host = aac->scsi_host_ptr; 1684 scsi_block_requests(host); 1685 1686 /* Quiesce build, flush cache, write through mode */ 1687 if (forced < 2) 1688 aac_send_shutdown(aac); 1689 spin_lock_irqsave(host->host_lock, flagv); 1690 bled = forced ? forced : 1691 (aac_check_reset != 0 && aac_check_reset != 1); 1692 retval = _aac_reset_adapter(aac, bled, reset_type); 1693 spin_unlock_irqrestore(host->host_lock, flagv); 1694 1695 if ((forced < 2) && (retval == -ENODEV)) { 1696 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1697 struct fib * fibctx = aac_fib_alloc(aac); 1698 if (fibctx) { 1699 struct aac_pause *cmd; 1700 int status; 1701 1702 aac_fib_init(fibctx); 1703 1704 cmd = (struct aac_pause *) fib_data(fibctx); 1705 1706 cmd->command = cpu_to_le32(VM_ContainerConfig); 1707 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1708 cmd->timeout = cpu_to_le32(1); 1709 cmd->min = cpu_to_le32(1); 1710 cmd->noRescan = cpu_to_le32(1); 1711 cmd->count = cpu_to_le32(0); 1712 1713 status = aac_fib_send(ContainerCommand, 1714 fibctx, 1715 sizeof(struct aac_pause), 1716 FsaNormal, 1717 -2 /* Timeout silently */, 1, 1718 NULL, NULL); 1719 1720 if (status >= 0) 1721 aac_fib_complete(fibctx); 1722 /* FIB should be freed only after getting 1723 * the response from the F/W */ 1724 if (status != -ERESTARTSYS) 1725 aac_fib_free(fibctx); 1726 } 1727 } 1728 1729 return retval; 1730 } 1731 1732 int aac_check_health(struct aac_dev * aac) 1733 { 1734 int BlinkLED; 1735 unsigned long time_now, flagv = 0; 1736 struct list_head * entry; 1737 1738 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1739 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1740 return 0; 1741 1742 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1743 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1744 return 0; /* OK */ 1745 } 1746 1747 aac->in_reset = 1; 1748 1749 /* Fake up an AIF: 1750 * aac_aifcmd.command = AifCmdEventNotify = 1 1751 * aac_aifcmd.seqnum = 0xFFFFFFFF 1752 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1753 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1754 * aac.aifcmd.data[2] = AifHighPriority = 3 1755 * aac.aifcmd.data[3] = BlinkLED 1756 */ 1757 1758 time_now = jiffies/HZ; 1759 entry = aac->fib_list.next; 1760 1761 /* 1762 * For each Context that is on the 1763 * fibctxList, make a copy of the 1764 * fib, and then set the event to wake up the 1765 * thread that is waiting for it. 1766 */ 1767 while (entry != &aac->fib_list) { 1768 /* 1769 * Extract the fibctx 1770 */ 1771 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1772 struct hw_fib * hw_fib; 1773 struct fib * fib; 1774 /* 1775 * Check if the queue is getting 1776 * backlogged 1777 */ 1778 if (fibctx->count > 20) { 1779 /* 1780 * It's *not* jiffies folks, 1781 * but jiffies / HZ, so do not 1782 * panic ... 1783 */ 1784 u32 time_last = fibctx->jiffies; 1785 /* 1786 * Has it been > 2 minutes 1787 * since the last read off 1788 * the queue? 1789 */ 1790 if ((time_now - time_last) > aif_timeout) { 1791 entry = entry->next; 1792 aac_close_fib_context(aac, fibctx); 1793 continue; 1794 } 1795 } 1796 /* 1797 * Warning: no sleep allowed while 1798 * holding spinlock 1799 */ 1800 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1801 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1802 if (fib && hw_fib) { 1803 struct aac_aifcmd * aif; 1804 1805 fib->hw_fib_va = hw_fib; 1806 fib->dev = aac; 1807 aac_fib_init(fib); 1808 fib->type = FSAFS_NTC_FIB_CONTEXT; 1809 fib->size = sizeof (struct fib); 1810 fib->data = hw_fib->data; 1811 aif = (struct aac_aifcmd *)hw_fib->data; 1812 aif->command = cpu_to_le32(AifCmdEventNotify); 1813 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1814 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1815 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1816 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1817 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1818 1819 /* 1820 * Put the FIB onto the 1821 * fibctx's fibs 1822 */ 1823 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1824 fibctx->count++; 1825 /* 1826 * Set the event to wake up the 1827 * thread that will waiting. 1828 */ 1829 up(&fibctx->wait_sem); 1830 } else { 1831 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1832 kfree(fib); 1833 kfree(hw_fib); 1834 } 1835 entry = entry->next; 1836 } 1837 1838 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1839 1840 if (BlinkLED < 0) { 1841 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1842 aac->name, BlinkLED); 1843 goto out; 1844 } 1845 1846 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1847 1848 out: 1849 aac->in_reset = 0; 1850 return BlinkLED; 1851 } 1852 1853 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1854 { 1855 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1856 } 1857 1858 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1859 int bus, 1860 int target) 1861 { 1862 if (bus != CONTAINER_CHANNEL) 1863 bus = aac_phys_to_logical(bus); 1864 1865 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1866 } 1867 1868 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1869 { 1870 if (bus != CONTAINER_CHANNEL) 1871 bus = aac_phys_to_logical(bus); 1872 1873 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1874 } 1875 1876 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1877 { 1878 if (sdev) 1879 scsi_device_put(sdev); 1880 } 1881 1882 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1883 { 1884 struct scsi_device *sdev; 1885 1886 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1887 scsi_remove_device(sdev); 1888 aac_put_safw_scsi_device(sdev); 1889 } 1890 1891 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1892 int bus, int target) 1893 { 1894 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1895 } 1896 1897 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1898 { 1899 if (is_safw_raid_volume(dev, bus, target)) 1900 return dev->fsa_dev[target].valid; 1901 else 1902 return aac_is_safw_scan_count_equal(dev, bus, target); 1903 } 1904 1905 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1906 { 1907 int is_exposed = 0; 1908 struct scsi_device *sdev; 1909 1910 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1911 if (sdev) 1912 is_exposed = 1; 1913 aac_put_safw_scsi_device(sdev); 1914 1915 return is_exposed; 1916 } 1917 1918 static int aac_update_safw_host_devices(struct aac_dev *dev) 1919 { 1920 int i; 1921 int bus; 1922 int target; 1923 int is_exposed = 0; 1924 int rcode = 0; 1925 1926 rcode = aac_setup_safw_adapter(dev); 1927 if (unlikely(rcode < 0)) { 1928 goto out; 1929 } 1930 1931 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1932 1933 bus = get_bus_number(i); 1934 target = get_target_number(i); 1935 1936 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1937 1938 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1939 aac_add_safw_device(dev, bus, target); 1940 else if (!aac_is_safw_target_valid(dev, bus, target) && 1941 is_exposed) 1942 aac_remove_safw_device(dev, bus, target); 1943 } 1944 out: 1945 return rcode; 1946 } 1947 1948 static int aac_scan_safw_host(struct aac_dev *dev) 1949 { 1950 int rcode = 0; 1951 1952 rcode = aac_update_safw_host_devices(dev); 1953 if (rcode) 1954 aac_schedule_safw_scan_worker(dev); 1955 1956 return rcode; 1957 } 1958 1959 int aac_scan_host(struct aac_dev *dev) 1960 { 1961 int rcode = 0; 1962 1963 mutex_lock(&dev->scan_mutex); 1964 if (dev->sa_firmware) 1965 rcode = aac_scan_safw_host(dev); 1966 else 1967 scsi_scan_host(dev->scsi_host_ptr); 1968 mutex_unlock(&dev->scan_mutex); 1969 1970 return rcode; 1971 } 1972 1973 /** 1974 * aac_handle_sa_aif Handle a message from the firmware 1975 * @dev: Which adapter this fib is from 1976 * @fibptr: Pointer to fibptr from adapter 1977 * 1978 * This routine handles a driver notify fib from the adapter and 1979 * dispatches it to the appropriate routine for handling. 1980 */ 1981 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1982 { 1983 int i; 1984 u32 events = 0; 1985 1986 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1987 events = SA_AIF_HOTPLUG; 1988 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1989 events = SA_AIF_HARDWARE; 1990 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1991 events = SA_AIF_PDEV_CHANGE; 1992 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1993 events = SA_AIF_LDEV_CHANGE; 1994 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1995 events = SA_AIF_BPSTAT_CHANGE; 1996 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1997 events = SA_AIF_BPCFG_CHANGE; 1998 1999 switch (events) { 2000 case SA_AIF_HOTPLUG: 2001 case SA_AIF_HARDWARE: 2002 case SA_AIF_PDEV_CHANGE: 2003 case SA_AIF_LDEV_CHANGE: 2004 case SA_AIF_BPCFG_CHANGE: 2005 2006 aac_scan_host(dev); 2007 2008 break; 2009 2010 case SA_AIF_BPSTAT_CHANGE: 2011 /* currently do nothing */ 2012 break; 2013 } 2014 2015 for (i = 1; i <= 10; ++i) { 2016 events = src_readl(dev, MUnit.IDR); 2017 if (events & (1<<23)) { 2018 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2019 i, 10); 2020 ssleep(1); 2021 } 2022 } 2023 } 2024 2025 static int get_fib_count(struct aac_dev *dev) 2026 { 2027 unsigned int num = 0; 2028 struct list_head *entry; 2029 unsigned long flagv; 2030 2031 /* 2032 * Warning: no sleep allowed while 2033 * holding spinlock. We take the estimate 2034 * and pre-allocate a set of fibs outside the 2035 * lock. 2036 */ 2037 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2038 / sizeof(struct hw_fib); /* some extra */ 2039 spin_lock_irqsave(&dev->fib_lock, flagv); 2040 entry = dev->fib_list.next; 2041 while (entry != &dev->fib_list) { 2042 entry = entry->next; 2043 ++num; 2044 } 2045 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2046 2047 return num; 2048 } 2049 2050 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2051 struct fib **fib_pool, 2052 unsigned int num) 2053 { 2054 struct hw_fib **hw_fib_p; 2055 struct fib **fib_p; 2056 2057 hw_fib_p = hw_fib_pool; 2058 fib_p = fib_pool; 2059 while (hw_fib_p < &hw_fib_pool[num]) { 2060 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2061 if (!(*(hw_fib_p++))) { 2062 --hw_fib_p; 2063 break; 2064 } 2065 2066 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2067 if (!(*(fib_p++))) { 2068 kfree(*(--hw_fib_p)); 2069 break; 2070 } 2071 } 2072 2073 /* 2074 * Get the actual number of allocated fibs 2075 */ 2076 num = hw_fib_p - hw_fib_pool; 2077 return num; 2078 } 2079 2080 static void wakeup_fibctx_threads(struct aac_dev *dev, 2081 struct hw_fib **hw_fib_pool, 2082 struct fib **fib_pool, 2083 struct fib *fib, 2084 struct hw_fib *hw_fib, 2085 unsigned int num) 2086 { 2087 unsigned long flagv; 2088 struct list_head *entry; 2089 struct hw_fib **hw_fib_p; 2090 struct fib **fib_p; 2091 u32 time_now, time_last; 2092 struct hw_fib *hw_newfib; 2093 struct fib *newfib; 2094 struct aac_fib_context *fibctx; 2095 2096 time_now = jiffies/HZ; 2097 spin_lock_irqsave(&dev->fib_lock, flagv); 2098 entry = dev->fib_list.next; 2099 /* 2100 * For each Context that is on the 2101 * fibctxList, make a copy of the 2102 * fib, and then set the event to wake up the 2103 * thread that is waiting for it. 2104 */ 2105 2106 hw_fib_p = hw_fib_pool; 2107 fib_p = fib_pool; 2108 while (entry != &dev->fib_list) { 2109 /* 2110 * Extract the fibctx 2111 */ 2112 fibctx = list_entry(entry, struct aac_fib_context, 2113 next); 2114 /* 2115 * Check if the queue is getting 2116 * backlogged 2117 */ 2118 if (fibctx->count > 20) { 2119 /* 2120 * It's *not* jiffies folks, 2121 * but jiffies / HZ so do not 2122 * panic ... 2123 */ 2124 time_last = fibctx->jiffies; 2125 /* 2126 * Has it been > 2 minutes 2127 * since the last read off 2128 * the queue? 2129 */ 2130 if ((time_now - time_last) > aif_timeout) { 2131 entry = entry->next; 2132 aac_close_fib_context(dev, fibctx); 2133 continue; 2134 } 2135 } 2136 /* 2137 * Warning: no sleep allowed while 2138 * holding spinlock 2139 */ 2140 if (hw_fib_p >= &hw_fib_pool[num]) { 2141 pr_warn("aifd: didn't allocate NewFib\n"); 2142 entry = entry->next; 2143 continue; 2144 } 2145 2146 hw_newfib = *hw_fib_p; 2147 *(hw_fib_p++) = NULL; 2148 newfib = *fib_p; 2149 *(fib_p++) = NULL; 2150 /* 2151 * Make the copy of the FIB 2152 */ 2153 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2154 memcpy(newfib, fib, sizeof(struct fib)); 2155 newfib->hw_fib_va = hw_newfib; 2156 /* 2157 * Put the FIB onto the 2158 * fibctx's fibs 2159 */ 2160 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2161 fibctx->count++; 2162 /* 2163 * Set the event to wake up the 2164 * thread that is waiting. 2165 */ 2166 up(&fibctx->wait_sem); 2167 2168 entry = entry->next; 2169 } 2170 /* 2171 * Set the status of this FIB 2172 */ 2173 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2174 aac_fib_adapter_complete(fib, sizeof(u32)); 2175 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2176 2177 } 2178 2179 static void aac_process_events(struct aac_dev *dev) 2180 { 2181 struct hw_fib *hw_fib; 2182 struct fib *fib; 2183 unsigned long flags; 2184 spinlock_t *t_lock; 2185 2186 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2187 spin_lock_irqsave(t_lock, flags); 2188 2189 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2190 struct list_head *entry; 2191 struct aac_aifcmd *aifcmd; 2192 unsigned int num; 2193 struct hw_fib **hw_fib_pool, **hw_fib_p; 2194 struct fib **fib_pool, **fib_p; 2195 2196 set_current_state(TASK_RUNNING); 2197 2198 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2199 list_del(entry); 2200 2201 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2202 spin_unlock_irqrestore(t_lock, flags); 2203 2204 fib = list_entry(entry, struct fib, fiblink); 2205 hw_fib = fib->hw_fib_va; 2206 if (dev->sa_firmware) { 2207 /* Thor AIF */ 2208 aac_handle_sa_aif(dev, fib); 2209 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2210 goto free_fib; 2211 } 2212 /* 2213 * We will process the FIB here or pass it to a 2214 * worker thread that is TBD. We Really can't 2215 * do anything at this point since we don't have 2216 * anything defined for this thread to do. 2217 */ 2218 memset(fib, 0, sizeof(struct fib)); 2219 fib->type = FSAFS_NTC_FIB_CONTEXT; 2220 fib->size = sizeof(struct fib); 2221 fib->hw_fib_va = hw_fib; 2222 fib->data = hw_fib->data; 2223 fib->dev = dev; 2224 /* 2225 * We only handle AifRequest fibs from the adapter. 2226 */ 2227 2228 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2229 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2230 /* Handle Driver Notify Events */ 2231 aac_handle_aif(dev, fib); 2232 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2233 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2234 goto free_fib; 2235 } 2236 /* 2237 * The u32 here is important and intended. We are using 2238 * 32bit wrapping time to fit the adapter field 2239 */ 2240 2241 /* Sniff events */ 2242 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2243 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2244 aac_handle_aif(dev, fib); 2245 } 2246 2247 /* 2248 * get number of fibs to process 2249 */ 2250 num = get_fib_count(dev); 2251 if (!num) 2252 goto free_fib; 2253 2254 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2255 GFP_KERNEL); 2256 if (!hw_fib_pool) 2257 goto free_fib; 2258 2259 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2260 if (!fib_pool) 2261 goto free_hw_fib_pool; 2262 2263 /* 2264 * Fill up fib pointer pools with actual fibs 2265 * and hw_fibs 2266 */ 2267 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2268 if (!num) 2269 goto free_mem; 2270 2271 /* 2272 * wakeup the thread that is waiting for 2273 * the response from fw (ioctl) 2274 */ 2275 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2276 fib, hw_fib, num); 2277 2278 free_mem: 2279 /* Free up the remaining resources */ 2280 hw_fib_p = hw_fib_pool; 2281 fib_p = fib_pool; 2282 while (hw_fib_p < &hw_fib_pool[num]) { 2283 kfree(*hw_fib_p); 2284 kfree(*fib_p); 2285 ++fib_p; 2286 ++hw_fib_p; 2287 } 2288 kfree(fib_pool); 2289 free_hw_fib_pool: 2290 kfree(hw_fib_pool); 2291 free_fib: 2292 kfree(fib); 2293 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2294 spin_lock_irqsave(t_lock, flags); 2295 } 2296 /* 2297 * There are no more AIF's 2298 */ 2299 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2300 spin_unlock_irqrestore(t_lock, flags); 2301 } 2302 2303 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2304 u32 datasize) 2305 { 2306 struct aac_srb *srbcmd; 2307 struct sgmap64 *sg64; 2308 dma_addr_t addr; 2309 char *dma_buf; 2310 struct fib *fibptr; 2311 int ret = -ENOMEM; 2312 u32 vbus, vid; 2313 2314 fibptr = aac_fib_alloc(dev); 2315 if (!fibptr) 2316 goto out; 2317 2318 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2319 GFP_KERNEL); 2320 if (!dma_buf) 2321 goto fib_free_out; 2322 2323 aac_fib_init(fibptr); 2324 2325 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2326 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2327 2328 srbcmd = (struct aac_srb *)fib_data(fibptr); 2329 2330 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2331 srbcmd->channel = cpu_to_le32(vbus); 2332 srbcmd->id = cpu_to_le32(vid); 2333 srbcmd->lun = 0; 2334 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2335 srbcmd->timeout = cpu_to_le32(10); 2336 srbcmd->retry_limit = 0; 2337 srbcmd->cdb_size = cpu_to_le32(12); 2338 srbcmd->count = cpu_to_le32(datasize); 2339 2340 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2341 srbcmd->cdb[0] = BMIC_OUT; 2342 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2343 memcpy(dma_buf, (char *)wellness_str, datasize); 2344 2345 sg64 = (struct sgmap64 *)&srbcmd->sg; 2346 sg64->count = cpu_to_le32(1); 2347 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2348 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2349 sg64->sg[0].count = cpu_to_le32(datasize); 2350 2351 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2352 FsaNormal, 1, 1, NULL, NULL); 2353 2354 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2355 2356 /* 2357 * Do not set XferState to zero unless 2358 * receives a response from F/W 2359 */ 2360 if (ret >= 0) 2361 aac_fib_complete(fibptr); 2362 2363 /* 2364 * FIB should be freed only after 2365 * getting the response from the F/W 2366 */ 2367 if (ret != -ERESTARTSYS) 2368 goto fib_free_out; 2369 2370 out: 2371 return ret; 2372 fib_free_out: 2373 aac_fib_free(fibptr); 2374 goto out; 2375 } 2376 2377 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2378 { 2379 struct tm cur_tm; 2380 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2381 u32 datasize = sizeof(wellness_str); 2382 time64_t local_time; 2383 int ret = -ENODEV; 2384 2385 if (!dev->sa_firmware) 2386 goto out; 2387 2388 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2389 time64_to_tm(local_time, 0, &cur_tm); 2390 cur_tm.tm_mon += 1; 2391 cur_tm.tm_year += 1900; 2392 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2393 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2394 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2395 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2396 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2397 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2398 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2399 2400 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2401 2402 out: 2403 return ret; 2404 } 2405 2406 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2407 { 2408 int ret = -ENOMEM; 2409 struct fib *fibptr; 2410 __le32 *info; 2411 2412 fibptr = aac_fib_alloc(dev); 2413 if (!fibptr) 2414 goto out; 2415 2416 aac_fib_init(fibptr); 2417 info = (__le32 *)fib_data(fibptr); 2418 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2419 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2420 1, 1, NULL, NULL); 2421 2422 /* 2423 * Do not set XferState to zero unless 2424 * receives a response from F/W 2425 */ 2426 if (ret >= 0) 2427 aac_fib_complete(fibptr); 2428 2429 /* 2430 * FIB should be freed only after 2431 * getting the response from the F/W 2432 */ 2433 if (ret != -ERESTARTSYS) 2434 aac_fib_free(fibptr); 2435 2436 out: 2437 return ret; 2438 } 2439 2440 /** 2441 * aac_command_thread - command processing thread 2442 * @dev: Adapter to monitor 2443 * 2444 * Waits on the commandready event in it's queue. When the event gets set 2445 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2446 * until the queue is empty. When the queue is empty it will wait for 2447 * more FIBs. 2448 */ 2449 2450 int aac_command_thread(void *data) 2451 { 2452 struct aac_dev *dev = data; 2453 DECLARE_WAITQUEUE(wait, current); 2454 unsigned long next_jiffies = jiffies + HZ; 2455 unsigned long next_check_jiffies = next_jiffies; 2456 long difference = HZ; 2457 2458 /* 2459 * We can only have one thread per adapter for AIF's. 2460 */ 2461 if (dev->aif_thread) 2462 return -EINVAL; 2463 2464 /* 2465 * Let the DPC know it has a place to send the AIF's to. 2466 */ 2467 dev->aif_thread = 1; 2468 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2469 set_current_state(TASK_INTERRUPTIBLE); 2470 dprintk ((KERN_INFO "aac_command_thread start\n")); 2471 while (1) { 2472 2473 aac_process_events(dev); 2474 2475 /* 2476 * Background activity 2477 */ 2478 if ((time_before(next_check_jiffies,next_jiffies)) 2479 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2480 next_check_jiffies = next_jiffies; 2481 if (aac_adapter_check_health(dev) == 0) { 2482 difference = ((long)(unsigned)check_interval) 2483 * HZ; 2484 next_check_jiffies = jiffies + difference; 2485 } else if (!dev->queues) 2486 break; 2487 } 2488 if (!time_before(next_check_jiffies,next_jiffies) 2489 && ((difference = next_jiffies - jiffies) <= 0)) { 2490 struct timespec64 now; 2491 int ret; 2492 2493 /* Don't even try to talk to adapter if its sick */ 2494 ret = aac_adapter_check_health(dev); 2495 if (ret || !dev->queues) 2496 break; 2497 next_check_jiffies = jiffies 2498 + ((long)(unsigned)check_interval) 2499 * HZ; 2500 ktime_get_real_ts64(&now); 2501 2502 /* Synchronize our watches */ 2503 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2504 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2505 difference = HZ + HZ / 2 - 2506 now.tv_nsec / (NSEC_PER_SEC / HZ); 2507 else { 2508 if (now.tv_nsec > NSEC_PER_SEC / 2) 2509 ++now.tv_sec; 2510 2511 if (dev->sa_firmware) 2512 ret = 2513 aac_send_safw_hostttime(dev, &now); 2514 else 2515 ret = aac_send_hosttime(dev, &now); 2516 2517 difference = (long)(unsigned)update_interval*HZ; 2518 } 2519 next_jiffies = jiffies + difference; 2520 if (time_before(next_check_jiffies,next_jiffies)) 2521 difference = next_check_jiffies - jiffies; 2522 } 2523 if (difference <= 0) 2524 difference = 1; 2525 set_current_state(TASK_INTERRUPTIBLE); 2526 2527 if (kthread_should_stop()) 2528 break; 2529 2530 /* 2531 * we probably want usleep_range() here instead of the 2532 * jiffies computation 2533 */ 2534 schedule_timeout(difference); 2535 2536 if (kthread_should_stop()) 2537 break; 2538 } 2539 if (dev->queues) 2540 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2541 dev->aif_thread = 0; 2542 return 0; 2543 } 2544 2545 int aac_acquire_irq(struct aac_dev *dev) 2546 { 2547 int i; 2548 int j; 2549 int ret = 0; 2550 2551 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2552 for (i = 0; i < dev->max_msix; i++) { 2553 dev->aac_msix[i].vector_no = i; 2554 dev->aac_msix[i].dev = dev; 2555 if (request_irq(pci_irq_vector(dev->pdev, i), 2556 dev->a_ops.adapter_intr, 2557 0, "aacraid", &(dev->aac_msix[i]))) { 2558 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2559 dev->name, dev->id, i); 2560 for (j = 0 ; j < i ; j++) 2561 free_irq(pci_irq_vector(dev->pdev, j), 2562 &(dev->aac_msix[j])); 2563 pci_disable_msix(dev->pdev); 2564 ret = -1; 2565 } 2566 } 2567 } else { 2568 dev->aac_msix[0].vector_no = 0; 2569 dev->aac_msix[0].dev = dev; 2570 2571 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2572 IRQF_SHARED, "aacraid", 2573 &(dev->aac_msix[0])) < 0) { 2574 if (dev->msi) 2575 pci_disable_msi(dev->pdev); 2576 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2577 dev->name, dev->id); 2578 ret = -1; 2579 } 2580 } 2581 return ret; 2582 } 2583 2584 void aac_free_irq(struct aac_dev *dev) 2585 { 2586 int i; 2587 int cpu; 2588 2589 cpu = cpumask_first(cpu_online_mask); 2590 if (aac_is_src(dev)) { 2591 if (dev->max_msix > 1) { 2592 for (i = 0; i < dev->max_msix; i++) 2593 free_irq(pci_irq_vector(dev->pdev, i), 2594 &(dev->aac_msix[i])); 2595 } else { 2596 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2597 } 2598 } else { 2599 free_irq(dev->pdev->irq, dev); 2600 } 2601 if (dev->msi) 2602 pci_disable_msi(dev->pdev); 2603 else if (dev->max_msix > 1) 2604 pci_disable_msix(dev->pdev); 2605 } 2606