1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/interrupt.h> 44 #include <linux/semaphore.h> 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_host.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_cmnd.h> 49 50 #include "aacraid.h" 51 52 /** 53 * fib_map_alloc - allocate the fib objects 54 * @dev: Adapter to allocate for 55 * 56 * Allocate and map the shared PCI space for the FIB blocks used to 57 * talk to the Adaptec firmware. 58 */ 59 60 static int fib_map_alloc(struct aac_dev *dev) 61 { 62 dprintk((KERN_INFO 63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 68 &dev->hw_fib_pa))==NULL) 69 return -ENOMEM; 70 return 0; 71 } 72 73 /** 74 * aac_fib_map_free - free the fib objects 75 * @dev: Adapter to free 76 * 77 * Free the PCI mappings and the memory allocated for FIB blocks 78 * on this adapter. 79 */ 80 81 void aac_fib_map_free(struct aac_dev *dev) 82 { 83 pci_free_consistent(dev->pdev, 84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 85 dev->hw_fib_va, dev->hw_fib_pa); 86 dev->hw_fib_va = NULL; 87 dev->hw_fib_pa = 0; 88 } 89 90 /** 91 * aac_fib_setup - setup the fibs 92 * @dev: Adapter to set up 93 * 94 * Allocate the PCI space for the fibs, map it and then initialise the 95 * fib area, the unmapped fib data and also the free list 96 */ 97 98 int aac_fib_setup(struct aac_dev * dev) 99 { 100 struct fib *fibptr; 101 struct hw_fib *hw_fib; 102 dma_addr_t hw_fib_pa; 103 int i; 104 105 while (((i = fib_map_alloc(dev)) == -ENOMEM) 106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 109 } 110 if (i<0) 111 return -ENOMEM; 112 113 hw_fib = dev->hw_fib_va; 114 hw_fib_pa = dev->hw_fib_pa; 115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 116 /* 117 * Initialise the fibs 118 */ 119 for (i = 0, fibptr = &dev->fibs[i]; 120 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 121 i++, fibptr++) 122 { 123 fibptr->dev = dev; 124 fibptr->hw_fib_va = hw_fib; 125 fibptr->data = (void *) fibptr->hw_fib_va->data; 126 fibptr->next = fibptr+1; /* Forward chain the fibs */ 127 sema_init(&fibptr->event_wait, 0); 128 spin_lock_init(&fibptr->event_lock); 129 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 130 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 131 fibptr->hw_fib_pa = hw_fib_pa; 132 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size); 133 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 134 } 135 /* 136 * Add the fib chain to the free list 137 */ 138 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 139 /* 140 * Enable this to debug out of queue space 141 */ 142 dev->free_fib = &dev->fibs[0]; 143 return 0; 144 } 145 146 /** 147 * aac_fib_alloc - allocate a fib 148 * @dev: Adapter to allocate the fib for 149 * 150 * Allocate a fib from the adapter fib pool. If the pool is empty we 151 * return NULL. 152 */ 153 154 struct fib *aac_fib_alloc(struct aac_dev *dev) 155 { 156 struct fib * fibptr; 157 unsigned long flags; 158 spin_lock_irqsave(&dev->fib_lock, flags); 159 fibptr = dev->free_fib; 160 if(!fibptr){ 161 spin_unlock_irqrestore(&dev->fib_lock, flags); 162 return fibptr; 163 } 164 dev->free_fib = fibptr->next; 165 spin_unlock_irqrestore(&dev->fib_lock, flags); 166 /* 167 * Set the proper node type code and node byte size 168 */ 169 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 170 fibptr->size = sizeof(struct fib); 171 /* 172 * Null out fields that depend on being zero at the start of 173 * each I/O 174 */ 175 fibptr->hw_fib_va->header.XferState = 0; 176 fibptr->flags = 0; 177 fibptr->callback = NULL; 178 fibptr->callback_data = NULL; 179 180 return fibptr; 181 } 182 183 /** 184 * aac_fib_free - free a fib 185 * @fibptr: fib to free up 186 * 187 * Frees up a fib and places it on the appropriate queue 188 */ 189 190 void aac_fib_free(struct fib *fibptr) 191 { 192 unsigned long flags, flagsv; 193 194 spin_lock_irqsave(&fibptr->event_lock, flagsv); 195 if (fibptr->done == 2) { 196 spin_unlock_irqrestore(&fibptr->event_lock, flagsv); 197 return; 198 } 199 spin_unlock_irqrestore(&fibptr->event_lock, flagsv); 200 201 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 202 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 203 aac_config.fib_timeouts++; 204 if (fibptr->hw_fib_va->header.XferState != 0) { 205 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 206 (void*)fibptr, 207 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 208 } 209 fibptr->next = fibptr->dev->free_fib; 210 fibptr->dev->free_fib = fibptr; 211 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 212 } 213 214 /** 215 * aac_fib_init - initialise a fib 216 * @fibptr: The fib to initialize 217 * 218 * Set up the generic fib fields ready for use 219 */ 220 221 void aac_fib_init(struct fib *fibptr) 222 { 223 struct hw_fib *hw_fib = fibptr->hw_fib_va; 224 225 hw_fib->header.StructType = FIB_MAGIC; 226 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 227 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 228 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 229 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 230 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 231 } 232 233 /** 234 * fib_deallocate - deallocate a fib 235 * @fibptr: fib to deallocate 236 * 237 * Will deallocate and return to the free pool the FIB pointed to by the 238 * caller. 239 */ 240 241 static void fib_dealloc(struct fib * fibptr) 242 { 243 struct hw_fib *hw_fib = fibptr->hw_fib_va; 244 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 245 hw_fib->header.XferState = 0; 246 } 247 248 /* 249 * Commuication primitives define and support the queuing method we use to 250 * support host to adapter commuication. All queue accesses happen through 251 * these routines and are the only routines which have a knowledge of the 252 * how these queues are implemented. 253 */ 254 255 /** 256 * aac_get_entry - get a queue entry 257 * @dev: Adapter 258 * @qid: Queue Number 259 * @entry: Entry return 260 * @index: Index return 261 * @nonotify: notification control 262 * 263 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 264 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 265 * returned. 266 */ 267 268 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 269 { 270 struct aac_queue * q; 271 unsigned long idx; 272 273 /* 274 * All of the queues wrap when they reach the end, so we check 275 * to see if they have reached the end and if they have we just 276 * set the index back to zero. This is a wrap. You could or off 277 * the high bits in all updates but this is a bit faster I think. 278 */ 279 280 q = &dev->queues->queue[qid]; 281 282 idx = *index = le32_to_cpu(*(q->headers.producer)); 283 /* Interrupt Moderation, only interrupt for first two entries */ 284 if (idx != le32_to_cpu(*(q->headers.consumer))) { 285 if (--idx == 0) { 286 if (qid == AdapNormCmdQueue) 287 idx = ADAP_NORM_CMD_ENTRIES; 288 else 289 idx = ADAP_NORM_RESP_ENTRIES; 290 } 291 if (idx != le32_to_cpu(*(q->headers.consumer))) 292 *nonotify = 1; 293 } 294 295 if (qid == AdapNormCmdQueue) { 296 if (*index >= ADAP_NORM_CMD_ENTRIES) 297 *index = 0; /* Wrap to front of the Producer Queue. */ 298 } else { 299 if (*index >= ADAP_NORM_RESP_ENTRIES) 300 *index = 0; /* Wrap to front of the Producer Queue. */ 301 } 302 303 /* Queue is full */ 304 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 305 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 306 qid, q->numpending); 307 return 0; 308 } else { 309 *entry = q->base + *index; 310 return 1; 311 } 312 } 313 314 /** 315 * aac_queue_get - get the next free QE 316 * @dev: Adapter 317 * @index: Returned index 318 * @priority: Priority of fib 319 * @fib: Fib to associate with the queue entry 320 * @wait: Wait if queue full 321 * @fibptr: Driver fib object to go with fib 322 * @nonotify: Don't notify the adapter 323 * 324 * Gets the next free QE off the requested priorty adapter command 325 * queue and associates the Fib with the QE. The QE represented by 326 * index is ready to insert on the queue when this routine returns 327 * success. 328 */ 329 330 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 331 { 332 struct aac_entry * entry = NULL; 333 int map = 0; 334 335 if (qid == AdapNormCmdQueue) { 336 /* if no entries wait for some if caller wants to */ 337 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 338 printk(KERN_ERR "GetEntries failed\n"); 339 } 340 /* 341 * Setup queue entry with a command, status and fib mapped 342 */ 343 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 344 map = 1; 345 } else { 346 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 347 /* if no entries wait for some if caller wants to */ 348 } 349 /* 350 * Setup queue entry with command, status and fib mapped 351 */ 352 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 353 entry->addr = hw_fib->header.SenderFibAddress; 354 /* Restore adapters pointer to the FIB */ 355 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 356 map = 0; 357 } 358 /* 359 * If MapFib is true than we need to map the Fib and put pointers 360 * in the queue entry. 361 */ 362 if (map) 363 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 364 return 0; 365 } 366 367 /* 368 * Define the highest level of host to adapter communication routines. 369 * These routines will support host to adapter FS commuication. These 370 * routines have no knowledge of the commuication method used. This level 371 * sends and receives FIBs. This level has no knowledge of how these FIBs 372 * get passed back and forth. 373 */ 374 375 /** 376 * aac_fib_send - send a fib to the adapter 377 * @command: Command to send 378 * @fibptr: The fib 379 * @size: Size of fib data area 380 * @priority: Priority of Fib 381 * @wait: Async/sync select 382 * @reply: True if a reply is wanted 383 * @callback: Called with reply 384 * @callback_data: Passed to callback 385 * 386 * Sends the requested FIB to the adapter and optionally will wait for a 387 * response FIB. If the caller does not wish to wait for a response than 388 * an event to wait on must be supplied. This event will be set when a 389 * response FIB is received from the adapter. 390 */ 391 392 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 393 int priority, int wait, int reply, fib_callback callback, 394 void *callback_data) 395 { 396 struct aac_dev * dev = fibptr->dev; 397 struct hw_fib * hw_fib = fibptr->hw_fib_va; 398 unsigned long flags = 0; 399 unsigned long qflags; 400 unsigned long mflags = 0; 401 402 403 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 404 return -EBUSY; 405 /* 406 * There are 5 cases with the wait and reponse requested flags. 407 * The only invalid cases are if the caller requests to wait and 408 * does not request a response and if the caller does not want a 409 * response and the Fib is not allocated from pool. If a response 410 * is not requesed the Fib will just be deallocaed by the DPC 411 * routine when the response comes back from the adapter. No 412 * further processing will be done besides deleting the Fib. We 413 * will have a debug mode where the adapter can notify the host 414 * it had a problem and the host can log that fact. 415 */ 416 fibptr->flags = 0; 417 if (wait && !reply) { 418 return -EINVAL; 419 } else if (!wait && reply) { 420 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 421 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 422 } else if (!wait && !reply) { 423 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 424 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 425 } else if (wait && reply) { 426 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 427 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 428 } 429 /* 430 * Map the fib into 32bits by using the fib number 431 */ 432 433 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 434 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 435 /* 436 * Set FIB state to indicate where it came from and if we want a 437 * response from the adapter. Also load the command from the 438 * caller. 439 * 440 * Map the hw fib pointer as a 32bit value 441 */ 442 hw_fib->header.Command = cpu_to_le16(command); 443 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 444 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ 445 /* 446 * Set the size of the Fib we want to send to the adapter 447 */ 448 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 449 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 450 return -EMSGSIZE; 451 } 452 /* 453 * Get a queue entry connect the FIB to it and send an notify 454 * the adapter a command is ready. 455 */ 456 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 457 458 /* 459 * Fill in the Callback and CallbackContext if we are not 460 * going to wait. 461 */ 462 if (!wait) { 463 fibptr->callback = callback; 464 fibptr->callback_data = callback_data; 465 fibptr->flags = FIB_CONTEXT_FLAG; 466 } 467 468 fibptr->done = 0; 469 470 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 471 472 dprintk((KERN_DEBUG "Fib contents:.\n")); 473 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 474 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 475 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 476 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 477 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 478 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 479 480 if (!dev->queues) 481 return -EBUSY; 482 483 if (wait) { 484 485 spin_lock_irqsave(&dev->manage_lock, mflags); 486 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 487 printk(KERN_INFO "No management Fibs Available:%d\n", 488 dev->management_fib_count); 489 spin_unlock_irqrestore(&dev->manage_lock, mflags); 490 return -EBUSY; 491 } 492 dev->management_fib_count++; 493 spin_unlock_irqrestore(&dev->manage_lock, mflags); 494 spin_lock_irqsave(&fibptr->event_lock, flags); 495 } 496 497 if (aac_adapter_deliver(fibptr) != 0) { 498 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 499 if (wait) { 500 spin_unlock_irqrestore(&fibptr->event_lock, flags); 501 spin_lock_irqsave(&dev->manage_lock, mflags); 502 dev->management_fib_count--; 503 spin_unlock_irqrestore(&dev->manage_lock, mflags); 504 } 505 return -EBUSY; 506 } 507 508 509 /* 510 * If the caller wanted us to wait for response wait now. 511 */ 512 513 if (wait) { 514 spin_unlock_irqrestore(&fibptr->event_lock, flags); 515 /* Only set for first known interruptable command */ 516 if (wait < 0) { 517 /* 518 * *VERY* Dangerous to time out a command, the 519 * assumption is made that we have no hope of 520 * functioning because an interrupt routing or other 521 * hardware failure has occurred. 522 */ 523 unsigned long count = 36000000L; /* 3 minutes */ 524 while (down_trylock(&fibptr->event_wait)) { 525 int blink; 526 if (--count == 0) { 527 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 528 spin_lock_irqsave(q->lock, qflags); 529 q->numpending--; 530 spin_unlock_irqrestore(q->lock, qflags); 531 if (wait == -1) { 532 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 533 "Usually a result of a PCI interrupt routing problem;\n" 534 "update mother board BIOS or consider utilizing one of\n" 535 "the SAFE mode kernel options (acpi, apic etc)\n"); 536 } 537 return -ETIMEDOUT; 538 } 539 if ((blink = aac_adapter_check_health(dev)) > 0) { 540 if (wait == -1) { 541 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 542 "Usually a result of a serious unrecoverable hardware problem\n", 543 blink); 544 } 545 return -EFAULT; 546 } 547 udelay(5); 548 } 549 } else if (down_interruptible(&fibptr->event_wait)) { 550 /* Do nothing ... satisfy 551 * down_interruptible must_check */ 552 } 553 554 spin_lock_irqsave(&fibptr->event_lock, flags); 555 if (fibptr->done == 0) { 556 fibptr->done = 2; /* Tell interrupt we aborted */ 557 spin_unlock_irqrestore(&fibptr->event_lock, flags); 558 return -ERESTARTSYS; 559 } 560 spin_unlock_irqrestore(&fibptr->event_lock, flags); 561 BUG_ON(fibptr->done == 0); 562 563 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 564 return -ETIMEDOUT; 565 return 0; 566 } 567 /* 568 * If the user does not want a response than return success otherwise 569 * return pending 570 */ 571 if (reply) 572 return -EINPROGRESS; 573 else 574 return 0; 575 } 576 577 /** 578 * aac_consumer_get - get the top of the queue 579 * @dev: Adapter 580 * @q: Queue 581 * @entry: Return entry 582 * 583 * Will return a pointer to the entry on the top of the queue requested that 584 * we are a consumer of, and return the address of the queue entry. It does 585 * not change the state of the queue. 586 */ 587 588 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 589 { 590 u32 index; 591 int status; 592 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 593 status = 0; 594 } else { 595 /* 596 * The consumer index must be wrapped if we have reached 597 * the end of the queue, else we just use the entry 598 * pointed to by the header index 599 */ 600 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 601 index = 0; 602 else 603 index = le32_to_cpu(*q->headers.consumer); 604 *entry = q->base + index; 605 status = 1; 606 } 607 return(status); 608 } 609 610 /** 611 * aac_consumer_free - free consumer entry 612 * @dev: Adapter 613 * @q: Queue 614 * @qid: Queue ident 615 * 616 * Frees up the current top of the queue we are a consumer of. If the 617 * queue was full notify the producer that the queue is no longer full. 618 */ 619 620 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 621 { 622 int wasfull = 0; 623 u32 notify; 624 625 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 626 wasfull = 1; 627 628 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 629 *q->headers.consumer = cpu_to_le32(1); 630 else 631 le32_add_cpu(q->headers.consumer, 1); 632 633 if (wasfull) { 634 switch (qid) { 635 636 case HostNormCmdQueue: 637 notify = HostNormCmdNotFull; 638 break; 639 case HostNormRespQueue: 640 notify = HostNormRespNotFull; 641 break; 642 default: 643 BUG(); 644 return; 645 } 646 aac_adapter_notify(dev, notify); 647 } 648 } 649 650 /** 651 * aac_fib_adapter_complete - complete adapter issued fib 652 * @fibptr: fib to complete 653 * @size: size of fib 654 * 655 * Will do all necessary work to complete a FIB that was sent from 656 * the adapter. 657 */ 658 659 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 660 { 661 struct hw_fib * hw_fib = fibptr->hw_fib_va; 662 struct aac_dev * dev = fibptr->dev; 663 struct aac_queue * q; 664 unsigned long nointr = 0; 665 unsigned long qflags; 666 667 if (hw_fib->header.XferState == 0) { 668 if (dev->comm_interface == AAC_COMM_MESSAGE) 669 kfree (hw_fib); 670 return 0; 671 } 672 /* 673 * If we plan to do anything check the structure type first. 674 */ 675 if (hw_fib->header.StructType != FIB_MAGIC) { 676 if (dev->comm_interface == AAC_COMM_MESSAGE) 677 kfree (hw_fib); 678 return -EINVAL; 679 } 680 /* 681 * This block handles the case where the adapter had sent us a 682 * command and we have finished processing the command. We 683 * call completeFib when we are done processing the command 684 * and want to send a response back to the adapter. This will 685 * send the completed cdb to the adapter. 686 */ 687 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 688 if (dev->comm_interface == AAC_COMM_MESSAGE) { 689 kfree (hw_fib); 690 } else { 691 u32 index; 692 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 693 if (size) { 694 size += sizeof(struct aac_fibhdr); 695 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 696 return -EMSGSIZE; 697 hw_fib->header.Size = cpu_to_le16(size); 698 } 699 q = &dev->queues->queue[AdapNormRespQueue]; 700 spin_lock_irqsave(q->lock, qflags); 701 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 702 *(q->headers.producer) = cpu_to_le32(index + 1); 703 spin_unlock_irqrestore(q->lock, qflags); 704 if (!(nointr & (int)aac_config.irq_mod)) 705 aac_adapter_notify(dev, AdapNormRespQueue); 706 } 707 } else { 708 printk(KERN_WARNING "aac_fib_adapter_complete: " 709 "Unknown xferstate detected.\n"); 710 BUG(); 711 } 712 return 0; 713 } 714 715 /** 716 * aac_fib_complete - fib completion handler 717 * @fib: FIB to complete 718 * 719 * Will do all necessary work to complete a FIB. 720 */ 721 722 int aac_fib_complete(struct fib *fibptr) 723 { 724 unsigned long flags; 725 struct hw_fib * hw_fib = fibptr->hw_fib_va; 726 727 /* 728 * Check for a fib which has already been completed 729 */ 730 731 if (hw_fib->header.XferState == 0) 732 return 0; 733 /* 734 * If we plan to do anything check the structure type first. 735 */ 736 737 if (hw_fib->header.StructType != FIB_MAGIC) 738 return -EINVAL; 739 /* 740 * This block completes a cdb which orginated on the host and we 741 * just need to deallocate the cdb or reinit it. At this point the 742 * command is complete that we had sent to the adapter and this 743 * cdb could be reused. 744 */ 745 spin_lock_irqsave(&fibptr->event_lock, flags); 746 if (fibptr->done == 2) { 747 spin_unlock_irqrestore(&fibptr->event_lock, flags); 748 return 0; 749 } 750 spin_unlock_irqrestore(&fibptr->event_lock, flags); 751 752 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 753 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 754 { 755 fib_dealloc(fibptr); 756 } 757 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 758 { 759 /* 760 * This handles the case when the host has aborted the I/O 761 * to the adapter because the adapter is not responding 762 */ 763 fib_dealloc(fibptr); 764 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 765 fib_dealloc(fibptr); 766 } else { 767 BUG(); 768 } 769 return 0; 770 } 771 772 /** 773 * aac_printf - handle printf from firmware 774 * @dev: Adapter 775 * @val: Message info 776 * 777 * Print a message passed to us by the controller firmware on the 778 * Adaptec board 779 */ 780 781 void aac_printf(struct aac_dev *dev, u32 val) 782 { 783 char *cp = dev->printfbuf; 784 if (dev->printf_enabled) 785 { 786 int length = val & 0xffff; 787 int level = (val >> 16) & 0xffff; 788 789 /* 790 * The size of the printfbuf is set in port.c 791 * There is no variable or define for it 792 */ 793 if (length > 255) 794 length = 255; 795 if (cp[length] != 0) 796 cp[length] = 0; 797 if (level == LOG_AAC_HIGH_ERROR) 798 printk(KERN_WARNING "%s:%s", dev->name, cp); 799 else 800 printk(KERN_INFO "%s:%s", dev->name, cp); 801 } 802 memset(cp, 0, 256); 803 } 804 805 806 /** 807 * aac_handle_aif - Handle a message from the firmware 808 * @dev: Which adapter this fib is from 809 * @fibptr: Pointer to fibptr from adapter 810 * 811 * This routine handles a driver notify fib from the adapter and 812 * dispatches it to the appropriate routine for handling. 813 */ 814 815 #define AIF_SNIFF_TIMEOUT (30*HZ) 816 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 817 { 818 struct hw_fib * hw_fib = fibptr->hw_fib_va; 819 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 820 u32 channel, id, lun, container; 821 struct scsi_device *device; 822 enum { 823 NOTHING, 824 DELETE, 825 ADD, 826 CHANGE 827 } device_config_needed = NOTHING; 828 829 /* Sniff for container changes */ 830 831 if (!dev || !dev->fsa_dev) 832 return; 833 container = channel = id = lun = (u32)-1; 834 835 /* 836 * We have set this up to try and minimize the number of 837 * re-configures that take place. As a result of this when 838 * certain AIF's come in we will set a flag waiting for another 839 * type of AIF before setting the re-config flag. 840 */ 841 switch (le32_to_cpu(aifcmd->command)) { 842 case AifCmdDriverNotify: 843 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 844 /* 845 * Morph or Expand complete 846 */ 847 case AifDenMorphComplete: 848 case AifDenVolumeExtendComplete: 849 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 850 if (container >= dev->maximum_num_containers) 851 break; 852 853 /* 854 * Find the scsi_device associated with the SCSI 855 * address. Make sure we have the right array, and if 856 * so set the flag to initiate a new re-config once we 857 * see an AifEnConfigChange AIF come through. 858 */ 859 860 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 861 device = scsi_device_lookup(dev->scsi_host_ptr, 862 CONTAINER_TO_CHANNEL(container), 863 CONTAINER_TO_ID(container), 864 CONTAINER_TO_LUN(container)); 865 if (device) { 866 dev->fsa_dev[container].config_needed = CHANGE; 867 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 868 dev->fsa_dev[container].config_waiting_stamp = jiffies; 869 scsi_device_put(device); 870 } 871 } 872 } 873 874 /* 875 * If we are waiting on something and this happens to be 876 * that thing then set the re-configure flag. 877 */ 878 if (container != (u32)-1) { 879 if (container >= dev->maximum_num_containers) 880 break; 881 if ((dev->fsa_dev[container].config_waiting_on == 882 le32_to_cpu(*(__le32 *)aifcmd->data)) && 883 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 884 dev->fsa_dev[container].config_waiting_on = 0; 885 } else for (container = 0; 886 container < dev->maximum_num_containers; ++container) { 887 if ((dev->fsa_dev[container].config_waiting_on == 888 le32_to_cpu(*(__le32 *)aifcmd->data)) && 889 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 890 dev->fsa_dev[container].config_waiting_on = 0; 891 } 892 break; 893 894 case AifCmdEventNotify: 895 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 896 case AifEnBatteryEvent: 897 dev->cache_protected = 898 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 899 break; 900 /* 901 * Add an Array. 902 */ 903 case AifEnAddContainer: 904 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 905 if (container >= dev->maximum_num_containers) 906 break; 907 dev->fsa_dev[container].config_needed = ADD; 908 dev->fsa_dev[container].config_waiting_on = 909 AifEnConfigChange; 910 dev->fsa_dev[container].config_waiting_stamp = jiffies; 911 break; 912 913 /* 914 * Delete an Array. 915 */ 916 case AifEnDeleteContainer: 917 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 918 if (container >= dev->maximum_num_containers) 919 break; 920 dev->fsa_dev[container].config_needed = DELETE; 921 dev->fsa_dev[container].config_waiting_on = 922 AifEnConfigChange; 923 dev->fsa_dev[container].config_waiting_stamp = jiffies; 924 break; 925 926 /* 927 * Container change detected. If we currently are not 928 * waiting on something else, setup to wait on a Config Change. 929 */ 930 case AifEnContainerChange: 931 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 932 if (container >= dev->maximum_num_containers) 933 break; 934 if (dev->fsa_dev[container].config_waiting_on && 935 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 936 break; 937 dev->fsa_dev[container].config_needed = CHANGE; 938 dev->fsa_dev[container].config_waiting_on = 939 AifEnConfigChange; 940 dev->fsa_dev[container].config_waiting_stamp = jiffies; 941 break; 942 943 case AifEnConfigChange: 944 break; 945 946 case AifEnAddJBOD: 947 case AifEnDeleteJBOD: 948 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 949 if ((container >> 28)) { 950 container = (u32)-1; 951 break; 952 } 953 channel = (container >> 24) & 0xF; 954 if (channel >= dev->maximum_num_channels) { 955 container = (u32)-1; 956 break; 957 } 958 id = container & 0xFFFF; 959 if (id >= dev->maximum_num_physicals) { 960 container = (u32)-1; 961 break; 962 } 963 lun = (container >> 16) & 0xFF; 964 container = (u32)-1; 965 channel = aac_phys_to_logical(channel); 966 device_config_needed = 967 (((__le32 *)aifcmd->data)[0] == 968 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 969 if (device_config_needed == ADD) { 970 device = scsi_device_lookup(dev->scsi_host_ptr, 971 channel, 972 id, 973 lun); 974 if (device) { 975 scsi_remove_device(device); 976 scsi_device_put(device); 977 } 978 } 979 break; 980 981 case AifEnEnclosureManagement: 982 /* 983 * If in JBOD mode, automatic exposure of new 984 * physical target to be suppressed until configured. 985 */ 986 if (dev->jbod) 987 break; 988 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 989 case EM_DRIVE_INSERTION: 990 case EM_DRIVE_REMOVAL: 991 container = le32_to_cpu( 992 ((__le32 *)aifcmd->data)[2]); 993 if ((container >> 28)) { 994 container = (u32)-1; 995 break; 996 } 997 channel = (container >> 24) & 0xF; 998 if (channel >= dev->maximum_num_channels) { 999 container = (u32)-1; 1000 break; 1001 } 1002 id = container & 0xFFFF; 1003 lun = (container >> 16) & 0xFF; 1004 container = (u32)-1; 1005 if (id >= dev->maximum_num_physicals) { 1006 /* legacy dev_t ? */ 1007 if ((0x2000 <= id) || lun || channel || 1008 ((channel = (id >> 7) & 0x3F) >= 1009 dev->maximum_num_channels)) 1010 break; 1011 lun = (id >> 4) & 7; 1012 id &= 0xF; 1013 } 1014 channel = aac_phys_to_logical(channel); 1015 device_config_needed = 1016 (((__le32 *)aifcmd->data)[3] 1017 == cpu_to_le32(EM_DRIVE_INSERTION)) ? 1018 ADD : DELETE; 1019 break; 1020 } 1021 break; 1022 } 1023 1024 /* 1025 * If we are waiting on something and this happens to be 1026 * that thing then set the re-configure flag. 1027 */ 1028 if (container != (u32)-1) { 1029 if (container >= dev->maximum_num_containers) 1030 break; 1031 if ((dev->fsa_dev[container].config_waiting_on == 1032 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1033 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1034 dev->fsa_dev[container].config_waiting_on = 0; 1035 } else for (container = 0; 1036 container < dev->maximum_num_containers; ++container) { 1037 if ((dev->fsa_dev[container].config_waiting_on == 1038 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1039 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1040 dev->fsa_dev[container].config_waiting_on = 0; 1041 } 1042 break; 1043 1044 case AifCmdJobProgress: 1045 /* 1046 * These are job progress AIF's. When a Clear is being 1047 * done on a container it is initially created then hidden from 1048 * the OS. When the clear completes we don't get a config 1049 * change so we monitor the job status complete on a clear then 1050 * wait for a container change. 1051 */ 1052 1053 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1054 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1055 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1056 for (container = 0; 1057 container < dev->maximum_num_containers; 1058 ++container) { 1059 /* 1060 * Stomp on all config sequencing for all 1061 * containers? 1062 */ 1063 dev->fsa_dev[container].config_waiting_on = 1064 AifEnContainerChange; 1065 dev->fsa_dev[container].config_needed = ADD; 1066 dev->fsa_dev[container].config_waiting_stamp = 1067 jiffies; 1068 } 1069 } 1070 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1071 ((__le32 *)aifcmd->data)[6] == 0 && 1072 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1073 for (container = 0; 1074 container < dev->maximum_num_containers; 1075 ++container) { 1076 /* 1077 * Stomp on all config sequencing for all 1078 * containers? 1079 */ 1080 dev->fsa_dev[container].config_waiting_on = 1081 AifEnContainerChange; 1082 dev->fsa_dev[container].config_needed = DELETE; 1083 dev->fsa_dev[container].config_waiting_stamp = 1084 jiffies; 1085 } 1086 } 1087 break; 1088 } 1089 1090 container = 0; 1091 retry_next: 1092 if (device_config_needed == NOTHING) 1093 for (; container < dev->maximum_num_containers; ++container) { 1094 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1095 (dev->fsa_dev[container].config_needed != NOTHING) && 1096 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1097 device_config_needed = 1098 dev->fsa_dev[container].config_needed; 1099 dev->fsa_dev[container].config_needed = NOTHING; 1100 channel = CONTAINER_TO_CHANNEL(container); 1101 id = CONTAINER_TO_ID(container); 1102 lun = CONTAINER_TO_LUN(container); 1103 break; 1104 } 1105 } 1106 if (device_config_needed == NOTHING) 1107 return; 1108 1109 /* 1110 * If we decided that a re-configuration needs to be done, 1111 * schedule it here on the way out the door, please close the door 1112 * behind you. 1113 */ 1114 1115 /* 1116 * Find the scsi_device associated with the SCSI address, 1117 * and mark it as changed, invalidating the cache. This deals 1118 * with changes to existing device IDs. 1119 */ 1120 1121 if (!dev || !dev->scsi_host_ptr) 1122 return; 1123 /* 1124 * force reload of disk info via aac_probe_container 1125 */ 1126 if ((channel == CONTAINER_CHANNEL) && 1127 (device_config_needed != NOTHING)) { 1128 if (dev->fsa_dev[container].valid == 1) 1129 dev->fsa_dev[container].valid = 2; 1130 aac_probe_container(dev, container); 1131 } 1132 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1133 if (device) { 1134 switch (device_config_needed) { 1135 case DELETE: 1136 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1137 scsi_remove_device(device); 1138 #else 1139 if (scsi_device_online(device)) { 1140 scsi_device_set_state(device, SDEV_OFFLINE); 1141 sdev_printk(KERN_INFO, device, 1142 "Device offlined - %s\n", 1143 (channel == CONTAINER_CHANNEL) ? 1144 "array deleted" : 1145 "enclosure services event"); 1146 } 1147 #endif 1148 break; 1149 case ADD: 1150 if (!scsi_device_online(device)) { 1151 sdev_printk(KERN_INFO, device, 1152 "Device online - %s\n", 1153 (channel == CONTAINER_CHANNEL) ? 1154 "array created" : 1155 "enclosure services event"); 1156 scsi_device_set_state(device, SDEV_RUNNING); 1157 } 1158 /* FALLTHRU */ 1159 case CHANGE: 1160 if ((channel == CONTAINER_CHANNEL) 1161 && (!dev->fsa_dev[container].valid)) { 1162 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1163 scsi_remove_device(device); 1164 #else 1165 if (!scsi_device_online(device)) 1166 break; 1167 scsi_device_set_state(device, SDEV_OFFLINE); 1168 sdev_printk(KERN_INFO, device, 1169 "Device offlined - %s\n", 1170 "array failed"); 1171 #endif 1172 break; 1173 } 1174 scsi_rescan_device(&device->sdev_gendev); 1175 1176 default: 1177 break; 1178 } 1179 scsi_device_put(device); 1180 device_config_needed = NOTHING; 1181 } 1182 if (device_config_needed == ADD) 1183 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1184 if (channel == CONTAINER_CHANNEL) { 1185 container++; 1186 device_config_needed = NOTHING; 1187 goto retry_next; 1188 } 1189 } 1190 1191 static int _aac_reset_adapter(struct aac_dev *aac, int forced) 1192 { 1193 int index, quirks; 1194 int retval; 1195 struct Scsi_Host *host; 1196 struct scsi_device *dev; 1197 struct scsi_cmnd *command; 1198 struct scsi_cmnd *command_list; 1199 int jafo = 0; 1200 1201 /* 1202 * Assumptions: 1203 * - host is locked, unless called by the aacraid thread. 1204 * (a matter of convenience, due to legacy issues surrounding 1205 * eh_host_adapter_reset). 1206 * - in_reset is asserted, so no new i/o is getting to the 1207 * card. 1208 * - The card is dead, or will be very shortly ;-/ so no new 1209 * commands are completing in the interrupt service. 1210 */ 1211 host = aac->scsi_host_ptr; 1212 scsi_block_requests(host); 1213 aac_adapter_disable_int(aac); 1214 if (aac->thread->pid != current->pid) { 1215 spin_unlock_irq(host->host_lock); 1216 kthread_stop(aac->thread); 1217 jafo = 1; 1218 } 1219 1220 /* 1221 * If a positive health, means in a known DEAD PANIC 1222 * state and the adapter could be reset to `try again'. 1223 */ 1224 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); 1225 1226 if (retval) 1227 goto out; 1228 1229 /* 1230 * Loop through the fibs, close the synchronous FIBS 1231 */ 1232 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1233 struct fib *fib = &aac->fibs[index]; 1234 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1235 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1236 unsigned long flagv; 1237 spin_lock_irqsave(&fib->event_lock, flagv); 1238 up(&fib->event_wait); 1239 spin_unlock_irqrestore(&fib->event_lock, flagv); 1240 schedule(); 1241 retval = 0; 1242 } 1243 } 1244 /* Give some extra time for ioctls to complete. */ 1245 if (retval == 0) 1246 ssleep(2); 1247 index = aac->cardtype; 1248 1249 /* 1250 * Re-initialize the adapter, first free resources, then carefully 1251 * apply the initialization sequence to come back again. Only risk 1252 * is a change in Firmware dropping cache, it is assumed the caller 1253 * will ensure that i/o is queisced and the card is flushed in that 1254 * case. 1255 */ 1256 aac_fib_map_free(aac); 1257 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1258 aac->comm_addr = NULL; 1259 aac->comm_phys = 0; 1260 kfree(aac->queues); 1261 aac->queues = NULL; 1262 free_irq(aac->pdev->irq, aac); 1263 kfree(aac->fsa_dev); 1264 aac->fsa_dev = NULL; 1265 quirks = aac_get_driver_ident(index)->quirks; 1266 if (quirks & AAC_QUIRK_31BIT) { 1267 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) || 1268 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31))))) 1269 goto out; 1270 } else { 1271 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) || 1272 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32))))) 1273 goto out; 1274 } 1275 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1276 goto out; 1277 if (quirks & AAC_QUIRK_31BIT) 1278 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) 1279 goto out; 1280 if (jafo) { 1281 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1282 if (IS_ERR(aac->thread)) { 1283 retval = PTR_ERR(aac->thread); 1284 goto out; 1285 } 1286 } 1287 (void)aac_get_adapter_info(aac); 1288 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1289 host->sg_tablesize = 34; 1290 host->max_sectors = (host->sg_tablesize * 8) + 112; 1291 } 1292 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1293 host->sg_tablesize = 17; 1294 host->max_sectors = (host->sg_tablesize * 8) + 112; 1295 } 1296 aac_get_config_status(aac, 1); 1297 aac_get_containers(aac); 1298 /* 1299 * This is where the assumption that the Adapter is quiesced 1300 * is important. 1301 */ 1302 command_list = NULL; 1303 __shost_for_each_device(dev, host) { 1304 unsigned long flags; 1305 spin_lock_irqsave(&dev->list_lock, flags); 1306 list_for_each_entry(command, &dev->cmd_list, list) 1307 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1308 command->SCp.buffer = (struct scatterlist *)command_list; 1309 command_list = command; 1310 } 1311 spin_unlock_irqrestore(&dev->list_lock, flags); 1312 } 1313 while ((command = command_list)) { 1314 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1315 command->SCp.buffer = NULL; 1316 command->result = DID_OK << 16 1317 | COMMAND_COMPLETE << 8 1318 | SAM_STAT_TASK_SET_FULL; 1319 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1320 command->scsi_done(command); 1321 } 1322 retval = 0; 1323 1324 out: 1325 aac->in_reset = 0; 1326 scsi_unblock_requests(host); 1327 if (jafo) { 1328 spin_lock_irq(host->host_lock); 1329 } 1330 return retval; 1331 } 1332 1333 int aac_reset_adapter(struct aac_dev * aac, int forced) 1334 { 1335 unsigned long flagv = 0; 1336 int retval; 1337 struct Scsi_Host * host; 1338 1339 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1340 return -EBUSY; 1341 1342 if (aac->in_reset) { 1343 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1344 return -EBUSY; 1345 } 1346 aac->in_reset = 1; 1347 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1348 1349 /* 1350 * Wait for all commands to complete to this specific 1351 * target (block maximum 60 seconds). Although not necessary, 1352 * it does make us a good storage citizen. 1353 */ 1354 host = aac->scsi_host_ptr; 1355 scsi_block_requests(host); 1356 if (forced < 2) for (retval = 60; retval; --retval) { 1357 struct scsi_device * dev; 1358 struct scsi_cmnd * command; 1359 int active = 0; 1360 1361 __shost_for_each_device(dev, host) { 1362 spin_lock_irqsave(&dev->list_lock, flagv); 1363 list_for_each_entry(command, &dev->cmd_list, list) { 1364 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1365 active++; 1366 break; 1367 } 1368 } 1369 spin_unlock_irqrestore(&dev->list_lock, flagv); 1370 if (active) 1371 break; 1372 1373 } 1374 /* 1375 * We can exit If all the commands are complete 1376 */ 1377 if (active == 0) 1378 break; 1379 ssleep(1); 1380 } 1381 1382 /* Quiesce build, flush cache, write through mode */ 1383 if (forced < 2) 1384 aac_send_shutdown(aac); 1385 spin_lock_irqsave(host->host_lock, flagv); 1386 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1))); 1387 spin_unlock_irqrestore(host->host_lock, flagv); 1388 1389 if ((forced < 2) && (retval == -ENODEV)) { 1390 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1391 struct fib * fibctx = aac_fib_alloc(aac); 1392 if (fibctx) { 1393 struct aac_pause *cmd; 1394 int status; 1395 1396 aac_fib_init(fibctx); 1397 1398 cmd = (struct aac_pause *) fib_data(fibctx); 1399 1400 cmd->command = cpu_to_le32(VM_ContainerConfig); 1401 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1402 cmd->timeout = cpu_to_le32(1); 1403 cmd->min = cpu_to_le32(1); 1404 cmd->noRescan = cpu_to_le32(1); 1405 cmd->count = cpu_to_le32(0); 1406 1407 status = aac_fib_send(ContainerCommand, 1408 fibctx, 1409 sizeof(struct aac_pause), 1410 FsaNormal, 1411 -2 /* Timeout silently */, 1, 1412 NULL, NULL); 1413 1414 if (status >= 0) 1415 aac_fib_complete(fibctx); 1416 /* FIB should be freed only after getting 1417 * the response from the F/W */ 1418 if (status != -ERESTARTSYS) 1419 aac_fib_free(fibctx); 1420 } 1421 } 1422 1423 return retval; 1424 } 1425 1426 int aac_check_health(struct aac_dev * aac) 1427 { 1428 int BlinkLED; 1429 unsigned long time_now, flagv = 0; 1430 struct list_head * entry; 1431 struct Scsi_Host * host; 1432 1433 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1434 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1435 return 0; 1436 1437 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1438 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1439 return 0; /* OK */ 1440 } 1441 1442 aac->in_reset = 1; 1443 1444 /* Fake up an AIF: 1445 * aac_aifcmd.command = AifCmdEventNotify = 1 1446 * aac_aifcmd.seqnum = 0xFFFFFFFF 1447 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1448 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1449 * aac.aifcmd.data[2] = AifHighPriority = 3 1450 * aac.aifcmd.data[3] = BlinkLED 1451 */ 1452 1453 time_now = jiffies/HZ; 1454 entry = aac->fib_list.next; 1455 1456 /* 1457 * For each Context that is on the 1458 * fibctxList, make a copy of the 1459 * fib, and then set the event to wake up the 1460 * thread that is waiting for it. 1461 */ 1462 while (entry != &aac->fib_list) { 1463 /* 1464 * Extract the fibctx 1465 */ 1466 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1467 struct hw_fib * hw_fib; 1468 struct fib * fib; 1469 /* 1470 * Check if the queue is getting 1471 * backlogged 1472 */ 1473 if (fibctx->count > 20) { 1474 /* 1475 * It's *not* jiffies folks, 1476 * but jiffies / HZ, so do not 1477 * panic ... 1478 */ 1479 u32 time_last = fibctx->jiffies; 1480 /* 1481 * Has it been > 2 minutes 1482 * since the last read off 1483 * the queue? 1484 */ 1485 if ((time_now - time_last) > aif_timeout) { 1486 entry = entry->next; 1487 aac_close_fib_context(aac, fibctx); 1488 continue; 1489 } 1490 } 1491 /* 1492 * Warning: no sleep allowed while 1493 * holding spinlock 1494 */ 1495 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1496 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1497 if (fib && hw_fib) { 1498 struct aac_aifcmd * aif; 1499 1500 fib->hw_fib_va = hw_fib; 1501 fib->dev = aac; 1502 aac_fib_init(fib); 1503 fib->type = FSAFS_NTC_FIB_CONTEXT; 1504 fib->size = sizeof (struct fib); 1505 fib->data = hw_fib->data; 1506 aif = (struct aac_aifcmd *)hw_fib->data; 1507 aif->command = cpu_to_le32(AifCmdEventNotify); 1508 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1509 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1510 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1511 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1512 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1513 1514 /* 1515 * Put the FIB onto the 1516 * fibctx's fibs 1517 */ 1518 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1519 fibctx->count++; 1520 /* 1521 * Set the event to wake up the 1522 * thread that will waiting. 1523 */ 1524 up(&fibctx->wait_sem); 1525 } else { 1526 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1527 kfree(fib); 1528 kfree(hw_fib); 1529 } 1530 entry = entry->next; 1531 } 1532 1533 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1534 1535 if (BlinkLED < 0) { 1536 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1537 goto out; 1538 } 1539 1540 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1541 1542 if (!aac_check_reset || ((aac_check_reset == 1) && 1543 (aac->supplement_adapter_info.SupportedOptions2 & 1544 AAC_OPTION_IGNORE_RESET))) 1545 goto out; 1546 host = aac->scsi_host_ptr; 1547 if (aac->thread->pid != current->pid) 1548 spin_lock_irqsave(host->host_lock, flagv); 1549 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1); 1550 if (aac->thread->pid != current->pid) 1551 spin_unlock_irqrestore(host->host_lock, flagv); 1552 return BlinkLED; 1553 1554 out: 1555 aac->in_reset = 0; 1556 return BlinkLED; 1557 } 1558 1559 1560 /** 1561 * aac_command_thread - command processing thread 1562 * @dev: Adapter to monitor 1563 * 1564 * Waits on the commandready event in it's queue. When the event gets set 1565 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1566 * until the queue is empty. When the queue is empty it will wait for 1567 * more FIBs. 1568 */ 1569 1570 int aac_command_thread(void *data) 1571 { 1572 struct aac_dev *dev = data; 1573 struct hw_fib *hw_fib, *hw_newfib; 1574 struct fib *fib, *newfib; 1575 struct aac_fib_context *fibctx; 1576 unsigned long flags; 1577 DECLARE_WAITQUEUE(wait, current); 1578 unsigned long next_jiffies = jiffies + HZ; 1579 unsigned long next_check_jiffies = next_jiffies; 1580 long difference = HZ; 1581 1582 /* 1583 * We can only have one thread per adapter for AIF's. 1584 */ 1585 if (dev->aif_thread) 1586 return -EINVAL; 1587 1588 /* 1589 * Let the DPC know it has a place to send the AIF's to. 1590 */ 1591 dev->aif_thread = 1; 1592 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1593 set_current_state(TASK_INTERRUPTIBLE); 1594 dprintk ((KERN_INFO "aac_command_thread start\n")); 1595 while (1) { 1596 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1597 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1598 struct list_head *entry; 1599 struct aac_aifcmd * aifcmd; 1600 1601 set_current_state(TASK_RUNNING); 1602 1603 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1604 list_del(entry); 1605 1606 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1607 fib = list_entry(entry, struct fib, fiblink); 1608 /* 1609 * We will process the FIB here or pass it to a 1610 * worker thread that is TBD. We Really can't 1611 * do anything at this point since we don't have 1612 * anything defined for this thread to do. 1613 */ 1614 hw_fib = fib->hw_fib_va; 1615 memset(fib, 0, sizeof(struct fib)); 1616 fib->type = FSAFS_NTC_FIB_CONTEXT; 1617 fib->size = sizeof(struct fib); 1618 fib->hw_fib_va = hw_fib; 1619 fib->data = hw_fib->data; 1620 fib->dev = dev; 1621 /* 1622 * We only handle AifRequest fibs from the adapter. 1623 */ 1624 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1625 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1626 /* Handle Driver Notify Events */ 1627 aac_handle_aif(dev, fib); 1628 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1629 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1630 } else { 1631 /* The u32 here is important and intended. We are using 1632 32bit wrapping time to fit the adapter field */ 1633 1634 u32 time_now, time_last; 1635 unsigned long flagv; 1636 unsigned num; 1637 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1638 struct fib ** fib_pool, ** fib_p; 1639 1640 /* Sniff events */ 1641 if ((aifcmd->command == 1642 cpu_to_le32(AifCmdEventNotify)) || 1643 (aifcmd->command == 1644 cpu_to_le32(AifCmdJobProgress))) { 1645 aac_handle_aif(dev, fib); 1646 } 1647 1648 time_now = jiffies/HZ; 1649 1650 /* 1651 * Warning: no sleep allowed while 1652 * holding spinlock. We take the estimate 1653 * and pre-allocate a set of fibs outside the 1654 * lock. 1655 */ 1656 num = le32_to_cpu(dev->init->AdapterFibsSize) 1657 / sizeof(struct hw_fib); /* some extra */ 1658 spin_lock_irqsave(&dev->fib_lock, flagv); 1659 entry = dev->fib_list.next; 1660 while (entry != &dev->fib_list) { 1661 entry = entry->next; 1662 ++num; 1663 } 1664 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1665 hw_fib_pool = NULL; 1666 fib_pool = NULL; 1667 if (num 1668 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1669 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1670 hw_fib_p = hw_fib_pool; 1671 fib_p = fib_pool; 1672 while (hw_fib_p < &hw_fib_pool[num]) { 1673 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1674 --hw_fib_p; 1675 break; 1676 } 1677 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1678 kfree(*(--hw_fib_p)); 1679 break; 1680 } 1681 } 1682 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1683 kfree(fib_pool); 1684 fib_pool = NULL; 1685 kfree(hw_fib_pool); 1686 hw_fib_pool = NULL; 1687 } 1688 } else { 1689 kfree(hw_fib_pool); 1690 hw_fib_pool = NULL; 1691 } 1692 spin_lock_irqsave(&dev->fib_lock, flagv); 1693 entry = dev->fib_list.next; 1694 /* 1695 * For each Context that is on the 1696 * fibctxList, make a copy of the 1697 * fib, and then set the event to wake up the 1698 * thread that is waiting for it. 1699 */ 1700 hw_fib_p = hw_fib_pool; 1701 fib_p = fib_pool; 1702 while (entry != &dev->fib_list) { 1703 /* 1704 * Extract the fibctx 1705 */ 1706 fibctx = list_entry(entry, struct aac_fib_context, next); 1707 /* 1708 * Check if the queue is getting 1709 * backlogged 1710 */ 1711 if (fibctx->count > 20) 1712 { 1713 /* 1714 * It's *not* jiffies folks, 1715 * but jiffies / HZ so do not 1716 * panic ... 1717 */ 1718 time_last = fibctx->jiffies; 1719 /* 1720 * Has it been > 2 minutes 1721 * since the last read off 1722 * the queue? 1723 */ 1724 if ((time_now - time_last) > aif_timeout) { 1725 entry = entry->next; 1726 aac_close_fib_context(dev, fibctx); 1727 continue; 1728 } 1729 } 1730 /* 1731 * Warning: no sleep allowed while 1732 * holding spinlock 1733 */ 1734 if (hw_fib_p < &hw_fib_pool[num]) { 1735 hw_newfib = *hw_fib_p; 1736 *(hw_fib_p++) = NULL; 1737 newfib = *fib_p; 1738 *(fib_p++) = NULL; 1739 /* 1740 * Make the copy of the FIB 1741 */ 1742 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1743 memcpy(newfib, fib, sizeof(struct fib)); 1744 newfib->hw_fib_va = hw_newfib; 1745 /* 1746 * Put the FIB onto the 1747 * fibctx's fibs 1748 */ 1749 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1750 fibctx->count++; 1751 /* 1752 * Set the event to wake up the 1753 * thread that is waiting. 1754 */ 1755 up(&fibctx->wait_sem); 1756 } else { 1757 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1758 } 1759 entry = entry->next; 1760 } 1761 /* 1762 * Set the status of this FIB 1763 */ 1764 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1765 aac_fib_adapter_complete(fib, sizeof(u32)); 1766 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1767 /* Free up the remaining resources */ 1768 hw_fib_p = hw_fib_pool; 1769 fib_p = fib_pool; 1770 while (hw_fib_p < &hw_fib_pool[num]) { 1771 kfree(*hw_fib_p); 1772 kfree(*fib_p); 1773 ++fib_p; 1774 ++hw_fib_p; 1775 } 1776 kfree(hw_fib_pool); 1777 kfree(fib_pool); 1778 } 1779 kfree(fib); 1780 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1781 } 1782 /* 1783 * There are no more AIF's 1784 */ 1785 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1786 1787 /* 1788 * Background activity 1789 */ 1790 if ((time_before(next_check_jiffies,next_jiffies)) 1791 && ((difference = next_check_jiffies - jiffies) <= 0)) { 1792 next_check_jiffies = next_jiffies; 1793 if (aac_check_health(dev) == 0) { 1794 difference = ((long)(unsigned)check_interval) 1795 * HZ; 1796 next_check_jiffies = jiffies + difference; 1797 } else if (!dev->queues) 1798 break; 1799 } 1800 if (!time_before(next_check_jiffies,next_jiffies) 1801 && ((difference = next_jiffies - jiffies) <= 0)) { 1802 struct timeval now; 1803 int ret; 1804 1805 /* Don't even try to talk to adapter if its sick */ 1806 ret = aac_check_health(dev); 1807 if (!ret && !dev->queues) 1808 break; 1809 next_check_jiffies = jiffies 1810 + ((long)(unsigned)check_interval) 1811 * HZ; 1812 do_gettimeofday(&now); 1813 1814 /* Synchronize our watches */ 1815 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 1816 && (now.tv_usec > (1000000 / HZ))) 1817 difference = (((1000000 - now.tv_usec) * HZ) 1818 + 500000) / 1000000; 1819 else if (ret == 0) { 1820 struct fib *fibptr; 1821 1822 if ((fibptr = aac_fib_alloc(dev))) { 1823 int status; 1824 __le32 *info; 1825 1826 aac_fib_init(fibptr); 1827 1828 info = (__le32 *) fib_data(fibptr); 1829 if (now.tv_usec > 500000) 1830 ++now.tv_sec; 1831 1832 *info = cpu_to_le32(now.tv_sec); 1833 1834 status = aac_fib_send(SendHostTime, 1835 fibptr, 1836 sizeof(*info), 1837 FsaNormal, 1838 1, 1, 1839 NULL, 1840 NULL); 1841 /* Do not set XferState to zero unless 1842 * receives a response from F/W */ 1843 if (status >= 0) 1844 aac_fib_complete(fibptr); 1845 /* FIB should be freed only after 1846 * getting the response from the F/W */ 1847 if (status != -ERESTARTSYS) 1848 aac_fib_free(fibptr); 1849 } 1850 difference = (long)(unsigned)update_interval*HZ; 1851 } else { 1852 /* retry shortly */ 1853 difference = 10 * HZ; 1854 } 1855 next_jiffies = jiffies + difference; 1856 if (time_before(next_check_jiffies,next_jiffies)) 1857 difference = next_check_jiffies - jiffies; 1858 } 1859 if (difference <= 0) 1860 difference = 1; 1861 set_current_state(TASK_INTERRUPTIBLE); 1862 schedule_timeout(difference); 1863 1864 if (kthread_should_stop()) 1865 break; 1866 } 1867 if (dev->queues) 1868 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1869 dev->aif_thread = 0; 1870 return 0; 1871 } 1872