1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * commsup.c 15 * 16 * Abstract: Contain all routines that are required for FSA host/adapter 17 * communication. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/crash_dump.h> 23 #include <linux/types.h> 24 #include <linux/sched.h> 25 #include <linux/pci.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/completion.h> 29 #include <linux/blkdev.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/interrupt.h> 33 #include <linux/bcd.h> 34 #include <scsi/scsi.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_device.h> 37 #include <scsi/scsi_cmnd.h> 38 39 #include "aacraid.h" 40 41 /** 42 * fib_map_alloc - allocate the fib objects 43 * @dev: Adapter to allocate for 44 * 45 * Allocate and map the shared PCI space for the FIB blocks used to 46 * talk to the Adaptec firmware. 47 */ 48 49 static int fib_map_alloc(struct aac_dev *dev) 50 { 51 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 52 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 53 else 54 dev->max_cmd_size = dev->max_fib_size; 55 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 56 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 57 } else { 58 dev->max_cmd_size = dev->max_fib_size; 59 } 60 61 dprintk((KERN_INFO 62 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 63 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 64 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 65 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 66 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 68 &dev->hw_fib_pa, GFP_KERNEL); 69 if (dev->hw_fib_va == NULL) 70 return -ENOMEM; 71 return 0; 72 } 73 74 /** 75 * aac_fib_map_free - free the fib objects 76 * @dev: Adapter to free 77 * 78 * Free the PCI mappings and the memory allocated for FIB blocks 79 * on this adapter. 80 */ 81 82 void aac_fib_map_free(struct aac_dev *dev) 83 { 84 size_t alloc_size; 85 size_t fib_size; 86 int num_fibs; 87 88 if(!dev->hw_fib_va || !dev->max_cmd_size) 89 return; 90 91 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 92 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 93 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 94 95 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 96 dev->hw_fib_pa); 97 98 dev->hw_fib_va = NULL; 99 dev->hw_fib_pa = 0; 100 } 101 102 void aac_fib_vector_assign(struct aac_dev *dev) 103 { 104 u32 i = 0; 105 u32 vector = 1; 106 struct fib *fibptr = NULL; 107 108 for (i = 0, fibptr = &dev->fibs[i]; 109 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 110 i++, fibptr++) { 111 if ((dev->max_msix == 1) || 112 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 113 - dev->vector_cap))) { 114 fibptr->vector_no = 0; 115 } else { 116 fibptr->vector_no = vector; 117 vector++; 118 if (vector == dev->max_msix) 119 vector = 1; 120 } 121 } 122 } 123 124 /** 125 * aac_fib_setup - setup the fibs 126 * @dev: Adapter to set up 127 * 128 * Allocate the PCI space for the fibs, map it and then initialise the 129 * fib area, the unmapped fib data and also the free list 130 */ 131 132 int aac_fib_setup(struct aac_dev * dev) 133 { 134 struct fib *fibptr; 135 struct hw_fib *hw_fib; 136 dma_addr_t hw_fib_pa; 137 int i; 138 u32 max_cmds; 139 140 while (((i = fib_map_alloc(dev)) == -ENOMEM) 141 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 142 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 143 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 144 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 145 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 146 } 147 if (i<0) 148 return -ENOMEM; 149 150 memset(dev->hw_fib_va, 0, 151 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 152 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 153 154 /* 32 byte alignment for PMC */ 155 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 156 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 157 (hw_fib_pa - dev->hw_fib_pa)); 158 159 /* add Xport header */ 160 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 161 sizeof(struct aac_fib_xporthdr)); 162 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 163 164 /* 165 * Initialise the fibs 166 */ 167 for (i = 0, fibptr = &dev->fibs[i]; 168 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 169 i++, fibptr++) 170 { 171 fibptr->flags = 0; 172 fibptr->size = sizeof(struct fib); 173 fibptr->dev = dev; 174 fibptr->hw_fib_va = hw_fib; 175 fibptr->data = (void *) fibptr->hw_fib_va->data; 176 fibptr->next = fibptr+1; /* Forward chain the fibs */ 177 init_completion(&fibptr->event_wait); 178 spin_lock_init(&fibptr->event_lock); 179 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 180 hw_fib->header.SenderSize = 181 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 182 fibptr->hw_fib_pa = hw_fib_pa; 183 fibptr->hw_sgl_pa = hw_fib_pa + 184 offsetof(struct aac_hba_cmd_req, sge[2]); 185 /* 186 * one element is for the ptr to the separate sg list, 187 * second element for 32 byte alignment 188 */ 189 fibptr->hw_error_pa = hw_fib_pa + 190 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 191 192 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 193 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 194 hw_fib_pa = hw_fib_pa + 195 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 196 } 197 198 /* 199 *Assign vector numbers to fibs 200 */ 201 aac_fib_vector_assign(dev); 202 203 /* 204 * Add the fib chain to the free list 205 */ 206 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 207 /* 208 * Set 8 fibs aside for management tools 209 */ 210 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 211 return 0; 212 } 213 214 /** 215 * aac_fib_alloc_tag-allocate a fib using tags 216 * @dev: Adapter to allocate the fib for 217 * @scmd: SCSI command 218 * 219 * Allocate a fib from the adapter fib pool using tags 220 * from the blk layer. 221 */ 222 223 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 224 { 225 struct fib *fibptr; 226 u32 blk_tag; 227 int i; 228 229 blk_tag = blk_mq_unique_tag(scsi_cmd_to_rq(scmd)); 230 i = blk_mq_unique_tag_to_tag(blk_tag); 231 fibptr = &dev->fibs[i]; 232 /* 233 * Null out fields that depend on being zero at the start of 234 * each I/O 235 */ 236 fibptr->hw_fib_va->header.XferState = 0; 237 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 238 fibptr->callback_data = NULL; 239 fibptr->callback = NULL; 240 fibptr->flags = 0; 241 242 return fibptr; 243 } 244 245 /** 246 * aac_fib_alloc - allocate a fib 247 * @dev: Adapter to allocate the fib for 248 * 249 * Allocate a fib from the adapter fib pool. If the pool is empty we 250 * return NULL. 251 */ 252 253 struct fib *aac_fib_alloc(struct aac_dev *dev) 254 { 255 struct fib * fibptr; 256 unsigned long flags; 257 spin_lock_irqsave(&dev->fib_lock, flags); 258 fibptr = dev->free_fib; 259 if(!fibptr){ 260 spin_unlock_irqrestore(&dev->fib_lock, flags); 261 return fibptr; 262 } 263 dev->free_fib = fibptr->next; 264 spin_unlock_irqrestore(&dev->fib_lock, flags); 265 /* 266 * Set the proper node type code and node byte size 267 */ 268 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 269 fibptr->size = sizeof(struct fib); 270 /* 271 * Null out fields that depend on being zero at the start of 272 * each I/O 273 */ 274 fibptr->hw_fib_va->header.XferState = 0; 275 fibptr->flags = 0; 276 fibptr->callback = NULL; 277 fibptr->callback_data = NULL; 278 279 return fibptr; 280 } 281 282 /** 283 * aac_fib_free - free a fib 284 * @fibptr: fib to free up 285 * 286 * Frees up a fib and places it on the appropriate queue 287 */ 288 289 void aac_fib_free(struct fib *fibptr) 290 { 291 unsigned long flags; 292 293 if (fibptr->done == 2) 294 return; 295 296 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 297 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 298 aac_config.fib_timeouts++; 299 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 300 fibptr->hw_fib_va->header.XferState != 0) { 301 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 302 (void*)fibptr, 303 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 304 } 305 fibptr->next = fibptr->dev->free_fib; 306 fibptr->dev->free_fib = fibptr; 307 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 308 } 309 310 /** 311 * aac_fib_init - initialise a fib 312 * @fibptr: The fib to initialize 313 * 314 * Set up the generic fib fields ready for use 315 */ 316 317 void aac_fib_init(struct fib *fibptr) 318 { 319 struct hw_fib *hw_fib = fibptr->hw_fib_va; 320 321 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 322 hw_fib->header.StructType = FIB_MAGIC; 323 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 324 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 325 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 326 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 327 } 328 329 /** 330 * fib_dealloc - deallocate a fib 331 * @fibptr: fib to deallocate 332 * 333 * Will deallocate and return to the free pool the FIB pointed to by the 334 * caller. 335 */ 336 337 static void fib_dealloc(struct fib * fibptr) 338 { 339 struct hw_fib *hw_fib = fibptr->hw_fib_va; 340 hw_fib->header.XferState = 0; 341 } 342 343 /* 344 * Commuication primitives define and support the queuing method we use to 345 * support host to adapter commuication. All queue accesses happen through 346 * these routines and are the only routines which have a knowledge of the 347 * how these queues are implemented. 348 */ 349 350 /** 351 * aac_get_entry - get a queue entry 352 * @dev: Adapter 353 * @qid: Queue Number 354 * @entry: Entry return 355 * @index: Index return 356 * @nonotify: notification control 357 * 358 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 359 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 360 * returned. 361 */ 362 363 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 364 { 365 struct aac_queue * q; 366 unsigned long idx; 367 368 /* 369 * All of the queues wrap when they reach the end, so we check 370 * to see if they have reached the end and if they have we just 371 * set the index back to zero. This is a wrap. You could or off 372 * the high bits in all updates but this is a bit faster I think. 373 */ 374 375 q = &dev->queues->queue[qid]; 376 377 idx = *index = le32_to_cpu(*(q->headers.producer)); 378 /* Interrupt Moderation, only interrupt for first two entries */ 379 if (idx != le32_to_cpu(*(q->headers.consumer))) { 380 if (--idx == 0) { 381 if (qid == AdapNormCmdQueue) 382 idx = ADAP_NORM_CMD_ENTRIES; 383 else 384 idx = ADAP_NORM_RESP_ENTRIES; 385 } 386 if (idx != le32_to_cpu(*(q->headers.consumer))) 387 *nonotify = 1; 388 } 389 390 if (qid == AdapNormCmdQueue) { 391 if (*index >= ADAP_NORM_CMD_ENTRIES) 392 *index = 0; /* Wrap to front of the Producer Queue. */ 393 } else { 394 if (*index >= ADAP_NORM_RESP_ENTRIES) 395 *index = 0; /* Wrap to front of the Producer Queue. */ 396 } 397 398 /* Queue is full */ 399 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 400 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 401 qid, atomic_read(&q->numpending)); 402 return 0; 403 } else { 404 *entry = q->base + *index; 405 return 1; 406 } 407 } 408 409 /** 410 * aac_queue_get - get the next free QE 411 * @dev: Adapter 412 * @index: Returned index 413 * @qid: Queue number 414 * @hw_fib: Fib to associate with the queue entry 415 * @wait: Wait if queue full 416 * @fibptr: Driver fib object to go with fib 417 * @nonotify: Don't notify the adapter 418 * 419 * Gets the next free QE off the requested priorty adapter command 420 * queue and associates the Fib with the QE. The QE represented by 421 * index is ready to insert on the queue when this routine returns 422 * success. 423 */ 424 425 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 426 { 427 struct aac_entry * entry = NULL; 428 int map = 0; 429 430 if (qid == AdapNormCmdQueue) { 431 /* if no entries wait for some if caller wants to */ 432 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 433 printk(KERN_ERR "GetEntries failed\n"); 434 } 435 /* 436 * Setup queue entry with a command, status and fib mapped 437 */ 438 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 439 map = 1; 440 } else { 441 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 442 /* if no entries wait for some if caller wants to */ 443 } 444 /* 445 * Setup queue entry with command, status and fib mapped 446 */ 447 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 448 entry->addr = hw_fib->header.SenderFibAddress; 449 /* Restore adapters pointer to the FIB */ 450 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 451 map = 0; 452 } 453 /* 454 * If MapFib is true than we need to map the Fib and put pointers 455 * in the queue entry. 456 */ 457 if (map) 458 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 459 return 0; 460 } 461 462 /* 463 * Define the highest level of host to adapter communication routines. 464 * These routines will support host to adapter FS commuication. These 465 * routines have no knowledge of the commuication method used. This level 466 * sends and receives FIBs. This level has no knowledge of how these FIBs 467 * get passed back and forth. 468 */ 469 470 /** 471 * aac_fib_send - send a fib to the adapter 472 * @command: Command to send 473 * @fibptr: The fib 474 * @size: Size of fib data area 475 * @priority: Priority of Fib 476 * @wait: Async/sync select 477 * @reply: True if a reply is wanted 478 * @callback: Called with reply 479 * @callback_data: Passed to callback 480 * 481 * Sends the requested FIB to the adapter and optionally will wait for a 482 * response FIB. If the caller does not wish to wait for a response than 483 * an event to wait on must be supplied. This event will be set when a 484 * response FIB is received from the adapter. 485 */ 486 487 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 488 int priority, int wait, int reply, fib_callback callback, 489 void *callback_data) 490 { 491 struct aac_dev * dev = fibptr->dev; 492 struct hw_fib * hw_fib = fibptr->hw_fib_va; 493 unsigned long flags = 0; 494 unsigned long mflags = 0; 495 unsigned long sflags = 0; 496 497 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 498 return -EBUSY; 499 500 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 501 return -EINVAL; 502 503 /* 504 * There are 5 cases with the wait and response requested flags. 505 * The only invalid cases are if the caller requests to wait and 506 * does not request a response and if the caller does not want a 507 * response and the Fib is not allocated from pool. If a response 508 * is not requested the Fib will just be deallocaed by the DPC 509 * routine when the response comes back from the adapter. No 510 * further processing will be done besides deleting the Fib. We 511 * will have a debug mode where the adapter can notify the host 512 * it had a problem and the host can log that fact. 513 */ 514 fibptr->flags = 0; 515 if (wait && !reply) { 516 return -EINVAL; 517 } else if (!wait && reply) { 518 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 519 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 520 } else if (!wait && !reply) { 521 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 522 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 523 } else if (wait && reply) { 524 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 525 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 526 } 527 /* 528 * Map the fib into 32bits by using the fib number 529 */ 530 531 hw_fib->header.SenderFibAddress = 532 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 533 534 /* use the same shifted value for handle to be compatible 535 * with the new native hba command handle 536 */ 537 hw_fib->header.Handle = 538 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 539 540 /* 541 * Set FIB state to indicate where it came from and if we want a 542 * response from the adapter. Also load the command from the 543 * caller. 544 * 545 * Map the hw fib pointer as a 32bit value 546 */ 547 hw_fib->header.Command = cpu_to_le16(command); 548 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 549 /* 550 * Set the size of the Fib we want to send to the adapter 551 */ 552 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 553 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 554 return -EMSGSIZE; 555 } 556 /* 557 * Get a queue entry connect the FIB to it and send an notify 558 * the adapter a command is ready. 559 */ 560 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 561 562 /* 563 * Fill in the Callback and CallbackContext if we are not 564 * going to wait. 565 */ 566 if (!wait) { 567 fibptr->callback = callback; 568 fibptr->callback_data = callback_data; 569 fibptr->flags = FIB_CONTEXT_FLAG; 570 } 571 572 fibptr->done = 0; 573 574 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 575 576 dprintk((KERN_DEBUG "Fib contents:.\n")); 577 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 578 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 579 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 580 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 581 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 582 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 583 584 if (!dev->queues) 585 return -EBUSY; 586 587 if (wait) { 588 589 spin_lock_irqsave(&dev->manage_lock, mflags); 590 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 591 printk(KERN_INFO "No management Fibs Available:%d\n", 592 dev->management_fib_count); 593 spin_unlock_irqrestore(&dev->manage_lock, mflags); 594 return -EBUSY; 595 } 596 dev->management_fib_count++; 597 spin_unlock_irqrestore(&dev->manage_lock, mflags); 598 spin_lock_irqsave(&fibptr->event_lock, flags); 599 } 600 601 if (dev->sync_mode) { 602 if (wait) 603 spin_unlock_irqrestore(&fibptr->event_lock, flags); 604 spin_lock_irqsave(&dev->sync_lock, sflags); 605 if (dev->sync_fib) { 606 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 607 spin_unlock_irqrestore(&dev->sync_lock, sflags); 608 } else { 609 dev->sync_fib = fibptr; 610 spin_unlock_irqrestore(&dev->sync_lock, sflags); 611 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 612 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 613 NULL, NULL, NULL, NULL, NULL); 614 } 615 if (wait) { 616 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 617 if (wait_for_completion_interruptible(&fibptr->event_wait)) { 618 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 619 return -EFAULT; 620 } 621 return 0; 622 } 623 return -EINPROGRESS; 624 } 625 626 if (aac_adapter_deliver(fibptr) != 0) { 627 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 628 if (wait) { 629 spin_unlock_irqrestore(&fibptr->event_lock, flags); 630 spin_lock_irqsave(&dev->manage_lock, mflags); 631 dev->management_fib_count--; 632 spin_unlock_irqrestore(&dev->manage_lock, mflags); 633 } 634 return -EBUSY; 635 } 636 637 638 /* 639 * If the caller wanted us to wait for response wait now. 640 */ 641 642 if (wait) { 643 spin_unlock_irqrestore(&fibptr->event_lock, flags); 644 /* Only set for first known interruptable command */ 645 if (wait < 0) { 646 /* 647 * *VERY* Dangerous to time out a command, the 648 * assumption is made that we have no hope of 649 * functioning because an interrupt routing or other 650 * hardware failure has occurred. 651 */ 652 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 653 while (!try_wait_for_completion(&fibptr->event_wait)) { 654 int blink; 655 if (time_is_before_eq_jiffies(timeout)) { 656 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 657 atomic_dec(&q->numpending); 658 if (wait == -1) { 659 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 660 "Usually a result of a PCI interrupt routing problem;\n" 661 "update mother board BIOS or consider utilizing one of\n" 662 "the SAFE mode kernel options (acpi, apic etc)\n"); 663 } 664 return -ETIMEDOUT; 665 } 666 667 if (unlikely(aac_pci_offline(dev))) 668 return -EFAULT; 669 670 if ((blink = aac_adapter_check_health(dev)) > 0) { 671 if (wait == -1) { 672 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 673 "Usually a result of a serious unrecoverable hardware problem\n", 674 blink); 675 } 676 return -EFAULT; 677 } 678 /* 679 * Allow other processes / CPUS to use core 680 */ 681 schedule(); 682 } 683 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) { 684 /* Do nothing ... satisfy 685 * wait_for_completion_interruptible must_check */ 686 } 687 688 spin_lock_irqsave(&fibptr->event_lock, flags); 689 if (fibptr->done == 0) { 690 fibptr->done = 2; /* Tell interrupt we aborted */ 691 spin_unlock_irqrestore(&fibptr->event_lock, flags); 692 return -ERESTARTSYS; 693 } 694 spin_unlock_irqrestore(&fibptr->event_lock, flags); 695 BUG_ON(fibptr->done == 0); 696 697 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 698 return -ETIMEDOUT; 699 return 0; 700 } 701 /* 702 * If the user does not want a response than return success otherwise 703 * return pending 704 */ 705 if (reply) 706 return -EINPROGRESS; 707 else 708 return 0; 709 } 710 711 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 712 void *callback_data) 713 { 714 struct aac_dev *dev = fibptr->dev; 715 int wait; 716 unsigned long flags = 0; 717 unsigned long mflags = 0; 718 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) 719 fibptr->hw_fib_va; 720 721 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 722 if (callback) { 723 wait = 0; 724 fibptr->callback = callback; 725 fibptr->callback_data = callback_data; 726 } else 727 wait = 1; 728 729 730 hbacmd->iu_type = command; 731 732 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 733 /* bit1 of request_id must be 0 */ 734 hbacmd->request_id = 735 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 736 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 737 } else 738 return -EINVAL; 739 740 741 if (wait) { 742 spin_lock_irqsave(&dev->manage_lock, mflags); 743 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 744 spin_unlock_irqrestore(&dev->manage_lock, mflags); 745 return -EBUSY; 746 } 747 dev->management_fib_count++; 748 spin_unlock_irqrestore(&dev->manage_lock, mflags); 749 spin_lock_irqsave(&fibptr->event_lock, flags); 750 } 751 752 if (aac_adapter_deliver(fibptr) != 0) { 753 if (wait) { 754 spin_unlock_irqrestore(&fibptr->event_lock, flags); 755 spin_lock_irqsave(&dev->manage_lock, mflags); 756 dev->management_fib_count--; 757 spin_unlock_irqrestore(&dev->manage_lock, mflags); 758 } 759 return -EBUSY; 760 } 761 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 762 763 if (wait) { 764 765 spin_unlock_irqrestore(&fibptr->event_lock, flags); 766 767 if (unlikely(aac_pci_offline(dev))) 768 return -EFAULT; 769 770 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 771 if (wait_for_completion_interruptible(&fibptr->event_wait)) 772 fibptr->done = 2; 773 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 774 775 spin_lock_irqsave(&fibptr->event_lock, flags); 776 if ((fibptr->done == 0) || (fibptr->done == 2)) { 777 fibptr->done = 2; /* Tell interrupt we aborted */ 778 spin_unlock_irqrestore(&fibptr->event_lock, flags); 779 return -ERESTARTSYS; 780 } 781 spin_unlock_irqrestore(&fibptr->event_lock, flags); 782 WARN_ON(fibptr->done == 0); 783 784 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 785 return -ETIMEDOUT; 786 787 return 0; 788 } 789 790 return -EINPROGRESS; 791 } 792 793 /** 794 * aac_consumer_get - get the top of the queue 795 * @dev: Adapter 796 * @q: Queue 797 * @entry: Return entry 798 * 799 * Will return a pointer to the entry on the top of the queue requested that 800 * we are a consumer of, and return the address of the queue entry. It does 801 * not change the state of the queue. 802 */ 803 804 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 805 { 806 u32 index; 807 int status; 808 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 809 status = 0; 810 } else { 811 /* 812 * The consumer index must be wrapped if we have reached 813 * the end of the queue, else we just use the entry 814 * pointed to by the header index 815 */ 816 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 817 index = 0; 818 else 819 index = le32_to_cpu(*q->headers.consumer); 820 *entry = q->base + index; 821 status = 1; 822 } 823 return(status); 824 } 825 826 /** 827 * aac_consumer_free - free consumer entry 828 * @dev: Adapter 829 * @q: Queue 830 * @qid: Queue ident 831 * 832 * Frees up the current top of the queue we are a consumer of. If the 833 * queue was full notify the producer that the queue is no longer full. 834 */ 835 836 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 837 { 838 int wasfull = 0; 839 u32 notify; 840 841 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 842 wasfull = 1; 843 844 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 845 *q->headers.consumer = cpu_to_le32(1); 846 else 847 le32_add_cpu(q->headers.consumer, 1); 848 849 if (wasfull) { 850 switch (qid) { 851 852 case HostNormCmdQueue: 853 notify = HostNormCmdNotFull; 854 break; 855 case HostNormRespQueue: 856 notify = HostNormRespNotFull; 857 break; 858 default: 859 BUG(); 860 return; 861 } 862 aac_adapter_notify(dev, notify); 863 } 864 } 865 866 /** 867 * aac_fib_adapter_complete - complete adapter issued fib 868 * @fibptr: fib to complete 869 * @size: size of fib 870 * 871 * Will do all necessary work to complete a FIB that was sent from 872 * the adapter. 873 */ 874 875 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 876 { 877 struct hw_fib * hw_fib = fibptr->hw_fib_va; 878 struct aac_dev * dev = fibptr->dev; 879 struct aac_queue * q; 880 unsigned long nointr = 0; 881 unsigned long qflags; 882 883 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 884 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 885 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 886 kfree(hw_fib); 887 return 0; 888 } 889 890 if (hw_fib->header.XferState == 0) { 891 if (dev->comm_interface == AAC_COMM_MESSAGE) 892 kfree(hw_fib); 893 return 0; 894 } 895 /* 896 * If we plan to do anything check the structure type first. 897 */ 898 if (hw_fib->header.StructType != FIB_MAGIC && 899 hw_fib->header.StructType != FIB_MAGIC2 && 900 hw_fib->header.StructType != FIB_MAGIC2_64) { 901 if (dev->comm_interface == AAC_COMM_MESSAGE) 902 kfree(hw_fib); 903 return -EINVAL; 904 } 905 /* 906 * This block handles the case where the adapter had sent us a 907 * command and we have finished processing the command. We 908 * call completeFib when we are done processing the command 909 * and want to send a response back to the adapter. This will 910 * send the completed cdb to the adapter. 911 */ 912 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 913 if (dev->comm_interface == AAC_COMM_MESSAGE) { 914 kfree (hw_fib); 915 } else { 916 u32 index; 917 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 918 if (size) { 919 size += sizeof(struct aac_fibhdr); 920 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 921 return -EMSGSIZE; 922 hw_fib->header.Size = cpu_to_le16(size); 923 } 924 q = &dev->queues->queue[AdapNormRespQueue]; 925 spin_lock_irqsave(q->lock, qflags); 926 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 927 *(q->headers.producer) = cpu_to_le32(index + 1); 928 spin_unlock_irqrestore(q->lock, qflags); 929 if (!(nointr & (int)aac_config.irq_mod)) 930 aac_adapter_notify(dev, AdapNormRespQueue); 931 } 932 } else { 933 printk(KERN_WARNING "aac_fib_adapter_complete: " 934 "Unknown xferstate detected.\n"); 935 BUG(); 936 } 937 return 0; 938 } 939 940 /** 941 * aac_fib_complete - fib completion handler 942 * @fibptr: FIB to complete 943 * 944 * Will do all necessary work to complete a FIB. 945 */ 946 947 int aac_fib_complete(struct fib *fibptr) 948 { 949 struct hw_fib * hw_fib = fibptr->hw_fib_va; 950 951 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 952 fib_dealloc(fibptr); 953 return 0; 954 } 955 956 /* 957 * Check for a fib which has already been completed or with a 958 * status wait timeout 959 */ 960 961 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 962 return 0; 963 /* 964 * If we plan to do anything check the structure type first. 965 */ 966 967 if (hw_fib->header.StructType != FIB_MAGIC && 968 hw_fib->header.StructType != FIB_MAGIC2 && 969 hw_fib->header.StructType != FIB_MAGIC2_64) 970 return -EINVAL; 971 /* 972 * This block completes a cdb which orginated on the host and we 973 * just need to deallocate the cdb or reinit it. At this point the 974 * command is complete that we had sent to the adapter and this 975 * cdb could be reused. 976 */ 977 978 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 979 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 980 { 981 fib_dealloc(fibptr); 982 } 983 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 984 { 985 /* 986 * This handles the case when the host has aborted the I/O 987 * to the adapter because the adapter is not responding 988 */ 989 fib_dealloc(fibptr); 990 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 991 fib_dealloc(fibptr); 992 } else { 993 BUG(); 994 } 995 return 0; 996 } 997 998 /** 999 * aac_printf - handle printf from firmware 1000 * @dev: Adapter 1001 * @val: Message info 1002 * 1003 * Print a message passed to us by the controller firmware on the 1004 * Adaptec board 1005 */ 1006 1007 void aac_printf(struct aac_dev *dev, u32 val) 1008 { 1009 char *cp = dev->printfbuf; 1010 if (dev->printf_enabled) 1011 { 1012 int length = val & 0xffff; 1013 int level = (val >> 16) & 0xffff; 1014 1015 /* 1016 * The size of the printfbuf is set in port.c 1017 * There is no variable or define for it 1018 */ 1019 if (length > 255) 1020 length = 255; 1021 if (cp[length] != 0) 1022 cp[length] = 0; 1023 if (level == LOG_AAC_HIGH_ERROR) 1024 printk(KERN_WARNING "%s:%s", dev->name, cp); 1025 else 1026 printk(KERN_INFO "%s:%s", dev->name, cp); 1027 } 1028 memset(cp, 0, 256); 1029 } 1030 1031 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1032 { 1033 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1034 } 1035 1036 1037 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1038 { 1039 switch (aac_aif_data(aifcmd, 1)) { 1040 case AifBuCacheDataLoss: 1041 if (aac_aif_data(aifcmd, 2)) 1042 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1043 aac_aif_data(aifcmd, 2)); 1044 else 1045 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1046 break; 1047 case AifBuCacheDataRecover: 1048 if (aac_aif_data(aifcmd, 2)) 1049 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1050 aac_aif_data(aifcmd, 2)); 1051 else 1052 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1053 break; 1054 } 1055 } 1056 1057 #define AIF_SNIFF_TIMEOUT (500*HZ) 1058 /** 1059 * aac_handle_aif - Handle a message from the firmware 1060 * @dev: Which adapter this fib is from 1061 * @fibptr: Pointer to fibptr from adapter 1062 * 1063 * This routine handles a driver notify fib from the adapter and 1064 * dispatches it to the appropriate routine for handling. 1065 */ 1066 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1067 { 1068 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1069 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1070 u32 channel, id, lun, container; 1071 struct scsi_device *device; 1072 enum { 1073 NOTHING, 1074 DELETE, 1075 ADD, 1076 CHANGE 1077 } device_config_needed = NOTHING; 1078 1079 /* Sniff for container changes */ 1080 1081 if (!dev || !dev->fsa_dev) 1082 return; 1083 container = channel = id = lun = (u32)-1; 1084 1085 /* 1086 * We have set this up to try and minimize the number of 1087 * re-configures that take place. As a result of this when 1088 * certain AIF's come in we will set a flag waiting for another 1089 * type of AIF before setting the re-config flag. 1090 */ 1091 switch (le32_to_cpu(aifcmd->command)) { 1092 case AifCmdDriverNotify: 1093 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1094 case AifRawDeviceRemove: 1095 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1096 if ((container >> 28)) { 1097 container = (u32)-1; 1098 break; 1099 } 1100 channel = (container >> 24) & 0xF; 1101 if (channel >= dev->maximum_num_channels) { 1102 container = (u32)-1; 1103 break; 1104 } 1105 id = container & 0xFFFF; 1106 if (id >= dev->maximum_num_physicals) { 1107 container = (u32)-1; 1108 break; 1109 } 1110 lun = (container >> 16) & 0xFF; 1111 container = (u32)-1; 1112 channel = aac_phys_to_logical(channel); 1113 device_config_needed = DELETE; 1114 break; 1115 1116 /* 1117 * Morph or Expand complete 1118 */ 1119 case AifDenMorphComplete: 1120 case AifDenVolumeExtendComplete: 1121 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1122 if (container >= dev->maximum_num_containers) 1123 break; 1124 1125 /* 1126 * Find the scsi_device associated with the SCSI 1127 * address. Make sure we have the right array, and if 1128 * so set the flag to initiate a new re-config once we 1129 * see an AifEnConfigChange AIF come through. 1130 */ 1131 1132 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1133 device = scsi_device_lookup(dev->scsi_host_ptr, 1134 CONTAINER_TO_CHANNEL(container), 1135 CONTAINER_TO_ID(container), 1136 CONTAINER_TO_LUN(container)); 1137 if (device) { 1138 dev->fsa_dev[container].config_needed = CHANGE; 1139 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1140 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1141 scsi_device_put(device); 1142 } 1143 } 1144 } 1145 1146 /* 1147 * If we are waiting on something and this happens to be 1148 * that thing then set the re-configure flag. 1149 */ 1150 if (container != (u32)-1) { 1151 if (container >= dev->maximum_num_containers) 1152 break; 1153 if ((dev->fsa_dev[container].config_waiting_on == 1154 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1155 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1156 dev->fsa_dev[container].config_waiting_on = 0; 1157 } else for (container = 0; 1158 container < dev->maximum_num_containers; ++container) { 1159 if ((dev->fsa_dev[container].config_waiting_on == 1160 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1161 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1162 dev->fsa_dev[container].config_waiting_on = 0; 1163 } 1164 break; 1165 1166 case AifCmdEventNotify: 1167 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1168 case AifEnBatteryEvent: 1169 dev->cache_protected = 1170 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1171 break; 1172 /* 1173 * Add an Array. 1174 */ 1175 case AifEnAddContainer: 1176 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1177 if (container >= dev->maximum_num_containers) 1178 break; 1179 dev->fsa_dev[container].config_needed = ADD; 1180 dev->fsa_dev[container].config_waiting_on = 1181 AifEnConfigChange; 1182 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1183 break; 1184 1185 /* 1186 * Delete an Array. 1187 */ 1188 case AifEnDeleteContainer: 1189 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1190 if (container >= dev->maximum_num_containers) 1191 break; 1192 dev->fsa_dev[container].config_needed = DELETE; 1193 dev->fsa_dev[container].config_waiting_on = 1194 AifEnConfigChange; 1195 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1196 break; 1197 1198 /* 1199 * Container change detected. If we currently are not 1200 * waiting on something else, setup to wait on a Config Change. 1201 */ 1202 case AifEnContainerChange: 1203 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1204 if (container >= dev->maximum_num_containers) 1205 break; 1206 if (dev->fsa_dev[container].config_waiting_on && 1207 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1208 break; 1209 dev->fsa_dev[container].config_needed = CHANGE; 1210 dev->fsa_dev[container].config_waiting_on = 1211 AifEnConfigChange; 1212 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1213 break; 1214 1215 case AifEnConfigChange: 1216 break; 1217 1218 case AifEnAddJBOD: 1219 case AifEnDeleteJBOD: 1220 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1221 if ((container >> 28)) { 1222 container = (u32)-1; 1223 break; 1224 } 1225 channel = (container >> 24) & 0xF; 1226 if (channel >= dev->maximum_num_channels) { 1227 container = (u32)-1; 1228 break; 1229 } 1230 id = container & 0xFFFF; 1231 if (id >= dev->maximum_num_physicals) { 1232 container = (u32)-1; 1233 break; 1234 } 1235 lun = (container >> 16) & 0xFF; 1236 container = (u32)-1; 1237 channel = aac_phys_to_logical(channel); 1238 device_config_needed = 1239 (((__le32 *)aifcmd->data)[0] == 1240 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1241 if (device_config_needed == ADD) { 1242 device = scsi_device_lookup(dev->scsi_host_ptr, 1243 channel, 1244 id, 1245 lun); 1246 if (device) { 1247 scsi_remove_device(device); 1248 scsi_device_put(device); 1249 } 1250 } 1251 break; 1252 1253 case AifEnEnclosureManagement: 1254 /* 1255 * If in JBOD mode, automatic exposure of new 1256 * physical target to be suppressed until configured. 1257 */ 1258 if (dev->jbod) 1259 break; 1260 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1261 case EM_DRIVE_INSERTION: 1262 case EM_DRIVE_REMOVAL: 1263 case EM_SES_DRIVE_INSERTION: 1264 case EM_SES_DRIVE_REMOVAL: 1265 container = le32_to_cpu( 1266 ((__le32 *)aifcmd->data)[2]); 1267 if ((container >> 28)) { 1268 container = (u32)-1; 1269 break; 1270 } 1271 channel = (container >> 24) & 0xF; 1272 if (channel >= dev->maximum_num_channels) { 1273 container = (u32)-1; 1274 break; 1275 } 1276 id = container & 0xFFFF; 1277 lun = (container >> 16) & 0xFF; 1278 container = (u32)-1; 1279 if (id >= dev->maximum_num_physicals) { 1280 /* legacy dev_t ? */ 1281 if ((0x2000 <= id) || lun || channel || 1282 ((channel = (id >> 7) & 0x3F) >= 1283 dev->maximum_num_channels)) 1284 break; 1285 lun = (id >> 4) & 7; 1286 id &= 0xF; 1287 } 1288 channel = aac_phys_to_logical(channel); 1289 device_config_needed = 1290 ((((__le32 *)aifcmd->data)[3] 1291 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1292 (((__le32 *)aifcmd->data)[3] 1293 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1294 ADD : DELETE; 1295 break; 1296 } 1297 break; 1298 case AifBuManagerEvent: 1299 aac_handle_aif_bu(dev, aifcmd); 1300 break; 1301 } 1302 1303 /* 1304 * If we are waiting on something and this happens to be 1305 * that thing then set the re-configure flag. 1306 */ 1307 if (container != (u32)-1) { 1308 if (container >= dev->maximum_num_containers) 1309 break; 1310 if ((dev->fsa_dev[container].config_waiting_on == 1311 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1312 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1313 dev->fsa_dev[container].config_waiting_on = 0; 1314 } else for (container = 0; 1315 container < dev->maximum_num_containers; ++container) { 1316 if ((dev->fsa_dev[container].config_waiting_on == 1317 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1318 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1319 dev->fsa_dev[container].config_waiting_on = 0; 1320 } 1321 break; 1322 1323 case AifCmdJobProgress: 1324 /* 1325 * These are job progress AIF's. When a Clear is being 1326 * done on a container it is initially created then hidden from 1327 * the OS. When the clear completes we don't get a config 1328 * change so we monitor the job status complete on a clear then 1329 * wait for a container change. 1330 */ 1331 1332 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1333 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1334 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1335 for (container = 0; 1336 container < dev->maximum_num_containers; 1337 ++container) { 1338 /* 1339 * Stomp on all config sequencing for all 1340 * containers? 1341 */ 1342 dev->fsa_dev[container].config_waiting_on = 1343 AifEnContainerChange; 1344 dev->fsa_dev[container].config_needed = ADD; 1345 dev->fsa_dev[container].config_waiting_stamp = 1346 jiffies; 1347 } 1348 } 1349 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1350 ((__le32 *)aifcmd->data)[6] == 0 && 1351 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1352 for (container = 0; 1353 container < dev->maximum_num_containers; 1354 ++container) { 1355 /* 1356 * Stomp on all config sequencing for all 1357 * containers? 1358 */ 1359 dev->fsa_dev[container].config_waiting_on = 1360 AifEnContainerChange; 1361 dev->fsa_dev[container].config_needed = DELETE; 1362 dev->fsa_dev[container].config_waiting_stamp = 1363 jiffies; 1364 } 1365 } 1366 break; 1367 } 1368 1369 container = 0; 1370 retry_next: 1371 if (device_config_needed == NOTHING) { 1372 for (; container < dev->maximum_num_containers; ++container) { 1373 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1374 (dev->fsa_dev[container].config_needed != NOTHING) && 1375 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1376 device_config_needed = 1377 dev->fsa_dev[container].config_needed; 1378 dev->fsa_dev[container].config_needed = NOTHING; 1379 channel = CONTAINER_TO_CHANNEL(container); 1380 id = CONTAINER_TO_ID(container); 1381 lun = CONTAINER_TO_LUN(container); 1382 break; 1383 } 1384 } 1385 } 1386 if (device_config_needed == NOTHING) 1387 return; 1388 1389 /* 1390 * If we decided that a re-configuration needs to be done, 1391 * schedule it here on the way out the door, please close the door 1392 * behind you. 1393 */ 1394 1395 /* 1396 * Find the scsi_device associated with the SCSI address, 1397 * and mark it as changed, invalidating the cache. This deals 1398 * with changes to existing device IDs. 1399 */ 1400 1401 if (!dev || !dev->scsi_host_ptr) 1402 return; 1403 /* 1404 * force reload of disk info via aac_probe_container 1405 */ 1406 if ((channel == CONTAINER_CHANNEL) && 1407 (device_config_needed != NOTHING)) { 1408 if (dev->fsa_dev[container].valid == 1) 1409 dev->fsa_dev[container].valid = 2; 1410 aac_probe_container(dev, container); 1411 } 1412 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1413 if (device) { 1414 switch (device_config_needed) { 1415 case DELETE: 1416 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1417 scsi_remove_device(device); 1418 #else 1419 if (scsi_device_online(device)) { 1420 scsi_device_set_state(device, SDEV_OFFLINE); 1421 sdev_printk(KERN_INFO, device, 1422 "Device offlined - %s\n", 1423 (channel == CONTAINER_CHANNEL) ? 1424 "array deleted" : 1425 "enclosure services event"); 1426 } 1427 #endif 1428 break; 1429 case ADD: 1430 if (!scsi_device_online(device)) { 1431 sdev_printk(KERN_INFO, device, 1432 "Device online - %s\n", 1433 (channel == CONTAINER_CHANNEL) ? 1434 "array created" : 1435 "enclosure services event"); 1436 scsi_device_set_state(device, SDEV_RUNNING); 1437 } 1438 fallthrough; 1439 case CHANGE: 1440 if ((channel == CONTAINER_CHANNEL) 1441 && (!dev->fsa_dev[container].valid)) { 1442 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1443 scsi_remove_device(device); 1444 #else 1445 if (!scsi_device_online(device)) 1446 break; 1447 scsi_device_set_state(device, SDEV_OFFLINE); 1448 sdev_printk(KERN_INFO, device, 1449 "Device offlined - %s\n", 1450 "array failed"); 1451 #endif 1452 break; 1453 } 1454 scsi_rescan_device(&device->sdev_gendev); 1455 break; 1456 1457 default: 1458 break; 1459 } 1460 scsi_device_put(device); 1461 device_config_needed = NOTHING; 1462 } 1463 if (device_config_needed == ADD) 1464 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1465 if (channel == CONTAINER_CHANNEL) { 1466 container++; 1467 device_config_needed = NOTHING; 1468 goto retry_next; 1469 } 1470 } 1471 1472 static void aac_schedule_bus_scan(struct aac_dev *aac) 1473 { 1474 if (aac->sa_firmware) 1475 aac_schedule_safw_scan_worker(aac); 1476 else 1477 aac_schedule_src_reinit_aif_worker(aac); 1478 } 1479 1480 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1481 { 1482 int index, quirks; 1483 int retval; 1484 struct Scsi_Host *host = aac->scsi_host_ptr; 1485 int jafo = 0; 1486 int bled; 1487 u64 dmamask; 1488 int num_of_fibs = 0; 1489 1490 /* 1491 * Assumptions: 1492 * - host is locked, unless called by the aacraid thread. 1493 * (a matter of convenience, due to legacy issues surrounding 1494 * eh_host_adapter_reset). 1495 * - in_reset is asserted, so no new i/o is getting to the 1496 * card. 1497 * - The card is dead, or will be very shortly ;-/ so no new 1498 * commands are completing in the interrupt service. 1499 */ 1500 aac_adapter_disable_int(aac); 1501 if (aac->thread && aac->thread->pid != current->pid) { 1502 spin_unlock_irq(host->host_lock); 1503 kthread_stop(aac->thread); 1504 aac->thread = NULL; 1505 jafo = 1; 1506 } 1507 1508 /* 1509 * If a positive health, means in a known DEAD PANIC 1510 * state and the adapter could be reset to `try again'. 1511 */ 1512 bled = forced ? 0 : aac_adapter_check_health(aac); 1513 retval = aac_adapter_restart(aac, bled, reset_type); 1514 1515 if (retval) 1516 goto out; 1517 1518 /* 1519 * Loop through the fibs, close the synchronous FIBS 1520 */ 1521 retval = 1; 1522 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1523 for (index = 0; index < num_of_fibs; index++) { 1524 1525 struct fib *fib = &aac->fibs[index]; 1526 __le32 XferState = fib->hw_fib_va->header.XferState; 1527 bool is_response_expected = false; 1528 1529 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1530 (XferState & cpu_to_le32(ResponseExpected))) 1531 is_response_expected = true; 1532 1533 if (is_response_expected 1534 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1535 unsigned long flagv; 1536 spin_lock_irqsave(&fib->event_lock, flagv); 1537 complete(&fib->event_wait); 1538 spin_unlock_irqrestore(&fib->event_lock, flagv); 1539 schedule(); 1540 retval = 0; 1541 } 1542 } 1543 /* Give some extra time for ioctls to complete. */ 1544 if (retval == 0) 1545 ssleep(2); 1546 index = aac->cardtype; 1547 1548 /* 1549 * Re-initialize the adapter, first free resources, then carefully 1550 * apply the initialization sequence to come back again. Only risk 1551 * is a change in Firmware dropping cache, it is assumed the caller 1552 * will ensure that i/o is queisced and the card is flushed in that 1553 * case. 1554 */ 1555 aac_free_irq(aac); 1556 aac_fib_map_free(aac); 1557 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1558 aac->comm_phys); 1559 aac_adapter_ioremap(aac, 0); 1560 aac->comm_addr = NULL; 1561 aac->comm_phys = 0; 1562 kfree(aac->queues); 1563 aac->queues = NULL; 1564 kfree(aac->fsa_dev); 1565 aac->fsa_dev = NULL; 1566 1567 dmamask = DMA_BIT_MASK(32); 1568 quirks = aac_get_driver_ident(index)->quirks; 1569 if (quirks & AAC_QUIRK_31BIT) 1570 retval = dma_set_mask(&aac->pdev->dev, dmamask); 1571 else if (!(quirks & AAC_QUIRK_SRC)) 1572 retval = dma_set_mask(&aac->pdev->dev, dmamask); 1573 else 1574 retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); 1575 1576 if (quirks & AAC_QUIRK_31BIT && !retval) { 1577 dmamask = DMA_BIT_MASK(31); 1578 retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); 1579 } 1580 1581 if (retval) 1582 goto out; 1583 1584 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1585 goto out; 1586 1587 if (jafo) { 1588 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1589 aac->name); 1590 if (IS_ERR(aac->thread)) { 1591 retval = PTR_ERR(aac->thread); 1592 aac->thread = NULL; 1593 goto out; 1594 } 1595 } 1596 (void)aac_get_adapter_info(aac); 1597 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1598 host->sg_tablesize = 34; 1599 host->max_sectors = (host->sg_tablesize * 8) + 112; 1600 } 1601 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1602 host->sg_tablesize = 17; 1603 host->max_sectors = (host->sg_tablesize * 8) + 112; 1604 } 1605 aac_get_config_status(aac, 1); 1606 aac_get_containers(aac); 1607 /* 1608 * This is where the assumption that the Adapter is quiesced 1609 * is important. 1610 */ 1611 scsi_host_complete_all_commands(host, DID_RESET); 1612 1613 retval = 0; 1614 out: 1615 aac->in_reset = 0; 1616 1617 /* 1618 * Issue bus rescan to catch any configuration that might have 1619 * occurred 1620 */ 1621 if (!retval && !is_kdump_kernel()) { 1622 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1623 aac_schedule_bus_scan(aac); 1624 } 1625 1626 if (jafo) { 1627 spin_lock_irq(host->host_lock); 1628 } 1629 return retval; 1630 } 1631 1632 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1633 { 1634 unsigned long flagv = 0; 1635 int retval, unblock_retval; 1636 struct Scsi_Host *host = aac->scsi_host_ptr; 1637 int bled; 1638 1639 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1640 return -EBUSY; 1641 1642 if (aac->in_reset) { 1643 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1644 return -EBUSY; 1645 } 1646 aac->in_reset = 1; 1647 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1648 1649 /* 1650 * Wait for all commands to complete to this specific 1651 * target (block maximum 60 seconds). Although not necessary, 1652 * it does make us a good storage citizen. 1653 */ 1654 scsi_host_block(host); 1655 1656 /* Quiesce build, flush cache, write through mode */ 1657 if (forced < 2) 1658 aac_send_shutdown(aac); 1659 spin_lock_irqsave(host->host_lock, flagv); 1660 bled = forced ? forced : 1661 (aac_check_reset != 0 && aac_check_reset != 1); 1662 retval = _aac_reset_adapter(aac, bled, reset_type); 1663 spin_unlock_irqrestore(host->host_lock, flagv); 1664 1665 unblock_retval = scsi_host_unblock(host, SDEV_RUNNING); 1666 if (!retval) 1667 retval = unblock_retval; 1668 if ((forced < 2) && (retval == -ENODEV)) { 1669 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1670 struct fib * fibctx = aac_fib_alloc(aac); 1671 if (fibctx) { 1672 struct aac_pause *cmd; 1673 int status; 1674 1675 aac_fib_init(fibctx); 1676 1677 cmd = (struct aac_pause *) fib_data(fibctx); 1678 1679 cmd->command = cpu_to_le32(VM_ContainerConfig); 1680 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1681 cmd->timeout = cpu_to_le32(1); 1682 cmd->min = cpu_to_le32(1); 1683 cmd->noRescan = cpu_to_le32(1); 1684 cmd->count = cpu_to_le32(0); 1685 1686 status = aac_fib_send(ContainerCommand, 1687 fibctx, 1688 sizeof(struct aac_pause), 1689 FsaNormal, 1690 -2 /* Timeout silently */, 1, 1691 NULL, NULL); 1692 1693 if (status >= 0) 1694 aac_fib_complete(fibctx); 1695 /* FIB should be freed only after getting 1696 * the response from the F/W */ 1697 if (status != -ERESTARTSYS) 1698 aac_fib_free(fibctx); 1699 } 1700 } 1701 1702 return retval; 1703 } 1704 1705 int aac_check_health(struct aac_dev * aac) 1706 { 1707 int BlinkLED; 1708 unsigned long time_now, flagv = 0; 1709 struct list_head * entry; 1710 1711 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1712 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1713 return 0; 1714 1715 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1716 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1717 return 0; /* OK */ 1718 } 1719 1720 aac->in_reset = 1; 1721 1722 /* Fake up an AIF: 1723 * aac_aifcmd.command = AifCmdEventNotify = 1 1724 * aac_aifcmd.seqnum = 0xFFFFFFFF 1725 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1726 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1727 * aac.aifcmd.data[2] = AifHighPriority = 3 1728 * aac.aifcmd.data[3] = BlinkLED 1729 */ 1730 1731 time_now = jiffies/HZ; 1732 entry = aac->fib_list.next; 1733 1734 /* 1735 * For each Context that is on the 1736 * fibctxList, make a copy of the 1737 * fib, and then set the event to wake up the 1738 * thread that is waiting for it. 1739 */ 1740 while (entry != &aac->fib_list) { 1741 /* 1742 * Extract the fibctx 1743 */ 1744 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1745 struct hw_fib * hw_fib; 1746 struct fib * fib; 1747 /* 1748 * Check if the queue is getting 1749 * backlogged 1750 */ 1751 if (fibctx->count > 20) { 1752 /* 1753 * It's *not* jiffies folks, 1754 * but jiffies / HZ, so do not 1755 * panic ... 1756 */ 1757 u32 time_last = fibctx->jiffies; 1758 /* 1759 * Has it been > 2 minutes 1760 * since the last read off 1761 * the queue? 1762 */ 1763 if ((time_now - time_last) > aif_timeout) { 1764 entry = entry->next; 1765 aac_close_fib_context(aac, fibctx); 1766 continue; 1767 } 1768 } 1769 /* 1770 * Warning: no sleep allowed while 1771 * holding spinlock 1772 */ 1773 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1774 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1775 if (fib && hw_fib) { 1776 struct aac_aifcmd * aif; 1777 1778 fib->hw_fib_va = hw_fib; 1779 fib->dev = aac; 1780 aac_fib_init(fib); 1781 fib->type = FSAFS_NTC_FIB_CONTEXT; 1782 fib->size = sizeof (struct fib); 1783 fib->data = hw_fib->data; 1784 aif = (struct aac_aifcmd *)hw_fib->data; 1785 aif->command = cpu_to_le32(AifCmdEventNotify); 1786 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1787 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1788 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1789 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1790 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1791 1792 /* 1793 * Put the FIB onto the 1794 * fibctx's fibs 1795 */ 1796 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1797 fibctx->count++; 1798 /* 1799 * Set the event to wake up the 1800 * thread that will waiting. 1801 */ 1802 complete(&fibctx->completion); 1803 } else { 1804 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1805 kfree(fib); 1806 kfree(hw_fib); 1807 } 1808 entry = entry->next; 1809 } 1810 1811 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1812 1813 if (BlinkLED < 0) { 1814 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1815 aac->name, BlinkLED); 1816 goto out; 1817 } 1818 1819 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1820 1821 out: 1822 aac->in_reset = 0; 1823 return BlinkLED; 1824 } 1825 1826 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1827 { 1828 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1829 } 1830 1831 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1832 int bus, 1833 int target) 1834 { 1835 if (bus != CONTAINER_CHANNEL) 1836 bus = aac_phys_to_logical(bus); 1837 1838 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1839 } 1840 1841 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1842 { 1843 if (bus != CONTAINER_CHANNEL) 1844 bus = aac_phys_to_logical(bus); 1845 1846 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1847 } 1848 1849 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1850 { 1851 if (sdev) 1852 scsi_device_put(sdev); 1853 } 1854 1855 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1856 { 1857 struct scsi_device *sdev; 1858 1859 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1860 scsi_remove_device(sdev); 1861 aac_put_safw_scsi_device(sdev); 1862 } 1863 1864 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1865 int bus, int target) 1866 { 1867 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1868 } 1869 1870 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1871 { 1872 if (is_safw_raid_volume(dev, bus, target)) 1873 return dev->fsa_dev[target].valid; 1874 else 1875 return aac_is_safw_scan_count_equal(dev, bus, target); 1876 } 1877 1878 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1879 { 1880 int is_exposed = 0; 1881 struct scsi_device *sdev; 1882 1883 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1884 if (sdev) 1885 is_exposed = 1; 1886 aac_put_safw_scsi_device(sdev); 1887 1888 return is_exposed; 1889 } 1890 1891 static int aac_update_safw_host_devices(struct aac_dev *dev) 1892 { 1893 int i; 1894 int bus; 1895 int target; 1896 int is_exposed = 0; 1897 int rcode = 0; 1898 1899 rcode = aac_setup_safw_adapter(dev); 1900 if (unlikely(rcode < 0)) { 1901 goto out; 1902 } 1903 1904 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1905 1906 bus = get_bus_number(i); 1907 target = get_target_number(i); 1908 1909 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1910 1911 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1912 aac_add_safw_device(dev, bus, target); 1913 else if (!aac_is_safw_target_valid(dev, bus, target) && 1914 is_exposed) 1915 aac_remove_safw_device(dev, bus, target); 1916 } 1917 out: 1918 return rcode; 1919 } 1920 1921 static int aac_scan_safw_host(struct aac_dev *dev) 1922 { 1923 int rcode = 0; 1924 1925 rcode = aac_update_safw_host_devices(dev); 1926 if (rcode) 1927 aac_schedule_safw_scan_worker(dev); 1928 1929 return rcode; 1930 } 1931 1932 int aac_scan_host(struct aac_dev *dev) 1933 { 1934 int rcode = 0; 1935 1936 mutex_lock(&dev->scan_mutex); 1937 if (dev->sa_firmware) 1938 rcode = aac_scan_safw_host(dev); 1939 else 1940 scsi_scan_host(dev->scsi_host_ptr); 1941 mutex_unlock(&dev->scan_mutex); 1942 1943 return rcode; 1944 } 1945 1946 void aac_src_reinit_aif_worker(struct work_struct *work) 1947 { 1948 struct aac_dev *dev = container_of(to_delayed_work(work), 1949 struct aac_dev, src_reinit_aif_worker); 1950 1951 wait_event(dev->scsi_host_ptr->host_wait, 1952 !scsi_host_in_recovery(dev->scsi_host_ptr)); 1953 aac_reinit_aif(dev, dev->cardtype); 1954 } 1955 1956 /** 1957 * aac_handle_sa_aif - Handle a message from the firmware 1958 * @dev: Which adapter this fib is from 1959 * @fibptr: Pointer to fibptr from adapter 1960 * 1961 * This routine handles a driver notify fib from the adapter and 1962 * dispatches it to the appropriate routine for handling. 1963 */ 1964 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1965 { 1966 int i; 1967 u32 events = 0; 1968 1969 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1970 events = SA_AIF_HOTPLUG; 1971 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1972 events = SA_AIF_HARDWARE; 1973 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1974 events = SA_AIF_PDEV_CHANGE; 1975 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1976 events = SA_AIF_LDEV_CHANGE; 1977 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1978 events = SA_AIF_BPSTAT_CHANGE; 1979 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1980 events = SA_AIF_BPCFG_CHANGE; 1981 1982 switch (events) { 1983 case SA_AIF_HOTPLUG: 1984 case SA_AIF_HARDWARE: 1985 case SA_AIF_PDEV_CHANGE: 1986 case SA_AIF_LDEV_CHANGE: 1987 case SA_AIF_BPCFG_CHANGE: 1988 1989 aac_scan_host(dev); 1990 1991 break; 1992 1993 case SA_AIF_BPSTAT_CHANGE: 1994 /* currently do nothing */ 1995 break; 1996 } 1997 1998 for (i = 1; i <= 10; ++i) { 1999 events = src_readl(dev, MUnit.IDR); 2000 if (events & (1<<23)) { 2001 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2002 i, 10); 2003 ssleep(1); 2004 } 2005 } 2006 } 2007 2008 static int get_fib_count(struct aac_dev *dev) 2009 { 2010 unsigned int num = 0; 2011 struct list_head *entry; 2012 unsigned long flagv; 2013 2014 /* 2015 * Warning: no sleep allowed while 2016 * holding spinlock. We take the estimate 2017 * and pre-allocate a set of fibs outside the 2018 * lock. 2019 */ 2020 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2021 / sizeof(struct hw_fib); /* some extra */ 2022 spin_lock_irqsave(&dev->fib_lock, flagv); 2023 entry = dev->fib_list.next; 2024 while (entry != &dev->fib_list) { 2025 entry = entry->next; 2026 ++num; 2027 } 2028 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2029 2030 return num; 2031 } 2032 2033 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2034 struct fib **fib_pool, 2035 unsigned int num) 2036 { 2037 struct hw_fib **hw_fib_p; 2038 struct fib **fib_p; 2039 2040 hw_fib_p = hw_fib_pool; 2041 fib_p = fib_pool; 2042 while (hw_fib_p < &hw_fib_pool[num]) { 2043 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2044 if (!(*(hw_fib_p++))) { 2045 --hw_fib_p; 2046 break; 2047 } 2048 2049 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2050 if (!(*(fib_p++))) { 2051 kfree(*(--hw_fib_p)); 2052 break; 2053 } 2054 } 2055 2056 /* 2057 * Get the actual number of allocated fibs 2058 */ 2059 num = hw_fib_p - hw_fib_pool; 2060 return num; 2061 } 2062 2063 static void wakeup_fibctx_threads(struct aac_dev *dev, 2064 struct hw_fib **hw_fib_pool, 2065 struct fib **fib_pool, 2066 struct fib *fib, 2067 struct hw_fib *hw_fib, 2068 unsigned int num) 2069 { 2070 unsigned long flagv; 2071 struct list_head *entry; 2072 struct hw_fib **hw_fib_p; 2073 struct fib **fib_p; 2074 u32 time_now, time_last; 2075 struct hw_fib *hw_newfib; 2076 struct fib *newfib; 2077 struct aac_fib_context *fibctx; 2078 2079 time_now = jiffies/HZ; 2080 spin_lock_irqsave(&dev->fib_lock, flagv); 2081 entry = dev->fib_list.next; 2082 /* 2083 * For each Context that is on the 2084 * fibctxList, make a copy of the 2085 * fib, and then set the event to wake up the 2086 * thread that is waiting for it. 2087 */ 2088 2089 hw_fib_p = hw_fib_pool; 2090 fib_p = fib_pool; 2091 while (entry != &dev->fib_list) { 2092 /* 2093 * Extract the fibctx 2094 */ 2095 fibctx = list_entry(entry, struct aac_fib_context, 2096 next); 2097 /* 2098 * Check if the queue is getting 2099 * backlogged 2100 */ 2101 if (fibctx->count > 20) { 2102 /* 2103 * It's *not* jiffies folks, 2104 * but jiffies / HZ so do not 2105 * panic ... 2106 */ 2107 time_last = fibctx->jiffies; 2108 /* 2109 * Has it been > 2 minutes 2110 * since the last read off 2111 * the queue? 2112 */ 2113 if ((time_now - time_last) > aif_timeout) { 2114 entry = entry->next; 2115 aac_close_fib_context(dev, fibctx); 2116 continue; 2117 } 2118 } 2119 /* 2120 * Warning: no sleep allowed while 2121 * holding spinlock 2122 */ 2123 if (hw_fib_p >= &hw_fib_pool[num]) { 2124 pr_warn("aifd: didn't allocate NewFib\n"); 2125 entry = entry->next; 2126 continue; 2127 } 2128 2129 hw_newfib = *hw_fib_p; 2130 *(hw_fib_p++) = NULL; 2131 newfib = *fib_p; 2132 *(fib_p++) = NULL; 2133 /* 2134 * Make the copy of the FIB 2135 */ 2136 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2137 memcpy(newfib, fib, sizeof(struct fib)); 2138 newfib->hw_fib_va = hw_newfib; 2139 /* 2140 * Put the FIB onto the 2141 * fibctx's fibs 2142 */ 2143 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2144 fibctx->count++; 2145 /* 2146 * Set the event to wake up the 2147 * thread that is waiting. 2148 */ 2149 complete(&fibctx->completion); 2150 2151 entry = entry->next; 2152 } 2153 /* 2154 * Set the status of this FIB 2155 */ 2156 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2157 aac_fib_adapter_complete(fib, sizeof(u32)); 2158 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2159 2160 } 2161 2162 static void aac_process_events(struct aac_dev *dev) 2163 { 2164 struct hw_fib *hw_fib; 2165 struct fib *fib; 2166 unsigned long flags; 2167 spinlock_t *t_lock; 2168 2169 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2170 spin_lock_irqsave(t_lock, flags); 2171 2172 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2173 struct list_head *entry; 2174 struct aac_aifcmd *aifcmd; 2175 unsigned int num; 2176 struct hw_fib **hw_fib_pool, **hw_fib_p; 2177 struct fib **fib_pool, **fib_p; 2178 2179 set_current_state(TASK_RUNNING); 2180 2181 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2182 list_del(entry); 2183 2184 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2185 spin_unlock_irqrestore(t_lock, flags); 2186 2187 fib = list_entry(entry, struct fib, fiblink); 2188 hw_fib = fib->hw_fib_va; 2189 if (dev->sa_firmware) { 2190 /* Thor AIF */ 2191 aac_handle_sa_aif(dev, fib); 2192 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2193 goto free_fib; 2194 } 2195 /* 2196 * We will process the FIB here or pass it to a 2197 * worker thread that is TBD. We Really can't 2198 * do anything at this point since we don't have 2199 * anything defined for this thread to do. 2200 */ 2201 memset(fib, 0, sizeof(struct fib)); 2202 fib->type = FSAFS_NTC_FIB_CONTEXT; 2203 fib->size = sizeof(struct fib); 2204 fib->hw_fib_va = hw_fib; 2205 fib->data = hw_fib->data; 2206 fib->dev = dev; 2207 /* 2208 * We only handle AifRequest fibs from the adapter. 2209 */ 2210 2211 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2212 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2213 /* Handle Driver Notify Events */ 2214 aac_handle_aif(dev, fib); 2215 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2216 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2217 goto free_fib; 2218 } 2219 /* 2220 * The u32 here is important and intended. We are using 2221 * 32bit wrapping time to fit the adapter field 2222 */ 2223 2224 /* Sniff events */ 2225 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2226 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2227 aac_handle_aif(dev, fib); 2228 } 2229 2230 /* 2231 * get number of fibs to process 2232 */ 2233 num = get_fib_count(dev); 2234 if (!num) 2235 goto free_fib; 2236 2237 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2238 GFP_KERNEL); 2239 if (!hw_fib_pool) 2240 goto free_fib; 2241 2242 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2243 if (!fib_pool) 2244 goto free_hw_fib_pool; 2245 2246 /* 2247 * Fill up fib pointer pools with actual fibs 2248 * and hw_fibs 2249 */ 2250 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2251 if (!num) 2252 goto free_mem; 2253 2254 /* 2255 * wakeup the thread that is waiting for 2256 * the response from fw (ioctl) 2257 */ 2258 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2259 fib, hw_fib, num); 2260 2261 free_mem: 2262 /* Free up the remaining resources */ 2263 hw_fib_p = hw_fib_pool; 2264 fib_p = fib_pool; 2265 while (hw_fib_p < &hw_fib_pool[num]) { 2266 kfree(*hw_fib_p); 2267 kfree(*fib_p); 2268 ++fib_p; 2269 ++hw_fib_p; 2270 } 2271 kfree(fib_pool); 2272 free_hw_fib_pool: 2273 kfree(hw_fib_pool); 2274 free_fib: 2275 kfree(fib); 2276 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2277 spin_lock_irqsave(t_lock, flags); 2278 } 2279 /* 2280 * There are no more AIF's 2281 */ 2282 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2283 spin_unlock_irqrestore(t_lock, flags); 2284 } 2285 2286 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2287 u32 datasize) 2288 { 2289 struct aac_srb *srbcmd; 2290 struct sgmap64 *sg64; 2291 dma_addr_t addr; 2292 char *dma_buf; 2293 struct fib *fibptr; 2294 int ret = -ENOMEM; 2295 u32 vbus, vid; 2296 2297 fibptr = aac_fib_alloc(dev); 2298 if (!fibptr) 2299 goto out; 2300 2301 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2302 GFP_KERNEL); 2303 if (!dma_buf) 2304 goto fib_free_out; 2305 2306 aac_fib_init(fibptr); 2307 2308 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2309 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2310 2311 srbcmd = (struct aac_srb *)fib_data(fibptr); 2312 2313 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2314 srbcmd->channel = cpu_to_le32(vbus); 2315 srbcmd->id = cpu_to_le32(vid); 2316 srbcmd->lun = 0; 2317 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2318 srbcmd->timeout = cpu_to_le32(10); 2319 srbcmd->retry_limit = 0; 2320 srbcmd->cdb_size = cpu_to_le32(12); 2321 srbcmd->count = cpu_to_le32(datasize); 2322 2323 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2324 srbcmd->cdb[0] = BMIC_OUT; 2325 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2326 memcpy(dma_buf, (char *)wellness_str, datasize); 2327 2328 sg64 = (struct sgmap64 *)&srbcmd->sg; 2329 sg64->count = cpu_to_le32(1); 2330 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2331 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2332 sg64->sg[0].count = cpu_to_le32(datasize); 2333 2334 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2335 FsaNormal, 1, 1, NULL, NULL); 2336 2337 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2338 2339 /* 2340 * Do not set XferState to zero unless 2341 * receives a response from F/W 2342 */ 2343 if (ret >= 0) 2344 aac_fib_complete(fibptr); 2345 2346 /* 2347 * FIB should be freed only after 2348 * getting the response from the F/W 2349 */ 2350 if (ret != -ERESTARTSYS) 2351 goto fib_free_out; 2352 2353 out: 2354 return ret; 2355 fib_free_out: 2356 aac_fib_free(fibptr); 2357 goto out; 2358 } 2359 2360 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2361 { 2362 struct tm cur_tm; 2363 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2364 u32 datasize = sizeof(wellness_str); 2365 time64_t local_time; 2366 int ret = -ENODEV; 2367 2368 if (!dev->sa_firmware) 2369 goto out; 2370 2371 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2372 time64_to_tm(local_time, 0, &cur_tm); 2373 cur_tm.tm_mon += 1; 2374 cur_tm.tm_year += 1900; 2375 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2376 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2377 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2378 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2379 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2380 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2381 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2382 2383 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2384 2385 out: 2386 return ret; 2387 } 2388 2389 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2390 { 2391 int ret = -ENOMEM; 2392 struct fib *fibptr; 2393 __le32 *info; 2394 2395 fibptr = aac_fib_alloc(dev); 2396 if (!fibptr) 2397 goto out; 2398 2399 aac_fib_init(fibptr); 2400 info = (__le32 *)fib_data(fibptr); 2401 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2402 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2403 1, 1, NULL, NULL); 2404 2405 /* 2406 * Do not set XferState to zero unless 2407 * receives a response from F/W 2408 */ 2409 if (ret >= 0) 2410 aac_fib_complete(fibptr); 2411 2412 /* 2413 * FIB should be freed only after 2414 * getting the response from the F/W 2415 */ 2416 if (ret != -ERESTARTSYS) 2417 aac_fib_free(fibptr); 2418 2419 out: 2420 return ret; 2421 } 2422 2423 /** 2424 * aac_command_thread - command processing thread 2425 * @data: Adapter to monitor 2426 * 2427 * Waits on the commandready event in it's queue. When the event gets set 2428 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2429 * until the queue is empty. When the queue is empty it will wait for 2430 * more FIBs. 2431 */ 2432 2433 int aac_command_thread(void *data) 2434 { 2435 struct aac_dev *dev = data; 2436 DECLARE_WAITQUEUE(wait, current); 2437 unsigned long next_jiffies = jiffies + HZ; 2438 unsigned long next_check_jiffies = next_jiffies; 2439 long difference = HZ; 2440 2441 /* 2442 * We can only have one thread per adapter for AIF's. 2443 */ 2444 if (dev->aif_thread) 2445 return -EINVAL; 2446 2447 /* 2448 * Let the DPC know it has a place to send the AIF's to. 2449 */ 2450 dev->aif_thread = 1; 2451 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2452 set_current_state(TASK_INTERRUPTIBLE); 2453 dprintk ((KERN_INFO "aac_command_thread start\n")); 2454 while (1) { 2455 2456 aac_process_events(dev); 2457 2458 /* 2459 * Background activity 2460 */ 2461 if ((time_before(next_check_jiffies,next_jiffies)) 2462 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2463 next_check_jiffies = next_jiffies; 2464 if (aac_adapter_check_health(dev) == 0) { 2465 difference = ((long)(unsigned)check_interval) 2466 * HZ; 2467 next_check_jiffies = jiffies + difference; 2468 } else if (!dev->queues) 2469 break; 2470 } 2471 if (!time_before(next_check_jiffies,next_jiffies) 2472 && ((difference = next_jiffies - jiffies) <= 0)) { 2473 struct timespec64 now; 2474 int ret; 2475 2476 /* Don't even try to talk to adapter if its sick */ 2477 ret = aac_adapter_check_health(dev); 2478 if (ret || !dev->queues) 2479 break; 2480 next_check_jiffies = jiffies 2481 + ((long)(unsigned)check_interval) 2482 * HZ; 2483 ktime_get_real_ts64(&now); 2484 2485 /* Synchronize our watches */ 2486 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2487 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2488 difference = HZ + HZ / 2 - 2489 now.tv_nsec / (NSEC_PER_SEC / HZ); 2490 else { 2491 if (now.tv_nsec > NSEC_PER_SEC / 2) 2492 ++now.tv_sec; 2493 2494 if (dev->sa_firmware) 2495 ret = 2496 aac_send_safw_hostttime(dev, &now); 2497 else 2498 ret = aac_send_hosttime(dev, &now); 2499 2500 difference = (long)(unsigned)update_interval*HZ; 2501 } 2502 next_jiffies = jiffies + difference; 2503 if (time_before(next_check_jiffies,next_jiffies)) 2504 difference = next_check_jiffies - jiffies; 2505 } 2506 if (difference <= 0) 2507 difference = 1; 2508 set_current_state(TASK_INTERRUPTIBLE); 2509 2510 if (kthread_should_stop()) 2511 break; 2512 2513 /* 2514 * we probably want usleep_range() here instead of the 2515 * jiffies computation 2516 */ 2517 schedule_timeout(difference); 2518 2519 if (kthread_should_stop()) 2520 break; 2521 } 2522 if (dev->queues) 2523 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2524 dev->aif_thread = 0; 2525 return 0; 2526 } 2527 2528 int aac_acquire_irq(struct aac_dev *dev) 2529 { 2530 int i; 2531 int j; 2532 int ret = 0; 2533 2534 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2535 for (i = 0; i < dev->max_msix; i++) { 2536 dev->aac_msix[i].vector_no = i; 2537 dev->aac_msix[i].dev = dev; 2538 if (request_irq(pci_irq_vector(dev->pdev, i), 2539 dev->a_ops.adapter_intr, 2540 0, "aacraid", &(dev->aac_msix[i]))) { 2541 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2542 dev->name, dev->id, i); 2543 for (j = 0 ; j < i ; j++) 2544 free_irq(pci_irq_vector(dev->pdev, j), 2545 &(dev->aac_msix[j])); 2546 pci_disable_msix(dev->pdev); 2547 ret = -1; 2548 } 2549 } 2550 } else { 2551 dev->aac_msix[0].vector_no = 0; 2552 dev->aac_msix[0].dev = dev; 2553 2554 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2555 IRQF_SHARED, "aacraid", 2556 &(dev->aac_msix[0])) < 0) { 2557 if (dev->msi) 2558 pci_disable_msi(dev->pdev); 2559 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2560 dev->name, dev->id); 2561 ret = -1; 2562 } 2563 } 2564 return ret; 2565 } 2566 2567 void aac_free_irq(struct aac_dev *dev) 2568 { 2569 int i; 2570 2571 if (aac_is_src(dev)) { 2572 if (dev->max_msix > 1) { 2573 for (i = 0; i < dev->max_msix; i++) 2574 free_irq(pci_irq_vector(dev->pdev, i), 2575 &(dev->aac_msix[i])); 2576 } else { 2577 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2578 } 2579 } else { 2580 free_irq(dev->pdev->irq, dev); 2581 } 2582 if (dev->msi) 2583 pci_disable_msi(dev->pdev); 2584 else if (dev->max_msix > 1) 2585 pci_disable_msix(dev->pdev); 2586 } 2587