1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; see the file COPYING. If not, write to 23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Module Name: 26 * commsup.c 27 * 28 * Abstract: Contain all routines that are required for FSA host/adapter 29 * communication. 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/sched.h> 37 #include <linux/pci.h> 38 #include <linux/spinlock.h> 39 #include <linux/slab.h> 40 #include <linux/completion.h> 41 #include <linux/blkdev.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/interrupt.h> 45 #include <linux/semaphore.h> 46 #include <scsi/scsi.h> 47 #include <scsi/scsi_host.h> 48 #include <scsi/scsi_device.h> 49 #include <scsi/scsi_cmnd.h> 50 51 #include "aacraid.h" 52 53 /** 54 * fib_map_alloc - allocate the fib objects 55 * @dev: Adapter to allocate for 56 * 57 * Allocate and map the shared PCI space for the FIB blocks used to 58 * talk to the Adaptec firmware. 59 */ 60 61 static int fib_map_alloc(struct aac_dev *dev) 62 { 63 dprintk((KERN_INFO 64 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 65 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 66 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 67 dev->hw_fib_va = pci_alloc_consistent(dev->pdev, 68 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) 69 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 70 &dev->hw_fib_pa); 71 if (dev->hw_fib_va == NULL) 72 return -ENOMEM; 73 return 0; 74 } 75 76 /** 77 * aac_fib_map_free - free the fib objects 78 * @dev: Adapter to free 79 * 80 * Free the PCI mappings and the memory allocated for FIB blocks 81 * on this adapter. 82 */ 83 84 void aac_fib_map_free(struct aac_dev *dev) 85 { 86 pci_free_consistent(dev->pdev, 87 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 88 dev->hw_fib_va, dev->hw_fib_pa); 89 dev->hw_fib_va = NULL; 90 dev->hw_fib_pa = 0; 91 } 92 93 /** 94 * aac_fib_setup - setup the fibs 95 * @dev: Adapter to set up 96 * 97 * Allocate the PCI space for the fibs, map it and then initialise the 98 * fib area, the unmapped fib data and also the free list 99 */ 100 101 int aac_fib_setup(struct aac_dev * dev) 102 { 103 struct fib *fibptr; 104 struct hw_fib *hw_fib; 105 dma_addr_t hw_fib_pa; 106 int i; 107 108 while (((i = fib_map_alloc(dev)) == -ENOMEM) 109 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 110 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 111 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 112 } 113 if (i<0) 114 return -ENOMEM; 115 116 /* 32 byte alignment for PMC */ 117 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 118 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 119 (hw_fib_pa - dev->hw_fib_pa)); 120 dev->hw_fib_pa = hw_fib_pa; 121 memset(dev->hw_fib_va, 0, 122 (dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) * 123 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 124 125 /* add Xport header */ 126 dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 127 sizeof(struct aac_fib_xporthdr)); 128 dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr); 129 130 hw_fib = dev->hw_fib_va; 131 hw_fib_pa = dev->hw_fib_pa; 132 /* 133 * Initialise the fibs 134 */ 135 for (i = 0, fibptr = &dev->fibs[i]; 136 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 137 i++, fibptr++) 138 { 139 fibptr->flags = 0; 140 fibptr->dev = dev; 141 fibptr->hw_fib_va = hw_fib; 142 fibptr->data = (void *) fibptr->hw_fib_va->data; 143 fibptr->next = fibptr+1; /* Forward chain the fibs */ 144 sema_init(&fibptr->event_wait, 0); 145 spin_lock_init(&fibptr->event_lock); 146 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 147 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 148 fibptr->hw_fib_pa = hw_fib_pa; 149 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 150 dev->max_fib_size + sizeof(struct aac_fib_xporthdr)); 151 hw_fib_pa = hw_fib_pa + 152 dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 153 } 154 /* 155 * Add the fib chain to the free list 156 */ 157 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 158 /* 159 * Enable this to debug out of queue space 160 */ 161 dev->free_fib = &dev->fibs[0]; 162 return 0; 163 } 164 165 /** 166 * aac_fib_alloc - allocate a fib 167 * @dev: Adapter to allocate the fib for 168 * 169 * Allocate a fib from the adapter fib pool. If the pool is empty we 170 * return NULL. 171 */ 172 173 struct fib *aac_fib_alloc(struct aac_dev *dev) 174 { 175 struct fib * fibptr; 176 unsigned long flags; 177 spin_lock_irqsave(&dev->fib_lock, flags); 178 fibptr = dev->free_fib; 179 if(!fibptr){ 180 spin_unlock_irqrestore(&dev->fib_lock, flags); 181 return fibptr; 182 } 183 dev->free_fib = fibptr->next; 184 spin_unlock_irqrestore(&dev->fib_lock, flags); 185 /* 186 * Set the proper node type code and node byte size 187 */ 188 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 189 fibptr->size = sizeof(struct fib); 190 /* 191 * Null out fields that depend on being zero at the start of 192 * each I/O 193 */ 194 fibptr->hw_fib_va->header.XferState = 0; 195 fibptr->flags = 0; 196 fibptr->callback = NULL; 197 fibptr->callback_data = NULL; 198 199 return fibptr; 200 } 201 202 /** 203 * aac_fib_free - free a fib 204 * @fibptr: fib to free up 205 * 206 * Frees up a fib and places it on the appropriate queue 207 */ 208 209 void aac_fib_free(struct fib *fibptr) 210 { 211 unsigned long flags; 212 213 if (fibptr->done == 2) 214 return; 215 216 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 217 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 218 aac_config.fib_timeouts++; 219 if (fibptr->hw_fib_va->header.XferState != 0) { 220 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 221 (void*)fibptr, 222 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 223 } 224 fibptr->next = fibptr->dev->free_fib; 225 fibptr->dev->free_fib = fibptr; 226 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 227 } 228 229 /** 230 * aac_fib_init - initialise a fib 231 * @fibptr: The fib to initialize 232 * 233 * Set up the generic fib fields ready for use 234 */ 235 236 void aac_fib_init(struct fib *fibptr) 237 { 238 struct hw_fib *hw_fib = fibptr->hw_fib_va; 239 240 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 241 hw_fib->header.StructType = FIB_MAGIC; 242 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 243 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 244 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 245 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 246 } 247 248 /** 249 * fib_deallocate - deallocate a fib 250 * @fibptr: fib to deallocate 251 * 252 * Will deallocate and return to the free pool the FIB pointed to by the 253 * caller. 254 */ 255 256 static void fib_dealloc(struct fib * fibptr) 257 { 258 struct hw_fib *hw_fib = fibptr->hw_fib_va; 259 hw_fib->header.XferState = 0; 260 } 261 262 /* 263 * Commuication primitives define and support the queuing method we use to 264 * support host to adapter commuication. All queue accesses happen through 265 * these routines and are the only routines which have a knowledge of the 266 * how these queues are implemented. 267 */ 268 269 /** 270 * aac_get_entry - get a queue entry 271 * @dev: Adapter 272 * @qid: Queue Number 273 * @entry: Entry return 274 * @index: Index return 275 * @nonotify: notification control 276 * 277 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 278 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 279 * returned. 280 */ 281 282 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 283 { 284 struct aac_queue * q; 285 unsigned long idx; 286 287 /* 288 * All of the queues wrap when they reach the end, so we check 289 * to see if they have reached the end and if they have we just 290 * set the index back to zero. This is a wrap. You could or off 291 * the high bits in all updates but this is a bit faster I think. 292 */ 293 294 q = &dev->queues->queue[qid]; 295 296 idx = *index = le32_to_cpu(*(q->headers.producer)); 297 /* Interrupt Moderation, only interrupt for first two entries */ 298 if (idx != le32_to_cpu(*(q->headers.consumer))) { 299 if (--idx == 0) { 300 if (qid == AdapNormCmdQueue) 301 idx = ADAP_NORM_CMD_ENTRIES; 302 else 303 idx = ADAP_NORM_RESP_ENTRIES; 304 } 305 if (idx != le32_to_cpu(*(q->headers.consumer))) 306 *nonotify = 1; 307 } 308 309 if (qid == AdapNormCmdQueue) { 310 if (*index >= ADAP_NORM_CMD_ENTRIES) 311 *index = 0; /* Wrap to front of the Producer Queue. */ 312 } else { 313 if (*index >= ADAP_NORM_RESP_ENTRIES) 314 *index = 0; /* Wrap to front of the Producer Queue. */ 315 } 316 317 /* Queue is full */ 318 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 319 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 320 qid, atomic_read(&q->numpending)); 321 return 0; 322 } else { 323 *entry = q->base + *index; 324 return 1; 325 } 326 } 327 328 /** 329 * aac_queue_get - get the next free QE 330 * @dev: Adapter 331 * @index: Returned index 332 * @priority: Priority of fib 333 * @fib: Fib to associate with the queue entry 334 * @wait: Wait if queue full 335 * @fibptr: Driver fib object to go with fib 336 * @nonotify: Don't notify the adapter 337 * 338 * Gets the next free QE off the requested priorty adapter command 339 * queue and associates the Fib with the QE. The QE represented by 340 * index is ready to insert on the queue when this routine returns 341 * success. 342 */ 343 344 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 345 { 346 struct aac_entry * entry = NULL; 347 int map = 0; 348 349 if (qid == AdapNormCmdQueue) { 350 /* if no entries wait for some if caller wants to */ 351 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 352 printk(KERN_ERR "GetEntries failed\n"); 353 } 354 /* 355 * Setup queue entry with a command, status and fib mapped 356 */ 357 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 358 map = 1; 359 } else { 360 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 361 /* if no entries wait for some if caller wants to */ 362 } 363 /* 364 * Setup queue entry with command, status and fib mapped 365 */ 366 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 367 entry->addr = hw_fib->header.SenderFibAddress; 368 /* Restore adapters pointer to the FIB */ 369 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 370 map = 0; 371 } 372 /* 373 * If MapFib is true than we need to map the Fib and put pointers 374 * in the queue entry. 375 */ 376 if (map) 377 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 378 return 0; 379 } 380 381 /* 382 * Define the highest level of host to adapter communication routines. 383 * These routines will support host to adapter FS commuication. These 384 * routines have no knowledge of the commuication method used. This level 385 * sends and receives FIBs. This level has no knowledge of how these FIBs 386 * get passed back and forth. 387 */ 388 389 /** 390 * aac_fib_send - send a fib to the adapter 391 * @command: Command to send 392 * @fibptr: The fib 393 * @size: Size of fib data area 394 * @priority: Priority of Fib 395 * @wait: Async/sync select 396 * @reply: True if a reply is wanted 397 * @callback: Called with reply 398 * @callback_data: Passed to callback 399 * 400 * Sends the requested FIB to the adapter and optionally will wait for a 401 * response FIB. If the caller does not wish to wait for a response than 402 * an event to wait on must be supplied. This event will be set when a 403 * response FIB is received from the adapter. 404 */ 405 406 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 407 int priority, int wait, int reply, fib_callback callback, 408 void *callback_data) 409 { 410 struct aac_dev * dev = fibptr->dev; 411 struct hw_fib * hw_fib = fibptr->hw_fib_va; 412 unsigned long flags = 0; 413 unsigned long mflags = 0; 414 unsigned long sflags = 0; 415 416 417 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 418 return -EBUSY; 419 /* 420 * There are 5 cases with the wait and response requested flags. 421 * The only invalid cases are if the caller requests to wait and 422 * does not request a response and if the caller does not want a 423 * response and the Fib is not allocated from pool. If a response 424 * is not requesed the Fib will just be deallocaed by the DPC 425 * routine when the response comes back from the adapter. No 426 * further processing will be done besides deleting the Fib. We 427 * will have a debug mode where the adapter can notify the host 428 * it had a problem and the host can log that fact. 429 */ 430 fibptr->flags = 0; 431 if (wait && !reply) { 432 return -EINVAL; 433 } else if (!wait && reply) { 434 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 435 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 436 } else if (!wait && !reply) { 437 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 438 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 439 } else if (wait && reply) { 440 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 441 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 442 } 443 /* 444 * Map the fib into 32bits by using the fib number 445 */ 446 447 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 448 hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1; 449 /* 450 * Set FIB state to indicate where it came from and if we want a 451 * response from the adapter. Also load the command from the 452 * caller. 453 * 454 * Map the hw fib pointer as a 32bit value 455 */ 456 hw_fib->header.Command = cpu_to_le16(command); 457 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 458 /* 459 * Set the size of the Fib we want to send to the adapter 460 */ 461 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 462 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 463 return -EMSGSIZE; 464 } 465 /* 466 * Get a queue entry connect the FIB to it and send an notify 467 * the adapter a command is ready. 468 */ 469 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 470 471 /* 472 * Fill in the Callback and CallbackContext if we are not 473 * going to wait. 474 */ 475 if (!wait) { 476 fibptr->callback = callback; 477 fibptr->callback_data = callback_data; 478 fibptr->flags = FIB_CONTEXT_FLAG; 479 } 480 481 fibptr->done = 0; 482 483 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 484 485 dprintk((KERN_DEBUG "Fib contents:.\n")); 486 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 487 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 488 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 489 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 490 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 491 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 492 493 if (!dev->queues) 494 return -EBUSY; 495 496 if (wait) { 497 498 spin_lock_irqsave(&dev->manage_lock, mflags); 499 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 500 printk(KERN_INFO "No management Fibs Available:%d\n", 501 dev->management_fib_count); 502 spin_unlock_irqrestore(&dev->manage_lock, mflags); 503 return -EBUSY; 504 } 505 dev->management_fib_count++; 506 spin_unlock_irqrestore(&dev->manage_lock, mflags); 507 spin_lock_irqsave(&fibptr->event_lock, flags); 508 } 509 510 if (dev->sync_mode) { 511 if (wait) 512 spin_unlock_irqrestore(&fibptr->event_lock, flags); 513 spin_lock_irqsave(&dev->sync_lock, sflags); 514 if (dev->sync_fib) { 515 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 516 spin_unlock_irqrestore(&dev->sync_lock, sflags); 517 } else { 518 dev->sync_fib = fibptr; 519 spin_unlock_irqrestore(&dev->sync_lock, sflags); 520 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 521 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 522 NULL, NULL, NULL, NULL, NULL); 523 } 524 if (wait) { 525 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 526 if (down_interruptible(&fibptr->event_wait)) { 527 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 528 return -EFAULT; 529 } 530 return 0; 531 } 532 return -EINPROGRESS; 533 } 534 535 if (aac_adapter_deliver(fibptr) != 0) { 536 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 537 if (wait) { 538 spin_unlock_irqrestore(&fibptr->event_lock, flags); 539 spin_lock_irqsave(&dev->manage_lock, mflags); 540 dev->management_fib_count--; 541 spin_unlock_irqrestore(&dev->manage_lock, mflags); 542 } 543 return -EBUSY; 544 } 545 546 547 /* 548 * If the caller wanted us to wait for response wait now. 549 */ 550 551 if (wait) { 552 spin_unlock_irqrestore(&fibptr->event_lock, flags); 553 /* Only set for first known interruptable command */ 554 if (wait < 0) { 555 /* 556 * *VERY* Dangerous to time out a command, the 557 * assumption is made that we have no hope of 558 * functioning because an interrupt routing or other 559 * hardware failure has occurred. 560 */ 561 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 562 while (down_trylock(&fibptr->event_wait)) { 563 int blink; 564 if (time_is_before_eq_jiffies(timeout)) { 565 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 566 atomic_dec(&q->numpending); 567 if (wait == -1) { 568 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 569 "Usually a result of a PCI interrupt routing problem;\n" 570 "update mother board BIOS or consider utilizing one of\n" 571 "the SAFE mode kernel options (acpi, apic etc)\n"); 572 } 573 return -ETIMEDOUT; 574 } 575 if ((blink = aac_adapter_check_health(dev)) > 0) { 576 if (wait == -1) { 577 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 578 "Usually a result of a serious unrecoverable hardware problem\n", 579 blink); 580 } 581 return -EFAULT; 582 } 583 /* We used to udelay() here but that absorbed 584 * a CPU when a timeout occured. Not very 585 * useful. */ 586 cpu_relax(); 587 } 588 } else if (down_interruptible(&fibptr->event_wait)) { 589 /* Do nothing ... satisfy 590 * down_interruptible must_check */ 591 } 592 593 spin_lock_irqsave(&fibptr->event_lock, flags); 594 if (fibptr->done == 0) { 595 fibptr->done = 2; /* Tell interrupt we aborted */ 596 spin_unlock_irqrestore(&fibptr->event_lock, flags); 597 return -ERESTARTSYS; 598 } 599 spin_unlock_irqrestore(&fibptr->event_lock, flags); 600 BUG_ON(fibptr->done == 0); 601 602 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 603 return -ETIMEDOUT; 604 return 0; 605 } 606 /* 607 * If the user does not want a response than return success otherwise 608 * return pending 609 */ 610 if (reply) 611 return -EINPROGRESS; 612 else 613 return 0; 614 } 615 616 /** 617 * aac_consumer_get - get the top of the queue 618 * @dev: Adapter 619 * @q: Queue 620 * @entry: Return entry 621 * 622 * Will return a pointer to the entry on the top of the queue requested that 623 * we are a consumer of, and return the address of the queue entry. It does 624 * not change the state of the queue. 625 */ 626 627 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 628 { 629 u32 index; 630 int status; 631 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 632 status = 0; 633 } else { 634 /* 635 * The consumer index must be wrapped if we have reached 636 * the end of the queue, else we just use the entry 637 * pointed to by the header index 638 */ 639 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 640 index = 0; 641 else 642 index = le32_to_cpu(*q->headers.consumer); 643 *entry = q->base + index; 644 status = 1; 645 } 646 return(status); 647 } 648 649 /** 650 * aac_consumer_free - free consumer entry 651 * @dev: Adapter 652 * @q: Queue 653 * @qid: Queue ident 654 * 655 * Frees up the current top of the queue we are a consumer of. If the 656 * queue was full notify the producer that the queue is no longer full. 657 */ 658 659 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 660 { 661 int wasfull = 0; 662 u32 notify; 663 664 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 665 wasfull = 1; 666 667 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 668 *q->headers.consumer = cpu_to_le32(1); 669 else 670 le32_add_cpu(q->headers.consumer, 1); 671 672 if (wasfull) { 673 switch (qid) { 674 675 case HostNormCmdQueue: 676 notify = HostNormCmdNotFull; 677 break; 678 case HostNormRespQueue: 679 notify = HostNormRespNotFull; 680 break; 681 default: 682 BUG(); 683 return; 684 } 685 aac_adapter_notify(dev, notify); 686 } 687 } 688 689 /** 690 * aac_fib_adapter_complete - complete adapter issued fib 691 * @fibptr: fib to complete 692 * @size: size of fib 693 * 694 * Will do all necessary work to complete a FIB that was sent from 695 * the adapter. 696 */ 697 698 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 699 { 700 struct hw_fib * hw_fib = fibptr->hw_fib_va; 701 struct aac_dev * dev = fibptr->dev; 702 struct aac_queue * q; 703 unsigned long nointr = 0; 704 unsigned long qflags; 705 706 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 707 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) { 708 kfree(hw_fib); 709 return 0; 710 } 711 712 if (hw_fib->header.XferState == 0) { 713 if (dev->comm_interface == AAC_COMM_MESSAGE) 714 kfree(hw_fib); 715 return 0; 716 } 717 /* 718 * If we plan to do anything check the structure type first. 719 */ 720 if (hw_fib->header.StructType != FIB_MAGIC && 721 hw_fib->header.StructType != FIB_MAGIC2 && 722 hw_fib->header.StructType != FIB_MAGIC2_64) { 723 if (dev->comm_interface == AAC_COMM_MESSAGE) 724 kfree(hw_fib); 725 return -EINVAL; 726 } 727 /* 728 * This block handles the case where the adapter had sent us a 729 * command and we have finished processing the command. We 730 * call completeFib when we are done processing the command 731 * and want to send a response back to the adapter. This will 732 * send the completed cdb to the adapter. 733 */ 734 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 735 if (dev->comm_interface == AAC_COMM_MESSAGE) { 736 kfree (hw_fib); 737 } else { 738 u32 index; 739 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 740 if (size) { 741 size += sizeof(struct aac_fibhdr); 742 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 743 return -EMSGSIZE; 744 hw_fib->header.Size = cpu_to_le16(size); 745 } 746 q = &dev->queues->queue[AdapNormRespQueue]; 747 spin_lock_irqsave(q->lock, qflags); 748 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 749 *(q->headers.producer) = cpu_to_le32(index + 1); 750 spin_unlock_irqrestore(q->lock, qflags); 751 if (!(nointr & (int)aac_config.irq_mod)) 752 aac_adapter_notify(dev, AdapNormRespQueue); 753 } 754 } else { 755 printk(KERN_WARNING "aac_fib_adapter_complete: " 756 "Unknown xferstate detected.\n"); 757 BUG(); 758 } 759 return 0; 760 } 761 762 /** 763 * aac_fib_complete - fib completion handler 764 * @fib: FIB to complete 765 * 766 * Will do all necessary work to complete a FIB. 767 */ 768 769 int aac_fib_complete(struct fib *fibptr) 770 { 771 struct hw_fib * hw_fib = fibptr->hw_fib_va; 772 773 /* 774 * Check for a fib which has already been completed 775 */ 776 777 if (hw_fib->header.XferState == 0) 778 return 0; 779 /* 780 * If we plan to do anything check the structure type first. 781 */ 782 783 if (hw_fib->header.StructType != FIB_MAGIC && 784 hw_fib->header.StructType != FIB_MAGIC2 && 785 hw_fib->header.StructType != FIB_MAGIC2_64) 786 return -EINVAL; 787 /* 788 * This block completes a cdb which orginated on the host and we 789 * just need to deallocate the cdb or reinit it. At this point the 790 * command is complete that we had sent to the adapter and this 791 * cdb could be reused. 792 */ 793 794 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 795 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 796 { 797 fib_dealloc(fibptr); 798 } 799 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 800 { 801 /* 802 * This handles the case when the host has aborted the I/O 803 * to the adapter because the adapter is not responding 804 */ 805 fib_dealloc(fibptr); 806 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 807 fib_dealloc(fibptr); 808 } else { 809 BUG(); 810 } 811 return 0; 812 } 813 814 /** 815 * aac_printf - handle printf from firmware 816 * @dev: Adapter 817 * @val: Message info 818 * 819 * Print a message passed to us by the controller firmware on the 820 * Adaptec board 821 */ 822 823 void aac_printf(struct aac_dev *dev, u32 val) 824 { 825 char *cp = dev->printfbuf; 826 if (dev->printf_enabled) 827 { 828 int length = val & 0xffff; 829 int level = (val >> 16) & 0xffff; 830 831 /* 832 * The size of the printfbuf is set in port.c 833 * There is no variable or define for it 834 */ 835 if (length > 255) 836 length = 255; 837 if (cp[length] != 0) 838 cp[length] = 0; 839 if (level == LOG_AAC_HIGH_ERROR) 840 printk(KERN_WARNING "%s:%s", dev->name, cp); 841 else 842 printk(KERN_INFO "%s:%s", dev->name, cp); 843 } 844 memset(cp, 0, 256); 845 } 846 847 848 /** 849 * aac_handle_aif - Handle a message from the firmware 850 * @dev: Which adapter this fib is from 851 * @fibptr: Pointer to fibptr from adapter 852 * 853 * This routine handles a driver notify fib from the adapter and 854 * dispatches it to the appropriate routine for handling. 855 */ 856 857 #define AIF_SNIFF_TIMEOUT (500*HZ) 858 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 859 { 860 struct hw_fib * hw_fib = fibptr->hw_fib_va; 861 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 862 u32 channel, id, lun, container; 863 struct scsi_device *device; 864 enum { 865 NOTHING, 866 DELETE, 867 ADD, 868 CHANGE 869 } device_config_needed = NOTHING; 870 871 /* Sniff for container changes */ 872 873 if (!dev || !dev->fsa_dev) 874 return; 875 container = channel = id = lun = (u32)-1; 876 877 /* 878 * We have set this up to try and minimize the number of 879 * re-configures that take place. As a result of this when 880 * certain AIF's come in we will set a flag waiting for another 881 * type of AIF before setting the re-config flag. 882 */ 883 switch (le32_to_cpu(aifcmd->command)) { 884 case AifCmdDriverNotify: 885 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 886 case AifRawDeviceRemove: 887 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 888 if ((container >> 28)) { 889 container = (u32)-1; 890 break; 891 } 892 channel = (container >> 24) & 0xF; 893 if (channel >= dev->maximum_num_channels) { 894 container = (u32)-1; 895 break; 896 } 897 id = container & 0xFFFF; 898 if (id >= dev->maximum_num_physicals) { 899 container = (u32)-1; 900 break; 901 } 902 lun = (container >> 16) & 0xFF; 903 container = (u32)-1; 904 channel = aac_phys_to_logical(channel); 905 device_config_needed = 906 (((__le32 *)aifcmd->data)[0] == 907 cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD; 908 909 if (device_config_needed == ADD) { 910 device = scsi_device_lookup( 911 dev->scsi_host_ptr, 912 channel, id, lun); 913 if (device) { 914 scsi_remove_device(device); 915 scsi_device_put(device); 916 } 917 } 918 break; 919 /* 920 * Morph or Expand complete 921 */ 922 case AifDenMorphComplete: 923 case AifDenVolumeExtendComplete: 924 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 925 if (container >= dev->maximum_num_containers) 926 break; 927 928 /* 929 * Find the scsi_device associated with the SCSI 930 * address. Make sure we have the right array, and if 931 * so set the flag to initiate a new re-config once we 932 * see an AifEnConfigChange AIF come through. 933 */ 934 935 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 936 device = scsi_device_lookup(dev->scsi_host_ptr, 937 CONTAINER_TO_CHANNEL(container), 938 CONTAINER_TO_ID(container), 939 CONTAINER_TO_LUN(container)); 940 if (device) { 941 dev->fsa_dev[container].config_needed = CHANGE; 942 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 943 dev->fsa_dev[container].config_waiting_stamp = jiffies; 944 scsi_device_put(device); 945 } 946 } 947 } 948 949 /* 950 * If we are waiting on something and this happens to be 951 * that thing then set the re-configure flag. 952 */ 953 if (container != (u32)-1) { 954 if (container >= dev->maximum_num_containers) 955 break; 956 if ((dev->fsa_dev[container].config_waiting_on == 957 le32_to_cpu(*(__le32 *)aifcmd->data)) && 958 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 959 dev->fsa_dev[container].config_waiting_on = 0; 960 } else for (container = 0; 961 container < dev->maximum_num_containers; ++container) { 962 if ((dev->fsa_dev[container].config_waiting_on == 963 le32_to_cpu(*(__le32 *)aifcmd->data)) && 964 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 965 dev->fsa_dev[container].config_waiting_on = 0; 966 } 967 break; 968 969 case AifCmdEventNotify: 970 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 971 case AifEnBatteryEvent: 972 dev->cache_protected = 973 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 974 break; 975 /* 976 * Add an Array. 977 */ 978 case AifEnAddContainer: 979 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 980 if (container >= dev->maximum_num_containers) 981 break; 982 dev->fsa_dev[container].config_needed = ADD; 983 dev->fsa_dev[container].config_waiting_on = 984 AifEnConfigChange; 985 dev->fsa_dev[container].config_waiting_stamp = jiffies; 986 break; 987 988 /* 989 * Delete an Array. 990 */ 991 case AifEnDeleteContainer: 992 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 993 if (container >= dev->maximum_num_containers) 994 break; 995 dev->fsa_dev[container].config_needed = DELETE; 996 dev->fsa_dev[container].config_waiting_on = 997 AifEnConfigChange; 998 dev->fsa_dev[container].config_waiting_stamp = jiffies; 999 break; 1000 1001 /* 1002 * Container change detected. If we currently are not 1003 * waiting on something else, setup to wait on a Config Change. 1004 */ 1005 case AifEnContainerChange: 1006 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1007 if (container >= dev->maximum_num_containers) 1008 break; 1009 if (dev->fsa_dev[container].config_waiting_on && 1010 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1011 break; 1012 dev->fsa_dev[container].config_needed = CHANGE; 1013 dev->fsa_dev[container].config_waiting_on = 1014 AifEnConfigChange; 1015 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1016 break; 1017 1018 case AifEnConfigChange: 1019 break; 1020 1021 case AifEnAddJBOD: 1022 case AifEnDeleteJBOD: 1023 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1024 if ((container >> 28)) { 1025 container = (u32)-1; 1026 break; 1027 } 1028 channel = (container >> 24) & 0xF; 1029 if (channel >= dev->maximum_num_channels) { 1030 container = (u32)-1; 1031 break; 1032 } 1033 id = container & 0xFFFF; 1034 if (id >= dev->maximum_num_physicals) { 1035 container = (u32)-1; 1036 break; 1037 } 1038 lun = (container >> 16) & 0xFF; 1039 container = (u32)-1; 1040 channel = aac_phys_to_logical(channel); 1041 device_config_needed = 1042 (((__le32 *)aifcmd->data)[0] == 1043 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1044 if (device_config_needed == ADD) { 1045 device = scsi_device_lookup(dev->scsi_host_ptr, 1046 channel, 1047 id, 1048 lun); 1049 if (device) { 1050 scsi_remove_device(device); 1051 scsi_device_put(device); 1052 } 1053 } 1054 break; 1055 1056 case AifEnEnclosureManagement: 1057 /* 1058 * If in JBOD mode, automatic exposure of new 1059 * physical target to be suppressed until configured. 1060 */ 1061 if (dev->jbod) 1062 break; 1063 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1064 case EM_DRIVE_INSERTION: 1065 case EM_DRIVE_REMOVAL: 1066 case EM_SES_DRIVE_INSERTION: 1067 case EM_SES_DRIVE_REMOVAL: 1068 container = le32_to_cpu( 1069 ((__le32 *)aifcmd->data)[2]); 1070 if ((container >> 28)) { 1071 container = (u32)-1; 1072 break; 1073 } 1074 channel = (container >> 24) & 0xF; 1075 if (channel >= dev->maximum_num_channels) { 1076 container = (u32)-1; 1077 break; 1078 } 1079 id = container & 0xFFFF; 1080 lun = (container >> 16) & 0xFF; 1081 container = (u32)-1; 1082 if (id >= dev->maximum_num_physicals) { 1083 /* legacy dev_t ? */ 1084 if ((0x2000 <= id) || lun || channel || 1085 ((channel = (id >> 7) & 0x3F) >= 1086 dev->maximum_num_channels)) 1087 break; 1088 lun = (id >> 4) & 7; 1089 id &= 0xF; 1090 } 1091 channel = aac_phys_to_logical(channel); 1092 device_config_needed = 1093 ((((__le32 *)aifcmd->data)[3] 1094 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1095 (((__le32 *)aifcmd->data)[3] 1096 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1097 ADD : DELETE; 1098 break; 1099 } 1100 break; 1101 } 1102 1103 /* 1104 * If we are waiting on something and this happens to be 1105 * that thing then set the re-configure flag. 1106 */ 1107 if (container != (u32)-1) { 1108 if (container >= dev->maximum_num_containers) 1109 break; 1110 if ((dev->fsa_dev[container].config_waiting_on == 1111 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1112 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1113 dev->fsa_dev[container].config_waiting_on = 0; 1114 } else for (container = 0; 1115 container < dev->maximum_num_containers; ++container) { 1116 if ((dev->fsa_dev[container].config_waiting_on == 1117 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1118 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1119 dev->fsa_dev[container].config_waiting_on = 0; 1120 } 1121 break; 1122 1123 case AifCmdJobProgress: 1124 /* 1125 * These are job progress AIF's. When a Clear is being 1126 * done on a container it is initially created then hidden from 1127 * the OS. When the clear completes we don't get a config 1128 * change so we monitor the job status complete on a clear then 1129 * wait for a container change. 1130 */ 1131 1132 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1133 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1134 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1135 for (container = 0; 1136 container < dev->maximum_num_containers; 1137 ++container) { 1138 /* 1139 * Stomp on all config sequencing for all 1140 * containers? 1141 */ 1142 dev->fsa_dev[container].config_waiting_on = 1143 AifEnContainerChange; 1144 dev->fsa_dev[container].config_needed = ADD; 1145 dev->fsa_dev[container].config_waiting_stamp = 1146 jiffies; 1147 } 1148 } 1149 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1150 ((__le32 *)aifcmd->data)[6] == 0 && 1151 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1152 for (container = 0; 1153 container < dev->maximum_num_containers; 1154 ++container) { 1155 /* 1156 * Stomp on all config sequencing for all 1157 * containers? 1158 */ 1159 dev->fsa_dev[container].config_waiting_on = 1160 AifEnContainerChange; 1161 dev->fsa_dev[container].config_needed = DELETE; 1162 dev->fsa_dev[container].config_waiting_stamp = 1163 jiffies; 1164 } 1165 } 1166 break; 1167 } 1168 1169 container = 0; 1170 retry_next: 1171 if (device_config_needed == NOTHING) 1172 for (; container < dev->maximum_num_containers; ++container) { 1173 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1174 (dev->fsa_dev[container].config_needed != NOTHING) && 1175 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1176 device_config_needed = 1177 dev->fsa_dev[container].config_needed; 1178 dev->fsa_dev[container].config_needed = NOTHING; 1179 channel = CONTAINER_TO_CHANNEL(container); 1180 id = CONTAINER_TO_ID(container); 1181 lun = CONTAINER_TO_LUN(container); 1182 break; 1183 } 1184 } 1185 if (device_config_needed == NOTHING) 1186 return; 1187 1188 /* 1189 * If we decided that a re-configuration needs to be done, 1190 * schedule it here on the way out the door, please close the door 1191 * behind you. 1192 */ 1193 1194 /* 1195 * Find the scsi_device associated with the SCSI address, 1196 * and mark it as changed, invalidating the cache. This deals 1197 * with changes to existing device IDs. 1198 */ 1199 1200 if (!dev || !dev->scsi_host_ptr) 1201 return; 1202 /* 1203 * force reload of disk info via aac_probe_container 1204 */ 1205 if ((channel == CONTAINER_CHANNEL) && 1206 (device_config_needed != NOTHING)) { 1207 if (dev->fsa_dev[container].valid == 1) 1208 dev->fsa_dev[container].valid = 2; 1209 aac_probe_container(dev, container); 1210 } 1211 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1212 if (device) { 1213 switch (device_config_needed) { 1214 case DELETE: 1215 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1216 scsi_remove_device(device); 1217 #else 1218 if (scsi_device_online(device)) { 1219 scsi_device_set_state(device, SDEV_OFFLINE); 1220 sdev_printk(KERN_INFO, device, 1221 "Device offlined - %s\n", 1222 (channel == CONTAINER_CHANNEL) ? 1223 "array deleted" : 1224 "enclosure services event"); 1225 } 1226 #endif 1227 break; 1228 case ADD: 1229 if (!scsi_device_online(device)) { 1230 sdev_printk(KERN_INFO, device, 1231 "Device online - %s\n", 1232 (channel == CONTAINER_CHANNEL) ? 1233 "array created" : 1234 "enclosure services event"); 1235 scsi_device_set_state(device, SDEV_RUNNING); 1236 } 1237 /* FALLTHRU */ 1238 case CHANGE: 1239 if ((channel == CONTAINER_CHANNEL) 1240 && (!dev->fsa_dev[container].valid)) { 1241 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1242 scsi_remove_device(device); 1243 #else 1244 if (!scsi_device_online(device)) 1245 break; 1246 scsi_device_set_state(device, SDEV_OFFLINE); 1247 sdev_printk(KERN_INFO, device, 1248 "Device offlined - %s\n", 1249 "array failed"); 1250 #endif 1251 break; 1252 } 1253 scsi_rescan_device(&device->sdev_gendev); 1254 1255 default: 1256 break; 1257 } 1258 scsi_device_put(device); 1259 device_config_needed = NOTHING; 1260 } 1261 if (device_config_needed == ADD) 1262 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1263 if (channel == CONTAINER_CHANNEL) { 1264 container++; 1265 device_config_needed = NOTHING; 1266 goto retry_next; 1267 } 1268 } 1269 1270 static int _aac_reset_adapter(struct aac_dev *aac, int forced) 1271 { 1272 int index, quirks; 1273 int retval; 1274 struct Scsi_Host *host; 1275 struct scsi_device *dev; 1276 struct scsi_cmnd *command; 1277 struct scsi_cmnd *command_list; 1278 int jafo = 0; 1279 1280 /* 1281 * Assumptions: 1282 * - host is locked, unless called by the aacraid thread. 1283 * (a matter of convenience, due to legacy issues surrounding 1284 * eh_host_adapter_reset). 1285 * - in_reset is asserted, so no new i/o is getting to the 1286 * card. 1287 * - The card is dead, or will be very shortly ;-/ so no new 1288 * commands are completing in the interrupt service. 1289 */ 1290 host = aac->scsi_host_ptr; 1291 scsi_block_requests(host); 1292 aac_adapter_disable_int(aac); 1293 if (aac->thread->pid != current->pid) { 1294 spin_unlock_irq(host->host_lock); 1295 kthread_stop(aac->thread); 1296 jafo = 1; 1297 } 1298 1299 /* 1300 * If a positive health, means in a known DEAD PANIC 1301 * state and the adapter could be reset to `try again'. 1302 */ 1303 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); 1304 1305 if (retval) 1306 goto out; 1307 1308 /* 1309 * Loop through the fibs, close the synchronous FIBS 1310 */ 1311 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1312 struct fib *fib = &aac->fibs[index]; 1313 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1314 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1315 unsigned long flagv; 1316 spin_lock_irqsave(&fib->event_lock, flagv); 1317 up(&fib->event_wait); 1318 spin_unlock_irqrestore(&fib->event_lock, flagv); 1319 schedule(); 1320 retval = 0; 1321 } 1322 } 1323 /* Give some extra time for ioctls to complete. */ 1324 if (retval == 0) 1325 ssleep(2); 1326 index = aac->cardtype; 1327 1328 /* 1329 * Re-initialize the adapter, first free resources, then carefully 1330 * apply the initialization sequence to come back again. Only risk 1331 * is a change in Firmware dropping cache, it is assumed the caller 1332 * will ensure that i/o is queisced and the card is flushed in that 1333 * case. 1334 */ 1335 aac_fib_map_free(aac); 1336 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1337 aac->comm_addr = NULL; 1338 aac->comm_phys = 0; 1339 kfree(aac->queues); 1340 aac->queues = NULL; 1341 aac_free_irq(aac); 1342 kfree(aac->fsa_dev); 1343 aac->fsa_dev = NULL; 1344 quirks = aac_get_driver_ident(index)->quirks; 1345 if (quirks & AAC_QUIRK_31BIT) { 1346 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) || 1347 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31))))) 1348 goto out; 1349 } else { 1350 if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) || 1351 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32))))) 1352 goto out; 1353 } 1354 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1355 goto out; 1356 if (quirks & AAC_QUIRK_31BIT) 1357 if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) 1358 goto out; 1359 if (jafo) { 1360 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1361 aac->name); 1362 if (IS_ERR(aac->thread)) { 1363 retval = PTR_ERR(aac->thread); 1364 goto out; 1365 } 1366 } 1367 (void)aac_get_adapter_info(aac); 1368 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1369 host->sg_tablesize = 34; 1370 host->max_sectors = (host->sg_tablesize * 8) + 112; 1371 } 1372 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1373 host->sg_tablesize = 17; 1374 host->max_sectors = (host->sg_tablesize * 8) + 112; 1375 } 1376 aac_get_config_status(aac, 1); 1377 aac_get_containers(aac); 1378 /* 1379 * This is where the assumption that the Adapter is quiesced 1380 * is important. 1381 */ 1382 command_list = NULL; 1383 __shost_for_each_device(dev, host) { 1384 unsigned long flags; 1385 spin_lock_irqsave(&dev->list_lock, flags); 1386 list_for_each_entry(command, &dev->cmd_list, list) 1387 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1388 command->SCp.buffer = (struct scatterlist *)command_list; 1389 command_list = command; 1390 } 1391 spin_unlock_irqrestore(&dev->list_lock, flags); 1392 } 1393 while ((command = command_list)) { 1394 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1395 command->SCp.buffer = NULL; 1396 command->result = DID_OK << 16 1397 | COMMAND_COMPLETE << 8 1398 | SAM_STAT_TASK_SET_FULL; 1399 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1400 command->scsi_done(command); 1401 } 1402 retval = 0; 1403 1404 out: 1405 aac->in_reset = 0; 1406 scsi_unblock_requests(host); 1407 if (jafo) { 1408 spin_lock_irq(host->host_lock); 1409 } 1410 return retval; 1411 } 1412 1413 int aac_reset_adapter(struct aac_dev * aac, int forced) 1414 { 1415 unsigned long flagv = 0; 1416 int retval; 1417 struct Scsi_Host * host; 1418 1419 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1420 return -EBUSY; 1421 1422 if (aac->in_reset) { 1423 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1424 return -EBUSY; 1425 } 1426 aac->in_reset = 1; 1427 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1428 1429 /* 1430 * Wait for all commands to complete to this specific 1431 * target (block maximum 60 seconds). Although not necessary, 1432 * it does make us a good storage citizen. 1433 */ 1434 host = aac->scsi_host_ptr; 1435 scsi_block_requests(host); 1436 if (forced < 2) for (retval = 60; retval; --retval) { 1437 struct scsi_device * dev; 1438 struct scsi_cmnd * command; 1439 int active = 0; 1440 1441 __shost_for_each_device(dev, host) { 1442 spin_lock_irqsave(&dev->list_lock, flagv); 1443 list_for_each_entry(command, &dev->cmd_list, list) { 1444 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1445 active++; 1446 break; 1447 } 1448 } 1449 spin_unlock_irqrestore(&dev->list_lock, flagv); 1450 if (active) 1451 break; 1452 1453 } 1454 /* 1455 * We can exit If all the commands are complete 1456 */ 1457 if (active == 0) 1458 break; 1459 ssleep(1); 1460 } 1461 1462 /* Quiesce build, flush cache, write through mode */ 1463 if (forced < 2) 1464 aac_send_shutdown(aac); 1465 spin_lock_irqsave(host->host_lock, flagv); 1466 retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1))); 1467 spin_unlock_irqrestore(host->host_lock, flagv); 1468 1469 if ((forced < 2) && (retval == -ENODEV)) { 1470 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1471 struct fib * fibctx = aac_fib_alloc(aac); 1472 if (fibctx) { 1473 struct aac_pause *cmd; 1474 int status; 1475 1476 aac_fib_init(fibctx); 1477 1478 cmd = (struct aac_pause *) fib_data(fibctx); 1479 1480 cmd->command = cpu_to_le32(VM_ContainerConfig); 1481 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1482 cmd->timeout = cpu_to_le32(1); 1483 cmd->min = cpu_to_le32(1); 1484 cmd->noRescan = cpu_to_le32(1); 1485 cmd->count = cpu_to_le32(0); 1486 1487 status = aac_fib_send(ContainerCommand, 1488 fibctx, 1489 sizeof(struct aac_pause), 1490 FsaNormal, 1491 -2 /* Timeout silently */, 1, 1492 NULL, NULL); 1493 1494 if (status >= 0) 1495 aac_fib_complete(fibctx); 1496 /* FIB should be freed only after getting 1497 * the response from the F/W */ 1498 if (status != -ERESTARTSYS) 1499 aac_fib_free(fibctx); 1500 } 1501 } 1502 1503 return retval; 1504 } 1505 1506 int aac_check_health(struct aac_dev * aac) 1507 { 1508 int BlinkLED; 1509 unsigned long time_now, flagv = 0; 1510 struct list_head * entry; 1511 struct Scsi_Host * host; 1512 1513 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1514 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1515 return 0; 1516 1517 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1518 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1519 return 0; /* OK */ 1520 } 1521 1522 aac->in_reset = 1; 1523 1524 /* Fake up an AIF: 1525 * aac_aifcmd.command = AifCmdEventNotify = 1 1526 * aac_aifcmd.seqnum = 0xFFFFFFFF 1527 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1528 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1529 * aac.aifcmd.data[2] = AifHighPriority = 3 1530 * aac.aifcmd.data[3] = BlinkLED 1531 */ 1532 1533 time_now = jiffies/HZ; 1534 entry = aac->fib_list.next; 1535 1536 /* 1537 * For each Context that is on the 1538 * fibctxList, make a copy of the 1539 * fib, and then set the event to wake up the 1540 * thread that is waiting for it. 1541 */ 1542 while (entry != &aac->fib_list) { 1543 /* 1544 * Extract the fibctx 1545 */ 1546 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1547 struct hw_fib * hw_fib; 1548 struct fib * fib; 1549 /* 1550 * Check if the queue is getting 1551 * backlogged 1552 */ 1553 if (fibctx->count > 20) { 1554 /* 1555 * It's *not* jiffies folks, 1556 * but jiffies / HZ, so do not 1557 * panic ... 1558 */ 1559 u32 time_last = fibctx->jiffies; 1560 /* 1561 * Has it been > 2 minutes 1562 * since the last read off 1563 * the queue? 1564 */ 1565 if ((time_now - time_last) > aif_timeout) { 1566 entry = entry->next; 1567 aac_close_fib_context(aac, fibctx); 1568 continue; 1569 } 1570 } 1571 /* 1572 * Warning: no sleep allowed while 1573 * holding spinlock 1574 */ 1575 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1576 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1577 if (fib && hw_fib) { 1578 struct aac_aifcmd * aif; 1579 1580 fib->hw_fib_va = hw_fib; 1581 fib->dev = aac; 1582 aac_fib_init(fib); 1583 fib->type = FSAFS_NTC_FIB_CONTEXT; 1584 fib->size = sizeof (struct fib); 1585 fib->data = hw_fib->data; 1586 aif = (struct aac_aifcmd *)hw_fib->data; 1587 aif->command = cpu_to_le32(AifCmdEventNotify); 1588 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1589 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1590 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1591 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1592 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1593 1594 /* 1595 * Put the FIB onto the 1596 * fibctx's fibs 1597 */ 1598 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1599 fibctx->count++; 1600 /* 1601 * Set the event to wake up the 1602 * thread that will waiting. 1603 */ 1604 up(&fibctx->wait_sem); 1605 } else { 1606 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1607 kfree(fib); 1608 kfree(hw_fib); 1609 } 1610 entry = entry->next; 1611 } 1612 1613 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1614 1615 if (BlinkLED < 0) { 1616 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1617 goto out; 1618 } 1619 1620 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1621 1622 if (!aac_check_reset || ((aac_check_reset == 1) && 1623 (aac->supplement_adapter_info.SupportedOptions2 & 1624 AAC_OPTION_IGNORE_RESET))) 1625 goto out; 1626 host = aac->scsi_host_ptr; 1627 if (aac->thread->pid != current->pid) 1628 spin_lock_irqsave(host->host_lock, flagv); 1629 BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1); 1630 if (aac->thread->pid != current->pid) 1631 spin_unlock_irqrestore(host->host_lock, flagv); 1632 return BlinkLED; 1633 1634 out: 1635 aac->in_reset = 0; 1636 return BlinkLED; 1637 } 1638 1639 1640 /** 1641 * aac_command_thread - command processing thread 1642 * @dev: Adapter to monitor 1643 * 1644 * Waits on the commandready event in it's queue. When the event gets set 1645 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1646 * until the queue is empty. When the queue is empty it will wait for 1647 * more FIBs. 1648 */ 1649 1650 int aac_command_thread(void *data) 1651 { 1652 struct aac_dev *dev = data; 1653 struct hw_fib *hw_fib, *hw_newfib; 1654 struct fib *fib, *newfib; 1655 struct aac_fib_context *fibctx; 1656 unsigned long flags; 1657 DECLARE_WAITQUEUE(wait, current); 1658 unsigned long next_jiffies = jiffies + HZ; 1659 unsigned long next_check_jiffies = next_jiffies; 1660 long difference = HZ; 1661 1662 /* 1663 * We can only have one thread per adapter for AIF's. 1664 */ 1665 if (dev->aif_thread) 1666 return -EINVAL; 1667 1668 /* 1669 * Let the DPC know it has a place to send the AIF's to. 1670 */ 1671 dev->aif_thread = 1; 1672 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1673 set_current_state(TASK_INTERRUPTIBLE); 1674 dprintk ((KERN_INFO "aac_command_thread start\n")); 1675 while (1) { 1676 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1677 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1678 struct list_head *entry; 1679 struct aac_aifcmd * aifcmd; 1680 1681 set_current_state(TASK_RUNNING); 1682 1683 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1684 list_del(entry); 1685 1686 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1687 fib = list_entry(entry, struct fib, fiblink); 1688 /* 1689 * We will process the FIB here or pass it to a 1690 * worker thread that is TBD. We Really can't 1691 * do anything at this point since we don't have 1692 * anything defined for this thread to do. 1693 */ 1694 hw_fib = fib->hw_fib_va; 1695 memset(fib, 0, sizeof(struct fib)); 1696 fib->type = FSAFS_NTC_FIB_CONTEXT; 1697 fib->size = sizeof(struct fib); 1698 fib->hw_fib_va = hw_fib; 1699 fib->data = hw_fib->data; 1700 fib->dev = dev; 1701 /* 1702 * We only handle AifRequest fibs from the adapter. 1703 */ 1704 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1705 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1706 /* Handle Driver Notify Events */ 1707 aac_handle_aif(dev, fib); 1708 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1709 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1710 } else { 1711 /* The u32 here is important and intended. We are using 1712 32bit wrapping time to fit the adapter field */ 1713 1714 u32 time_now, time_last; 1715 unsigned long flagv; 1716 unsigned num; 1717 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1718 struct fib ** fib_pool, ** fib_p; 1719 1720 /* Sniff events */ 1721 if ((aifcmd->command == 1722 cpu_to_le32(AifCmdEventNotify)) || 1723 (aifcmd->command == 1724 cpu_to_le32(AifCmdJobProgress))) { 1725 aac_handle_aif(dev, fib); 1726 } 1727 1728 time_now = jiffies/HZ; 1729 1730 /* 1731 * Warning: no sleep allowed while 1732 * holding spinlock. We take the estimate 1733 * and pre-allocate a set of fibs outside the 1734 * lock. 1735 */ 1736 num = le32_to_cpu(dev->init->AdapterFibsSize) 1737 / sizeof(struct hw_fib); /* some extra */ 1738 spin_lock_irqsave(&dev->fib_lock, flagv); 1739 entry = dev->fib_list.next; 1740 while (entry != &dev->fib_list) { 1741 entry = entry->next; 1742 ++num; 1743 } 1744 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1745 hw_fib_pool = NULL; 1746 fib_pool = NULL; 1747 if (num 1748 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1749 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1750 hw_fib_p = hw_fib_pool; 1751 fib_p = fib_pool; 1752 while (hw_fib_p < &hw_fib_pool[num]) { 1753 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1754 --hw_fib_p; 1755 break; 1756 } 1757 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1758 kfree(*(--hw_fib_p)); 1759 break; 1760 } 1761 } 1762 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1763 kfree(fib_pool); 1764 fib_pool = NULL; 1765 kfree(hw_fib_pool); 1766 hw_fib_pool = NULL; 1767 } 1768 } else { 1769 kfree(hw_fib_pool); 1770 hw_fib_pool = NULL; 1771 } 1772 spin_lock_irqsave(&dev->fib_lock, flagv); 1773 entry = dev->fib_list.next; 1774 /* 1775 * For each Context that is on the 1776 * fibctxList, make a copy of the 1777 * fib, and then set the event to wake up the 1778 * thread that is waiting for it. 1779 */ 1780 hw_fib_p = hw_fib_pool; 1781 fib_p = fib_pool; 1782 while (entry != &dev->fib_list) { 1783 /* 1784 * Extract the fibctx 1785 */ 1786 fibctx = list_entry(entry, struct aac_fib_context, next); 1787 /* 1788 * Check if the queue is getting 1789 * backlogged 1790 */ 1791 if (fibctx->count > 20) 1792 { 1793 /* 1794 * It's *not* jiffies folks, 1795 * but jiffies / HZ so do not 1796 * panic ... 1797 */ 1798 time_last = fibctx->jiffies; 1799 /* 1800 * Has it been > 2 minutes 1801 * since the last read off 1802 * the queue? 1803 */ 1804 if ((time_now - time_last) > aif_timeout) { 1805 entry = entry->next; 1806 aac_close_fib_context(dev, fibctx); 1807 continue; 1808 } 1809 } 1810 /* 1811 * Warning: no sleep allowed while 1812 * holding spinlock 1813 */ 1814 if (hw_fib_p < &hw_fib_pool[num]) { 1815 hw_newfib = *hw_fib_p; 1816 *(hw_fib_p++) = NULL; 1817 newfib = *fib_p; 1818 *(fib_p++) = NULL; 1819 /* 1820 * Make the copy of the FIB 1821 */ 1822 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1823 memcpy(newfib, fib, sizeof(struct fib)); 1824 newfib->hw_fib_va = hw_newfib; 1825 /* 1826 * Put the FIB onto the 1827 * fibctx's fibs 1828 */ 1829 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1830 fibctx->count++; 1831 /* 1832 * Set the event to wake up the 1833 * thread that is waiting. 1834 */ 1835 up(&fibctx->wait_sem); 1836 } else { 1837 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1838 } 1839 entry = entry->next; 1840 } 1841 /* 1842 * Set the status of this FIB 1843 */ 1844 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1845 aac_fib_adapter_complete(fib, sizeof(u32)); 1846 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1847 /* Free up the remaining resources */ 1848 hw_fib_p = hw_fib_pool; 1849 fib_p = fib_pool; 1850 while (hw_fib_p < &hw_fib_pool[num]) { 1851 kfree(*hw_fib_p); 1852 kfree(*fib_p); 1853 ++fib_p; 1854 ++hw_fib_p; 1855 } 1856 kfree(hw_fib_pool); 1857 kfree(fib_pool); 1858 } 1859 kfree(fib); 1860 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1861 } 1862 /* 1863 * There are no more AIF's 1864 */ 1865 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1866 1867 /* 1868 * Background activity 1869 */ 1870 if ((time_before(next_check_jiffies,next_jiffies)) 1871 && ((difference = next_check_jiffies - jiffies) <= 0)) { 1872 next_check_jiffies = next_jiffies; 1873 if (aac_check_health(dev) == 0) { 1874 difference = ((long)(unsigned)check_interval) 1875 * HZ; 1876 next_check_jiffies = jiffies + difference; 1877 } else if (!dev->queues) 1878 break; 1879 } 1880 if (!time_before(next_check_jiffies,next_jiffies) 1881 && ((difference = next_jiffies - jiffies) <= 0)) { 1882 struct timeval now; 1883 int ret; 1884 1885 /* Don't even try to talk to adapter if its sick */ 1886 ret = aac_check_health(dev); 1887 if (!ret && !dev->queues) 1888 break; 1889 next_check_jiffies = jiffies 1890 + ((long)(unsigned)check_interval) 1891 * HZ; 1892 do_gettimeofday(&now); 1893 1894 /* Synchronize our watches */ 1895 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 1896 && (now.tv_usec > (1000000 / HZ))) 1897 difference = (((1000000 - now.tv_usec) * HZ) 1898 + 500000) / 1000000; 1899 else if (ret == 0) { 1900 struct fib *fibptr; 1901 1902 if ((fibptr = aac_fib_alloc(dev))) { 1903 int status; 1904 __le32 *info; 1905 1906 aac_fib_init(fibptr); 1907 1908 info = (__le32 *) fib_data(fibptr); 1909 if (now.tv_usec > 500000) 1910 ++now.tv_sec; 1911 1912 *info = cpu_to_le32(now.tv_sec); 1913 1914 status = aac_fib_send(SendHostTime, 1915 fibptr, 1916 sizeof(*info), 1917 FsaNormal, 1918 1, 1, 1919 NULL, 1920 NULL); 1921 /* Do not set XferState to zero unless 1922 * receives a response from F/W */ 1923 if (status >= 0) 1924 aac_fib_complete(fibptr); 1925 /* FIB should be freed only after 1926 * getting the response from the F/W */ 1927 if (status != -ERESTARTSYS) 1928 aac_fib_free(fibptr); 1929 } 1930 difference = (long)(unsigned)update_interval*HZ; 1931 } else { 1932 /* retry shortly */ 1933 difference = 10 * HZ; 1934 } 1935 next_jiffies = jiffies + difference; 1936 if (time_before(next_check_jiffies,next_jiffies)) 1937 difference = next_check_jiffies - jiffies; 1938 } 1939 if (difference <= 0) 1940 difference = 1; 1941 set_current_state(TASK_INTERRUPTIBLE); 1942 schedule_timeout(difference); 1943 1944 if (kthread_should_stop()) 1945 break; 1946 } 1947 if (dev->queues) 1948 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1949 dev->aif_thread = 0; 1950 return 0; 1951 } 1952 1953 int aac_acquire_irq(struct aac_dev *dev) 1954 { 1955 int i; 1956 int j; 1957 int ret = 0; 1958 int cpu; 1959 1960 cpu = cpumask_first(cpu_online_mask); 1961 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 1962 for (i = 0; i < dev->max_msix; i++) { 1963 dev->aac_msix[i].vector_no = i; 1964 dev->aac_msix[i].dev = dev; 1965 if (request_irq(dev->msixentry[i].vector, 1966 dev->a_ops.adapter_intr, 1967 0, "aacraid", &(dev->aac_msix[i]))) { 1968 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 1969 dev->name, dev->id, i); 1970 for (j = 0 ; j < i ; j++) 1971 free_irq(dev->msixentry[j].vector, 1972 &(dev->aac_msix[j])); 1973 pci_disable_msix(dev->pdev); 1974 ret = -1; 1975 } 1976 if (irq_set_affinity_hint(dev->msixentry[i].vector, 1977 get_cpu_mask(cpu))) { 1978 printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n", 1979 dev->name, dev->id, cpu); 1980 } 1981 cpu = cpumask_next(cpu, cpu_online_mask); 1982 } 1983 } else { 1984 dev->aac_msix[0].vector_no = 0; 1985 dev->aac_msix[0].dev = dev; 1986 1987 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 1988 IRQF_SHARED, "aacraid", 1989 &(dev->aac_msix[0])) < 0) { 1990 if (dev->msi) 1991 pci_disable_msi(dev->pdev); 1992 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 1993 dev->name, dev->id); 1994 ret = -1; 1995 } 1996 } 1997 return ret; 1998 } 1999 2000 void aac_free_irq(struct aac_dev *dev) 2001 { 2002 int i; 2003 int cpu; 2004 2005 cpu = cpumask_first(cpu_online_mask); 2006 if (dev->pdev->device == PMC_DEVICE_S6 || 2007 dev->pdev->device == PMC_DEVICE_S7 || 2008 dev->pdev->device == PMC_DEVICE_S8 || 2009 dev->pdev->device == PMC_DEVICE_S9) { 2010 if (dev->max_msix > 1) { 2011 for (i = 0; i < dev->max_msix; i++) { 2012 if (irq_set_affinity_hint( 2013 dev->msixentry[i].vector, NULL)) { 2014 printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n", 2015 dev->name, dev->id, cpu); 2016 } 2017 cpu = cpumask_next(cpu, cpu_online_mask); 2018 free_irq(dev->msixentry[i].vector, 2019 &(dev->aac_msix[i])); 2020 } 2021 } else { 2022 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2023 } 2024 } else { 2025 free_irq(dev->pdev->irq, dev); 2026 } 2027 if (dev->msi) 2028 pci_disable_msi(dev->pdev); 2029 else if (dev->max_msix > 1) 2030 pci_disable_msix(dev->pdev); 2031 } 2032