1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * commsup.c 28 * 29 * Abstract: Contain all routines that are required for FSA host/adapter 30 * communication. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/sched.h> 38 #include <linux/pci.h> 39 #include <linux/spinlock.h> 40 #include <linux/slab.h> 41 #include <linux/completion.h> 42 #include <linux/blkdev.h> 43 #include <linux/delay.h> 44 #include <linux/kthread.h> 45 #include <linux/interrupt.h> 46 #include <linux/semaphore.h> 47 #include <linux/bcd.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_host.h> 50 #include <scsi/scsi_device.h> 51 #include <scsi/scsi_cmnd.h> 52 53 #include "aacraid.h" 54 55 /** 56 * fib_map_alloc - allocate the fib objects 57 * @dev: Adapter to allocate for 58 * 59 * Allocate and map the shared PCI space for the FIB blocks used to 60 * talk to the Adaptec firmware. 61 */ 62 63 static int fib_map_alloc(struct aac_dev *dev) 64 { 65 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 66 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 67 else 68 dev->max_cmd_size = dev->max_fib_size; 69 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 70 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 71 } else { 72 dev->max_cmd_size = dev->max_fib_size; 73 } 74 75 dprintk((KERN_INFO 76 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 77 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 78 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 79 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 80 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 81 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 82 &dev->hw_fib_pa, GFP_KERNEL); 83 if (dev->hw_fib_va == NULL) 84 return -ENOMEM; 85 return 0; 86 } 87 88 /** 89 * aac_fib_map_free - free the fib objects 90 * @dev: Adapter to free 91 * 92 * Free the PCI mappings and the memory allocated for FIB blocks 93 * on this adapter. 94 */ 95 96 void aac_fib_map_free(struct aac_dev *dev) 97 { 98 size_t alloc_size; 99 size_t fib_size; 100 int num_fibs; 101 102 if(!dev->hw_fib_va || !dev->max_cmd_size) 103 return; 104 105 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 106 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 107 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 108 109 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 110 dev->hw_fib_pa); 111 112 dev->hw_fib_va = NULL; 113 dev->hw_fib_pa = 0; 114 } 115 116 void aac_fib_vector_assign(struct aac_dev *dev) 117 { 118 u32 i = 0; 119 u32 vector = 1; 120 struct fib *fibptr = NULL; 121 122 for (i = 0, fibptr = &dev->fibs[i]; 123 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 124 i++, fibptr++) { 125 if ((dev->max_msix == 1) || 126 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 127 - dev->vector_cap))) { 128 fibptr->vector_no = 0; 129 } else { 130 fibptr->vector_no = vector; 131 vector++; 132 if (vector == dev->max_msix) 133 vector = 1; 134 } 135 } 136 } 137 138 /** 139 * aac_fib_setup - setup the fibs 140 * @dev: Adapter to set up 141 * 142 * Allocate the PCI space for the fibs, map it and then initialise the 143 * fib area, the unmapped fib data and also the free list 144 */ 145 146 int aac_fib_setup(struct aac_dev * dev) 147 { 148 struct fib *fibptr; 149 struct hw_fib *hw_fib; 150 dma_addr_t hw_fib_pa; 151 int i; 152 u32 max_cmds; 153 154 while (((i = fib_map_alloc(dev)) == -ENOMEM) 155 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 156 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 157 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 158 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 159 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 160 } 161 if (i<0) 162 return -ENOMEM; 163 164 memset(dev->hw_fib_va, 0, 165 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 166 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 167 168 /* 32 byte alignment for PMC */ 169 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 170 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 171 (hw_fib_pa - dev->hw_fib_pa)); 172 173 /* add Xport header */ 174 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 175 sizeof(struct aac_fib_xporthdr)); 176 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 177 178 /* 179 * Initialise the fibs 180 */ 181 for (i = 0, fibptr = &dev->fibs[i]; 182 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 183 i++, fibptr++) 184 { 185 fibptr->flags = 0; 186 fibptr->size = sizeof(struct fib); 187 fibptr->dev = dev; 188 fibptr->hw_fib_va = hw_fib; 189 fibptr->data = (void *) fibptr->hw_fib_va->data; 190 fibptr->next = fibptr+1; /* Forward chain the fibs */ 191 sema_init(&fibptr->event_wait, 0); 192 spin_lock_init(&fibptr->event_lock); 193 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 194 hw_fib->header.SenderSize = 195 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 196 fibptr->hw_fib_pa = hw_fib_pa; 197 fibptr->hw_sgl_pa = hw_fib_pa + 198 offsetof(struct aac_hba_cmd_req, sge[2]); 199 /* 200 * one element is for the ptr to the separate sg list, 201 * second element for 32 byte alignment 202 */ 203 fibptr->hw_error_pa = hw_fib_pa + 204 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 205 206 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 207 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 208 hw_fib_pa = hw_fib_pa + 209 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 210 } 211 212 /* 213 *Assign vector numbers to fibs 214 */ 215 aac_fib_vector_assign(dev); 216 217 /* 218 * Add the fib chain to the free list 219 */ 220 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 221 /* 222 * Set 8 fibs aside for management tools 223 */ 224 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 225 return 0; 226 } 227 228 /** 229 * aac_fib_alloc_tag-allocate a fib using tags 230 * @dev: Adapter to allocate the fib for 231 * 232 * Allocate a fib from the adapter fib pool using tags 233 * from the blk layer. 234 */ 235 236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 237 { 238 struct fib *fibptr; 239 240 fibptr = &dev->fibs[scmd->request->tag]; 241 /* 242 * Null out fields that depend on being zero at the start of 243 * each I/O 244 */ 245 fibptr->hw_fib_va->header.XferState = 0; 246 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 247 fibptr->callback_data = NULL; 248 fibptr->callback = NULL; 249 250 return fibptr; 251 } 252 253 /** 254 * aac_fib_alloc - allocate a fib 255 * @dev: Adapter to allocate the fib for 256 * 257 * Allocate a fib from the adapter fib pool. If the pool is empty we 258 * return NULL. 259 */ 260 261 struct fib *aac_fib_alloc(struct aac_dev *dev) 262 { 263 struct fib * fibptr; 264 unsigned long flags; 265 spin_lock_irqsave(&dev->fib_lock, flags); 266 fibptr = dev->free_fib; 267 if(!fibptr){ 268 spin_unlock_irqrestore(&dev->fib_lock, flags); 269 return fibptr; 270 } 271 dev->free_fib = fibptr->next; 272 spin_unlock_irqrestore(&dev->fib_lock, flags); 273 /* 274 * Set the proper node type code and node byte size 275 */ 276 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 277 fibptr->size = sizeof(struct fib); 278 /* 279 * Null out fields that depend on being zero at the start of 280 * each I/O 281 */ 282 fibptr->hw_fib_va->header.XferState = 0; 283 fibptr->flags = 0; 284 fibptr->callback = NULL; 285 fibptr->callback_data = NULL; 286 287 return fibptr; 288 } 289 290 /** 291 * aac_fib_free - free a fib 292 * @fibptr: fib to free up 293 * 294 * Frees up a fib and places it on the appropriate queue 295 */ 296 297 void aac_fib_free(struct fib *fibptr) 298 { 299 unsigned long flags; 300 301 if (fibptr->done == 2) 302 return; 303 304 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 305 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 306 aac_config.fib_timeouts++; 307 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 308 fibptr->hw_fib_va->header.XferState != 0) { 309 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 310 (void*)fibptr, 311 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 312 } 313 fibptr->next = fibptr->dev->free_fib; 314 fibptr->dev->free_fib = fibptr; 315 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 316 } 317 318 /** 319 * aac_fib_init - initialise a fib 320 * @fibptr: The fib to initialize 321 * 322 * Set up the generic fib fields ready for use 323 */ 324 325 void aac_fib_init(struct fib *fibptr) 326 { 327 struct hw_fib *hw_fib = fibptr->hw_fib_va; 328 329 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 330 hw_fib->header.StructType = FIB_MAGIC; 331 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 332 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 333 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 334 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 335 } 336 337 /** 338 * fib_deallocate - deallocate a fib 339 * @fibptr: fib to deallocate 340 * 341 * Will deallocate and return to the free pool the FIB pointed to by the 342 * caller. 343 */ 344 345 static void fib_dealloc(struct fib * fibptr) 346 { 347 struct hw_fib *hw_fib = fibptr->hw_fib_va; 348 hw_fib->header.XferState = 0; 349 } 350 351 /* 352 * Commuication primitives define and support the queuing method we use to 353 * support host to adapter commuication. All queue accesses happen through 354 * these routines and are the only routines which have a knowledge of the 355 * how these queues are implemented. 356 */ 357 358 /** 359 * aac_get_entry - get a queue entry 360 * @dev: Adapter 361 * @qid: Queue Number 362 * @entry: Entry return 363 * @index: Index return 364 * @nonotify: notification control 365 * 366 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 367 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 368 * returned. 369 */ 370 371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 372 { 373 struct aac_queue * q; 374 unsigned long idx; 375 376 /* 377 * All of the queues wrap when they reach the end, so we check 378 * to see if they have reached the end and if they have we just 379 * set the index back to zero. This is a wrap. You could or off 380 * the high bits in all updates but this is a bit faster I think. 381 */ 382 383 q = &dev->queues->queue[qid]; 384 385 idx = *index = le32_to_cpu(*(q->headers.producer)); 386 /* Interrupt Moderation, only interrupt for first two entries */ 387 if (idx != le32_to_cpu(*(q->headers.consumer))) { 388 if (--idx == 0) { 389 if (qid == AdapNormCmdQueue) 390 idx = ADAP_NORM_CMD_ENTRIES; 391 else 392 idx = ADAP_NORM_RESP_ENTRIES; 393 } 394 if (idx != le32_to_cpu(*(q->headers.consumer))) 395 *nonotify = 1; 396 } 397 398 if (qid == AdapNormCmdQueue) { 399 if (*index >= ADAP_NORM_CMD_ENTRIES) 400 *index = 0; /* Wrap to front of the Producer Queue. */ 401 } else { 402 if (*index >= ADAP_NORM_RESP_ENTRIES) 403 *index = 0; /* Wrap to front of the Producer Queue. */ 404 } 405 406 /* Queue is full */ 407 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 408 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 409 qid, atomic_read(&q->numpending)); 410 return 0; 411 } else { 412 *entry = q->base + *index; 413 return 1; 414 } 415 } 416 417 /** 418 * aac_queue_get - get the next free QE 419 * @dev: Adapter 420 * @index: Returned index 421 * @priority: Priority of fib 422 * @fib: Fib to associate with the queue entry 423 * @wait: Wait if queue full 424 * @fibptr: Driver fib object to go with fib 425 * @nonotify: Don't notify the adapter 426 * 427 * Gets the next free QE off the requested priorty adapter command 428 * queue and associates the Fib with the QE. The QE represented by 429 * index is ready to insert on the queue when this routine returns 430 * success. 431 */ 432 433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 434 { 435 struct aac_entry * entry = NULL; 436 int map = 0; 437 438 if (qid == AdapNormCmdQueue) { 439 /* if no entries wait for some if caller wants to */ 440 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 441 printk(KERN_ERR "GetEntries failed\n"); 442 } 443 /* 444 * Setup queue entry with a command, status and fib mapped 445 */ 446 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 447 map = 1; 448 } else { 449 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 450 /* if no entries wait for some if caller wants to */ 451 } 452 /* 453 * Setup queue entry with command, status and fib mapped 454 */ 455 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 456 entry->addr = hw_fib->header.SenderFibAddress; 457 /* Restore adapters pointer to the FIB */ 458 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 459 map = 0; 460 } 461 /* 462 * If MapFib is true than we need to map the Fib and put pointers 463 * in the queue entry. 464 */ 465 if (map) 466 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 467 return 0; 468 } 469 470 #ifdef CONFIG_EEH 471 static inline int aac_check_eeh_failure(struct aac_dev *dev) 472 { 473 /* Check for an EEH failure for the given 474 * device node. Function eeh_dev_check_failure() 475 * returns 0 if there has not been an EEH error 476 * otherwise returns a non-zero value. 477 * 478 * Need to be called before any PCI operation, 479 * i.e.,before aac_adapter_check_health() 480 */ 481 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev->pdev); 482 483 if (eeh_dev_check_failure(edev)) { 484 /* The EEH mechanisms will handle this 485 * error and reset the device if 486 * necessary. 487 */ 488 return 1; 489 } 490 return 0; 491 } 492 #else 493 static inline int aac_check_eeh_failure(struct aac_dev *dev) 494 { 495 return 0; 496 } 497 #endif 498 499 /* 500 * Define the highest level of host to adapter communication routines. 501 * These routines will support host to adapter FS commuication. These 502 * routines have no knowledge of the commuication method used. This level 503 * sends and receives FIBs. This level has no knowledge of how these FIBs 504 * get passed back and forth. 505 */ 506 507 /** 508 * aac_fib_send - send a fib to the adapter 509 * @command: Command to send 510 * @fibptr: The fib 511 * @size: Size of fib data area 512 * @priority: Priority of Fib 513 * @wait: Async/sync select 514 * @reply: True if a reply is wanted 515 * @callback: Called with reply 516 * @callback_data: Passed to callback 517 * 518 * Sends the requested FIB to the adapter and optionally will wait for a 519 * response FIB. If the caller does not wish to wait for a response than 520 * an event to wait on must be supplied. This event will be set when a 521 * response FIB is received from the adapter. 522 */ 523 524 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 525 int priority, int wait, int reply, fib_callback callback, 526 void *callback_data) 527 { 528 struct aac_dev * dev = fibptr->dev; 529 struct hw_fib * hw_fib = fibptr->hw_fib_va; 530 unsigned long flags = 0; 531 unsigned long mflags = 0; 532 unsigned long sflags = 0; 533 534 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 535 return -EBUSY; 536 537 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 538 return -EINVAL; 539 540 /* 541 * There are 5 cases with the wait and response requested flags. 542 * The only invalid cases are if the caller requests to wait and 543 * does not request a response and if the caller does not want a 544 * response and the Fib is not allocated from pool. If a response 545 * is not requesed the Fib will just be deallocaed by the DPC 546 * routine when the response comes back from the adapter. No 547 * further processing will be done besides deleting the Fib. We 548 * will have a debug mode where the adapter can notify the host 549 * it had a problem and the host can log that fact. 550 */ 551 fibptr->flags = 0; 552 if (wait && !reply) { 553 return -EINVAL; 554 } else if (!wait && reply) { 555 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 556 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 557 } else if (!wait && !reply) { 558 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 559 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 560 } else if (wait && reply) { 561 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 562 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 563 } 564 /* 565 * Map the fib into 32bits by using the fib number 566 */ 567 568 hw_fib->header.SenderFibAddress = 569 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 570 571 /* use the same shifted value for handle to be compatible 572 * with the new native hba command handle 573 */ 574 hw_fib->header.Handle = 575 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 576 577 /* 578 * Set FIB state to indicate where it came from and if we want a 579 * response from the adapter. Also load the command from the 580 * caller. 581 * 582 * Map the hw fib pointer as a 32bit value 583 */ 584 hw_fib->header.Command = cpu_to_le16(command); 585 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 586 /* 587 * Set the size of the Fib we want to send to the adapter 588 */ 589 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 590 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 591 return -EMSGSIZE; 592 } 593 /* 594 * Get a queue entry connect the FIB to it and send an notify 595 * the adapter a command is ready. 596 */ 597 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 598 599 /* 600 * Fill in the Callback and CallbackContext if we are not 601 * going to wait. 602 */ 603 if (!wait) { 604 fibptr->callback = callback; 605 fibptr->callback_data = callback_data; 606 fibptr->flags = FIB_CONTEXT_FLAG; 607 } 608 609 fibptr->done = 0; 610 611 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 612 613 dprintk((KERN_DEBUG "Fib contents:.\n")); 614 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 615 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 616 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 617 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 618 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 619 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 620 621 if (!dev->queues) 622 return -EBUSY; 623 624 if (wait) { 625 626 spin_lock_irqsave(&dev->manage_lock, mflags); 627 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 628 printk(KERN_INFO "No management Fibs Available:%d\n", 629 dev->management_fib_count); 630 spin_unlock_irqrestore(&dev->manage_lock, mflags); 631 return -EBUSY; 632 } 633 dev->management_fib_count++; 634 spin_unlock_irqrestore(&dev->manage_lock, mflags); 635 spin_lock_irqsave(&fibptr->event_lock, flags); 636 } 637 638 if (dev->sync_mode) { 639 if (wait) 640 spin_unlock_irqrestore(&fibptr->event_lock, flags); 641 spin_lock_irqsave(&dev->sync_lock, sflags); 642 if (dev->sync_fib) { 643 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 644 spin_unlock_irqrestore(&dev->sync_lock, sflags); 645 } else { 646 dev->sync_fib = fibptr; 647 spin_unlock_irqrestore(&dev->sync_lock, sflags); 648 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 649 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 650 NULL, NULL, NULL, NULL, NULL); 651 } 652 if (wait) { 653 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 654 if (down_interruptible(&fibptr->event_wait)) { 655 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 656 return -EFAULT; 657 } 658 return 0; 659 } 660 return -EINPROGRESS; 661 } 662 663 if (aac_adapter_deliver(fibptr) != 0) { 664 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 665 if (wait) { 666 spin_unlock_irqrestore(&fibptr->event_lock, flags); 667 spin_lock_irqsave(&dev->manage_lock, mflags); 668 dev->management_fib_count--; 669 spin_unlock_irqrestore(&dev->manage_lock, mflags); 670 } 671 return -EBUSY; 672 } 673 674 675 /* 676 * If the caller wanted us to wait for response wait now. 677 */ 678 679 if (wait) { 680 spin_unlock_irqrestore(&fibptr->event_lock, flags); 681 /* Only set for first known interruptable command */ 682 if (wait < 0) { 683 /* 684 * *VERY* Dangerous to time out a command, the 685 * assumption is made that we have no hope of 686 * functioning because an interrupt routing or other 687 * hardware failure has occurred. 688 */ 689 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 690 while (down_trylock(&fibptr->event_wait)) { 691 int blink; 692 if (time_is_before_eq_jiffies(timeout)) { 693 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 694 atomic_dec(&q->numpending); 695 if (wait == -1) { 696 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 697 "Usually a result of a PCI interrupt routing problem;\n" 698 "update mother board BIOS or consider utilizing one of\n" 699 "the SAFE mode kernel options (acpi, apic etc)\n"); 700 } 701 return -ETIMEDOUT; 702 } 703 704 if (aac_check_eeh_failure(dev)) 705 return -EFAULT; 706 707 if ((blink = aac_adapter_check_health(dev)) > 0) { 708 if (wait == -1) { 709 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 710 "Usually a result of a serious unrecoverable hardware problem\n", 711 blink); 712 } 713 return -EFAULT; 714 } 715 /* 716 * Allow other processes / CPUS to use core 717 */ 718 schedule(); 719 } 720 } else if (down_interruptible(&fibptr->event_wait)) { 721 /* Do nothing ... satisfy 722 * down_interruptible must_check */ 723 } 724 725 spin_lock_irqsave(&fibptr->event_lock, flags); 726 if (fibptr->done == 0) { 727 fibptr->done = 2; /* Tell interrupt we aborted */ 728 spin_unlock_irqrestore(&fibptr->event_lock, flags); 729 return -ERESTARTSYS; 730 } 731 spin_unlock_irqrestore(&fibptr->event_lock, flags); 732 BUG_ON(fibptr->done == 0); 733 734 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 735 return -ETIMEDOUT; 736 return 0; 737 } 738 /* 739 * If the user does not want a response than return success otherwise 740 * return pending 741 */ 742 if (reply) 743 return -EINPROGRESS; 744 else 745 return 0; 746 } 747 748 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 749 void *callback_data) 750 { 751 struct aac_dev *dev = fibptr->dev; 752 int wait; 753 unsigned long flags = 0; 754 unsigned long mflags = 0; 755 756 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 757 if (callback) { 758 wait = 0; 759 fibptr->callback = callback; 760 fibptr->callback_data = callback_data; 761 } else 762 wait = 1; 763 764 765 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 766 struct aac_hba_cmd_req *hbacmd = 767 (struct aac_hba_cmd_req *)fibptr->hw_fib_va; 768 769 hbacmd->iu_type = command; 770 /* bit1 of request_id must be 0 */ 771 hbacmd->request_id = 772 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 773 } else 774 return -EINVAL; 775 776 777 if (wait) { 778 spin_lock_irqsave(&dev->manage_lock, mflags); 779 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 780 spin_unlock_irqrestore(&dev->manage_lock, mflags); 781 return -EBUSY; 782 } 783 dev->management_fib_count++; 784 spin_unlock_irqrestore(&dev->manage_lock, mflags); 785 spin_lock_irqsave(&fibptr->event_lock, flags); 786 } 787 788 if (aac_adapter_deliver(fibptr) != 0) { 789 if (wait) { 790 spin_unlock_irqrestore(&fibptr->event_lock, flags); 791 spin_lock_irqsave(&dev->manage_lock, mflags); 792 dev->management_fib_count--; 793 spin_unlock_irqrestore(&dev->manage_lock, mflags); 794 } 795 return -EBUSY; 796 } 797 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 798 799 if (wait) { 800 801 spin_unlock_irqrestore(&fibptr->event_lock, flags); 802 803 if (aac_check_eeh_failure(dev)) 804 return -EFAULT; 805 806 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 807 if (down_interruptible(&fibptr->event_wait)) 808 fibptr->done = 2; 809 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 810 811 spin_lock_irqsave(&fibptr->event_lock, flags); 812 if ((fibptr->done == 0) || (fibptr->done == 2)) { 813 fibptr->done = 2; /* Tell interrupt we aborted */ 814 spin_unlock_irqrestore(&fibptr->event_lock, flags); 815 return -ERESTARTSYS; 816 } 817 spin_unlock_irqrestore(&fibptr->event_lock, flags); 818 WARN_ON(fibptr->done == 0); 819 820 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 821 return -ETIMEDOUT; 822 823 return 0; 824 } 825 826 return -EINPROGRESS; 827 } 828 829 /** 830 * aac_consumer_get - get the top of the queue 831 * @dev: Adapter 832 * @q: Queue 833 * @entry: Return entry 834 * 835 * Will return a pointer to the entry on the top of the queue requested that 836 * we are a consumer of, and return the address of the queue entry. It does 837 * not change the state of the queue. 838 */ 839 840 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 841 { 842 u32 index; 843 int status; 844 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 845 status = 0; 846 } else { 847 /* 848 * The consumer index must be wrapped if we have reached 849 * the end of the queue, else we just use the entry 850 * pointed to by the header index 851 */ 852 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 853 index = 0; 854 else 855 index = le32_to_cpu(*q->headers.consumer); 856 *entry = q->base + index; 857 status = 1; 858 } 859 return(status); 860 } 861 862 /** 863 * aac_consumer_free - free consumer entry 864 * @dev: Adapter 865 * @q: Queue 866 * @qid: Queue ident 867 * 868 * Frees up the current top of the queue we are a consumer of. If the 869 * queue was full notify the producer that the queue is no longer full. 870 */ 871 872 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 873 { 874 int wasfull = 0; 875 u32 notify; 876 877 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 878 wasfull = 1; 879 880 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 881 *q->headers.consumer = cpu_to_le32(1); 882 else 883 le32_add_cpu(q->headers.consumer, 1); 884 885 if (wasfull) { 886 switch (qid) { 887 888 case HostNormCmdQueue: 889 notify = HostNormCmdNotFull; 890 break; 891 case HostNormRespQueue: 892 notify = HostNormRespNotFull; 893 break; 894 default: 895 BUG(); 896 return; 897 } 898 aac_adapter_notify(dev, notify); 899 } 900 } 901 902 /** 903 * aac_fib_adapter_complete - complete adapter issued fib 904 * @fibptr: fib to complete 905 * @size: size of fib 906 * 907 * Will do all necessary work to complete a FIB that was sent from 908 * the adapter. 909 */ 910 911 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 912 { 913 struct hw_fib * hw_fib = fibptr->hw_fib_va; 914 struct aac_dev * dev = fibptr->dev; 915 struct aac_queue * q; 916 unsigned long nointr = 0; 917 unsigned long qflags; 918 919 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 920 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 921 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 922 kfree(hw_fib); 923 return 0; 924 } 925 926 if (hw_fib->header.XferState == 0) { 927 if (dev->comm_interface == AAC_COMM_MESSAGE) 928 kfree(hw_fib); 929 return 0; 930 } 931 /* 932 * If we plan to do anything check the structure type first. 933 */ 934 if (hw_fib->header.StructType != FIB_MAGIC && 935 hw_fib->header.StructType != FIB_MAGIC2 && 936 hw_fib->header.StructType != FIB_MAGIC2_64) { 937 if (dev->comm_interface == AAC_COMM_MESSAGE) 938 kfree(hw_fib); 939 return -EINVAL; 940 } 941 /* 942 * This block handles the case where the adapter had sent us a 943 * command and we have finished processing the command. We 944 * call completeFib when we are done processing the command 945 * and want to send a response back to the adapter. This will 946 * send the completed cdb to the adapter. 947 */ 948 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 949 if (dev->comm_interface == AAC_COMM_MESSAGE) { 950 kfree (hw_fib); 951 } else { 952 u32 index; 953 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 954 if (size) { 955 size += sizeof(struct aac_fibhdr); 956 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 957 return -EMSGSIZE; 958 hw_fib->header.Size = cpu_to_le16(size); 959 } 960 q = &dev->queues->queue[AdapNormRespQueue]; 961 spin_lock_irqsave(q->lock, qflags); 962 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 963 *(q->headers.producer) = cpu_to_le32(index + 1); 964 spin_unlock_irqrestore(q->lock, qflags); 965 if (!(nointr & (int)aac_config.irq_mod)) 966 aac_adapter_notify(dev, AdapNormRespQueue); 967 } 968 } else { 969 printk(KERN_WARNING "aac_fib_adapter_complete: " 970 "Unknown xferstate detected.\n"); 971 BUG(); 972 } 973 return 0; 974 } 975 976 /** 977 * aac_fib_complete - fib completion handler 978 * @fib: FIB to complete 979 * 980 * Will do all necessary work to complete a FIB. 981 */ 982 983 int aac_fib_complete(struct fib *fibptr) 984 { 985 struct hw_fib * hw_fib = fibptr->hw_fib_va; 986 987 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 988 fib_dealloc(fibptr); 989 return 0; 990 } 991 992 /* 993 * Check for a fib which has already been completed or with a 994 * status wait timeout 995 */ 996 997 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 998 return 0; 999 /* 1000 * If we plan to do anything check the structure type first. 1001 */ 1002 1003 if (hw_fib->header.StructType != FIB_MAGIC && 1004 hw_fib->header.StructType != FIB_MAGIC2 && 1005 hw_fib->header.StructType != FIB_MAGIC2_64) 1006 return -EINVAL; 1007 /* 1008 * This block completes a cdb which orginated on the host and we 1009 * just need to deallocate the cdb or reinit it. At this point the 1010 * command is complete that we had sent to the adapter and this 1011 * cdb could be reused. 1012 */ 1013 1014 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 1015 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 1016 { 1017 fib_dealloc(fibptr); 1018 } 1019 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 1020 { 1021 /* 1022 * This handles the case when the host has aborted the I/O 1023 * to the adapter because the adapter is not responding 1024 */ 1025 fib_dealloc(fibptr); 1026 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 1027 fib_dealloc(fibptr); 1028 } else { 1029 BUG(); 1030 } 1031 return 0; 1032 } 1033 1034 /** 1035 * aac_printf - handle printf from firmware 1036 * @dev: Adapter 1037 * @val: Message info 1038 * 1039 * Print a message passed to us by the controller firmware on the 1040 * Adaptec board 1041 */ 1042 1043 void aac_printf(struct aac_dev *dev, u32 val) 1044 { 1045 char *cp = dev->printfbuf; 1046 if (dev->printf_enabled) 1047 { 1048 int length = val & 0xffff; 1049 int level = (val >> 16) & 0xffff; 1050 1051 /* 1052 * The size of the printfbuf is set in port.c 1053 * There is no variable or define for it 1054 */ 1055 if (length > 255) 1056 length = 255; 1057 if (cp[length] != 0) 1058 cp[length] = 0; 1059 if (level == LOG_AAC_HIGH_ERROR) 1060 printk(KERN_WARNING "%s:%s", dev->name, cp); 1061 else 1062 printk(KERN_INFO "%s:%s", dev->name, cp); 1063 } 1064 memset(cp, 0, 256); 1065 } 1066 1067 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1068 { 1069 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1070 } 1071 1072 1073 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1074 { 1075 switch (aac_aif_data(aifcmd, 1)) { 1076 case AifBuCacheDataLoss: 1077 if (aac_aif_data(aifcmd, 2)) 1078 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1079 aac_aif_data(aifcmd, 2)); 1080 else 1081 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1082 break; 1083 case AifBuCacheDataRecover: 1084 if (aac_aif_data(aifcmd, 2)) 1085 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1086 aac_aif_data(aifcmd, 2)); 1087 else 1088 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1089 break; 1090 } 1091 } 1092 1093 /** 1094 * aac_handle_aif - Handle a message from the firmware 1095 * @dev: Which adapter this fib is from 1096 * @fibptr: Pointer to fibptr from adapter 1097 * 1098 * This routine handles a driver notify fib from the adapter and 1099 * dispatches it to the appropriate routine for handling. 1100 */ 1101 1102 #define AIF_SNIFF_TIMEOUT (500*HZ) 1103 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1104 { 1105 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1106 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1107 u32 channel, id, lun, container; 1108 struct scsi_device *device; 1109 enum { 1110 NOTHING, 1111 DELETE, 1112 ADD, 1113 CHANGE 1114 } device_config_needed = NOTHING; 1115 1116 /* Sniff for container changes */ 1117 1118 if (!dev || !dev->fsa_dev) 1119 return; 1120 container = channel = id = lun = (u32)-1; 1121 1122 /* 1123 * We have set this up to try and minimize the number of 1124 * re-configures that take place. As a result of this when 1125 * certain AIF's come in we will set a flag waiting for another 1126 * type of AIF before setting the re-config flag. 1127 */ 1128 switch (le32_to_cpu(aifcmd->command)) { 1129 case AifCmdDriverNotify: 1130 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1131 case AifRawDeviceRemove: 1132 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1133 if ((container >> 28)) { 1134 container = (u32)-1; 1135 break; 1136 } 1137 channel = (container >> 24) & 0xF; 1138 if (channel >= dev->maximum_num_channels) { 1139 container = (u32)-1; 1140 break; 1141 } 1142 id = container & 0xFFFF; 1143 if (id >= dev->maximum_num_physicals) { 1144 container = (u32)-1; 1145 break; 1146 } 1147 lun = (container >> 16) & 0xFF; 1148 container = (u32)-1; 1149 channel = aac_phys_to_logical(channel); 1150 device_config_needed = DELETE; 1151 break; 1152 1153 /* 1154 * Morph or Expand complete 1155 */ 1156 case AifDenMorphComplete: 1157 case AifDenVolumeExtendComplete: 1158 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1159 if (container >= dev->maximum_num_containers) 1160 break; 1161 1162 /* 1163 * Find the scsi_device associated with the SCSI 1164 * address. Make sure we have the right array, and if 1165 * so set the flag to initiate a new re-config once we 1166 * see an AifEnConfigChange AIF come through. 1167 */ 1168 1169 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1170 device = scsi_device_lookup(dev->scsi_host_ptr, 1171 CONTAINER_TO_CHANNEL(container), 1172 CONTAINER_TO_ID(container), 1173 CONTAINER_TO_LUN(container)); 1174 if (device) { 1175 dev->fsa_dev[container].config_needed = CHANGE; 1176 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1177 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1178 scsi_device_put(device); 1179 } 1180 } 1181 } 1182 1183 /* 1184 * If we are waiting on something and this happens to be 1185 * that thing then set the re-configure flag. 1186 */ 1187 if (container != (u32)-1) { 1188 if (container >= dev->maximum_num_containers) 1189 break; 1190 if ((dev->fsa_dev[container].config_waiting_on == 1191 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1192 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1193 dev->fsa_dev[container].config_waiting_on = 0; 1194 } else for (container = 0; 1195 container < dev->maximum_num_containers; ++container) { 1196 if ((dev->fsa_dev[container].config_waiting_on == 1197 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1198 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1199 dev->fsa_dev[container].config_waiting_on = 0; 1200 } 1201 break; 1202 1203 case AifCmdEventNotify: 1204 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1205 case AifEnBatteryEvent: 1206 dev->cache_protected = 1207 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1208 break; 1209 /* 1210 * Add an Array. 1211 */ 1212 case AifEnAddContainer: 1213 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1214 if (container >= dev->maximum_num_containers) 1215 break; 1216 dev->fsa_dev[container].config_needed = ADD; 1217 dev->fsa_dev[container].config_waiting_on = 1218 AifEnConfigChange; 1219 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1220 break; 1221 1222 /* 1223 * Delete an Array. 1224 */ 1225 case AifEnDeleteContainer: 1226 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1227 if (container >= dev->maximum_num_containers) 1228 break; 1229 dev->fsa_dev[container].config_needed = DELETE; 1230 dev->fsa_dev[container].config_waiting_on = 1231 AifEnConfigChange; 1232 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1233 break; 1234 1235 /* 1236 * Container change detected. If we currently are not 1237 * waiting on something else, setup to wait on a Config Change. 1238 */ 1239 case AifEnContainerChange: 1240 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1241 if (container >= dev->maximum_num_containers) 1242 break; 1243 if (dev->fsa_dev[container].config_waiting_on && 1244 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1245 break; 1246 dev->fsa_dev[container].config_needed = CHANGE; 1247 dev->fsa_dev[container].config_waiting_on = 1248 AifEnConfigChange; 1249 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1250 break; 1251 1252 case AifEnConfigChange: 1253 break; 1254 1255 case AifEnAddJBOD: 1256 case AifEnDeleteJBOD: 1257 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1258 if ((container >> 28)) { 1259 container = (u32)-1; 1260 break; 1261 } 1262 channel = (container >> 24) & 0xF; 1263 if (channel >= dev->maximum_num_channels) { 1264 container = (u32)-1; 1265 break; 1266 } 1267 id = container & 0xFFFF; 1268 if (id >= dev->maximum_num_physicals) { 1269 container = (u32)-1; 1270 break; 1271 } 1272 lun = (container >> 16) & 0xFF; 1273 container = (u32)-1; 1274 channel = aac_phys_to_logical(channel); 1275 device_config_needed = 1276 (((__le32 *)aifcmd->data)[0] == 1277 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1278 if (device_config_needed == ADD) { 1279 device = scsi_device_lookup(dev->scsi_host_ptr, 1280 channel, 1281 id, 1282 lun); 1283 if (device) { 1284 scsi_remove_device(device); 1285 scsi_device_put(device); 1286 } 1287 } 1288 break; 1289 1290 case AifEnEnclosureManagement: 1291 /* 1292 * If in JBOD mode, automatic exposure of new 1293 * physical target to be suppressed until configured. 1294 */ 1295 if (dev->jbod) 1296 break; 1297 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1298 case EM_DRIVE_INSERTION: 1299 case EM_DRIVE_REMOVAL: 1300 case EM_SES_DRIVE_INSERTION: 1301 case EM_SES_DRIVE_REMOVAL: 1302 container = le32_to_cpu( 1303 ((__le32 *)aifcmd->data)[2]); 1304 if ((container >> 28)) { 1305 container = (u32)-1; 1306 break; 1307 } 1308 channel = (container >> 24) & 0xF; 1309 if (channel >= dev->maximum_num_channels) { 1310 container = (u32)-1; 1311 break; 1312 } 1313 id = container & 0xFFFF; 1314 lun = (container >> 16) & 0xFF; 1315 container = (u32)-1; 1316 if (id >= dev->maximum_num_physicals) { 1317 /* legacy dev_t ? */ 1318 if ((0x2000 <= id) || lun || channel || 1319 ((channel = (id >> 7) & 0x3F) >= 1320 dev->maximum_num_channels)) 1321 break; 1322 lun = (id >> 4) & 7; 1323 id &= 0xF; 1324 } 1325 channel = aac_phys_to_logical(channel); 1326 device_config_needed = 1327 ((((__le32 *)aifcmd->data)[3] 1328 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1329 (((__le32 *)aifcmd->data)[3] 1330 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1331 ADD : DELETE; 1332 break; 1333 } 1334 case AifBuManagerEvent: 1335 aac_handle_aif_bu(dev, aifcmd); 1336 break; 1337 } 1338 1339 /* 1340 * If we are waiting on something and this happens to be 1341 * that thing then set the re-configure flag. 1342 */ 1343 if (container != (u32)-1) { 1344 if (container >= dev->maximum_num_containers) 1345 break; 1346 if ((dev->fsa_dev[container].config_waiting_on == 1347 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1348 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1349 dev->fsa_dev[container].config_waiting_on = 0; 1350 } else for (container = 0; 1351 container < dev->maximum_num_containers; ++container) { 1352 if ((dev->fsa_dev[container].config_waiting_on == 1353 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1354 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1355 dev->fsa_dev[container].config_waiting_on = 0; 1356 } 1357 break; 1358 1359 case AifCmdJobProgress: 1360 /* 1361 * These are job progress AIF's. When a Clear is being 1362 * done on a container it is initially created then hidden from 1363 * the OS. When the clear completes we don't get a config 1364 * change so we monitor the job status complete on a clear then 1365 * wait for a container change. 1366 */ 1367 1368 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1369 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1370 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1371 for (container = 0; 1372 container < dev->maximum_num_containers; 1373 ++container) { 1374 /* 1375 * Stomp on all config sequencing for all 1376 * containers? 1377 */ 1378 dev->fsa_dev[container].config_waiting_on = 1379 AifEnContainerChange; 1380 dev->fsa_dev[container].config_needed = ADD; 1381 dev->fsa_dev[container].config_waiting_stamp = 1382 jiffies; 1383 } 1384 } 1385 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1386 ((__le32 *)aifcmd->data)[6] == 0 && 1387 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1388 for (container = 0; 1389 container < dev->maximum_num_containers; 1390 ++container) { 1391 /* 1392 * Stomp on all config sequencing for all 1393 * containers? 1394 */ 1395 dev->fsa_dev[container].config_waiting_on = 1396 AifEnContainerChange; 1397 dev->fsa_dev[container].config_needed = DELETE; 1398 dev->fsa_dev[container].config_waiting_stamp = 1399 jiffies; 1400 } 1401 } 1402 break; 1403 } 1404 1405 container = 0; 1406 retry_next: 1407 if (device_config_needed == NOTHING) 1408 for (; container < dev->maximum_num_containers; ++container) { 1409 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1410 (dev->fsa_dev[container].config_needed != NOTHING) && 1411 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1412 device_config_needed = 1413 dev->fsa_dev[container].config_needed; 1414 dev->fsa_dev[container].config_needed = NOTHING; 1415 channel = CONTAINER_TO_CHANNEL(container); 1416 id = CONTAINER_TO_ID(container); 1417 lun = CONTAINER_TO_LUN(container); 1418 break; 1419 } 1420 } 1421 if (device_config_needed == NOTHING) 1422 return; 1423 1424 /* 1425 * If we decided that a re-configuration needs to be done, 1426 * schedule it here on the way out the door, please close the door 1427 * behind you. 1428 */ 1429 1430 /* 1431 * Find the scsi_device associated with the SCSI address, 1432 * and mark it as changed, invalidating the cache. This deals 1433 * with changes to existing device IDs. 1434 */ 1435 1436 if (!dev || !dev->scsi_host_ptr) 1437 return; 1438 /* 1439 * force reload of disk info via aac_probe_container 1440 */ 1441 if ((channel == CONTAINER_CHANNEL) && 1442 (device_config_needed != NOTHING)) { 1443 if (dev->fsa_dev[container].valid == 1) 1444 dev->fsa_dev[container].valid = 2; 1445 aac_probe_container(dev, container); 1446 } 1447 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1448 if (device) { 1449 switch (device_config_needed) { 1450 case DELETE: 1451 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1452 scsi_remove_device(device); 1453 #else 1454 if (scsi_device_online(device)) { 1455 scsi_device_set_state(device, SDEV_OFFLINE); 1456 sdev_printk(KERN_INFO, device, 1457 "Device offlined - %s\n", 1458 (channel == CONTAINER_CHANNEL) ? 1459 "array deleted" : 1460 "enclosure services event"); 1461 } 1462 #endif 1463 break; 1464 case ADD: 1465 if (!scsi_device_online(device)) { 1466 sdev_printk(KERN_INFO, device, 1467 "Device online - %s\n", 1468 (channel == CONTAINER_CHANNEL) ? 1469 "array created" : 1470 "enclosure services event"); 1471 scsi_device_set_state(device, SDEV_RUNNING); 1472 } 1473 /* FALLTHRU */ 1474 case CHANGE: 1475 if ((channel == CONTAINER_CHANNEL) 1476 && (!dev->fsa_dev[container].valid)) { 1477 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1478 scsi_remove_device(device); 1479 #else 1480 if (!scsi_device_online(device)) 1481 break; 1482 scsi_device_set_state(device, SDEV_OFFLINE); 1483 sdev_printk(KERN_INFO, device, 1484 "Device offlined - %s\n", 1485 "array failed"); 1486 #endif 1487 break; 1488 } 1489 scsi_rescan_device(&device->sdev_gendev); 1490 1491 default: 1492 break; 1493 } 1494 scsi_device_put(device); 1495 device_config_needed = NOTHING; 1496 } 1497 if (device_config_needed == ADD) 1498 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1499 if (channel == CONTAINER_CHANNEL) { 1500 container++; 1501 device_config_needed = NOTHING; 1502 goto retry_next; 1503 } 1504 } 1505 1506 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1507 { 1508 int index, quirks; 1509 int retval; 1510 struct Scsi_Host *host; 1511 struct scsi_device *dev; 1512 struct scsi_cmnd *command; 1513 struct scsi_cmnd *command_list; 1514 int jafo = 0; 1515 int bled; 1516 u64 dmamask; 1517 int num_of_fibs = 0; 1518 1519 /* 1520 * Assumptions: 1521 * - host is locked, unless called by the aacraid thread. 1522 * (a matter of convenience, due to legacy issues surrounding 1523 * eh_host_adapter_reset). 1524 * - in_reset is asserted, so no new i/o is getting to the 1525 * card. 1526 * - The card is dead, or will be very shortly ;-/ so no new 1527 * commands are completing in the interrupt service. 1528 */ 1529 host = aac->scsi_host_ptr; 1530 scsi_block_requests(host); 1531 aac_adapter_disable_int(aac); 1532 if (aac->thread->pid != current->pid) { 1533 spin_unlock_irq(host->host_lock); 1534 kthread_stop(aac->thread); 1535 jafo = 1; 1536 } 1537 1538 /* 1539 * If a positive health, means in a known DEAD PANIC 1540 * state and the adapter could be reset to `try again'. 1541 */ 1542 bled = forced ? 0 : aac_adapter_check_health(aac); 1543 retval = aac_adapter_restart(aac, bled, reset_type); 1544 1545 if (retval) 1546 goto out; 1547 1548 /* 1549 * Loop through the fibs, close the synchronous FIBS 1550 */ 1551 retval = 1; 1552 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1553 for (index = 0; index < num_of_fibs; index++) { 1554 1555 struct fib *fib = &aac->fibs[index]; 1556 __le32 XferState = fib->hw_fib_va->header.XferState; 1557 bool is_response_expected = false; 1558 1559 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1560 (XferState & cpu_to_le32(ResponseExpected))) 1561 is_response_expected = true; 1562 1563 if (is_response_expected 1564 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1565 unsigned long flagv; 1566 spin_lock_irqsave(&fib->event_lock, flagv); 1567 up(&fib->event_wait); 1568 spin_unlock_irqrestore(&fib->event_lock, flagv); 1569 schedule(); 1570 retval = 0; 1571 } 1572 } 1573 /* Give some extra time for ioctls to complete. */ 1574 if (retval == 0) 1575 ssleep(2); 1576 index = aac->cardtype; 1577 1578 /* 1579 * Re-initialize the adapter, first free resources, then carefully 1580 * apply the initialization sequence to come back again. Only risk 1581 * is a change in Firmware dropping cache, it is assumed the caller 1582 * will ensure that i/o is queisced and the card is flushed in that 1583 * case. 1584 */ 1585 aac_fib_map_free(aac); 1586 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1587 aac->comm_phys); 1588 aac->comm_addr = NULL; 1589 aac->comm_phys = 0; 1590 kfree(aac->queues); 1591 aac->queues = NULL; 1592 aac_free_irq(aac); 1593 kfree(aac->fsa_dev); 1594 aac->fsa_dev = NULL; 1595 1596 dmamask = DMA_BIT_MASK(32); 1597 quirks = aac_get_driver_ident(index)->quirks; 1598 if (quirks & AAC_QUIRK_31BIT) 1599 retval = pci_set_dma_mask(aac->pdev, dmamask); 1600 else if (!(quirks & AAC_QUIRK_SRC)) 1601 retval = pci_set_dma_mask(aac->pdev, dmamask); 1602 else 1603 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1604 1605 if (quirks & AAC_QUIRK_31BIT && !retval) { 1606 dmamask = DMA_BIT_MASK(31); 1607 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1608 } 1609 1610 if (retval) 1611 goto out; 1612 1613 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1614 goto out; 1615 1616 if (jafo) { 1617 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1618 aac->name); 1619 if (IS_ERR(aac->thread)) { 1620 retval = PTR_ERR(aac->thread); 1621 goto out; 1622 } 1623 } 1624 (void)aac_get_adapter_info(aac); 1625 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1626 host->sg_tablesize = 34; 1627 host->max_sectors = (host->sg_tablesize * 8) + 112; 1628 } 1629 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1630 host->sg_tablesize = 17; 1631 host->max_sectors = (host->sg_tablesize * 8) + 112; 1632 } 1633 aac_get_config_status(aac, 1); 1634 aac_get_containers(aac); 1635 /* 1636 * This is where the assumption that the Adapter is quiesced 1637 * is important. 1638 */ 1639 command_list = NULL; 1640 __shost_for_each_device(dev, host) { 1641 unsigned long flags; 1642 spin_lock_irqsave(&dev->list_lock, flags); 1643 list_for_each_entry(command, &dev->cmd_list, list) 1644 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1645 command->SCp.buffer = (struct scatterlist *)command_list; 1646 command_list = command; 1647 } 1648 spin_unlock_irqrestore(&dev->list_lock, flags); 1649 } 1650 while ((command = command_list)) { 1651 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1652 command->SCp.buffer = NULL; 1653 command->result = DID_OK << 16 1654 | COMMAND_COMPLETE << 8 1655 | SAM_STAT_TASK_SET_FULL; 1656 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1657 command->scsi_done(command); 1658 } 1659 /* 1660 * Any Device that was already marked offline needs to be cleaned up 1661 */ 1662 __shost_for_each_device(dev, host) { 1663 if (!scsi_device_online(dev)) { 1664 sdev_printk(KERN_INFO, dev, "Removing offline device\n"); 1665 scsi_remove_device(dev); 1666 scsi_device_put(dev); 1667 } 1668 } 1669 retval = 0; 1670 1671 out: 1672 aac->in_reset = 0; 1673 scsi_unblock_requests(host); 1674 /* 1675 * Issue bus rescan to catch any configuration that might have 1676 * occurred 1677 */ 1678 if (!retval) { 1679 dev_info(&aac->pdev->dev, "Issuing bus rescan\n"); 1680 scsi_scan_host(host); 1681 } 1682 if (jafo) { 1683 spin_lock_irq(host->host_lock); 1684 } 1685 return retval; 1686 } 1687 1688 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1689 { 1690 unsigned long flagv = 0; 1691 int retval; 1692 struct Scsi_Host * host; 1693 int bled; 1694 1695 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1696 return -EBUSY; 1697 1698 if (aac->in_reset) { 1699 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1700 return -EBUSY; 1701 } 1702 aac->in_reset = 1; 1703 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1704 1705 /* 1706 * Wait for all commands to complete to this specific 1707 * target (block maximum 60 seconds). Although not necessary, 1708 * it does make us a good storage citizen. 1709 */ 1710 host = aac->scsi_host_ptr; 1711 scsi_block_requests(host); 1712 if (forced < 2) for (retval = 60; retval; --retval) { 1713 struct scsi_device * dev; 1714 struct scsi_cmnd * command; 1715 int active = 0; 1716 1717 __shost_for_each_device(dev, host) { 1718 spin_lock_irqsave(&dev->list_lock, flagv); 1719 list_for_each_entry(command, &dev->cmd_list, list) { 1720 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1721 active++; 1722 break; 1723 } 1724 } 1725 spin_unlock_irqrestore(&dev->list_lock, flagv); 1726 if (active) 1727 break; 1728 1729 } 1730 /* 1731 * We can exit If all the commands are complete 1732 */ 1733 if (active == 0) 1734 break; 1735 ssleep(1); 1736 } 1737 1738 /* Quiesce build, flush cache, write through mode */ 1739 if (forced < 2) 1740 aac_send_shutdown(aac); 1741 spin_lock_irqsave(host->host_lock, flagv); 1742 bled = forced ? forced : 1743 (aac_check_reset != 0 && aac_check_reset != 1); 1744 retval = _aac_reset_adapter(aac, bled, reset_type); 1745 spin_unlock_irqrestore(host->host_lock, flagv); 1746 1747 if ((forced < 2) && (retval == -ENODEV)) { 1748 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1749 struct fib * fibctx = aac_fib_alloc(aac); 1750 if (fibctx) { 1751 struct aac_pause *cmd; 1752 int status; 1753 1754 aac_fib_init(fibctx); 1755 1756 cmd = (struct aac_pause *) fib_data(fibctx); 1757 1758 cmd->command = cpu_to_le32(VM_ContainerConfig); 1759 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1760 cmd->timeout = cpu_to_le32(1); 1761 cmd->min = cpu_to_le32(1); 1762 cmd->noRescan = cpu_to_le32(1); 1763 cmd->count = cpu_to_le32(0); 1764 1765 status = aac_fib_send(ContainerCommand, 1766 fibctx, 1767 sizeof(struct aac_pause), 1768 FsaNormal, 1769 -2 /* Timeout silently */, 1, 1770 NULL, NULL); 1771 1772 if (status >= 0) 1773 aac_fib_complete(fibctx); 1774 /* FIB should be freed only after getting 1775 * the response from the F/W */ 1776 if (status != -ERESTARTSYS) 1777 aac_fib_free(fibctx); 1778 } 1779 } 1780 1781 return retval; 1782 } 1783 1784 int aac_check_health(struct aac_dev * aac) 1785 { 1786 int BlinkLED; 1787 unsigned long time_now, flagv = 0; 1788 struct list_head * entry; 1789 1790 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1791 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1792 return 0; 1793 1794 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1795 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1796 return 0; /* OK */ 1797 } 1798 1799 aac->in_reset = 1; 1800 1801 /* Fake up an AIF: 1802 * aac_aifcmd.command = AifCmdEventNotify = 1 1803 * aac_aifcmd.seqnum = 0xFFFFFFFF 1804 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1805 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1806 * aac.aifcmd.data[2] = AifHighPriority = 3 1807 * aac.aifcmd.data[3] = BlinkLED 1808 */ 1809 1810 time_now = jiffies/HZ; 1811 entry = aac->fib_list.next; 1812 1813 /* 1814 * For each Context that is on the 1815 * fibctxList, make a copy of the 1816 * fib, and then set the event to wake up the 1817 * thread that is waiting for it. 1818 */ 1819 while (entry != &aac->fib_list) { 1820 /* 1821 * Extract the fibctx 1822 */ 1823 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1824 struct hw_fib * hw_fib; 1825 struct fib * fib; 1826 /* 1827 * Check if the queue is getting 1828 * backlogged 1829 */ 1830 if (fibctx->count > 20) { 1831 /* 1832 * It's *not* jiffies folks, 1833 * but jiffies / HZ, so do not 1834 * panic ... 1835 */ 1836 u32 time_last = fibctx->jiffies; 1837 /* 1838 * Has it been > 2 minutes 1839 * since the last read off 1840 * the queue? 1841 */ 1842 if ((time_now - time_last) > aif_timeout) { 1843 entry = entry->next; 1844 aac_close_fib_context(aac, fibctx); 1845 continue; 1846 } 1847 } 1848 /* 1849 * Warning: no sleep allowed while 1850 * holding spinlock 1851 */ 1852 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1853 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1854 if (fib && hw_fib) { 1855 struct aac_aifcmd * aif; 1856 1857 fib->hw_fib_va = hw_fib; 1858 fib->dev = aac; 1859 aac_fib_init(fib); 1860 fib->type = FSAFS_NTC_FIB_CONTEXT; 1861 fib->size = sizeof (struct fib); 1862 fib->data = hw_fib->data; 1863 aif = (struct aac_aifcmd *)hw_fib->data; 1864 aif->command = cpu_to_le32(AifCmdEventNotify); 1865 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1866 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1867 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1868 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1869 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1870 1871 /* 1872 * Put the FIB onto the 1873 * fibctx's fibs 1874 */ 1875 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1876 fibctx->count++; 1877 /* 1878 * Set the event to wake up the 1879 * thread that will waiting. 1880 */ 1881 up(&fibctx->wait_sem); 1882 } else { 1883 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1884 kfree(fib); 1885 kfree(hw_fib); 1886 } 1887 entry = entry->next; 1888 } 1889 1890 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1891 1892 if (BlinkLED < 0) { 1893 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1894 aac->name, BlinkLED); 1895 goto out; 1896 } 1897 1898 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1899 1900 out: 1901 aac->in_reset = 0; 1902 return BlinkLED; 1903 } 1904 1905 1906 static void aac_resolve_luns(struct aac_dev *dev) 1907 { 1908 int bus, target, channel; 1909 struct scsi_device *sdev; 1910 u8 devtype; 1911 u8 new_devtype; 1912 1913 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1914 for (target = 0; target < AAC_MAX_TARGETS; target++) { 1915 1916 if (bus == CONTAINER_CHANNEL) 1917 channel = CONTAINER_CHANNEL; 1918 else 1919 channel = aac_phys_to_logical(bus); 1920 1921 devtype = dev->hba_map[bus][target].devtype; 1922 new_devtype = dev->hba_map[bus][target].new_devtype; 1923 1924 sdev = scsi_device_lookup(dev->scsi_host_ptr, channel, 1925 target, 0); 1926 1927 if (!sdev && new_devtype) 1928 scsi_add_device(dev->scsi_host_ptr, channel, 1929 target, 0); 1930 else if (sdev && new_devtype != devtype) 1931 scsi_remove_device(sdev); 1932 else if (sdev && new_devtype == devtype) 1933 scsi_rescan_device(&sdev->sdev_gendev); 1934 1935 if (sdev) 1936 scsi_device_put(sdev); 1937 1938 dev->hba_map[bus][target].devtype = new_devtype; 1939 } 1940 } 1941 } 1942 1943 /** 1944 * aac_handle_sa_aif Handle a message from the firmware 1945 * @dev: Which adapter this fib is from 1946 * @fibptr: Pointer to fibptr from adapter 1947 * 1948 * This routine handles a driver notify fib from the adapter and 1949 * dispatches it to the appropriate routine for handling. 1950 */ 1951 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1952 { 1953 int i, bus, target, container, rcode = 0; 1954 u32 events = 0; 1955 struct fib *fib; 1956 struct scsi_device *sdev; 1957 1958 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1959 events = SA_AIF_HOTPLUG; 1960 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1961 events = SA_AIF_HARDWARE; 1962 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1963 events = SA_AIF_PDEV_CHANGE; 1964 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1965 events = SA_AIF_LDEV_CHANGE; 1966 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1967 events = SA_AIF_BPSTAT_CHANGE; 1968 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1969 events = SA_AIF_BPCFG_CHANGE; 1970 1971 switch (events) { 1972 case SA_AIF_HOTPLUG: 1973 case SA_AIF_HARDWARE: 1974 case SA_AIF_PDEV_CHANGE: 1975 case SA_AIF_LDEV_CHANGE: 1976 case SA_AIF_BPCFG_CHANGE: 1977 1978 fib = aac_fib_alloc(dev); 1979 if (!fib) { 1980 pr_err("aac_handle_sa_aif: out of memory\n"); 1981 return; 1982 } 1983 for (bus = 0; bus < AAC_MAX_BUSES; bus++) 1984 for (target = 0; target < AAC_MAX_TARGETS; target++) 1985 dev->hba_map[bus][target].new_devtype = 0; 1986 1987 rcode = aac_report_phys_luns(dev, fib, AAC_RESCAN); 1988 1989 if (rcode != -ERESTARTSYS) 1990 aac_fib_free(fib); 1991 1992 aac_resolve_luns(dev); 1993 1994 if (events == SA_AIF_LDEV_CHANGE || 1995 events == SA_AIF_BPCFG_CHANGE) { 1996 aac_get_containers(dev); 1997 for (container = 0; container < 1998 dev->maximum_num_containers; ++container) { 1999 sdev = scsi_device_lookup(dev->scsi_host_ptr, 2000 CONTAINER_CHANNEL, 2001 container, 0); 2002 if (dev->fsa_dev[container].valid && !sdev) { 2003 scsi_add_device(dev->scsi_host_ptr, 2004 CONTAINER_CHANNEL, 2005 container, 0); 2006 } else if (!dev->fsa_dev[container].valid && 2007 sdev) { 2008 scsi_remove_device(sdev); 2009 scsi_device_put(sdev); 2010 } else if (sdev) { 2011 scsi_rescan_device(&sdev->sdev_gendev); 2012 scsi_device_put(sdev); 2013 } 2014 } 2015 } 2016 break; 2017 2018 case SA_AIF_BPSTAT_CHANGE: 2019 /* currently do nothing */ 2020 break; 2021 } 2022 2023 for (i = 1; i <= 10; ++i) { 2024 events = src_readl(dev, MUnit.IDR); 2025 if (events & (1<<23)) { 2026 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2027 i, 10); 2028 ssleep(1); 2029 } 2030 } 2031 } 2032 2033 static int get_fib_count(struct aac_dev *dev) 2034 { 2035 unsigned int num = 0; 2036 struct list_head *entry; 2037 unsigned long flagv; 2038 2039 /* 2040 * Warning: no sleep allowed while 2041 * holding spinlock. We take the estimate 2042 * and pre-allocate a set of fibs outside the 2043 * lock. 2044 */ 2045 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2046 / sizeof(struct hw_fib); /* some extra */ 2047 spin_lock_irqsave(&dev->fib_lock, flagv); 2048 entry = dev->fib_list.next; 2049 while (entry != &dev->fib_list) { 2050 entry = entry->next; 2051 ++num; 2052 } 2053 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2054 2055 return num; 2056 } 2057 2058 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2059 struct fib **fib_pool, 2060 unsigned int num) 2061 { 2062 struct hw_fib **hw_fib_p; 2063 struct fib **fib_p; 2064 2065 hw_fib_p = hw_fib_pool; 2066 fib_p = fib_pool; 2067 while (hw_fib_p < &hw_fib_pool[num]) { 2068 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2069 if (!(*(hw_fib_p++))) { 2070 --hw_fib_p; 2071 break; 2072 } 2073 2074 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2075 if (!(*(fib_p++))) { 2076 kfree(*(--hw_fib_p)); 2077 break; 2078 } 2079 } 2080 2081 /* 2082 * Get the actual number of allocated fibs 2083 */ 2084 num = hw_fib_p - hw_fib_pool; 2085 return num; 2086 } 2087 2088 static void wakeup_fibctx_threads(struct aac_dev *dev, 2089 struct hw_fib **hw_fib_pool, 2090 struct fib **fib_pool, 2091 struct fib *fib, 2092 struct hw_fib *hw_fib, 2093 unsigned int num) 2094 { 2095 unsigned long flagv; 2096 struct list_head *entry; 2097 struct hw_fib **hw_fib_p; 2098 struct fib **fib_p; 2099 u32 time_now, time_last; 2100 struct hw_fib *hw_newfib; 2101 struct fib *newfib; 2102 struct aac_fib_context *fibctx; 2103 2104 time_now = jiffies/HZ; 2105 spin_lock_irqsave(&dev->fib_lock, flagv); 2106 entry = dev->fib_list.next; 2107 /* 2108 * For each Context that is on the 2109 * fibctxList, make a copy of the 2110 * fib, and then set the event to wake up the 2111 * thread that is waiting for it. 2112 */ 2113 2114 hw_fib_p = hw_fib_pool; 2115 fib_p = fib_pool; 2116 while (entry != &dev->fib_list) { 2117 /* 2118 * Extract the fibctx 2119 */ 2120 fibctx = list_entry(entry, struct aac_fib_context, 2121 next); 2122 /* 2123 * Check if the queue is getting 2124 * backlogged 2125 */ 2126 if (fibctx->count > 20) { 2127 /* 2128 * It's *not* jiffies folks, 2129 * but jiffies / HZ so do not 2130 * panic ... 2131 */ 2132 time_last = fibctx->jiffies; 2133 /* 2134 * Has it been > 2 minutes 2135 * since the last read off 2136 * the queue? 2137 */ 2138 if ((time_now - time_last) > aif_timeout) { 2139 entry = entry->next; 2140 aac_close_fib_context(dev, fibctx); 2141 continue; 2142 } 2143 } 2144 /* 2145 * Warning: no sleep allowed while 2146 * holding spinlock 2147 */ 2148 if (hw_fib_p >= &hw_fib_pool[num]) { 2149 pr_warn("aifd: didn't allocate NewFib\n"); 2150 entry = entry->next; 2151 continue; 2152 } 2153 2154 hw_newfib = *hw_fib_p; 2155 *(hw_fib_p++) = NULL; 2156 newfib = *fib_p; 2157 *(fib_p++) = NULL; 2158 /* 2159 * Make the copy of the FIB 2160 */ 2161 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2162 memcpy(newfib, fib, sizeof(struct fib)); 2163 newfib->hw_fib_va = hw_newfib; 2164 /* 2165 * Put the FIB onto the 2166 * fibctx's fibs 2167 */ 2168 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2169 fibctx->count++; 2170 /* 2171 * Set the event to wake up the 2172 * thread that is waiting. 2173 */ 2174 up(&fibctx->wait_sem); 2175 2176 entry = entry->next; 2177 } 2178 /* 2179 * Set the status of this FIB 2180 */ 2181 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2182 aac_fib_adapter_complete(fib, sizeof(u32)); 2183 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2184 2185 } 2186 2187 static void aac_process_events(struct aac_dev *dev) 2188 { 2189 struct hw_fib *hw_fib; 2190 struct fib *fib; 2191 unsigned long flags; 2192 spinlock_t *t_lock; 2193 2194 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2195 spin_lock_irqsave(t_lock, flags); 2196 2197 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2198 struct list_head *entry; 2199 struct aac_aifcmd *aifcmd; 2200 unsigned int num; 2201 struct hw_fib **hw_fib_pool, **hw_fib_p; 2202 struct fib **fib_pool, **fib_p; 2203 2204 set_current_state(TASK_RUNNING); 2205 2206 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2207 list_del(entry); 2208 2209 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2210 spin_unlock_irqrestore(t_lock, flags); 2211 2212 fib = list_entry(entry, struct fib, fiblink); 2213 hw_fib = fib->hw_fib_va; 2214 if (dev->sa_firmware) { 2215 /* Thor AIF */ 2216 aac_handle_sa_aif(dev, fib); 2217 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2218 goto free_fib; 2219 } 2220 /* 2221 * We will process the FIB here or pass it to a 2222 * worker thread that is TBD. We Really can't 2223 * do anything at this point since we don't have 2224 * anything defined for this thread to do. 2225 */ 2226 memset(fib, 0, sizeof(struct fib)); 2227 fib->type = FSAFS_NTC_FIB_CONTEXT; 2228 fib->size = sizeof(struct fib); 2229 fib->hw_fib_va = hw_fib; 2230 fib->data = hw_fib->data; 2231 fib->dev = dev; 2232 /* 2233 * We only handle AifRequest fibs from the adapter. 2234 */ 2235 2236 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2237 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2238 /* Handle Driver Notify Events */ 2239 aac_handle_aif(dev, fib); 2240 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2241 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2242 goto free_fib; 2243 } 2244 /* 2245 * The u32 here is important and intended. We are using 2246 * 32bit wrapping time to fit the adapter field 2247 */ 2248 2249 /* Sniff events */ 2250 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2251 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2252 aac_handle_aif(dev, fib); 2253 } 2254 2255 /* 2256 * get number of fibs to process 2257 */ 2258 num = get_fib_count(dev); 2259 if (!num) 2260 goto free_fib; 2261 2262 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2263 GFP_KERNEL); 2264 if (!hw_fib_pool) 2265 goto free_fib; 2266 2267 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2268 if (!fib_pool) 2269 goto free_hw_fib_pool; 2270 2271 /* 2272 * Fill up fib pointer pools with actual fibs 2273 * and hw_fibs 2274 */ 2275 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2276 if (!num) 2277 goto free_mem; 2278 2279 /* 2280 * wakeup the thread that is waiting for 2281 * the response from fw (ioctl) 2282 */ 2283 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2284 fib, hw_fib, num); 2285 2286 free_mem: 2287 /* Free up the remaining resources */ 2288 hw_fib_p = hw_fib_pool; 2289 fib_p = fib_pool; 2290 while (hw_fib_p < &hw_fib_pool[num]) { 2291 kfree(*hw_fib_p); 2292 kfree(*fib_p); 2293 ++fib_p; 2294 ++hw_fib_p; 2295 } 2296 kfree(fib_pool); 2297 free_hw_fib_pool: 2298 kfree(hw_fib_pool); 2299 free_fib: 2300 kfree(fib); 2301 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2302 spin_lock_irqsave(t_lock, flags); 2303 } 2304 /* 2305 * There are no more AIF's 2306 */ 2307 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2308 spin_unlock_irqrestore(t_lock, flags); 2309 } 2310 2311 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2312 u32 datasize) 2313 { 2314 struct aac_srb *srbcmd; 2315 struct sgmap64 *sg64; 2316 dma_addr_t addr; 2317 char *dma_buf; 2318 struct fib *fibptr; 2319 int ret = -ENOMEM; 2320 u32 vbus, vid; 2321 2322 fibptr = aac_fib_alloc(dev); 2323 if (!fibptr) 2324 goto out; 2325 2326 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2327 GFP_KERNEL); 2328 if (!dma_buf) 2329 goto fib_free_out; 2330 2331 aac_fib_init(fibptr); 2332 2333 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2334 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2335 2336 srbcmd = (struct aac_srb *)fib_data(fibptr); 2337 2338 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2339 srbcmd->channel = cpu_to_le32(vbus); 2340 srbcmd->id = cpu_to_le32(vid); 2341 srbcmd->lun = 0; 2342 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2343 srbcmd->timeout = cpu_to_le32(10); 2344 srbcmd->retry_limit = 0; 2345 srbcmd->cdb_size = cpu_to_le32(12); 2346 srbcmd->count = cpu_to_le32(datasize); 2347 2348 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2349 srbcmd->cdb[0] = BMIC_OUT; 2350 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2351 memcpy(dma_buf, (char *)wellness_str, datasize); 2352 2353 sg64 = (struct sgmap64 *)&srbcmd->sg; 2354 sg64->count = cpu_to_le32(1); 2355 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2356 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2357 sg64->sg[0].count = cpu_to_le32(datasize); 2358 2359 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2360 FsaNormal, 1, 1, NULL, NULL); 2361 2362 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2363 2364 /* 2365 * Do not set XferState to zero unless 2366 * receives a response from F/W 2367 */ 2368 if (ret >= 0) 2369 aac_fib_complete(fibptr); 2370 2371 /* 2372 * FIB should be freed only after 2373 * getting the response from the F/W 2374 */ 2375 if (ret != -ERESTARTSYS) 2376 goto fib_free_out; 2377 2378 out: 2379 return ret; 2380 fib_free_out: 2381 aac_fib_free(fibptr); 2382 goto out; 2383 } 2384 2385 int aac_send_safw_hostttime(struct aac_dev *dev, struct timeval *now) 2386 { 2387 struct tm cur_tm; 2388 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2389 u32 datasize = sizeof(wellness_str); 2390 unsigned long local_time; 2391 int ret = -ENODEV; 2392 2393 if (!dev->sa_firmware) 2394 goto out; 2395 2396 local_time = (u32)(now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2397 time_to_tm(local_time, 0, &cur_tm); 2398 cur_tm.tm_mon += 1; 2399 cur_tm.tm_year += 1900; 2400 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2401 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2402 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2403 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2404 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2405 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2406 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2407 2408 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2409 2410 out: 2411 return ret; 2412 } 2413 2414 int aac_send_hosttime(struct aac_dev *dev, struct timeval *now) 2415 { 2416 int ret = -ENOMEM; 2417 struct fib *fibptr; 2418 __le32 *info; 2419 2420 fibptr = aac_fib_alloc(dev); 2421 if (!fibptr) 2422 goto out; 2423 2424 aac_fib_init(fibptr); 2425 info = (__le32 *)fib_data(fibptr); 2426 *info = cpu_to_le32(now->tv_sec); 2427 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2428 1, 1, NULL, NULL); 2429 2430 /* 2431 * Do not set XferState to zero unless 2432 * receives a response from F/W 2433 */ 2434 if (ret >= 0) 2435 aac_fib_complete(fibptr); 2436 2437 /* 2438 * FIB should be freed only after 2439 * getting the response from the F/W 2440 */ 2441 if (ret != -ERESTARTSYS) 2442 aac_fib_free(fibptr); 2443 2444 out: 2445 return ret; 2446 } 2447 2448 /** 2449 * aac_command_thread - command processing thread 2450 * @dev: Adapter to monitor 2451 * 2452 * Waits on the commandready event in it's queue. When the event gets set 2453 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2454 * until the queue is empty. When the queue is empty it will wait for 2455 * more FIBs. 2456 */ 2457 2458 int aac_command_thread(void *data) 2459 { 2460 struct aac_dev *dev = data; 2461 DECLARE_WAITQUEUE(wait, current); 2462 unsigned long next_jiffies = jiffies + HZ; 2463 unsigned long next_check_jiffies = next_jiffies; 2464 long difference = HZ; 2465 2466 /* 2467 * We can only have one thread per adapter for AIF's. 2468 */ 2469 if (dev->aif_thread) 2470 return -EINVAL; 2471 2472 /* 2473 * Let the DPC know it has a place to send the AIF's to. 2474 */ 2475 dev->aif_thread = 1; 2476 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2477 set_current_state(TASK_INTERRUPTIBLE); 2478 dprintk ((KERN_INFO "aac_command_thread start\n")); 2479 while (1) { 2480 2481 aac_process_events(dev); 2482 2483 /* 2484 * Background activity 2485 */ 2486 if ((time_before(next_check_jiffies,next_jiffies)) 2487 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2488 next_check_jiffies = next_jiffies; 2489 if (aac_adapter_check_health(dev) == 0) { 2490 difference = ((long)(unsigned)check_interval) 2491 * HZ; 2492 next_check_jiffies = jiffies + difference; 2493 } else if (!dev->queues) 2494 break; 2495 } 2496 if (!time_before(next_check_jiffies,next_jiffies) 2497 && ((difference = next_jiffies - jiffies) <= 0)) { 2498 struct timeval now; 2499 int ret; 2500 2501 /* Don't even try to talk to adapter if its sick */ 2502 ret = aac_adapter_check_health(dev); 2503 if (ret || !dev->queues) 2504 break; 2505 next_check_jiffies = jiffies 2506 + ((long)(unsigned)check_interval) 2507 * HZ; 2508 do_gettimeofday(&now); 2509 2510 /* Synchronize our watches */ 2511 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 2512 && (now.tv_usec > (1000000 / HZ))) 2513 difference = (((1000000 - now.tv_usec) * HZ) 2514 + 500000) / 1000000; 2515 else { 2516 if (now.tv_usec > 500000) 2517 ++now.tv_sec; 2518 2519 if (dev->sa_firmware) 2520 ret = 2521 aac_send_safw_hostttime(dev, &now); 2522 else 2523 ret = aac_send_hosttime(dev, &now); 2524 2525 difference = (long)(unsigned)update_interval*HZ; 2526 } 2527 next_jiffies = jiffies + difference; 2528 if (time_before(next_check_jiffies,next_jiffies)) 2529 difference = next_check_jiffies - jiffies; 2530 } 2531 if (difference <= 0) 2532 difference = 1; 2533 set_current_state(TASK_INTERRUPTIBLE); 2534 2535 if (kthread_should_stop()) 2536 break; 2537 2538 schedule_timeout(difference); 2539 2540 if (kthread_should_stop()) 2541 break; 2542 } 2543 if (dev->queues) 2544 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2545 dev->aif_thread = 0; 2546 return 0; 2547 } 2548 2549 int aac_acquire_irq(struct aac_dev *dev) 2550 { 2551 int i; 2552 int j; 2553 int ret = 0; 2554 2555 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2556 for (i = 0; i < dev->max_msix; i++) { 2557 dev->aac_msix[i].vector_no = i; 2558 dev->aac_msix[i].dev = dev; 2559 if (request_irq(pci_irq_vector(dev->pdev, i), 2560 dev->a_ops.adapter_intr, 2561 0, "aacraid", &(dev->aac_msix[i]))) { 2562 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2563 dev->name, dev->id, i); 2564 for (j = 0 ; j < i ; j++) 2565 free_irq(pci_irq_vector(dev->pdev, j), 2566 &(dev->aac_msix[j])); 2567 pci_disable_msix(dev->pdev); 2568 ret = -1; 2569 } 2570 } 2571 } else { 2572 dev->aac_msix[0].vector_no = 0; 2573 dev->aac_msix[0].dev = dev; 2574 2575 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2576 IRQF_SHARED, "aacraid", 2577 &(dev->aac_msix[0])) < 0) { 2578 if (dev->msi) 2579 pci_disable_msi(dev->pdev); 2580 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2581 dev->name, dev->id); 2582 ret = -1; 2583 } 2584 } 2585 return ret; 2586 } 2587 2588 void aac_free_irq(struct aac_dev *dev) 2589 { 2590 int i; 2591 int cpu; 2592 2593 cpu = cpumask_first(cpu_online_mask); 2594 if (aac_is_src(dev)) { 2595 if (dev->max_msix > 1) { 2596 for (i = 0; i < dev->max_msix; i++) 2597 free_irq(pci_irq_vector(dev->pdev, i), 2598 &(dev->aac_msix[i])); 2599 } else { 2600 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2601 } 2602 } else { 2603 free_irq(dev->pdev->irq, dev); 2604 } 2605 if (dev->msi) 2606 pci_disable_msi(dev->pdev); 2607 else if (dev->max_msix > 1) 2608 pci_disable_msix(dev->pdev); 2609 } 2610