xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38 
39 #include "aacraid.h"
40 
41 /**
42  *	fib_map_alloc		-	allocate the fib objects
43  *	@dev: Adapter to allocate for
44  *
45  *	Allocate and map the shared PCI space for the FIB blocks used to
46  *	talk to the Adaptec firmware.
47  */
48 
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53 	else
54 		dev->max_cmd_size = dev->max_fib_size;
55 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57 	} else {
58 		dev->max_cmd_size = dev->max_fib_size;
59 	}
60 
61 	dprintk((KERN_INFO
62 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68 		&dev->hw_fib_pa, GFP_KERNEL);
69 	if (dev->hw_fib_va == NULL)
70 		return -ENOMEM;
71 	return 0;
72 }
73 
74 /**
75  *	aac_fib_map_free		-	free the fib objects
76  *	@dev: Adapter to free
77  *
78  *	Free the PCI mappings and the memory allocated for FIB blocks
79  *	on this adapter.
80  */
81 
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84 	size_t alloc_size;
85 	size_t fib_size;
86 	int num_fibs;
87 
88 	if(!dev->hw_fib_va || !dev->max_cmd_size)
89 		return;
90 
91 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94 
95 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96 			  dev->hw_fib_pa);
97 
98 	dev->hw_fib_va = NULL;
99 	dev->hw_fib_pa = 0;
100 }
101 
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104 	u32 i = 0;
105 	u32 vector = 1;
106 	struct fib *fibptr = NULL;
107 
108 	for (i = 0, fibptr = &dev->fibs[i];
109 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110 		i++, fibptr++) {
111 		if ((dev->max_msix == 1) ||
112 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113 			- dev->vector_cap))) {
114 			fibptr->vector_no = 0;
115 		} else {
116 			fibptr->vector_no = vector;
117 			vector++;
118 			if (vector == dev->max_msix)
119 				vector = 1;
120 		}
121 	}
122 }
123 
124 /**
125  *	aac_fib_setup	-	setup the fibs
126  *	@dev: Adapter to set up
127  *
128  *	Allocate the PCI space for the fibs, map it and then initialise the
129  *	fib area, the unmapped fib data and also the free list
130  */
131 
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134 	struct fib *fibptr;
135 	struct hw_fib *hw_fib;
136 	dma_addr_t hw_fib_pa;
137 	int i;
138 	u32 max_cmds;
139 
140 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
141 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146 	}
147 	if (i<0)
148 		return -ENOMEM;
149 
150 	memset(dev->hw_fib_va, 0,
151 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153 
154 	/* 32 byte alignment for PMC */
155 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157 					(hw_fib_pa - dev->hw_fib_pa));
158 
159 	/* add Xport header */
160 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161 		sizeof(struct aac_fib_xporthdr));
162 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163 
164 	/*
165 	 *	Initialise the fibs
166 	 */
167 	for (i = 0, fibptr = &dev->fibs[i];
168 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169 		i++, fibptr++)
170 	{
171 		fibptr->flags = 0;
172 		fibptr->size = sizeof(struct fib);
173 		fibptr->dev = dev;
174 		fibptr->hw_fib_va = hw_fib;
175 		fibptr->data = (void *) fibptr->hw_fib_va->data;
176 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
177 		init_completion(&fibptr->event_wait);
178 		spin_lock_init(&fibptr->event_lock);
179 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180 		hw_fib->header.SenderSize =
181 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
182 		fibptr->hw_fib_pa = hw_fib_pa;
183 		fibptr->hw_sgl_pa = hw_fib_pa +
184 			offsetof(struct aac_hba_cmd_req, sge[2]);
185 		/*
186 		 * one element is for the ptr to the separate sg list,
187 		 * second element for 32 byte alignment
188 		 */
189 		fibptr->hw_error_pa = hw_fib_pa +
190 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191 
192 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194 		hw_fib_pa = hw_fib_pa +
195 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196 	}
197 
198 	/*
199 	 *Assign vector numbers to fibs
200 	 */
201 	aac_fib_vector_assign(dev);
202 
203 	/*
204 	 *	Add the fib chain to the free list
205 	 */
206 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207 	/*
208 	*	Set 8 fibs aside for management tools
209 	*/
210 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211 	return 0;
212 }
213 
214 /**
215  *	aac_fib_alloc_tag-allocate a fib using tags
216  *	@dev: Adapter to allocate the fib for
217  *	@scmd: SCSI command
218  *
219  *	Allocate a fib from the adapter fib pool using tags
220  *	from the blk layer.
221  */
222 
223 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
224 {
225 	struct fib *fibptr;
226 	u32 blk_tag;
227 	int i;
228 
229 	blk_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd));
230 	i = blk_mq_unique_tag_to_tag(blk_tag);
231 	fibptr = &dev->fibs[i];
232 	/*
233 	 *	Null out fields that depend on being zero at the start of
234 	 *	each I/O
235 	 */
236 	fibptr->hw_fib_va->header.XferState = 0;
237 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
238 	fibptr->callback_data = NULL;
239 	fibptr->callback = NULL;
240 	fibptr->flags = 0;
241 
242 	return fibptr;
243 }
244 
245 /**
246  *	aac_fib_alloc	-	allocate a fib
247  *	@dev: Adapter to allocate the fib for
248  *
249  *	Allocate a fib from the adapter fib pool. If the pool is empty we
250  *	return NULL.
251  */
252 
253 struct fib *aac_fib_alloc(struct aac_dev *dev)
254 {
255 	struct fib * fibptr;
256 	unsigned long flags;
257 	spin_lock_irqsave(&dev->fib_lock, flags);
258 	fibptr = dev->free_fib;
259 	if(!fibptr){
260 		spin_unlock_irqrestore(&dev->fib_lock, flags);
261 		return fibptr;
262 	}
263 	dev->free_fib = fibptr->next;
264 	spin_unlock_irqrestore(&dev->fib_lock, flags);
265 	/*
266 	 *	Set the proper node type code and node byte size
267 	 */
268 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
269 	fibptr->size = sizeof(struct fib);
270 	/*
271 	 *	Null out fields that depend on being zero at the start of
272 	 *	each I/O
273 	 */
274 	fibptr->hw_fib_va->header.XferState = 0;
275 	fibptr->flags = 0;
276 	fibptr->callback = NULL;
277 	fibptr->callback_data = NULL;
278 
279 	return fibptr;
280 }
281 
282 /**
283  *	aac_fib_free	-	free a fib
284  *	@fibptr: fib to free up
285  *
286  *	Frees up a fib and places it on the appropriate queue
287  */
288 
289 void aac_fib_free(struct fib *fibptr)
290 {
291 	unsigned long flags;
292 
293 	if (fibptr->done == 2)
294 		return;
295 
296 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
297 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
298 		aac_config.fib_timeouts++;
299 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
300 		fibptr->hw_fib_va->header.XferState != 0) {
301 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
302 			 (void*)fibptr,
303 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
304 	}
305 	fibptr->next = fibptr->dev->free_fib;
306 	fibptr->dev->free_fib = fibptr;
307 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
308 }
309 
310 /**
311  *	aac_fib_init	-	initialise a fib
312  *	@fibptr: The fib to initialize
313  *
314  *	Set up the generic fib fields ready for use
315  */
316 
317 void aac_fib_init(struct fib *fibptr)
318 {
319 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
320 
321 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
322 	hw_fib->header.StructType = FIB_MAGIC;
323 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
324 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
325 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
326 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
327 }
328 
329 /**
330  *	fib_dealloc		-	deallocate a fib
331  *	@fibptr: fib to deallocate
332  *
333  *	Will deallocate and return to the free pool the FIB pointed to by the
334  *	caller.
335  */
336 
337 static void fib_dealloc(struct fib * fibptr)
338 {
339 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
340 	hw_fib->header.XferState = 0;
341 }
342 
343 /*
344  *	Commuication primitives define and support the queuing method we use to
345  *	support host to adapter commuication. All queue accesses happen through
346  *	these routines and are the only routines which have a knowledge of the
347  *	 how these queues are implemented.
348  */
349 
350 /**
351  *	aac_get_entry		-	get a queue entry
352  *	@dev: Adapter
353  *	@qid: Queue Number
354  *	@entry: Entry return
355  *	@index: Index return
356  *	@nonotify: notification control
357  *
358  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
359  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
360  *	returned.
361  */
362 
363 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
364 {
365 	struct aac_queue * q;
366 	unsigned long idx;
367 
368 	/*
369 	 *	All of the queues wrap when they reach the end, so we check
370 	 *	to see if they have reached the end and if they have we just
371 	 *	set the index back to zero. This is a wrap. You could or off
372 	 *	the high bits in all updates but this is a bit faster I think.
373 	 */
374 
375 	q = &dev->queues->queue[qid];
376 
377 	idx = *index = le32_to_cpu(*(q->headers.producer));
378 	/* Interrupt Moderation, only interrupt for first two entries */
379 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
380 		if (--idx == 0) {
381 			if (qid == AdapNormCmdQueue)
382 				idx = ADAP_NORM_CMD_ENTRIES;
383 			else
384 				idx = ADAP_NORM_RESP_ENTRIES;
385 		}
386 		if (idx != le32_to_cpu(*(q->headers.consumer)))
387 			*nonotify = 1;
388 	}
389 
390 	if (qid == AdapNormCmdQueue) {
391 		if (*index >= ADAP_NORM_CMD_ENTRIES)
392 			*index = 0; /* Wrap to front of the Producer Queue. */
393 	} else {
394 		if (*index >= ADAP_NORM_RESP_ENTRIES)
395 			*index = 0; /* Wrap to front of the Producer Queue. */
396 	}
397 
398 	/* Queue is full */
399 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
400 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
401 				qid, atomic_read(&q->numpending));
402 		return 0;
403 	} else {
404 		*entry = q->base + *index;
405 		return 1;
406 	}
407 }
408 
409 /**
410  *	aac_queue_get		-	get the next free QE
411  *	@dev: Adapter
412  *	@index: Returned index
413  *	@qid: Queue number
414  *	@hw_fib: Fib to associate with the queue entry
415  *	@wait: Wait if queue full
416  *	@fibptr: Driver fib object to go with fib
417  *	@nonotify: Don't notify the adapter
418  *
419  *	Gets the next free QE off the requested priorty adapter command
420  *	queue and associates the Fib with the QE. The QE represented by
421  *	index is ready to insert on the queue when this routine returns
422  *	success.
423  */
424 
425 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
426 {
427 	struct aac_entry * entry = NULL;
428 	int map = 0;
429 
430 	if (qid == AdapNormCmdQueue) {
431 		/*  if no entries wait for some if caller wants to */
432 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
433 			printk(KERN_ERR "GetEntries failed\n");
434 		}
435 		/*
436 		 *	Setup queue entry with a command, status and fib mapped
437 		 */
438 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
439 		map = 1;
440 	} else {
441 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
442 			/* if no entries wait for some if caller wants to */
443 		}
444 		/*
445 		 *	Setup queue entry with command, status and fib mapped
446 		 */
447 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
448 		entry->addr = hw_fib->header.SenderFibAddress;
449 			/* Restore adapters pointer to the FIB */
450 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
451 		map = 0;
452 	}
453 	/*
454 	 *	If MapFib is true than we need to map the Fib and put pointers
455 	 *	in the queue entry.
456 	 */
457 	if (map)
458 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
459 	return 0;
460 }
461 
462 /*
463  *	Define the highest level of host to adapter communication routines.
464  *	These routines will support host to adapter FS commuication. These
465  *	routines have no knowledge of the commuication method used. This level
466  *	sends and receives FIBs. This level has no knowledge of how these FIBs
467  *	get passed back and forth.
468  */
469 
470 /**
471  *	aac_fib_send	-	send a fib to the adapter
472  *	@command: Command to send
473  *	@fibptr: The fib
474  *	@size: Size of fib data area
475  *	@priority: Priority of Fib
476  *	@wait: Async/sync select
477  *	@reply: True if a reply is wanted
478  *	@callback: Called with reply
479  *	@callback_data: Passed to callback
480  *
481  *	Sends the requested FIB to the adapter and optionally will wait for a
482  *	response FIB. If the caller does not wish to wait for a response than
483  *	an event to wait on must be supplied. This event will be set when a
484  *	response FIB is received from the adapter.
485  */
486 
487 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
488 		int priority, int wait, int reply, fib_callback callback,
489 		void *callback_data)
490 {
491 	struct aac_dev * dev = fibptr->dev;
492 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
493 	unsigned long flags = 0;
494 	unsigned long mflags = 0;
495 	unsigned long sflags = 0;
496 
497 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
498 		return -EBUSY;
499 
500 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
501 		return -EINVAL;
502 
503 	/*
504 	 *	There are 5 cases with the wait and response requested flags.
505 	 *	The only invalid cases are if the caller requests to wait and
506 	 *	does not request a response and if the caller does not want a
507 	 *	response and the Fib is not allocated from pool. If a response
508 	 *	is not requested the Fib will just be deallocaed by the DPC
509 	 *	routine when the response comes back from the adapter. No
510 	 *	further processing will be done besides deleting the Fib. We
511 	 *	will have a debug mode where the adapter can notify the host
512 	 *	it had a problem and the host can log that fact.
513 	 */
514 	fibptr->flags = 0;
515 	if (wait && !reply) {
516 		return -EINVAL;
517 	} else if (!wait && reply) {
518 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
519 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
520 	} else if (!wait && !reply) {
521 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
522 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
523 	} else if (wait && reply) {
524 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
525 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
526 	}
527 	/*
528 	 *	Map the fib into 32bits by using the fib number
529 	 */
530 
531 	hw_fib->header.SenderFibAddress =
532 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
533 
534 	/* use the same shifted value for handle to be compatible
535 	 * with the new native hba command handle
536 	 */
537 	hw_fib->header.Handle =
538 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
539 
540 	/*
541 	 *	Set FIB state to indicate where it came from and if we want a
542 	 *	response from the adapter. Also load the command from the
543 	 *	caller.
544 	 *
545 	 *	Map the hw fib pointer as a 32bit value
546 	 */
547 	hw_fib->header.Command = cpu_to_le16(command);
548 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
549 	/*
550 	 *	Set the size of the Fib we want to send to the adapter
551 	 */
552 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
553 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
554 		return -EMSGSIZE;
555 	}
556 	/*
557 	 *	Get a queue entry connect the FIB to it and send an notify
558 	 *	the adapter a command is ready.
559 	 */
560 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
561 
562 	/*
563 	 *	Fill in the Callback and CallbackContext if we are not
564 	 *	going to wait.
565 	 */
566 	if (!wait) {
567 		fibptr->callback = callback;
568 		fibptr->callback_data = callback_data;
569 		fibptr->flags = FIB_CONTEXT_FLAG;
570 	}
571 
572 	fibptr->done = 0;
573 
574 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
575 
576 	dprintk((KERN_DEBUG "Fib contents:.\n"));
577 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
578 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
579 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
580 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
581 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
582 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
583 
584 	if (!dev->queues)
585 		return -EBUSY;
586 
587 	if (wait) {
588 
589 		spin_lock_irqsave(&dev->manage_lock, mflags);
590 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
591 			printk(KERN_INFO "No management Fibs Available:%d\n",
592 						dev->management_fib_count);
593 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
594 			return -EBUSY;
595 		}
596 		dev->management_fib_count++;
597 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
598 		spin_lock_irqsave(&fibptr->event_lock, flags);
599 	}
600 
601 	if (dev->sync_mode) {
602 		if (wait)
603 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
604 		spin_lock_irqsave(&dev->sync_lock, sflags);
605 		if (dev->sync_fib) {
606 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
607 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
608 		} else {
609 			dev->sync_fib = fibptr;
610 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
611 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
612 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
613 				NULL, NULL, NULL, NULL, NULL);
614 		}
615 		if (wait) {
616 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
617 			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
618 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
619 				return -EFAULT;
620 			}
621 			return 0;
622 		}
623 		return -EINPROGRESS;
624 	}
625 
626 	if (aac_adapter_deliver(fibptr) != 0) {
627 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
628 		if (wait) {
629 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
630 			spin_lock_irqsave(&dev->manage_lock, mflags);
631 			dev->management_fib_count--;
632 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
633 		}
634 		return -EBUSY;
635 	}
636 
637 
638 	/*
639 	 *	If the caller wanted us to wait for response wait now.
640 	 */
641 
642 	if (wait) {
643 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
644 		/* Only set for first known interruptable command */
645 		if (wait < 0) {
646 			/*
647 			 * *VERY* Dangerous to time out a command, the
648 			 * assumption is made that we have no hope of
649 			 * functioning because an interrupt routing or other
650 			 * hardware failure has occurred.
651 			 */
652 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
653 			while (!try_wait_for_completion(&fibptr->event_wait)) {
654 				int blink;
655 				if (time_is_before_eq_jiffies(timeout)) {
656 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
657 					atomic_dec(&q->numpending);
658 					if (wait == -1) {
659 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
660 						  "Usually a result of a PCI interrupt routing problem;\n"
661 						  "update mother board BIOS or consider utilizing one of\n"
662 						  "the SAFE mode kernel options (acpi, apic etc)\n");
663 					}
664 					return -ETIMEDOUT;
665 				}
666 
667 				if (unlikely(aac_pci_offline(dev)))
668 					return -EFAULT;
669 
670 				if ((blink = aac_adapter_check_health(dev)) > 0) {
671 					if (wait == -1) {
672 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
673 						  "Usually a result of a serious unrecoverable hardware problem\n",
674 						  blink);
675 					}
676 					return -EFAULT;
677 				}
678 				/*
679 				 * Allow other processes / CPUS to use core
680 				 */
681 				schedule();
682 			}
683 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
684 			/* Do nothing ... satisfy
685 			 * wait_for_completion_interruptible must_check */
686 		}
687 
688 		spin_lock_irqsave(&fibptr->event_lock, flags);
689 		if (fibptr->done == 0) {
690 			fibptr->done = 2; /* Tell interrupt we aborted */
691 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
692 			return -ERESTARTSYS;
693 		}
694 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
695 		BUG_ON(fibptr->done == 0);
696 
697 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
698 			return -ETIMEDOUT;
699 		return 0;
700 	}
701 	/*
702 	 *	If the user does not want a response than return success otherwise
703 	 *	return pending
704 	 */
705 	if (reply)
706 		return -EINPROGRESS;
707 	else
708 		return 0;
709 }
710 
711 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
712 		void *callback_data)
713 {
714 	struct aac_dev *dev = fibptr->dev;
715 	int wait;
716 	unsigned long flags = 0;
717 	unsigned long mflags = 0;
718 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
719 			fibptr->hw_fib_va;
720 
721 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
722 	if (callback) {
723 		wait = 0;
724 		fibptr->callback = callback;
725 		fibptr->callback_data = callback_data;
726 	} else
727 		wait = 1;
728 
729 
730 	hbacmd->iu_type = command;
731 
732 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
733 		/* bit1 of request_id must be 0 */
734 		hbacmd->request_id =
735 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
736 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
737 	} else
738 		return -EINVAL;
739 
740 
741 	if (wait) {
742 		spin_lock_irqsave(&dev->manage_lock, mflags);
743 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
744 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
745 			return -EBUSY;
746 		}
747 		dev->management_fib_count++;
748 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
749 		spin_lock_irqsave(&fibptr->event_lock, flags);
750 	}
751 
752 	if (aac_adapter_deliver(fibptr) != 0) {
753 		if (wait) {
754 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
755 			spin_lock_irqsave(&dev->manage_lock, mflags);
756 			dev->management_fib_count--;
757 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
758 		}
759 		return -EBUSY;
760 	}
761 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
762 
763 	if (wait) {
764 
765 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
766 
767 		if (unlikely(aac_pci_offline(dev)))
768 			return -EFAULT;
769 
770 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
771 		if (wait_for_completion_interruptible(&fibptr->event_wait))
772 			fibptr->done = 2;
773 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
774 
775 		spin_lock_irqsave(&fibptr->event_lock, flags);
776 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
777 			fibptr->done = 2; /* Tell interrupt we aborted */
778 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
779 			return -ERESTARTSYS;
780 		}
781 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
782 		WARN_ON(fibptr->done == 0);
783 
784 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
785 			return -ETIMEDOUT;
786 
787 		return 0;
788 	}
789 
790 	return -EINPROGRESS;
791 }
792 
793 /**
794  *	aac_consumer_get	-	get the top of the queue
795  *	@dev: Adapter
796  *	@q: Queue
797  *	@entry: Return entry
798  *
799  *	Will return a pointer to the entry on the top of the queue requested that
800  *	we are a consumer of, and return the address of the queue entry. It does
801  *	not change the state of the queue.
802  */
803 
804 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
805 {
806 	u32 index;
807 	int status;
808 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
809 		status = 0;
810 	} else {
811 		/*
812 		 *	The consumer index must be wrapped if we have reached
813 		 *	the end of the queue, else we just use the entry
814 		 *	pointed to by the header index
815 		 */
816 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
817 			index = 0;
818 		else
819 			index = le32_to_cpu(*q->headers.consumer);
820 		*entry = q->base + index;
821 		status = 1;
822 	}
823 	return(status);
824 }
825 
826 /**
827  *	aac_consumer_free	-	free consumer entry
828  *	@dev: Adapter
829  *	@q: Queue
830  *	@qid: Queue ident
831  *
832  *	Frees up the current top of the queue we are a consumer of. If the
833  *	queue was full notify the producer that the queue is no longer full.
834  */
835 
836 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
837 {
838 	int wasfull = 0;
839 	u32 notify;
840 
841 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
842 		wasfull = 1;
843 
844 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
845 		*q->headers.consumer = cpu_to_le32(1);
846 	else
847 		le32_add_cpu(q->headers.consumer, 1);
848 
849 	if (wasfull) {
850 		switch (qid) {
851 
852 		case HostNormCmdQueue:
853 			notify = HostNormCmdNotFull;
854 			break;
855 		case HostNormRespQueue:
856 			notify = HostNormRespNotFull;
857 			break;
858 		default:
859 			BUG();
860 			return;
861 		}
862 		aac_adapter_notify(dev, notify);
863 	}
864 }
865 
866 /**
867  *	aac_fib_adapter_complete	-	complete adapter issued fib
868  *	@fibptr: fib to complete
869  *	@size: size of fib
870  *
871  *	Will do all necessary work to complete a FIB that was sent from
872  *	the adapter.
873  */
874 
875 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
876 {
877 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
878 	struct aac_dev * dev = fibptr->dev;
879 	struct aac_queue * q;
880 	unsigned long nointr = 0;
881 	unsigned long qflags;
882 
883 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
884 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
885 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
886 		kfree(hw_fib);
887 		return 0;
888 	}
889 
890 	if (hw_fib->header.XferState == 0) {
891 		if (dev->comm_interface == AAC_COMM_MESSAGE)
892 			kfree(hw_fib);
893 		return 0;
894 	}
895 	/*
896 	 *	If we plan to do anything check the structure type first.
897 	 */
898 	if (hw_fib->header.StructType != FIB_MAGIC &&
899 	    hw_fib->header.StructType != FIB_MAGIC2 &&
900 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
901 		if (dev->comm_interface == AAC_COMM_MESSAGE)
902 			kfree(hw_fib);
903 		return -EINVAL;
904 	}
905 	/*
906 	 *	This block handles the case where the adapter had sent us a
907 	 *	command and we have finished processing the command. We
908 	 *	call completeFib when we are done processing the command
909 	 *	and want to send a response back to the adapter. This will
910 	 *	send the completed cdb to the adapter.
911 	 */
912 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
913 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
914 			kfree (hw_fib);
915 		} else {
916 			u32 index;
917 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
918 			if (size) {
919 				size += sizeof(struct aac_fibhdr);
920 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
921 					return -EMSGSIZE;
922 				hw_fib->header.Size = cpu_to_le16(size);
923 			}
924 			q = &dev->queues->queue[AdapNormRespQueue];
925 			spin_lock_irqsave(q->lock, qflags);
926 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
927 			*(q->headers.producer) = cpu_to_le32(index + 1);
928 			spin_unlock_irqrestore(q->lock, qflags);
929 			if (!(nointr & (int)aac_config.irq_mod))
930 				aac_adapter_notify(dev, AdapNormRespQueue);
931 		}
932 	} else {
933 		printk(KERN_WARNING "aac_fib_adapter_complete: "
934 			"Unknown xferstate detected.\n");
935 		BUG();
936 	}
937 	return 0;
938 }
939 
940 /**
941  *	aac_fib_complete	-	fib completion handler
942  *	@fibptr: FIB to complete
943  *
944  *	Will do all necessary work to complete a FIB.
945  */
946 
947 int aac_fib_complete(struct fib *fibptr)
948 {
949 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
950 
951 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
952 		fib_dealloc(fibptr);
953 		return 0;
954 	}
955 
956 	/*
957 	 *	Check for a fib which has already been completed or with a
958 	 *	status wait timeout
959 	 */
960 
961 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
962 		return 0;
963 	/*
964 	 *	If we plan to do anything check the structure type first.
965 	 */
966 
967 	if (hw_fib->header.StructType != FIB_MAGIC &&
968 	    hw_fib->header.StructType != FIB_MAGIC2 &&
969 	    hw_fib->header.StructType != FIB_MAGIC2_64)
970 		return -EINVAL;
971 	/*
972 	 *	This block completes a cdb which orginated on the host and we
973 	 *	just need to deallocate the cdb or reinit it. At this point the
974 	 *	command is complete that we had sent to the adapter and this
975 	 *	cdb could be reused.
976 	 */
977 
978 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
979 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
980 	{
981 		fib_dealloc(fibptr);
982 	}
983 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
984 	{
985 		/*
986 		 *	This handles the case when the host has aborted the I/O
987 		 *	to the adapter because the adapter is not responding
988 		 */
989 		fib_dealloc(fibptr);
990 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
991 		fib_dealloc(fibptr);
992 	} else {
993 		BUG();
994 	}
995 	return 0;
996 }
997 
998 /**
999  *	aac_printf	-	handle printf from firmware
1000  *	@dev: Adapter
1001  *	@val: Message info
1002  *
1003  *	Print a message passed to us by the controller firmware on the
1004  *	Adaptec board
1005  */
1006 
1007 void aac_printf(struct aac_dev *dev, u32 val)
1008 {
1009 	char *cp = dev->printfbuf;
1010 	if (dev->printf_enabled)
1011 	{
1012 		int length = val & 0xffff;
1013 		int level = (val >> 16) & 0xffff;
1014 
1015 		/*
1016 		 *	The size of the printfbuf is set in port.c
1017 		 *	There is no variable or define for it
1018 		 */
1019 		if (length > 255)
1020 			length = 255;
1021 		if (cp[length] != 0)
1022 			cp[length] = 0;
1023 		if (level == LOG_AAC_HIGH_ERROR)
1024 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1025 		else
1026 			printk(KERN_INFO "%s:%s", dev->name, cp);
1027 	}
1028 	memset(cp, 0, 256);
1029 }
1030 
1031 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1032 {
1033 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1034 }
1035 
1036 
1037 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1038 {
1039 	switch (aac_aif_data(aifcmd, 1)) {
1040 	case AifBuCacheDataLoss:
1041 		if (aac_aif_data(aifcmd, 2))
1042 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1043 			aac_aif_data(aifcmd, 2));
1044 		else
1045 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1046 		break;
1047 	case AifBuCacheDataRecover:
1048 		if (aac_aif_data(aifcmd, 2))
1049 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1050 			aac_aif_data(aifcmd, 2));
1051 		else
1052 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1053 		break;
1054 	}
1055 }
1056 
1057 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1058 /**
1059  *	aac_handle_aif		-	Handle a message from the firmware
1060  *	@dev: Which adapter this fib is from
1061  *	@fibptr: Pointer to fibptr from adapter
1062  *
1063  *	This routine handles a driver notify fib from the adapter and
1064  *	dispatches it to the appropriate routine for handling.
1065  */
1066 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1067 {
1068 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1069 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1070 	u32 channel, id, lun, container;
1071 	struct scsi_device *device;
1072 	enum {
1073 		NOTHING,
1074 		DELETE,
1075 		ADD,
1076 		CHANGE
1077 	} device_config_needed = NOTHING;
1078 
1079 	/* Sniff for container changes */
1080 
1081 	if (!dev || !dev->fsa_dev)
1082 		return;
1083 	container = channel = id = lun = (u32)-1;
1084 
1085 	/*
1086 	 *	We have set this up to try and minimize the number of
1087 	 * re-configures that take place. As a result of this when
1088 	 * certain AIF's come in we will set a flag waiting for another
1089 	 * type of AIF before setting the re-config flag.
1090 	 */
1091 	switch (le32_to_cpu(aifcmd->command)) {
1092 	case AifCmdDriverNotify:
1093 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1094 		case AifRawDeviceRemove:
1095 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1096 			if ((container >> 28)) {
1097 				container = (u32)-1;
1098 				break;
1099 			}
1100 			channel = (container >> 24) & 0xF;
1101 			if (channel >= dev->maximum_num_channels) {
1102 				container = (u32)-1;
1103 				break;
1104 			}
1105 			id = container & 0xFFFF;
1106 			if (id >= dev->maximum_num_physicals) {
1107 				container = (u32)-1;
1108 				break;
1109 			}
1110 			lun = (container >> 16) & 0xFF;
1111 			container = (u32)-1;
1112 			channel = aac_phys_to_logical(channel);
1113 			device_config_needed = DELETE;
1114 			break;
1115 
1116 		/*
1117 		 *	Morph or Expand complete
1118 		 */
1119 		case AifDenMorphComplete:
1120 		case AifDenVolumeExtendComplete:
1121 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1122 			if (container >= dev->maximum_num_containers)
1123 				break;
1124 
1125 			/*
1126 			 *	Find the scsi_device associated with the SCSI
1127 			 * address. Make sure we have the right array, and if
1128 			 * so set the flag to initiate a new re-config once we
1129 			 * see an AifEnConfigChange AIF come through.
1130 			 */
1131 
1132 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1133 				device = scsi_device_lookup(dev->scsi_host_ptr,
1134 					CONTAINER_TO_CHANNEL(container),
1135 					CONTAINER_TO_ID(container),
1136 					CONTAINER_TO_LUN(container));
1137 				if (device) {
1138 					dev->fsa_dev[container].config_needed = CHANGE;
1139 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1140 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1141 					scsi_device_put(device);
1142 				}
1143 			}
1144 		}
1145 
1146 		/*
1147 		 *	If we are waiting on something and this happens to be
1148 		 * that thing then set the re-configure flag.
1149 		 */
1150 		if (container != (u32)-1) {
1151 			if (container >= dev->maximum_num_containers)
1152 				break;
1153 			if ((dev->fsa_dev[container].config_waiting_on ==
1154 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1155 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1156 				dev->fsa_dev[container].config_waiting_on = 0;
1157 		} else for (container = 0;
1158 		    container < dev->maximum_num_containers; ++container) {
1159 			if ((dev->fsa_dev[container].config_waiting_on ==
1160 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1161 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1162 				dev->fsa_dev[container].config_waiting_on = 0;
1163 		}
1164 		break;
1165 
1166 	case AifCmdEventNotify:
1167 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1168 		case AifEnBatteryEvent:
1169 			dev->cache_protected =
1170 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1171 			break;
1172 		/*
1173 		 *	Add an Array.
1174 		 */
1175 		case AifEnAddContainer:
1176 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1177 			if (container >= dev->maximum_num_containers)
1178 				break;
1179 			dev->fsa_dev[container].config_needed = ADD;
1180 			dev->fsa_dev[container].config_waiting_on =
1181 				AifEnConfigChange;
1182 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1183 			break;
1184 
1185 		/*
1186 		 *	Delete an Array.
1187 		 */
1188 		case AifEnDeleteContainer:
1189 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1190 			if (container >= dev->maximum_num_containers)
1191 				break;
1192 			dev->fsa_dev[container].config_needed = DELETE;
1193 			dev->fsa_dev[container].config_waiting_on =
1194 				AifEnConfigChange;
1195 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1196 			break;
1197 
1198 		/*
1199 		 *	Container change detected. If we currently are not
1200 		 * waiting on something else, setup to wait on a Config Change.
1201 		 */
1202 		case AifEnContainerChange:
1203 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1204 			if (container >= dev->maximum_num_containers)
1205 				break;
1206 			if (dev->fsa_dev[container].config_waiting_on &&
1207 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1208 				break;
1209 			dev->fsa_dev[container].config_needed = CHANGE;
1210 			dev->fsa_dev[container].config_waiting_on =
1211 				AifEnConfigChange;
1212 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1213 			break;
1214 
1215 		case AifEnConfigChange:
1216 			break;
1217 
1218 		case AifEnAddJBOD:
1219 		case AifEnDeleteJBOD:
1220 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1221 			if ((container >> 28)) {
1222 				container = (u32)-1;
1223 				break;
1224 			}
1225 			channel = (container >> 24) & 0xF;
1226 			if (channel >= dev->maximum_num_channels) {
1227 				container = (u32)-1;
1228 				break;
1229 			}
1230 			id = container & 0xFFFF;
1231 			if (id >= dev->maximum_num_physicals) {
1232 				container = (u32)-1;
1233 				break;
1234 			}
1235 			lun = (container >> 16) & 0xFF;
1236 			container = (u32)-1;
1237 			channel = aac_phys_to_logical(channel);
1238 			device_config_needed =
1239 			  (((__le32 *)aifcmd->data)[0] ==
1240 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1241 			if (device_config_needed == ADD) {
1242 				device = scsi_device_lookup(dev->scsi_host_ptr,
1243 					channel,
1244 					id,
1245 					lun);
1246 				if (device) {
1247 					scsi_remove_device(device);
1248 					scsi_device_put(device);
1249 				}
1250 			}
1251 			break;
1252 
1253 		case AifEnEnclosureManagement:
1254 			/*
1255 			 * If in JBOD mode, automatic exposure of new
1256 			 * physical target to be suppressed until configured.
1257 			 */
1258 			if (dev->jbod)
1259 				break;
1260 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1261 			case EM_DRIVE_INSERTION:
1262 			case EM_DRIVE_REMOVAL:
1263 			case EM_SES_DRIVE_INSERTION:
1264 			case EM_SES_DRIVE_REMOVAL:
1265 				container = le32_to_cpu(
1266 					((__le32 *)aifcmd->data)[2]);
1267 				if ((container >> 28)) {
1268 					container = (u32)-1;
1269 					break;
1270 				}
1271 				channel = (container >> 24) & 0xF;
1272 				if (channel >= dev->maximum_num_channels) {
1273 					container = (u32)-1;
1274 					break;
1275 				}
1276 				id = container & 0xFFFF;
1277 				lun = (container >> 16) & 0xFF;
1278 				container = (u32)-1;
1279 				if (id >= dev->maximum_num_physicals) {
1280 					/* legacy dev_t ? */
1281 					if ((0x2000 <= id) || lun || channel ||
1282 					  ((channel = (id >> 7) & 0x3F) >=
1283 					  dev->maximum_num_channels))
1284 						break;
1285 					lun = (id >> 4) & 7;
1286 					id &= 0xF;
1287 				}
1288 				channel = aac_phys_to_logical(channel);
1289 				device_config_needed =
1290 				  ((((__le32 *)aifcmd->data)[3]
1291 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1292 				    (((__le32 *)aifcmd->data)[3]
1293 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1294 				  ADD : DELETE;
1295 				break;
1296 			}
1297 			break;
1298 		case AifBuManagerEvent:
1299 			aac_handle_aif_bu(dev, aifcmd);
1300 			break;
1301 		}
1302 
1303 		/*
1304 		 *	If we are waiting on something and this happens to be
1305 		 * that thing then set the re-configure flag.
1306 		 */
1307 		if (container != (u32)-1) {
1308 			if (container >= dev->maximum_num_containers)
1309 				break;
1310 			if ((dev->fsa_dev[container].config_waiting_on ==
1311 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1312 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1313 				dev->fsa_dev[container].config_waiting_on = 0;
1314 		} else for (container = 0;
1315 		    container < dev->maximum_num_containers; ++container) {
1316 			if ((dev->fsa_dev[container].config_waiting_on ==
1317 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1318 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1319 				dev->fsa_dev[container].config_waiting_on = 0;
1320 		}
1321 		break;
1322 
1323 	case AifCmdJobProgress:
1324 		/*
1325 		 *	These are job progress AIF's. When a Clear is being
1326 		 * done on a container it is initially created then hidden from
1327 		 * the OS. When the clear completes we don't get a config
1328 		 * change so we monitor the job status complete on a clear then
1329 		 * wait for a container change.
1330 		 */
1331 
1332 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1333 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1334 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1335 			for (container = 0;
1336 			    container < dev->maximum_num_containers;
1337 			    ++container) {
1338 				/*
1339 				 * Stomp on all config sequencing for all
1340 				 * containers?
1341 				 */
1342 				dev->fsa_dev[container].config_waiting_on =
1343 					AifEnContainerChange;
1344 				dev->fsa_dev[container].config_needed = ADD;
1345 				dev->fsa_dev[container].config_waiting_stamp =
1346 					jiffies;
1347 			}
1348 		}
1349 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1350 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1351 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1352 			for (container = 0;
1353 			    container < dev->maximum_num_containers;
1354 			    ++container) {
1355 				/*
1356 				 * Stomp on all config sequencing for all
1357 				 * containers?
1358 				 */
1359 				dev->fsa_dev[container].config_waiting_on =
1360 					AifEnContainerChange;
1361 				dev->fsa_dev[container].config_needed = DELETE;
1362 				dev->fsa_dev[container].config_waiting_stamp =
1363 					jiffies;
1364 			}
1365 		}
1366 		break;
1367 	}
1368 
1369 	container = 0;
1370 retry_next:
1371 	if (device_config_needed == NOTHING) {
1372 		for (; container < dev->maximum_num_containers; ++container) {
1373 			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1374 			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1375 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1376 				device_config_needed =
1377 					dev->fsa_dev[container].config_needed;
1378 				dev->fsa_dev[container].config_needed = NOTHING;
1379 				channel = CONTAINER_TO_CHANNEL(container);
1380 				id = CONTAINER_TO_ID(container);
1381 				lun = CONTAINER_TO_LUN(container);
1382 				break;
1383 			}
1384 		}
1385 	}
1386 	if (device_config_needed == NOTHING)
1387 		return;
1388 
1389 	/*
1390 	 *	If we decided that a re-configuration needs to be done,
1391 	 * schedule it here on the way out the door, please close the door
1392 	 * behind you.
1393 	 */
1394 
1395 	/*
1396 	 *	Find the scsi_device associated with the SCSI address,
1397 	 * and mark it as changed, invalidating the cache. This deals
1398 	 * with changes to existing device IDs.
1399 	 */
1400 
1401 	if (!dev || !dev->scsi_host_ptr)
1402 		return;
1403 	/*
1404 	 * force reload of disk info via aac_probe_container
1405 	 */
1406 	if ((channel == CONTAINER_CHANNEL) &&
1407 	  (device_config_needed != NOTHING)) {
1408 		if (dev->fsa_dev[container].valid == 1)
1409 			dev->fsa_dev[container].valid = 2;
1410 		aac_probe_container(dev, container);
1411 	}
1412 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1413 	if (device) {
1414 		switch (device_config_needed) {
1415 		case DELETE:
1416 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1417 			scsi_remove_device(device);
1418 #else
1419 			if (scsi_device_online(device)) {
1420 				scsi_device_set_state(device, SDEV_OFFLINE);
1421 				sdev_printk(KERN_INFO, device,
1422 					"Device offlined - %s\n",
1423 					(channel == CONTAINER_CHANNEL) ?
1424 						"array deleted" :
1425 						"enclosure services event");
1426 			}
1427 #endif
1428 			break;
1429 		case ADD:
1430 			if (!scsi_device_online(device)) {
1431 				sdev_printk(KERN_INFO, device,
1432 					"Device online - %s\n",
1433 					(channel == CONTAINER_CHANNEL) ?
1434 						"array created" :
1435 						"enclosure services event");
1436 				scsi_device_set_state(device, SDEV_RUNNING);
1437 			}
1438 			fallthrough;
1439 		case CHANGE:
1440 			if ((channel == CONTAINER_CHANNEL)
1441 			 && (!dev->fsa_dev[container].valid)) {
1442 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1443 				scsi_remove_device(device);
1444 #else
1445 				if (!scsi_device_online(device))
1446 					break;
1447 				scsi_device_set_state(device, SDEV_OFFLINE);
1448 				sdev_printk(KERN_INFO, device,
1449 					"Device offlined - %s\n",
1450 					"array failed");
1451 #endif
1452 				break;
1453 			}
1454 			scsi_rescan_device(&device->sdev_gendev);
1455 			break;
1456 
1457 		default:
1458 			break;
1459 		}
1460 		scsi_device_put(device);
1461 		device_config_needed = NOTHING;
1462 	}
1463 	if (device_config_needed == ADD)
1464 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1465 	if (channel == CONTAINER_CHANNEL) {
1466 		container++;
1467 		device_config_needed = NOTHING;
1468 		goto retry_next;
1469 	}
1470 }
1471 
1472 static void aac_schedule_bus_scan(struct aac_dev *aac)
1473 {
1474 	if (aac->sa_firmware)
1475 		aac_schedule_safw_scan_worker(aac);
1476 	else
1477 		aac_schedule_src_reinit_aif_worker(aac);
1478 }
1479 
1480 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1481 {
1482 	int index, quirks;
1483 	int retval;
1484 	struct Scsi_Host *host = aac->scsi_host_ptr;
1485 	int jafo = 0;
1486 	int bled;
1487 	u64 dmamask;
1488 	int num_of_fibs = 0;
1489 
1490 	/*
1491 	 * Assumptions:
1492 	 *	- host is locked, unless called by the aacraid thread.
1493 	 *	  (a matter of convenience, due to legacy issues surrounding
1494 	 *	  eh_host_adapter_reset).
1495 	 *	- in_reset is asserted, so no new i/o is getting to the
1496 	 *	  card.
1497 	 *	- The card is dead, or will be very shortly ;-/ so no new
1498 	 *	  commands are completing in the interrupt service.
1499 	 */
1500 	aac_adapter_disable_int(aac);
1501 	if (aac->thread && aac->thread->pid != current->pid) {
1502 		spin_unlock_irq(host->host_lock);
1503 		kthread_stop(aac->thread);
1504 		aac->thread = NULL;
1505 		jafo = 1;
1506 	}
1507 
1508 	/*
1509 	 *	If a positive health, means in a known DEAD PANIC
1510 	 * state and the adapter could be reset to `try again'.
1511 	 */
1512 	bled = forced ? 0 : aac_adapter_check_health(aac);
1513 	retval = aac_adapter_restart(aac, bled, reset_type);
1514 
1515 	if (retval)
1516 		goto out;
1517 
1518 	/*
1519 	 *	Loop through the fibs, close the synchronous FIBS
1520 	 */
1521 	retval = 1;
1522 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1523 	for (index = 0; index <  num_of_fibs; index++) {
1524 
1525 		struct fib *fib = &aac->fibs[index];
1526 		__le32 XferState = fib->hw_fib_va->header.XferState;
1527 		bool is_response_expected = false;
1528 
1529 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1530 		   (XferState & cpu_to_le32(ResponseExpected)))
1531 			is_response_expected = true;
1532 
1533 		if (is_response_expected
1534 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1535 			unsigned long flagv;
1536 			spin_lock_irqsave(&fib->event_lock, flagv);
1537 			complete(&fib->event_wait);
1538 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1539 			schedule();
1540 			retval = 0;
1541 		}
1542 	}
1543 	/* Give some extra time for ioctls to complete. */
1544 	if (retval == 0)
1545 		ssleep(2);
1546 	index = aac->cardtype;
1547 
1548 	/*
1549 	 * Re-initialize the adapter, first free resources, then carefully
1550 	 * apply the initialization sequence to come back again. Only risk
1551 	 * is a change in Firmware dropping cache, it is assumed the caller
1552 	 * will ensure that i/o is queisced and the card is flushed in that
1553 	 * case.
1554 	 */
1555 	aac_free_irq(aac);
1556 	aac_fib_map_free(aac);
1557 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1558 			  aac->comm_phys);
1559 	aac_adapter_ioremap(aac, 0);
1560 	aac->comm_addr = NULL;
1561 	aac->comm_phys = 0;
1562 	kfree(aac->queues);
1563 	aac->queues = NULL;
1564 	kfree(aac->fsa_dev);
1565 	aac->fsa_dev = NULL;
1566 
1567 	dmamask = DMA_BIT_MASK(32);
1568 	quirks = aac_get_driver_ident(index)->quirks;
1569 	if (quirks & AAC_QUIRK_31BIT)
1570 		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1571 	else if (!(quirks & AAC_QUIRK_SRC))
1572 		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1573 	else
1574 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1575 
1576 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1577 		dmamask = DMA_BIT_MASK(31);
1578 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1579 	}
1580 
1581 	if (retval)
1582 		goto out;
1583 
1584 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1585 		goto out;
1586 
1587 	if (jafo) {
1588 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1589 					  aac->name);
1590 		if (IS_ERR(aac->thread)) {
1591 			retval = PTR_ERR(aac->thread);
1592 			aac->thread = NULL;
1593 			goto out;
1594 		}
1595 	}
1596 	(void)aac_get_adapter_info(aac);
1597 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1598 		host->sg_tablesize = 34;
1599 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1600 	}
1601 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1602 		host->sg_tablesize = 17;
1603 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1604 	}
1605 	aac_get_config_status(aac, 1);
1606 	aac_get_containers(aac);
1607 	/*
1608 	 * This is where the assumption that the Adapter is quiesced
1609 	 * is important.
1610 	 */
1611 	scsi_host_complete_all_commands(host, DID_RESET);
1612 
1613 	retval = 0;
1614 out:
1615 	aac->in_reset = 0;
1616 
1617 	/*
1618 	 * Issue bus rescan to catch any configuration that might have
1619 	 * occurred
1620 	 */
1621 	if (!retval && !is_kdump_kernel()) {
1622 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1623 		aac_schedule_bus_scan(aac);
1624 	}
1625 
1626 	if (jafo) {
1627 		spin_lock_irq(host->host_lock);
1628 	}
1629 	return retval;
1630 }
1631 
1632 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1633 {
1634 	unsigned long flagv = 0;
1635 	int retval, unblock_retval;
1636 	struct Scsi_Host *host = aac->scsi_host_ptr;
1637 	int bled;
1638 
1639 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1640 		return -EBUSY;
1641 
1642 	if (aac->in_reset) {
1643 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1644 		return -EBUSY;
1645 	}
1646 	aac->in_reset = 1;
1647 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1648 
1649 	/*
1650 	 * Wait for all commands to complete to this specific
1651 	 * target (block maximum 60 seconds). Although not necessary,
1652 	 * it does make us a good storage citizen.
1653 	 */
1654 	scsi_host_block(host);
1655 
1656 	/* Quiesce build, flush cache, write through mode */
1657 	if (forced < 2)
1658 		aac_send_shutdown(aac);
1659 	spin_lock_irqsave(host->host_lock, flagv);
1660 	bled = forced ? forced :
1661 			(aac_check_reset != 0 && aac_check_reset != 1);
1662 	retval = _aac_reset_adapter(aac, bled, reset_type);
1663 	spin_unlock_irqrestore(host->host_lock, flagv);
1664 
1665 	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1666 	if (!retval)
1667 		retval = unblock_retval;
1668 	if ((forced < 2) && (retval == -ENODEV)) {
1669 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1670 		struct fib * fibctx = aac_fib_alloc(aac);
1671 		if (fibctx) {
1672 			struct aac_pause *cmd;
1673 			int status;
1674 
1675 			aac_fib_init(fibctx);
1676 
1677 			cmd = (struct aac_pause *) fib_data(fibctx);
1678 
1679 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1680 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1681 			cmd->timeout = cpu_to_le32(1);
1682 			cmd->min = cpu_to_le32(1);
1683 			cmd->noRescan = cpu_to_le32(1);
1684 			cmd->count = cpu_to_le32(0);
1685 
1686 			status = aac_fib_send(ContainerCommand,
1687 			  fibctx,
1688 			  sizeof(struct aac_pause),
1689 			  FsaNormal,
1690 			  -2 /* Timeout silently */, 1,
1691 			  NULL, NULL);
1692 
1693 			if (status >= 0)
1694 				aac_fib_complete(fibctx);
1695 			/* FIB should be freed only after getting
1696 			 * the response from the F/W */
1697 			if (status != -ERESTARTSYS)
1698 				aac_fib_free(fibctx);
1699 		}
1700 	}
1701 
1702 	return retval;
1703 }
1704 
1705 int aac_check_health(struct aac_dev * aac)
1706 {
1707 	int BlinkLED;
1708 	unsigned long time_now, flagv = 0;
1709 	struct list_head * entry;
1710 
1711 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1712 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1713 		return 0;
1714 
1715 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1716 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1717 		return 0; /* OK */
1718 	}
1719 
1720 	aac->in_reset = 1;
1721 
1722 	/* Fake up an AIF:
1723 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1724 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1725 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1726 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1727 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1728 	 *	aac.aifcmd.data[3] = BlinkLED
1729 	 */
1730 
1731 	time_now = jiffies/HZ;
1732 	entry = aac->fib_list.next;
1733 
1734 	/*
1735 	 * For each Context that is on the
1736 	 * fibctxList, make a copy of the
1737 	 * fib, and then set the event to wake up the
1738 	 * thread that is waiting for it.
1739 	 */
1740 	while (entry != &aac->fib_list) {
1741 		/*
1742 		 * Extract the fibctx
1743 		 */
1744 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1745 		struct hw_fib * hw_fib;
1746 		struct fib * fib;
1747 		/*
1748 		 * Check if the queue is getting
1749 		 * backlogged
1750 		 */
1751 		if (fibctx->count > 20) {
1752 			/*
1753 			 * It's *not* jiffies folks,
1754 			 * but jiffies / HZ, so do not
1755 			 * panic ...
1756 			 */
1757 			u32 time_last = fibctx->jiffies;
1758 			/*
1759 			 * Has it been > 2 minutes
1760 			 * since the last read off
1761 			 * the queue?
1762 			 */
1763 			if ((time_now - time_last) > aif_timeout) {
1764 				entry = entry->next;
1765 				aac_close_fib_context(aac, fibctx);
1766 				continue;
1767 			}
1768 		}
1769 		/*
1770 		 * Warning: no sleep allowed while
1771 		 * holding spinlock
1772 		 */
1773 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1774 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1775 		if (fib && hw_fib) {
1776 			struct aac_aifcmd * aif;
1777 
1778 			fib->hw_fib_va = hw_fib;
1779 			fib->dev = aac;
1780 			aac_fib_init(fib);
1781 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1782 			fib->size = sizeof (struct fib);
1783 			fib->data = hw_fib->data;
1784 			aif = (struct aac_aifcmd *)hw_fib->data;
1785 			aif->command = cpu_to_le32(AifCmdEventNotify);
1786 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1787 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1788 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1789 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1790 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1791 
1792 			/*
1793 			 * Put the FIB onto the
1794 			 * fibctx's fibs
1795 			 */
1796 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1797 			fibctx->count++;
1798 			/*
1799 			 * Set the event to wake up the
1800 			 * thread that will waiting.
1801 			 */
1802 			complete(&fibctx->completion);
1803 		} else {
1804 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1805 			kfree(fib);
1806 			kfree(hw_fib);
1807 		}
1808 		entry = entry->next;
1809 	}
1810 
1811 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1812 
1813 	if (BlinkLED < 0) {
1814 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1815 				aac->name, BlinkLED);
1816 		goto out;
1817 	}
1818 
1819 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1820 
1821 out:
1822 	aac->in_reset = 0;
1823 	return BlinkLED;
1824 }
1825 
1826 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1827 {
1828 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1829 }
1830 
1831 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1832 								int bus,
1833 								int target)
1834 {
1835 	if (bus != CONTAINER_CHANNEL)
1836 		bus = aac_phys_to_logical(bus);
1837 
1838 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1839 }
1840 
1841 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1842 {
1843 	if (bus != CONTAINER_CHANNEL)
1844 		bus = aac_phys_to_logical(bus);
1845 
1846 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1847 }
1848 
1849 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1850 {
1851 	if (sdev)
1852 		scsi_device_put(sdev);
1853 }
1854 
1855 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1856 {
1857 	struct scsi_device *sdev;
1858 
1859 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1860 	scsi_remove_device(sdev);
1861 	aac_put_safw_scsi_device(sdev);
1862 }
1863 
1864 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1865 	int bus, int target)
1866 {
1867 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1868 }
1869 
1870 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1871 {
1872 	if (is_safw_raid_volume(dev, bus, target))
1873 		return dev->fsa_dev[target].valid;
1874 	else
1875 		return aac_is_safw_scan_count_equal(dev, bus, target);
1876 }
1877 
1878 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1879 {
1880 	int is_exposed = 0;
1881 	struct scsi_device *sdev;
1882 
1883 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1884 	if (sdev)
1885 		is_exposed = 1;
1886 	aac_put_safw_scsi_device(sdev);
1887 
1888 	return is_exposed;
1889 }
1890 
1891 static int aac_update_safw_host_devices(struct aac_dev *dev)
1892 {
1893 	int i;
1894 	int bus;
1895 	int target;
1896 	int is_exposed = 0;
1897 	int rcode = 0;
1898 
1899 	rcode = aac_setup_safw_adapter(dev);
1900 	if (unlikely(rcode < 0)) {
1901 		goto out;
1902 	}
1903 
1904 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1905 
1906 		bus = get_bus_number(i);
1907 		target = get_target_number(i);
1908 
1909 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1910 
1911 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1912 			aac_add_safw_device(dev, bus, target);
1913 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1914 								is_exposed)
1915 			aac_remove_safw_device(dev, bus, target);
1916 	}
1917 out:
1918 	return rcode;
1919 }
1920 
1921 static int aac_scan_safw_host(struct aac_dev *dev)
1922 {
1923 	int rcode = 0;
1924 
1925 	rcode = aac_update_safw_host_devices(dev);
1926 	if (rcode)
1927 		aac_schedule_safw_scan_worker(dev);
1928 
1929 	return rcode;
1930 }
1931 
1932 int aac_scan_host(struct aac_dev *dev)
1933 {
1934 	int rcode = 0;
1935 
1936 	mutex_lock(&dev->scan_mutex);
1937 	if (dev->sa_firmware)
1938 		rcode = aac_scan_safw_host(dev);
1939 	else
1940 		scsi_scan_host(dev->scsi_host_ptr);
1941 	mutex_unlock(&dev->scan_mutex);
1942 
1943 	return rcode;
1944 }
1945 
1946 void aac_src_reinit_aif_worker(struct work_struct *work)
1947 {
1948 	struct aac_dev *dev = container_of(to_delayed_work(work),
1949 				struct aac_dev, src_reinit_aif_worker);
1950 
1951 	wait_event(dev->scsi_host_ptr->host_wait,
1952 			!scsi_host_in_recovery(dev->scsi_host_ptr));
1953 	aac_reinit_aif(dev, dev->cardtype);
1954 }
1955 
1956 /**
1957  *	aac_handle_sa_aif -	Handle a message from the firmware
1958  *	@dev: Which adapter this fib is from
1959  *	@fibptr: Pointer to fibptr from adapter
1960  *
1961  *	This routine handles a driver notify fib from the adapter and
1962  *	dispatches it to the appropriate routine for handling.
1963  */
1964 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1965 {
1966 	int i;
1967 	u32 events = 0;
1968 
1969 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1970 		events = SA_AIF_HOTPLUG;
1971 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1972 		events = SA_AIF_HARDWARE;
1973 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1974 		events = SA_AIF_PDEV_CHANGE;
1975 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1976 		events = SA_AIF_LDEV_CHANGE;
1977 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1978 		events = SA_AIF_BPSTAT_CHANGE;
1979 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1980 		events = SA_AIF_BPCFG_CHANGE;
1981 
1982 	switch (events) {
1983 	case SA_AIF_HOTPLUG:
1984 	case SA_AIF_HARDWARE:
1985 	case SA_AIF_PDEV_CHANGE:
1986 	case SA_AIF_LDEV_CHANGE:
1987 	case SA_AIF_BPCFG_CHANGE:
1988 
1989 		aac_scan_host(dev);
1990 
1991 		break;
1992 
1993 	case SA_AIF_BPSTAT_CHANGE:
1994 		/* currently do nothing */
1995 		break;
1996 	}
1997 
1998 	for (i = 1; i <= 10; ++i) {
1999 		events = src_readl(dev, MUnit.IDR);
2000 		if (events & (1<<23)) {
2001 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2002 				i, 10);
2003 			ssleep(1);
2004 		}
2005 	}
2006 }
2007 
2008 static int get_fib_count(struct aac_dev *dev)
2009 {
2010 	unsigned int num = 0;
2011 	struct list_head *entry;
2012 	unsigned long flagv;
2013 
2014 	/*
2015 	 * Warning: no sleep allowed while
2016 	 * holding spinlock. We take the estimate
2017 	 * and pre-allocate a set of fibs outside the
2018 	 * lock.
2019 	 */
2020 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2021 			/ sizeof(struct hw_fib); /* some extra */
2022 	spin_lock_irqsave(&dev->fib_lock, flagv);
2023 	entry = dev->fib_list.next;
2024 	while (entry != &dev->fib_list) {
2025 		entry = entry->next;
2026 		++num;
2027 	}
2028 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2029 
2030 	return num;
2031 }
2032 
2033 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2034 						struct fib **fib_pool,
2035 						unsigned int num)
2036 {
2037 	struct hw_fib **hw_fib_p;
2038 	struct fib **fib_p;
2039 
2040 	hw_fib_p = hw_fib_pool;
2041 	fib_p = fib_pool;
2042 	while (hw_fib_p < &hw_fib_pool[num]) {
2043 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2044 		if (!(*(hw_fib_p++))) {
2045 			--hw_fib_p;
2046 			break;
2047 		}
2048 
2049 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2050 		if (!(*(fib_p++))) {
2051 			kfree(*(--hw_fib_p));
2052 			break;
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * Get the actual number of allocated fibs
2058 	 */
2059 	num = hw_fib_p - hw_fib_pool;
2060 	return num;
2061 }
2062 
2063 static void wakeup_fibctx_threads(struct aac_dev *dev,
2064 						struct hw_fib **hw_fib_pool,
2065 						struct fib **fib_pool,
2066 						struct fib *fib,
2067 						struct hw_fib *hw_fib,
2068 						unsigned int num)
2069 {
2070 	unsigned long flagv;
2071 	struct list_head *entry;
2072 	struct hw_fib **hw_fib_p;
2073 	struct fib **fib_p;
2074 	u32 time_now, time_last;
2075 	struct hw_fib *hw_newfib;
2076 	struct fib *newfib;
2077 	struct aac_fib_context *fibctx;
2078 
2079 	time_now = jiffies/HZ;
2080 	spin_lock_irqsave(&dev->fib_lock, flagv);
2081 	entry = dev->fib_list.next;
2082 	/*
2083 	 * For each Context that is on the
2084 	 * fibctxList, make a copy of the
2085 	 * fib, and then set the event to wake up the
2086 	 * thread that is waiting for it.
2087 	 */
2088 
2089 	hw_fib_p = hw_fib_pool;
2090 	fib_p = fib_pool;
2091 	while (entry != &dev->fib_list) {
2092 		/*
2093 		 * Extract the fibctx
2094 		 */
2095 		fibctx = list_entry(entry, struct aac_fib_context,
2096 				next);
2097 		/*
2098 		 * Check if the queue is getting
2099 		 * backlogged
2100 		 */
2101 		if (fibctx->count > 20) {
2102 			/*
2103 			 * It's *not* jiffies folks,
2104 			 * but jiffies / HZ so do not
2105 			 * panic ...
2106 			 */
2107 			time_last = fibctx->jiffies;
2108 			/*
2109 			 * Has it been > 2 minutes
2110 			 * since the last read off
2111 			 * the queue?
2112 			 */
2113 			if ((time_now - time_last) > aif_timeout) {
2114 				entry = entry->next;
2115 				aac_close_fib_context(dev, fibctx);
2116 				continue;
2117 			}
2118 		}
2119 		/*
2120 		 * Warning: no sleep allowed while
2121 		 * holding spinlock
2122 		 */
2123 		if (hw_fib_p >= &hw_fib_pool[num]) {
2124 			pr_warn("aifd: didn't allocate NewFib\n");
2125 			entry = entry->next;
2126 			continue;
2127 		}
2128 
2129 		hw_newfib = *hw_fib_p;
2130 		*(hw_fib_p++) = NULL;
2131 		newfib = *fib_p;
2132 		*(fib_p++) = NULL;
2133 		/*
2134 		 * Make the copy of the FIB
2135 		 */
2136 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2137 		memcpy(newfib, fib, sizeof(struct fib));
2138 		newfib->hw_fib_va = hw_newfib;
2139 		/*
2140 		 * Put the FIB onto the
2141 		 * fibctx's fibs
2142 		 */
2143 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2144 		fibctx->count++;
2145 		/*
2146 		 * Set the event to wake up the
2147 		 * thread that is waiting.
2148 		 */
2149 		complete(&fibctx->completion);
2150 
2151 		entry = entry->next;
2152 	}
2153 	/*
2154 	 *	Set the status of this FIB
2155 	 */
2156 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2157 	aac_fib_adapter_complete(fib, sizeof(u32));
2158 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2159 
2160 }
2161 
2162 static void aac_process_events(struct aac_dev *dev)
2163 {
2164 	struct hw_fib *hw_fib;
2165 	struct fib *fib;
2166 	unsigned long flags;
2167 	spinlock_t *t_lock;
2168 
2169 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2170 	spin_lock_irqsave(t_lock, flags);
2171 
2172 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2173 		struct list_head *entry;
2174 		struct aac_aifcmd *aifcmd;
2175 		unsigned int  num;
2176 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2177 		struct fib **fib_pool, **fib_p;
2178 
2179 		set_current_state(TASK_RUNNING);
2180 
2181 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2182 		list_del(entry);
2183 
2184 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2185 		spin_unlock_irqrestore(t_lock, flags);
2186 
2187 		fib = list_entry(entry, struct fib, fiblink);
2188 		hw_fib = fib->hw_fib_va;
2189 		if (dev->sa_firmware) {
2190 			/* Thor AIF */
2191 			aac_handle_sa_aif(dev, fib);
2192 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2193 			goto free_fib;
2194 		}
2195 		/*
2196 		 *	We will process the FIB here or pass it to a
2197 		 *	worker thread that is TBD. We Really can't
2198 		 *	do anything at this point since we don't have
2199 		 *	anything defined for this thread to do.
2200 		 */
2201 		memset(fib, 0, sizeof(struct fib));
2202 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2203 		fib->size = sizeof(struct fib);
2204 		fib->hw_fib_va = hw_fib;
2205 		fib->data = hw_fib->data;
2206 		fib->dev = dev;
2207 		/*
2208 		 *	We only handle AifRequest fibs from the adapter.
2209 		 */
2210 
2211 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2212 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2213 			/* Handle Driver Notify Events */
2214 			aac_handle_aif(dev, fib);
2215 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2216 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2217 			goto free_fib;
2218 		}
2219 		/*
2220 		 * The u32 here is important and intended. We are using
2221 		 * 32bit wrapping time to fit the adapter field
2222 		 */
2223 
2224 		/* Sniff events */
2225 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2226 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2227 			aac_handle_aif(dev, fib);
2228 		}
2229 
2230 		/*
2231 		 * get number of fibs to process
2232 		 */
2233 		num = get_fib_count(dev);
2234 		if (!num)
2235 			goto free_fib;
2236 
2237 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2238 						GFP_KERNEL);
2239 		if (!hw_fib_pool)
2240 			goto free_fib;
2241 
2242 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2243 		if (!fib_pool)
2244 			goto free_hw_fib_pool;
2245 
2246 		/*
2247 		 * Fill up fib pointer pools with actual fibs
2248 		 * and hw_fibs
2249 		 */
2250 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2251 		if (!num)
2252 			goto free_mem;
2253 
2254 		/*
2255 		 * wakeup the thread that is waiting for
2256 		 * the response from fw (ioctl)
2257 		 */
2258 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2259 							    fib, hw_fib, num);
2260 
2261 free_mem:
2262 		/* Free up the remaining resources */
2263 		hw_fib_p = hw_fib_pool;
2264 		fib_p = fib_pool;
2265 		while (hw_fib_p < &hw_fib_pool[num]) {
2266 			kfree(*hw_fib_p);
2267 			kfree(*fib_p);
2268 			++fib_p;
2269 			++hw_fib_p;
2270 		}
2271 		kfree(fib_pool);
2272 free_hw_fib_pool:
2273 		kfree(hw_fib_pool);
2274 free_fib:
2275 		kfree(fib);
2276 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2277 		spin_lock_irqsave(t_lock, flags);
2278 	}
2279 	/*
2280 	 *	There are no more AIF's
2281 	 */
2282 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2283 	spin_unlock_irqrestore(t_lock, flags);
2284 }
2285 
2286 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2287 							u32 datasize)
2288 {
2289 	struct aac_srb *srbcmd;
2290 	struct sgmap64 *sg64;
2291 	dma_addr_t addr;
2292 	char *dma_buf;
2293 	struct fib *fibptr;
2294 	int ret = -ENOMEM;
2295 	u32 vbus, vid;
2296 
2297 	fibptr = aac_fib_alloc(dev);
2298 	if (!fibptr)
2299 		goto out;
2300 
2301 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2302 				     GFP_KERNEL);
2303 	if (!dma_buf)
2304 		goto fib_free_out;
2305 
2306 	aac_fib_init(fibptr);
2307 
2308 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2309 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2310 
2311 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2312 
2313 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2314 	srbcmd->channel = cpu_to_le32(vbus);
2315 	srbcmd->id = cpu_to_le32(vid);
2316 	srbcmd->lun = 0;
2317 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2318 	srbcmd->timeout = cpu_to_le32(10);
2319 	srbcmd->retry_limit = 0;
2320 	srbcmd->cdb_size = cpu_to_le32(12);
2321 	srbcmd->count = cpu_to_le32(datasize);
2322 
2323 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2324 	srbcmd->cdb[0] = BMIC_OUT;
2325 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2326 	memcpy(dma_buf, (char *)wellness_str, datasize);
2327 
2328 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2329 	sg64->count = cpu_to_le32(1);
2330 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2331 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2332 	sg64->sg[0].count = cpu_to_le32(datasize);
2333 
2334 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2335 				FsaNormal, 1, 1, NULL, NULL);
2336 
2337 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2338 
2339 	/*
2340 	 * Do not set XferState to zero unless
2341 	 * receives a response from F/W
2342 	 */
2343 	if (ret >= 0)
2344 		aac_fib_complete(fibptr);
2345 
2346 	/*
2347 	 * FIB should be freed only after
2348 	 * getting the response from the F/W
2349 	 */
2350 	if (ret != -ERESTARTSYS)
2351 		goto fib_free_out;
2352 
2353 out:
2354 	return ret;
2355 fib_free_out:
2356 	aac_fib_free(fibptr);
2357 	goto out;
2358 }
2359 
2360 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2361 {
2362 	struct tm cur_tm;
2363 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2364 	u32 datasize = sizeof(wellness_str);
2365 	time64_t local_time;
2366 	int ret = -ENODEV;
2367 
2368 	if (!dev->sa_firmware)
2369 		goto out;
2370 
2371 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2372 	time64_to_tm(local_time, 0, &cur_tm);
2373 	cur_tm.tm_mon += 1;
2374 	cur_tm.tm_year += 1900;
2375 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2376 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2377 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2378 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2379 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2380 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2381 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2382 
2383 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2384 
2385 out:
2386 	return ret;
2387 }
2388 
2389 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2390 {
2391 	int ret = -ENOMEM;
2392 	struct fib *fibptr;
2393 	__le32 *info;
2394 
2395 	fibptr = aac_fib_alloc(dev);
2396 	if (!fibptr)
2397 		goto out;
2398 
2399 	aac_fib_init(fibptr);
2400 	info = (__le32 *)fib_data(fibptr);
2401 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2402 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2403 					1, 1, NULL, NULL);
2404 
2405 	/*
2406 	 * Do not set XferState to zero unless
2407 	 * receives a response from F/W
2408 	 */
2409 	if (ret >= 0)
2410 		aac_fib_complete(fibptr);
2411 
2412 	/*
2413 	 * FIB should be freed only after
2414 	 * getting the response from the F/W
2415 	 */
2416 	if (ret != -ERESTARTSYS)
2417 		aac_fib_free(fibptr);
2418 
2419 out:
2420 	return ret;
2421 }
2422 
2423 /**
2424  *	aac_command_thread	-	command processing thread
2425  *	@data: Adapter to monitor
2426  *
2427  *	Waits on the commandready event in it's queue. When the event gets set
2428  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2429  *	until the queue is empty. When the queue is empty it will wait for
2430  *	more FIBs.
2431  */
2432 
2433 int aac_command_thread(void *data)
2434 {
2435 	struct aac_dev *dev = data;
2436 	DECLARE_WAITQUEUE(wait, current);
2437 	unsigned long next_jiffies = jiffies + HZ;
2438 	unsigned long next_check_jiffies = next_jiffies;
2439 	long difference = HZ;
2440 
2441 	/*
2442 	 *	We can only have one thread per adapter for AIF's.
2443 	 */
2444 	if (dev->aif_thread)
2445 		return -EINVAL;
2446 
2447 	/*
2448 	 *	Let the DPC know it has a place to send the AIF's to.
2449 	 */
2450 	dev->aif_thread = 1;
2451 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2452 	set_current_state(TASK_INTERRUPTIBLE);
2453 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2454 	while (1) {
2455 
2456 		aac_process_events(dev);
2457 
2458 		/*
2459 		 *	Background activity
2460 		 */
2461 		if ((time_before(next_check_jiffies,next_jiffies))
2462 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2463 			next_check_jiffies = next_jiffies;
2464 			if (aac_adapter_check_health(dev) == 0) {
2465 				difference = ((long)(unsigned)check_interval)
2466 					   * HZ;
2467 				next_check_jiffies = jiffies + difference;
2468 			} else if (!dev->queues)
2469 				break;
2470 		}
2471 		if (!time_before(next_check_jiffies,next_jiffies)
2472 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2473 			struct timespec64 now;
2474 			int ret;
2475 
2476 			/* Don't even try to talk to adapter if its sick */
2477 			ret = aac_adapter_check_health(dev);
2478 			if (ret || !dev->queues)
2479 				break;
2480 			next_check_jiffies = jiffies
2481 					   + ((long)(unsigned)check_interval)
2482 					   * HZ;
2483 			ktime_get_real_ts64(&now);
2484 
2485 			/* Synchronize our watches */
2486 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2487 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2488 				difference = HZ + HZ / 2 -
2489 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2490 			else {
2491 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2492 					++now.tv_sec;
2493 
2494 				if (dev->sa_firmware)
2495 					ret =
2496 					aac_send_safw_hostttime(dev, &now);
2497 				else
2498 					ret = aac_send_hosttime(dev, &now);
2499 
2500 				difference = (long)(unsigned)update_interval*HZ;
2501 			}
2502 			next_jiffies = jiffies + difference;
2503 			if (time_before(next_check_jiffies,next_jiffies))
2504 				difference = next_check_jiffies - jiffies;
2505 		}
2506 		if (difference <= 0)
2507 			difference = 1;
2508 		set_current_state(TASK_INTERRUPTIBLE);
2509 
2510 		if (kthread_should_stop())
2511 			break;
2512 
2513 		/*
2514 		 * we probably want usleep_range() here instead of the
2515 		 * jiffies computation
2516 		 */
2517 		schedule_timeout(difference);
2518 
2519 		if (kthread_should_stop())
2520 			break;
2521 	}
2522 	if (dev->queues)
2523 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2524 	dev->aif_thread = 0;
2525 	return 0;
2526 }
2527 
2528 int aac_acquire_irq(struct aac_dev *dev)
2529 {
2530 	int i;
2531 	int j;
2532 	int ret = 0;
2533 
2534 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2535 		for (i = 0; i < dev->max_msix; i++) {
2536 			dev->aac_msix[i].vector_no = i;
2537 			dev->aac_msix[i].dev = dev;
2538 			if (request_irq(pci_irq_vector(dev->pdev, i),
2539 					dev->a_ops.adapter_intr,
2540 					0, "aacraid", &(dev->aac_msix[i]))) {
2541 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2542 						dev->name, dev->id, i);
2543 				for (j = 0 ; j < i ; j++)
2544 					free_irq(pci_irq_vector(dev->pdev, j),
2545 						 &(dev->aac_msix[j]));
2546 				pci_disable_msix(dev->pdev);
2547 				ret = -1;
2548 			}
2549 		}
2550 	} else {
2551 		dev->aac_msix[0].vector_no = 0;
2552 		dev->aac_msix[0].dev = dev;
2553 
2554 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2555 			IRQF_SHARED, "aacraid",
2556 			&(dev->aac_msix[0])) < 0) {
2557 			if (dev->msi)
2558 				pci_disable_msi(dev->pdev);
2559 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2560 					dev->name, dev->id);
2561 			ret = -1;
2562 		}
2563 	}
2564 	return ret;
2565 }
2566 
2567 void aac_free_irq(struct aac_dev *dev)
2568 {
2569 	int i;
2570 
2571 	if (aac_is_src(dev)) {
2572 		if (dev->max_msix > 1) {
2573 			for (i = 0; i < dev->max_msix; i++)
2574 				free_irq(pci_irq_vector(dev->pdev, i),
2575 					 &(dev->aac_msix[i]));
2576 		} else {
2577 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2578 		}
2579 	} else {
2580 		free_irq(dev->pdev->irq, dev);
2581 	}
2582 	if (dev->msi)
2583 		pci_disable_msi(dev->pdev);
2584 	else if (dev->max_msix > 1)
2585 		pci_disable_msix(dev->pdev);
2586 }
2587