xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38 
39 #include "aacraid.h"
40 
41 /**
42  *	fib_map_alloc		-	allocate the fib objects
43  *	@dev: Adapter to allocate for
44  *
45  *	Allocate and map the shared PCI space for the FIB blocks used to
46  *	talk to the Adaptec firmware.
47  */
48 
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53 	else
54 		dev->max_cmd_size = dev->max_fib_size;
55 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57 	} else {
58 		dev->max_cmd_size = dev->max_fib_size;
59 	}
60 
61 	dprintk((KERN_INFO
62 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68 		&dev->hw_fib_pa, GFP_KERNEL);
69 	if (dev->hw_fib_va == NULL)
70 		return -ENOMEM;
71 	return 0;
72 }
73 
74 /**
75  *	aac_fib_map_free		-	free the fib objects
76  *	@dev: Adapter to free
77  *
78  *	Free the PCI mappings and the memory allocated for FIB blocks
79  *	on this adapter.
80  */
81 
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84 	size_t alloc_size;
85 	size_t fib_size;
86 	int num_fibs;
87 
88 	if(!dev->hw_fib_va || !dev->max_cmd_size)
89 		return;
90 
91 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94 
95 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96 			  dev->hw_fib_pa);
97 
98 	dev->hw_fib_va = NULL;
99 	dev->hw_fib_pa = 0;
100 }
101 
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104 	u32 i = 0;
105 	u32 vector = 1;
106 	struct fib *fibptr = NULL;
107 
108 	for (i = 0, fibptr = &dev->fibs[i];
109 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110 		i++, fibptr++) {
111 		if ((dev->max_msix == 1) ||
112 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113 			- dev->vector_cap))) {
114 			fibptr->vector_no = 0;
115 		} else {
116 			fibptr->vector_no = vector;
117 			vector++;
118 			if (vector == dev->max_msix)
119 				vector = 1;
120 		}
121 	}
122 }
123 
124 /**
125  *	aac_fib_setup	-	setup the fibs
126  *	@dev: Adapter to set up
127  *
128  *	Allocate the PCI space for the fibs, map it and then initialise the
129  *	fib area, the unmapped fib data and also the free list
130  */
131 
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134 	struct fib *fibptr;
135 	struct hw_fib *hw_fib;
136 	dma_addr_t hw_fib_pa;
137 	int i;
138 	u32 max_cmds;
139 
140 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
141 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146 	}
147 	if (i<0)
148 		return -ENOMEM;
149 
150 	memset(dev->hw_fib_va, 0,
151 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153 
154 	/* 32 byte alignment for PMC */
155 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157 					(hw_fib_pa - dev->hw_fib_pa));
158 
159 	/* add Xport header */
160 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161 		sizeof(struct aac_fib_xporthdr));
162 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163 
164 	/*
165 	 *	Initialise the fibs
166 	 */
167 	for (i = 0, fibptr = &dev->fibs[i];
168 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169 		i++, fibptr++)
170 	{
171 		fibptr->flags = 0;
172 		fibptr->size = sizeof(struct fib);
173 		fibptr->dev = dev;
174 		fibptr->hw_fib_va = hw_fib;
175 		fibptr->data = (void *) fibptr->hw_fib_va->data;
176 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
177 		init_completion(&fibptr->event_wait);
178 		spin_lock_init(&fibptr->event_lock);
179 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180 		hw_fib->header.SenderSize =
181 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
182 		fibptr->hw_fib_pa = hw_fib_pa;
183 		fibptr->hw_sgl_pa = hw_fib_pa +
184 			offsetof(struct aac_hba_cmd_req, sge[2]);
185 		/*
186 		 * one element is for the ptr to the separate sg list,
187 		 * second element for 32 byte alignment
188 		 */
189 		fibptr->hw_error_pa = hw_fib_pa +
190 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191 
192 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194 		hw_fib_pa = hw_fib_pa +
195 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196 	}
197 
198 	/*
199 	 *Assign vector numbers to fibs
200 	 */
201 	aac_fib_vector_assign(dev);
202 
203 	/*
204 	 *	Add the fib chain to the free list
205 	 */
206 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207 	/*
208 	*	Set 8 fibs aside for management tools
209 	*/
210 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211 	return 0;
212 }
213 
214 /**
215  *	aac_fib_alloc_tag-allocate a fib using tags
216  *	@dev: Adapter to allocate the fib for
217  *	@scmd: SCSI command
218  *
219  *	Allocate a fib from the adapter fib pool using tags
220  *	from the blk layer.
221  */
222 
223 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
224 {
225 	struct fib *fibptr;
226 
227 	fibptr = &dev->fibs[scmd->request->tag];
228 	/*
229 	 *	Null out fields that depend on being zero at the start of
230 	 *	each I/O
231 	 */
232 	fibptr->hw_fib_va->header.XferState = 0;
233 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
234 	fibptr->callback_data = NULL;
235 	fibptr->callback = NULL;
236 	fibptr->flags = 0;
237 
238 	return fibptr;
239 }
240 
241 /**
242  *	aac_fib_alloc	-	allocate a fib
243  *	@dev: Adapter to allocate the fib for
244  *
245  *	Allocate a fib from the adapter fib pool. If the pool is empty we
246  *	return NULL.
247  */
248 
249 struct fib *aac_fib_alloc(struct aac_dev *dev)
250 {
251 	struct fib * fibptr;
252 	unsigned long flags;
253 	spin_lock_irqsave(&dev->fib_lock, flags);
254 	fibptr = dev->free_fib;
255 	if(!fibptr){
256 		spin_unlock_irqrestore(&dev->fib_lock, flags);
257 		return fibptr;
258 	}
259 	dev->free_fib = fibptr->next;
260 	spin_unlock_irqrestore(&dev->fib_lock, flags);
261 	/*
262 	 *	Set the proper node type code and node byte size
263 	 */
264 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
265 	fibptr->size = sizeof(struct fib);
266 	/*
267 	 *	Null out fields that depend on being zero at the start of
268 	 *	each I/O
269 	 */
270 	fibptr->hw_fib_va->header.XferState = 0;
271 	fibptr->flags = 0;
272 	fibptr->callback = NULL;
273 	fibptr->callback_data = NULL;
274 
275 	return fibptr;
276 }
277 
278 /**
279  *	aac_fib_free	-	free a fib
280  *	@fibptr: fib to free up
281  *
282  *	Frees up a fib and places it on the appropriate queue
283  */
284 
285 void aac_fib_free(struct fib *fibptr)
286 {
287 	unsigned long flags;
288 
289 	if (fibptr->done == 2)
290 		return;
291 
292 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
293 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
294 		aac_config.fib_timeouts++;
295 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
296 		fibptr->hw_fib_va->header.XferState != 0) {
297 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
298 			 (void*)fibptr,
299 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
300 	}
301 	fibptr->next = fibptr->dev->free_fib;
302 	fibptr->dev->free_fib = fibptr;
303 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
304 }
305 
306 /**
307  *	aac_fib_init	-	initialise a fib
308  *	@fibptr: The fib to initialize
309  *
310  *	Set up the generic fib fields ready for use
311  */
312 
313 void aac_fib_init(struct fib *fibptr)
314 {
315 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
316 
317 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
318 	hw_fib->header.StructType = FIB_MAGIC;
319 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
320 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
321 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
322 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
323 }
324 
325 /**
326  *	fib_deallocate		-	deallocate a fib
327  *	@fibptr: fib to deallocate
328  *
329  *	Will deallocate and return to the free pool the FIB pointed to by the
330  *	caller.
331  */
332 
333 static void fib_dealloc(struct fib * fibptr)
334 {
335 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
336 	hw_fib->header.XferState = 0;
337 }
338 
339 /*
340  *	Commuication primitives define and support the queuing method we use to
341  *	support host to adapter commuication. All queue accesses happen through
342  *	these routines and are the only routines which have a knowledge of the
343  *	 how these queues are implemented.
344  */
345 
346 /**
347  *	aac_get_entry		-	get a queue entry
348  *	@dev: Adapter
349  *	@qid: Queue Number
350  *	@entry: Entry return
351  *	@index: Index return
352  *	@nonotify: notification control
353  *
354  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
355  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
356  *	returned.
357  */
358 
359 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
360 {
361 	struct aac_queue * q;
362 	unsigned long idx;
363 
364 	/*
365 	 *	All of the queues wrap when they reach the end, so we check
366 	 *	to see if they have reached the end and if they have we just
367 	 *	set the index back to zero. This is a wrap. You could or off
368 	 *	the high bits in all updates but this is a bit faster I think.
369 	 */
370 
371 	q = &dev->queues->queue[qid];
372 
373 	idx = *index = le32_to_cpu(*(q->headers.producer));
374 	/* Interrupt Moderation, only interrupt for first two entries */
375 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
376 		if (--idx == 0) {
377 			if (qid == AdapNormCmdQueue)
378 				idx = ADAP_NORM_CMD_ENTRIES;
379 			else
380 				idx = ADAP_NORM_RESP_ENTRIES;
381 		}
382 		if (idx != le32_to_cpu(*(q->headers.consumer)))
383 			*nonotify = 1;
384 	}
385 
386 	if (qid == AdapNormCmdQueue) {
387 		if (*index >= ADAP_NORM_CMD_ENTRIES)
388 			*index = 0; /* Wrap to front of the Producer Queue. */
389 	} else {
390 		if (*index >= ADAP_NORM_RESP_ENTRIES)
391 			*index = 0; /* Wrap to front of the Producer Queue. */
392 	}
393 
394 	/* Queue is full */
395 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
396 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
397 				qid, atomic_read(&q->numpending));
398 		return 0;
399 	} else {
400 		*entry = q->base + *index;
401 		return 1;
402 	}
403 }
404 
405 /**
406  *	aac_queue_get		-	get the next free QE
407  *	@dev: Adapter
408  *	@index: Returned index
409  *	@qid: Queue number
410  *	@hw_fib: Fib to associate with the queue entry
411  *	@wait: Wait if queue full
412  *	@fibptr: Driver fib object to go with fib
413  *	@nonotify: Don't notify the adapter
414  *
415  *	Gets the next free QE off the requested priorty adapter command
416  *	queue and associates the Fib with the QE. The QE represented by
417  *	index is ready to insert on the queue when this routine returns
418  *	success.
419  */
420 
421 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
422 {
423 	struct aac_entry * entry = NULL;
424 	int map = 0;
425 
426 	if (qid == AdapNormCmdQueue) {
427 		/*  if no entries wait for some if caller wants to */
428 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
429 			printk(KERN_ERR "GetEntries failed\n");
430 		}
431 		/*
432 		 *	Setup queue entry with a command, status and fib mapped
433 		 */
434 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
435 		map = 1;
436 	} else {
437 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
438 			/* if no entries wait for some if caller wants to */
439 		}
440 		/*
441 		 *	Setup queue entry with command, status and fib mapped
442 		 */
443 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
444 		entry->addr = hw_fib->header.SenderFibAddress;
445 			/* Restore adapters pointer to the FIB */
446 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
447 		map = 0;
448 	}
449 	/*
450 	 *	If MapFib is true than we need to map the Fib and put pointers
451 	 *	in the queue entry.
452 	 */
453 	if (map)
454 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
455 	return 0;
456 }
457 
458 /*
459  *	Define the highest level of host to adapter communication routines.
460  *	These routines will support host to adapter FS commuication. These
461  *	routines have no knowledge of the commuication method used. This level
462  *	sends and receives FIBs. This level has no knowledge of how these FIBs
463  *	get passed back and forth.
464  */
465 
466 /**
467  *	aac_fib_send	-	send a fib to the adapter
468  *	@command: Command to send
469  *	@fibptr: The fib
470  *	@size: Size of fib data area
471  *	@priority: Priority of Fib
472  *	@wait: Async/sync select
473  *	@reply: True if a reply is wanted
474  *	@callback: Called with reply
475  *	@callback_data: Passed to callback
476  *
477  *	Sends the requested FIB to the adapter and optionally will wait for a
478  *	response FIB. If the caller does not wish to wait for a response than
479  *	an event to wait on must be supplied. This event will be set when a
480  *	response FIB is received from the adapter.
481  */
482 
483 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
484 		int priority, int wait, int reply, fib_callback callback,
485 		void *callback_data)
486 {
487 	struct aac_dev * dev = fibptr->dev;
488 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
489 	unsigned long flags = 0;
490 	unsigned long mflags = 0;
491 	unsigned long sflags = 0;
492 
493 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
494 		return -EBUSY;
495 
496 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
497 		return -EINVAL;
498 
499 	/*
500 	 *	There are 5 cases with the wait and response requested flags.
501 	 *	The only invalid cases are if the caller requests to wait and
502 	 *	does not request a response and if the caller does not want a
503 	 *	response and the Fib is not allocated from pool. If a response
504 	 *	is not requested the Fib will just be deallocaed by the DPC
505 	 *	routine when the response comes back from the adapter. No
506 	 *	further processing will be done besides deleting the Fib. We
507 	 *	will have a debug mode where the adapter can notify the host
508 	 *	it had a problem and the host can log that fact.
509 	 */
510 	fibptr->flags = 0;
511 	if (wait && !reply) {
512 		return -EINVAL;
513 	} else if (!wait && reply) {
514 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
515 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
516 	} else if (!wait && !reply) {
517 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
518 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
519 	} else if (wait && reply) {
520 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
521 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
522 	}
523 	/*
524 	 *	Map the fib into 32bits by using the fib number
525 	 */
526 
527 	hw_fib->header.SenderFibAddress =
528 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
529 
530 	/* use the same shifted value for handle to be compatible
531 	 * with the new native hba command handle
532 	 */
533 	hw_fib->header.Handle =
534 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
535 
536 	/*
537 	 *	Set FIB state to indicate where it came from and if we want a
538 	 *	response from the adapter. Also load the command from the
539 	 *	caller.
540 	 *
541 	 *	Map the hw fib pointer as a 32bit value
542 	 */
543 	hw_fib->header.Command = cpu_to_le16(command);
544 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
545 	/*
546 	 *	Set the size of the Fib we want to send to the adapter
547 	 */
548 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
549 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
550 		return -EMSGSIZE;
551 	}
552 	/*
553 	 *	Get a queue entry connect the FIB to it and send an notify
554 	 *	the adapter a command is ready.
555 	 */
556 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
557 
558 	/*
559 	 *	Fill in the Callback and CallbackContext if we are not
560 	 *	going to wait.
561 	 */
562 	if (!wait) {
563 		fibptr->callback = callback;
564 		fibptr->callback_data = callback_data;
565 		fibptr->flags = FIB_CONTEXT_FLAG;
566 	}
567 
568 	fibptr->done = 0;
569 
570 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
571 
572 	dprintk((KERN_DEBUG "Fib contents:.\n"));
573 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
574 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
575 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
576 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
577 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
578 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
579 
580 	if (!dev->queues)
581 		return -EBUSY;
582 
583 	if (wait) {
584 
585 		spin_lock_irqsave(&dev->manage_lock, mflags);
586 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
587 			printk(KERN_INFO "No management Fibs Available:%d\n",
588 						dev->management_fib_count);
589 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
590 			return -EBUSY;
591 		}
592 		dev->management_fib_count++;
593 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
594 		spin_lock_irqsave(&fibptr->event_lock, flags);
595 	}
596 
597 	if (dev->sync_mode) {
598 		if (wait)
599 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
600 		spin_lock_irqsave(&dev->sync_lock, sflags);
601 		if (dev->sync_fib) {
602 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
603 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
604 		} else {
605 			dev->sync_fib = fibptr;
606 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
607 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
608 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
609 				NULL, NULL, NULL, NULL, NULL);
610 		}
611 		if (wait) {
612 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
613 			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
614 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
615 				return -EFAULT;
616 			}
617 			return 0;
618 		}
619 		return -EINPROGRESS;
620 	}
621 
622 	if (aac_adapter_deliver(fibptr) != 0) {
623 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
624 		if (wait) {
625 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
626 			spin_lock_irqsave(&dev->manage_lock, mflags);
627 			dev->management_fib_count--;
628 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
629 		}
630 		return -EBUSY;
631 	}
632 
633 
634 	/*
635 	 *	If the caller wanted us to wait for response wait now.
636 	 */
637 
638 	if (wait) {
639 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
640 		/* Only set for first known interruptable command */
641 		if (wait < 0) {
642 			/*
643 			 * *VERY* Dangerous to time out a command, the
644 			 * assumption is made that we have no hope of
645 			 * functioning because an interrupt routing or other
646 			 * hardware failure has occurred.
647 			 */
648 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
649 			while (!try_wait_for_completion(&fibptr->event_wait)) {
650 				int blink;
651 				if (time_is_before_eq_jiffies(timeout)) {
652 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
653 					atomic_dec(&q->numpending);
654 					if (wait == -1) {
655 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
656 						  "Usually a result of a PCI interrupt routing problem;\n"
657 						  "update mother board BIOS or consider utilizing one of\n"
658 						  "the SAFE mode kernel options (acpi, apic etc)\n");
659 					}
660 					return -ETIMEDOUT;
661 				}
662 
663 				if (unlikely(aac_pci_offline(dev)))
664 					return -EFAULT;
665 
666 				if ((blink = aac_adapter_check_health(dev)) > 0) {
667 					if (wait == -1) {
668 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
669 						  "Usually a result of a serious unrecoverable hardware problem\n",
670 						  blink);
671 					}
672 					return -EFAULT;
673 				}
674 				/*
675 				 * Allow other processes / CPUS to use core
676 				 */
677 				schedule();
678 			}
679 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
680 			/* Do nothing ... satisfy
681 			 * wait_for_completion_interruptible must_check */
682 		}
683 
684 		spin_lock_irqsave(&fibptr->event_lock, flags);
685 		if (fibptr->done == 0) {
686 			fibptr->done = 2; /* Tell interrupt we aborted */
687 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
688 			return -ERESTARTSYS;
689 		}
690 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
691 		BUG_ON(fibptr->done == 0);
692 
693 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
694 			return -ETIMEDOUT;
695 		return 0;
696 	}
697 	/*
698 	 *	If the user does not want a response than return success otherwise
699 	 *	return pending
700 	 */
701 	if (reply)
702 		return -EINPROGRESS;
703 	else
704 		return 0;
705 }
706 
707 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
708 		void *callback_data)
709 {
710 	struct aac_dev *dev = fibptr->dev;
711 	int wait;
712 	unsigned long flags = 0;
713 	unsigned long mflags = 0;
714 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
715 			fibptr->hw_fib_va;
716 
717 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
718 	if (callback) {
719 		wait = 0;
720 		fibptr->callback = callback;
721 		fibptr->callback_data = callback_data;
722 	} else
723 		wait = 1;
724 
725 
726 	hbacmd->iu_type = command;
727 
728 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
729 		/* bit1 of request_id must be 0 */
730 		hbacmd->request_id =
731 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
732 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
733 	} else
734 		return -EINVAL;
735 
736 
737 	if (wait) {
738 		spin_lock_irqsave(&dev->manage_lock, mflags);
739 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
740 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
741 			return -EBUSY;
742 		}
743 		dev->management_fib_count++;
744 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
745 		spin_lock_irqsave(&fibptr->event_lock, flags);
746 	}
747 
748 	if (aac_adapter_deliver(fibptr) != 0) {
749 		if (wait) {
750 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
751 			spin_lock_irqsave(&dev->manage_lock, mflags);
752 			dev->management_fib_count--;
753 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
754 		}
755 		return -EBUSY;
756 	}
757 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
758 
759 	if (wait) {
760 
761 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
762 
763 		if (unlikely(aac_pci_offline(dev)))
764 			return -EFAULT;
765 
766 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
767 		if (wait_for_completion_interruptible(&fibptr->event_wait))
768 			fibptr->done = 2;
769 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
770 
771 		spin_lock_irqsave(&fibptr->event_lock, flags);
772 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
773 			fibptr->done = 2; /* Tell interrupt we aborted */
774 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
775 			return -ERESTARTSYS;
776 		}
777 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
778 		WARN_ON(fibptr->done == 0);
779 
780 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
781 			return -ETIMEDOUT;
782 
783 		return 0;
784 	}
785 
786 	return -EINPROGRESS;
787 }
788 
789 /**
790  *	aac_consumer_get	-	get the top of the queue
791  *	@dev: Adapter
792  *	@q: Queue
793  *	@entry: Return entry
794  *
795  *	Will return a pointer to the entry on the top of the queue requested that
796  *	we are a consumer of, and return the address of the queue entry. It does
797  *	not change the state of the queue.
798  */
799 
800 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
801 {
802 	u32 index;
803 	int status;
804 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
805 		status = 0;
806 	} else {
807 		/*
808 		 *	The consumer index must be wrapped if we have reached
809 		 *	the end of the queue, else we just use the entry
810 		 *	pointed to by the header index
811 		 */
812 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
813 			index = 0;
814 		else
815 			index = le32_to_cpu(*q->headers.consumer);
816 		*entry = q->base + index;
817 		status = 1;
818 	}
819 	return(status);
820 }
821 
822 /**
823  *	aac_consumer_free	-	free consumer entry
824  *	@dev: Adapter
825  *	@q: Queue
826  *	@qid: Queue ident
827  *
828  *	Frees up the current top of the queue we are a consumer of. If the
829  *	queue was full notify the producer that the queue is no longer full.
830  */
831 
832 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
833 {
834 	int wasfull = 0;
835 	u32 notify;
836 
837 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
838 		wasfull = 1;
839 
840 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
841 		*q->headers.consumer = cpu_to_le32(1);
842 	else
843 		le32_add_cpu(q->headers.consumer, 1);
844 
845 	if (wasfull) {
846 		switch (qid) {
847 
848 		case HostNormCmdQueue:
849 			notify = HostNormCmdNotFull;
850 			break;
851 		case HostNormRespQueue:
852 			notify = HostNormRespNotFull;
853 			break;
854 		default:
855 			BUG();
856 			return;
857 		}
858 		aac_adapter_notify(dev, notify);
859 	}
860 }
861 
862 /**
863  *	aac_fib_adapter_complete	-	complete adapter issued fib
864  *	@fibptr: fib to complete
865  *	@size: size of fib
866  *
867  *	Will do all necessary work to complete a FIB that was sent from
868  *	the adapter.
869  */
870 
871 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
872 {
873 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
874 	struct aac_dev * dev = fibptr->dev;
875 	struct aac_queue * q;
876 	unsigned long nointr = 0;
877 	unsigned long qflags;
878 
879 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
880 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
881 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
882 		kfree(hw_fib);
883 		return 0;
884 	}
885 
886 	if (hw_fib->header.XferState == 0) {
887 		if (dev->comm_interface == AAC_COMM_MESSAGE)
888 			kfree(hw_fib);
889 		return 0;
890 	}
891 	/*
892 	 *	If we plan to do anything check the structure type first.
893 	 */
894 	if (hw_fib->header.StructType != FIB_MAGIC &&
895 	    hw_fib->header.StructType != FIB_MAGIC2 &&
896 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
897 		if (dev->comm_interface == AAC_COMM_MESSAGE)
898 			kfree(hw_fib);
899 		return -EINVAL;
900 	}
901 	/*
902 	 *	This block handles the case where the adapter had sent us a
903 	 *	command and we have finished processing the command. We
904 	 *	call completeFib when we are done processing the command
905 	 *	and want to send a response back to the adapter. This will
906 	 *	send the completed cdb to the adapter.
907 	 */
908 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
909 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
910 			kfree (hw_fib);
911 		} else {
912 			u32 index;
913 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
914 			if (size) {
915 				size += sizeof(struct aac_fibhdr);
916 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
917 					return -EMSGSIZE;
918 				hw_fib->header.Size = cpu_to_le16(size);
919 			}
920 			q = &dev->queues->queue[AdapNormRespQueue];
921 			spin_lock_irqsave(q->lock, qflags);
922 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
923 			*(q->headers.producer) = cpu_to_le32(index + 1);
924 			spin_unlock_irqrestore(q->lock, qflags);
925 			if (!(nointr & (int)aac_config.irq_mod))
926 				aac_adapter_notify(dev, AdapNormRespQueue);
927 		}
928 	} else {
929 		printk(KERN_WARNING "aac_fib_adapter_complete: "
930 			"Unknown xferstate detected.\n");
931 		BUG();
932 	}
933 	return 0;
934 }
935 
936 /**
937  *	aac_fib_complete	-	fib completion handler
938  *	@fibptr: FIB to complete
939  *
940  *	Will do all necessary work to complete a FIB.
941  */
942 
943 int aac_fib_complete(struct fib *fibptr)
944 {
945 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
946 
947 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
948 		fib_dealloc(fibptr);
949 		return 0;
950 	}
951 
952 	/*
953 	 *	Check for a fib which has already been completed or with a
954 	 *	status wait timeout
955 	 */
956 
957 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
958 		return 0;
959 	/*
960 	 *	If we plan to do anything check the structure type first.
961 	 */
962 
963 	if (hw_fib->header.StructType != FIB_MAGIC &&
964 	    hw_fib->header.StructType != FIB_MAGIC2 &&
965 	    hw_fib->header.StructType != FIB_MAGIC2_64)
966 		return -EINVAL;
967 	/*
968 	 *	This block completes a cdb which orginated on the host and we
969 	 *	just need to deallocate the cdb or reinit it. At this point the
970 	 *	command is complete that we had sent to the adapter and this
971 	 *	cdb could be reused.
972 	 */
973 
974 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
975 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
976 	{
977 		fib_dealloc(fibptr);
978 	}
979 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
980 	{
981 		/*
982 		 *	This handles the case when the host has aborted the I/O
983 		 *	to the adapter because the adapter is not responding
984 		 */
985 		fib_dealloc(fibptr);
986 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
987 		fib_dealloc(fibptr);
988 	} else {
989 		BUG();
990 	}
991 	return 0;
992 }
993 
994 /**
995  *	aac_printf	-	handle printf from firmware
996  *	@dev: Adapter
997  *	@val: Message info
998  *
999  *	Print a message passed to us by the controller firmware on the
1000  *	Adaptec board
1001  */
1002 
1003 void aac_printf(struct aac_dev *dev, u32 val)
1004 {
1005 	char *cp = dev->printfbuf;
1006 	if (dev->printf_enabled)
1007 	{
1008 		int length = val & 0xffff;
1009 		int level = (val >> 16) & 0xffff;
1010 
1011 		/*
1012 		 *	The size of the printfbuf is set in port.c
1013 		 *	There is no variable or define for it
1014 		 */
1015 		if (length > 255)
1016 			length = 255;
1017 		if (cp[length] != 0)
1018 			cp[length] = 0;
1019 		if (level == LOG_AAC_HIGH_ERROR)
1020 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1021 		else
1022 			printk(KERN_INFO "%s:%s", dev->name, cp);
1023 	}
1024 	memset(cp, 0, 256);
1025 }
1026 
1027 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1028 {
1029 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1030 }
1031 
1032 
1033 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1034 {
1035 	switch (aac_aif_data(aifcmd, 1)) {
1036 	case AifBuCacheDataLoss:
1037 		if (aac_aif_data(aifcmd, 2))
1038 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1039 			aac_aif_data(aifcmd, 2));
1040 		else
1041 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1042 		break;
1043 	case AifBuCacheDataRecover:
1044 		if (aac_aif_data(aifcmd, 2))
1045 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1046 			aac_aif_data(aifcmd, 2));
1047 		else
1048 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1049 		break;
1050 	}
1051 }
1052 
1053 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1054 /**
1055  *	aac_handle_aif		-	Handle a message from the firmware
1056  *	@dev: Which adapter this fib is from
1057  *	@fibptr: Pointer to fibptr from adapter
1058  *
1059  *	This routine handles a driver notify fib from the adapter and
1060  *	dispatches it to the appropriate routine for handling.
1061  */
1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063 {
1064 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066 	u32 channel, id, lun, container;
1067 	struct scsi_device *device;
1068 	enum {
1069 		NOTHING,
1070 		DELETE,
1071 		ADD,
1072 		CHANGE
1073 	} device_config_needed = NOTHING;
1074 
1075 	/* Sniff for container changes */
1076 
1077 	if (!dev || !dev->fsa_dev)
1078 		return;
1079 	container = channel = id = lun = (u32)-1;
1080 
1081 	/*
1082 	 *	We have set this up to try and minimize the number of
1083 	 * re-configures that take place. As a result of this when
1084 	 * certain AIF's come in we will set a flag waiting for another
1085 	 * type of AIF before setting the re-config flag.
1086 	 */
1087 	switch (le32_to_cpu(aifcmd->command)) {
1088 	case AifCmdDriverNotify:
1089 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090 		case AifRawDeviceRemove:
1091 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092 			if ((container >> 28)) {
1093 				container = (u32)-1;
1094 				break;
1095 			}
1096 			channel = (container >> 24) & 0xF;
1097 			if (channel >= dev->maximum_num_channels) {
1098 				container = (u32)-1;
1099 				break;
1100 			}
1101 			id = container & 0xFFFF;
1102 			if (id >= dev->maximum_num_physicals) {
1103 				container = (u32)-1;
1104 				break;
1105 			}
1106 			lun = (container >> 16) & 0xFF;
1107 			container = (u32)-1;
1108 			channel = aac_phys_to_logical(channel);
1109 			device_config_needed = DELETE;
1110 			break;
1111 
1112 		/*
1113 		 *	Morph or Expand complete
1114 		 */
1115 		case AifDenMorphComplete:
1116 		case AifDenVolumeExtendComplete:
1117 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118 			if (container >= dev->maximum_num_containers)
1119 				break;
1120 
1121 			/*
1122 			 *	Find the scsi_device associated with the SCSI
1123 			 * address. Make sure we have the right array, and if
1124 			 * so set the flag to initiate a new re-config once we
1125 			 * see an AifEnConfigChange AIF come through.
1126 			 */
1127 
1128 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129 				device = scsi_device_lookup(dev->scsi_host_ptr,
1130 					CONTAINER_TO_CHANNEL(container),
1131 					CONTAINER_TO_ID(container),
1132 					CONTAINER_TO_LUN(container));
1133 				if (device) {
1134 					dev->fsa_dev[container].config_needed = CHANGE;
1135 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137 					scsi_device_put(device);
1138 				}
1139 			}
1140 		}
1141 
1142 		/*
1143 		 *	If we are waiting on something and this happens to be
1144 		 * that thing then set the re-configure flag.
1145 		 */
1146 		if (container != (u32)-1) {
1147 			if (container >= dev->maximum_num_containers)
1148 				break;
1149 			if ((dev->fsa_dev[container].config_waiting_on ==
1150 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152 				dev->fsa_dev[container].config_waiting_on = 0;
1153 		} else for (container = 0;
1154 		    container < dev->maximum_num_containers; ++container) {
1155 			if ((dev->fsa_dev[container].config_waiting_on ==
1156 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158 				dev->fsa_dev[container].config_waiting_on = 0;
1159 		}
1160 		break;
1161 
1162 	case AifCmdEventNotify:
1163 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164 		case AifEnBatteryEvent:
1165 			dev->cache_protected =
1166 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167 			break;
1168 		/*
1169 		 *	Add an Array.
1170 		 */
1171 		case AifEnAddContainer:
1172 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173 			if (container >= dev->maximum_num_containers)
1174 				break;
1175 			dev->fsa_dev[container].config_needed = ADD;
1176 			dev->fsa_dev[container].config_waiting_on =
1177 				AifEnConfigChange;
1178 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179 			break;
1180 
1181 		/*
1182 		 *	Delete an Array.
1183 		 */
1184 		case AifEnDeleteContainer:
1185 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186 			if (container >= dev->maximum_num_containers)
1187 				break;
1188 			dev->fsa_dev[container].config_needed = DELETE;
1189 			dev->fsa_dev[container].config_waiting_on =
1190 				AifEnConfigChange;
1191 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192 			break;
1193 
1194 		/*
1195 		 *	Container change detected. If we currently are not
1196 		 * waiting on something else, setup to wait on a Config Change.
1197 		 */
1198 		case AifEnContainerChange:
1199 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200 			if (container >= dev->maximum_num_containers)
1201 				break;
1202 			if (dev->fsa_dev[container].config_waiting_on &&
1203 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204 				break;
1205 			dev->fsa_dev[container].config_needed = CHANGE;
1206 			dev->fsa_dev[container].config_waiting_on =
1207 				AifEnConfigChange;
1208 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209 			break;
1210 
1211 		case AifEnConfigChange:
1212 			break;
1213 
1214 		case AifEnAddJBOD:
1215 		case AifEnDeleteJBOD:
1216 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217 			if ((container >> 28)) {
1218 				container = (u32)-1;
1219 				break;
1220 			}
1221 			channel = (container >> 24) & 0xF;
1222 			if (channel >= dev->maximum_num_channels) {
1223 				container = (u32)-1;
1224 				break;
1225 			}
1226 			id = container & 0xFFFF;
1227 			if (id >= dev->maximum_num_physicals) {
1228 				container = (u32)-1;
1229 				break;
1230 			}
1231 			lun = (container >> 16) & 0xFF;
1232 			container = (u32)-1;
1233 			channel = aac_phys_to_logical(channel);
1234 			device_config_needed =
1235 			  (((__le32 *)aifcmd->data)[0] ==
1236 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237 			if (device_config_needed == ADD) {
1238 				device = scsi_device_lookup(dev->scsi_host_ptr,
1239 					channel,
1240 					id,
1241 					lun);
1242 				if (device) {
1243 					scsi_remove_device(device);
1244 					scsi_device_put(device);
1245 				}
1246 			}
1247 			break;
1248 
1249 		case AifEnEnclosureManagement:
1250 			/*
1251 			 * If in JBOD mode, automatic exposure of new
1252 			 * physical target to be suppressed until configured.
1253 			 */
1254 			if (dev->jbod)
1255 				break;
1256 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257 			case EM_DRIVE_INSERTION:
1258 			case EM_DRIVE_REMOVAL:
1259 			case EM_SES_DRIVE_INSERTION:
1260 			case EM_SES_DRIVE_REMOVAL:
1261 				container = le32_to_cpu(
1262 					((__le32 *)aifcmd->data)[2]);
1263 				if ((container >> 28)) {
1264 					container = (u32)-1;
1265 					break;
1266 				}
1267 				channel = (container >> 24) & 0xF;
1268 				if (channel >= dev->maximum_num_channels) {
1269 					container = (u32)-1;
1270 					break;
1271 				}
1272 				id = container & 0xFFFF;
1273 				lun = (container >> 16) & 0xFF;
1274 				container = (u32)-1;
1275 				if (id >= dev->maximum_num_physicals) {
1276 					/* legacy dev_t ? */
1277 					if ((0x2000 <= id) || lun || channel ||
1278 					  ((channel = (id >> 7) & 0x3F) >=
1279 					  dev->maximum_num_channels))
1280 						break;
1281 					lun = (id >> 4) & 7;
1282 					id &= 0xF;
1283 				}
1284 				channel = aac_phys_to_logical(channel);
1285 				device_config_needed =
1286 				  ((((__le32 *)aifcmd->data)[3]
1287 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288 				    (((__le32 *)aifcmd->data)[3]
1289 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290 				  ADD : DELETE;
1291 				break;
1292 			}
1293 			break;
1294 		case AifBuManagerEvent:
1295 			aac_handle_aif_bu(dev, aifcmd);
1296 			break;
1297 		}
1298 
1299 		/*
1300 		 *	If we are waiting on something and this happens to be
1301 		 * that thing then set the re-configure flag.
1302 		 */
1303 		if (container != (u32)-1) {
1304 			if (container >= dev->maximum_num_containers)
1305 				break;
1306 			if ((dev->fsa_dev[container].config_waiting_on ==
1307 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309 				dev->fsa_dev[container].config_waiting_on = 0;
1310 		} else for (container = 0;
1311 		    container < dev->maximum_num_containers; ++container) {
1312 			if ((dev->fsa_dev[container].config_waiting_on ==
1313 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315 				dev->fsa_dev[container].config_waiting_on = 0;
1316 		}
1317 		break;
1318 
1319 	case AifCmdJobProgress:
1320 		/*
1321 		 *	These are job progress AIF's. When a Clear is being
1322 		 * done on a container it is initially created then hidden from
1323 		 * the OS. When the clear completes we don't get a config
1324 		 * change so we monitor the job status complete on a clear then
1325 		 * wait for a container change.
1326 		 */
1327 
1328 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331 			for (container = 0;
1332 			    container < dev->maximum_num_containers;
1333 			    ++container) {
1334 				/*
1335 				 * Stomp on all config sequencing for all
1336 				 * containers?
1337 				 */
1338 				dev->fsa_dev[container].config_waiting_on =
1339 					AifEnContainerChange;
1340 				dev->fsa_dev[container].config_needed = ADD;
1341 				dev->fsa_dev[container].config_waiting_stamp =
1342 					jiffies;
1343 			}
1344 		}
1345 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1347 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348 			for (container = 0;
1349 			    container < dev->maximum_num_containers;
1350 			    ++container) {
1351 				/*
1352 				 * Stomp on all config sequencing for all
1353 				 * containers?
1354 				 */
1355 				dev->fsa_dev[container].config_waiting_on =
1356 					AifEnContainerChange;
1357 				dev->fsa_dev[container].config_needed = DELETE;
1358 				dev->fsa_dev[container].config_waiting_stamp =
1359 					jiffies;
1360 			}
1361 		}
1362 		break;
1363 	}
1364 
1365 	container = 0;
1366 retry_next:
1367 	if (device_config_needed == NOTHING) {
1368 		for (; container < dev->maximum_num_containers; ++container) {
1369 			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370 			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1371 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372 				device_config_needed =
1373 					dev->fsa_dev[container].config_needed;
1374 				dev->fsa_dev[container].config_needed = NOTHING;
1375 				channel = CONTAINER_TO_CHANNEL(container);
1376 				id = CONTAINER_TO_ID(container);
1377 				lun = CONTAINER_TO_LUN(container);
1378 				break;
1379 			}
1380 		}
1381 	}
1382 	if (device_config_needed == NOTHING)
1383 		return;
1384 
1385 	/*
1386 	 *	If we decided that a re-configuration needs to be done,
1387 	 * schedule it here on the way out the door, please close the door
1388 	 * behind you.
1389 	 */
1390 
1391 	/*
1392 	 *	Find the scsi_device associated with the SCSI address,
1393 	 * and mark it as changed, invalidating the cache. This deals
1394 	 * with changes to existing device IDs.
1395 	 */
1396 
1397 	if (!dev || !dev->scsi_host_ptr)
1398 		return;
1399 	/*
1400 	 * force reload of disk info via aac_probe_container
1401 	 */
1402 	if ((channel == CONTAINER_CHANNEL) &&
1403 	  (device_config_needed != NOTHING)) {
1404 		if (dev->fsa_dev[container].valid == 1)
1405 			dev->fsa_dev[container].valid = 2;
1406 		aac_probe_container(dev, container);
1407 	}
1408 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409 	if (device) {
1410 		switch (device_config_needed) {
1411 		case DELETE:
1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413 			scsi_remove_device(device);
1414 #else
1415 			if (scsi_device_online(device)) {
1416 				scsi_device_set_state(device, SDEV_OFFLINE);
1417 				sdev_printk(KERN_INFO, device,
1418 					"Device offlined - %s\n",
1419 					(channel == CONTAINER_CHANNEL) ?
1420 						"array deleted" :
1421 						"enclosure services event");
1422 			}
1423 #endif
1424 			break;
1425 		case ADD:
1426 			if (!scsi_device_online(device)) {
1427 				sdev_printk(KERN_INFO, device,
1428 					"Device online - %s\n",
1429 					(channel == CONTAINER_CHANNEL) ?
1430 						"array created" :
1431 						"enclosure services event");
1432 				scsi_device_set_state(device, SDEV_RUNNING);
1433 			}
1434 			fallthrough;
1435 		case CHANGE:
1436 			if ((channel == CONTAINER_CHANNEL)
1437 			 && (!dev->fsa_dev[container].valid)) {
1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439 				scsi_remove_device(device);
1440 #else
1441 				if (!scsi_device_online(device))
1442 					break;
1443 				scsi_device_set_state(device, SDEV_OFFLINE);
1444 				sdev_printk(KERN_INFO, device,
1445 					"Device offlined - %s\n",
1446 					"array failed");
1447 #endif
1448 				break;
1449 			}
1450 			scsi_rescan_device(&device->sdev_gendev);
1451 
1452 		default:
1453 			break;
1454 		}
1455 		scsi_device_put(device);
1456 		device_config_needed = NOTHING;
1457 	}
1458 	if (device_config_needed == ADD)
1459 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1460 	if (channel == CONTAINER_CHANNEL) {
1461 		container++;
1462 		device_config_needed = NOTHING;
1463 		goto retry_next;
1464 	}
1465 }
1466 
1467 static void aac_schedule_bus_scan(struct aac_dev *aac)
1468 {
1469 	if (aac->sa_firmware)
1470 		aac_schedule_safw_scan_worker(aac);
1471 	else
1472 		aac_schedule_src_reinit_aif_worker(aac);
1473 }
1474 
1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1476 {
1477 	int index, quirks;
1478 	int retval;
1479 	struct Scsi_Host *host = aac->scsi_host_ptr;
1480 	int jafo = 0;
1481 	int bled;
1482 	u64 dmamask;
1483 	int num_of_fibs = 0;
1484 
1485 	/*
1486 	 * Assumptions:
1487 	 *	- host is locked, unless called by the aacraid thread.
1488 	 *	  (a matter of convenience, due to legacy issues surrounding
1489 	 *	  eh_host_adapter_reset).
1490 	 *	- in_reset is asserted, so no new i/o is getting to the
1491 	 *	  card.
1492 	 *	- The card is dead, or will be very shortly ;-/ so no new
1493 	 *	  commands are completing in the interrupt service.
1494 	 */
1495 	aac_adapter_disable_int(aac);
1496 	if (aac->thread && aac->thread->pid != current->pid) {
1497 		spin_unlock_irq(host->host_lock);
1498 		kthread_stop(aac->thread);
1499 		aac->thread = NULL;
1500 		jafo = 1;
1501 	}
1502 
1503 	/*
1504 	 *	If a positive health, means in a known DEAD PANIC
1505 	 * state and the adapter could be reset to `try again'.
1506 	 */
1507 	bled = forced ? 0 : aac_adapter_check_health(aac);
1508 	retval = aac_adapter_restart(aac, bled, reset_type);
1509 
1510 	if (retval)
1511 		goto out;
1512 
1513 	/*
1514 	 *	Loop through the fibs, close the synchronous FIBS
1515 	 */
1516 	retval = 1;
1517 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1518 	for (index = 0; index <  num_of_fibs; index++) {
1519 
1520 		struct fib *fib = &aac->fibs[index];
1521 		__le32 XferState = fib->hw_fib_va->header.XferState;
1522 		bool is_response_expected = false;
1523 
1524 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1525 		   (XferState & cpu_to_le32(ResponseExpected)))
1526 			is_response_expected = true;
1527 
1528 		if (is_response_expected
1529 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1530 			unsigned long flagv;
1531 			spin_lock_irqsave(&fib->event_lock, flagv);
1532 			complete(&fib->event_wait);
1533 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1534 			schedule();
1535 			retval = 0;
1536 		}
1537 	}
1538 	/* Give some extra time for ioctls to complete. */
1539 	if (retval == 0)
1540 		ssleep(2);
1541 	index = aac->cardtype;
1542 
1543 	/*
1544 	 * Re-initialize the adapter, first free resources, then carefully
1545 	 * apply the initialization sequence to come back again. Only risk
1546 	 * is a change in Firmware dropping cache, it is assumed the caller
1547 	 * will ensure that i/o is queisced and the card is flushed in that
1548 	 * case.
1549 	 */
1550 	aac_free_irq(aac);
1551 	aac_fib_map_free(aac);
1552 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1553 			  aac->comm_phys);
1554 	aac_adapter_ioremap(aac, 0);
1555 	aac->comm_addr = NULL;
1556 	aac->comm_phys = 0;
1557 	kfree(aac->queues);
1558 	aac->queues = NULL;
1559 	kfree(aac->fsa_dev);
1560 	aac->fsa_dev = NULL;
1561 
1562 	dmamask = DMA_BIT_MASK(32);
1563 	quirks = aac_get_driver_ident(index)->quirks;
1564 	if (quirks & AAC_QUIRK_31BIT)
1565 		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1566 	else if (!(quirks & AAC_QUIRK_SRC))
1567 		retval = dma_set_mask(&aac->pdev->dev, dmamask);
1568 	else
1569 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1570 
1571 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1572 		dmamask = DMA_BIT_MASK(31);
1573 		retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask);
1574 	}
1575 
1576 	if (retval)
1577 		goto out;
1578 
1579 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1580 		goto out;
1581 
1582 	if (jafo) {
1583 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1584 					  aac->name);
1585 		if (IS_ERR(aac->thread)) {
1586 			retval = PTR_ERR(aac->thread);
1587 			aac->thread = NULL;
1588 			goto out;
1589 		}
1590 	}
1591 	(void)aac_get_adapter_info(aac);
1592 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1593 		host->sg_tablesize = 34;
1594 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1595 	}
1596 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1597 		host->sg_tablesize = 17;
1598 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1599 	}
1600 	aac_get_config_status(aac, 1);
1601 	aac_get_containers(aac);
1602 	/*
1603 	 * This is where the assumption that the Adapter is quiesced
1604 	 * is important.
1605 	 */
1606 	scsi_host_complete_all_commands(host, DID_RESET);
1607 
1608 	retval = 0;
1609 out:
1610 	aac->in_reset = 0;
1611 
1612 	/*
1613 	 * Issue bus rescan to catch any configuration that might have
1614 	 * occurred
1615 	 */
1616 	if (!retval && !is_kdump_kernel()) {
1617 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1618 		aac_schedule_bus_scan(aac);
1619 	}
1620 
1621 	if (jafo) {
1622 		spin_lock_irq(host->host_lock);
1623 	}
1624 	return retval;
1625 }
1626 
1627 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1628 {
1629 	unsigned long flagv = 0;
1630 	int retval, unblock_retval;
1631 	struct Scsi_Host *host = aac->scsi_host_ptr;
1632 	int bled;
1633 
1634 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1635 		return -EBUSY;
1636 
1637 	if (aac->in_reset) {
1638 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1639 		return -EBUSY;
1640 	}
1641 	aac->in_reset = 1;
1642 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1643 
1644 	/*
1645 	 * Wait for all commands to complete to this specific
1646 	 * target (block maximum 60 seconds). Although not necessary,
1647 	 * it does make us a good storage citizen.
1648 	 */
1649 	scsi_host_block(host);
1650 
1651 	/* Quiesce build, flush cache, write through mode */
1652 	if (forced < 2)
1653 		aac_send_shutdown(aac);
1654 	spin_lock_irqsave(host->host_lock, flagv);
1655 	bled = forced ? forced :
1656 			(aac_check_reset != 0 && aac_check_reset != 1);
1657 	retval = _aac_reset_adapter(aac, bled, reset_type);
1658 	spin_unlock_irqrestore(host->host_lock, flagv);
1659 
1660 	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1661 	if (!retval)
1662 		retval = unblock_retval;
1663 	if ((forced < 2) && (retval == -ENODEV)) {
1664 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1665 		struct fib * fibctx = aac_fib_alloc(aac);
1666 		if (fibctx) {
1667 			struct aac_pause *cmd;
1668 			int status;
1669 
1670 			aac_fib_init(fibctx);
1671 
1672 			cmd = (struct aac_pause *) fib_data(fibctx);
1673 
1674 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1675 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1676 			cmd->timeout = cpu_to_le32(1);
1677 			cmd->min = cpu_to_le32(1);
1678 			cmd->noRescan = cpu_to_le32(1);
1679 			cmd->count = cpu_to_le32(0);
1680 
1681 			status = aac_fib_send(ContainerCommand,
1682 			  fibctx,
1683 			  sizeof(struct aac_pause),
1684 			  FsaNormal,
1685 			  -2 /* Timeout silently */, 1,
1686 			  NULL, NULL);
1687 
1688 			if (status >= 0)
1689 				aac_fib_complete(fibctx);
1690 			/* FIB should be freed only after getting
1691 			 * the response from the F/W */
1692 			if (status != -ERESTARTSYS)
1693 				aac_fib_free(fibctx);
1694 		}
1695 	}
1696 
1697 	return retval;
1698 }
1699 
1700 int aac_check_health(struct aac_dev * aac)
1701 {
1702 	int BlinkLED;
1703 	unsigned long time_now, flagv = 0;
1704 	struct list_head * entry;
1705 
1706 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1707 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1708 		return 0;
1709 
1710 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1711 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1712 		return 0; /* OK */
1713 	}
1714 
1715 	aac->in_reset = 1;
1716 
1717 	/* Fake up an AIF:
1718 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1719 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1720 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1721 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1722 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1723 	 *	aac.aifcmd.data[3] = BlinkLED
1724 	 */
1725 
1726 	time_now = jiffies/HZ;
1727 	entry = aac->fib_list.next;
1728 
1729 	/*
1730 	 * For each Context that is on the
1731 	 * fibctxList, make a copy of the
1732 	 * fib, and then set the event to wake up the
1733 	 * thread that is waiting for it.
1734 	 */
1735 	while (entry != &aac->fib_list) {
1736 		/*
1737 		 * Extract the fibctx
1738 		 */
1739 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1740 		struct hw_fib * hw_fib;
1741 		struct fib * fib;
1742 		/*
1743 		 * Check if the queue is getting
1744 		 * backlogged
1745 		 */
1746 		if (fibctx->count > 20) {
1747 			/*
1748 			 * It's *not* jiffies folks,
1749 			 * but jiffies / HZ, so do not
1750 			 * panic ...
1751 			 */
1752 			u32 time_last = fibctx->jiffies;
1753 			/*
1754 			 * Has it been > 2 minutes
1755 			 * since the last read off
1756 			 * the queue?
1757 			 */
1758 			if ((time_now - time_last) > aif_timeout) {
1759 				entry = entry->next;
1760 				aac_close_fib_context(aac, fibctx);
1761 				continue;
1762 			}
1763 		}
1764 		/*
1765 		 * Warning: no sleep allowed while
1766 		 * holding spinlock
1767 		 */
1768 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1769 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1770 		if (fib && hw_fib) {
1771 			struct aac_aifcmd * aif;
1772 
1773 			fib->hw_fib_va = hw_fib;
1774 			fib->dev = aac;
1775 			aac_fib_init(fib);
1776 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1777 			fib->size = sizeof (struct fib);
1778 			fib->data = hw_fib->data;
1779 			aif = (struct aac_aifcmd *)hw_fib->data;
1780 			aif->command = cpu_to_le32(AifCmdEventNotify);
1781 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1782 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1783 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1784 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1785 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1786 
1787 			/*
1788 			 * Put the FIB onto the
1789 			 * fibctx's fibs
1790 			 */
1791 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1792 			fibctx->count++;
1793 			/*
1794 			 * Set the event to wake up the
1795 			 * thread that will waiting.
1796 			 */
1797 			complete(&fibctx->completion);
1798 		} else {
1799 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1800 			kfree(fib);
1801 			kfree(hw_fib);
1802 		}
1803 		entry = entry->next;
1804 	}
1805 
1806 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1807 
1808 	if (BlinkLED < 0) {
1809 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1810 				aac->name, BlinkLED);
1811 		goto out;
1812 	}
1813 
1814 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1815 
1816 out:
1817 	aac->in_reset = 0;
1818 	return BlinkLED;
1819 }
1820 
1821 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1822 {
1823 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1824 }
1825 
1826 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1827 								int bus,
1828 								int target)
1829 {
1830 	if (bus != CONTAINER_CHANNEL)
1831 		bus = aac_phys_to_logical(bus);
1832 
1833 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1834 }
1835 
1836 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1837 {
1838 	if (bus != CONTAINER_CHANNEL)
1839 		bus = aac_phys_to_logical(bus);
1840 
1841 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1842 }
1843 
1844 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1845 {
1846 	if (sdev)
1847 		scsi_device_put(sdev);
1848 }
1849 
1850 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1851 {
1852 	struct scsi_device *sdev;
1853 
1854 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1855 	scsi_remove_device(sdev);
1856 	aac_put_safw_scsi_device(sdev);
1857 }
1858 
1859 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1860 	int bus, int target)
1861 {
1862 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1863 }
1864 
1865 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1866 {
1867 	if (is_safw_raid_volume(dev, bus, target))
1868 		return dev->fsa_dev[target].valid;
1869 	else
1870 		return aac_is_safw_scan_count_equal(dev, bus, target);
1871 }
1872 
1873 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1874 {
1875 	int is_exposed = 0;
1876 	struct scsi_device *sdev;
1877 
1878 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1879 	if (sdev)
1880 		is_exposed = 1;
1881 	aac_put_safw_scsi_device(sdev);
1882 
1883 	return is_exposed;
1884 }
1885 
1886 static int aac_update_safw_host_devices(struct aac_dev *dev)
1887 {
1888 	int i;
1889 	int bus;
1890 	int target;
1891 	int is_exposed = 0;
1892 	int rcode = 0;
1893 
1894 	rcode = aac_setup_safw_adapter(dev);
1895 	if (unlikely(rcode < 0)) {
1896 		goto out;
1897 	}
1898 
1899 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1900 
1901 		bus = get_bus_number(i);
1902 		target = get_target_number(i);
1903 
1904 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1905 
1906 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1907 			aac_add_safw_device(dev, bus, target);
1908 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1909 								is_exposed)
1910 			aac_remove_safw_device(dev, bus, target);
1911 	}
1912 out:
1913 	return rcode;
1914 }
1915 
1916 static int aac_scan_safw_host(struct aac_dev *dev)
1917 {
1918 	int rcode = 0;
1919 
1920 	rcode = aac_update_safw_host_devices(dev);
1921 	if (rcode)
1922 		aac_schedule_safw_scan_worker(dev);
1923 
1924 	return rcode;
1925 }
1926 
1927 int aac_scan_host(struct aac_dev *dev)
1928 {
1929 	int rcode = 0;
1930 
1931 	mutex_lock(&dev->scan_mutex);
1932 	if (dev->sa_firmware)
1933 		rcode = aac_scan_safw_host(dev);
1934 	else
1935 		scsi_scan_host(dev->scsi_host_ptr);
1936 	mutex_unlock(&dev->scan_mutex);
1937 
1938 	return rcode;
1939 }
1940 
1941 void aac_src_reinit_aif_worker(struct work_struct *work)
1942 {
1943 	struct aac_dev *dev = container_of(to_delayed_work(work),
1944 				struct aac_dev, src_reinit_aif_worker);
1945 
1946 	wait_event(dev->scsi_host_ptr->host_wait,
1947 			!scsi_host_in_recovery(dev->scsi_host_ptr));
1948 	aac_reinit_aif(dev, dev->cardtype);
1949 }
1950 
1951 /**
1952  *	aac_handle_sa_aif	Handle a message from the firmware
1953  *	@dev: Which adapter this fib is from
1954  *	@fibptr: Pointer to fibptr from adapter
1955  *
1956  *	This routine handles a driver notify fib from the adapter and
1957  *	dispatches it to the appropriate routine for handling.
1958  */
1959 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1960 {
1961 	int i;
1962 	u32 events = 0;
1963 
1964 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1965 		events = SA_AIF_HOTPLUG;
1966 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1967 		events = SA_AIF_HARDWARE;
1968 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1969 		events = SA_AIF_PDEV_CHANGE;
1970 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1971 		events = SA_AIF_LDEV_CHANGE;
1972 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1973 		events = SA_AIF_BPSTAT_CHANGE;
1974 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1975 		events = SA_AIF_BPCFG_CHANGE;
1976 
1977 	switch (events) {
1978 	case SA_AIF_HOTPLUG:
1979 	case SA_AIF_HARDWARE:
1980 	case SA_AIF_PDEV_CHANGE:
1981 	case SA_AIF_LDEV_CHANGE:
1982 	case SA_AIF_BPCFG_CHANGE:
1983 
1984 		aac_scan_host(dev);
1985 
1986 		break;
1987 
1988 	case SA_AIF_BPSTAT_CHANGE:
1989 		/* currently do nothing */
1990 		break;
1991 	}
1992 
1993 	for (i = 1; i <= 10; ++i) {
1994 		events = src_readl(dev, MUnit.IDR);
1995 		if (events & (1<<23)) {
1996 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1997 				i, 10);
1998 			ssleep(1);
1999 		}
2000 	}
2001 }
2002 
2003 static int get_fib_count(struct aac_dev *dev)
2004 {
2005 	unsigned int num = 0;
2006 	struct list_head *entry;
2007 	unsigned long flagv;
2008 
2009 	/*
2010 	 * Warning: no sleep allowed while
2011 	 * holding spinlock. We take the estimate
2012 	 * and pre-allocate a set of fibs outside the
2013 	 * lock.
2014 	 */
2015 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2016 			/ sizeof(struct hw_fib); /* some extra */
2017 	spin_lock_irqsave(&dev->fib_lock, flagv);
2018 	entry = dev->fib_list.next;
2019 	while (entry != &dev->fib_list) {
2020 		entry = entry->next;
2021 		++num;
2022 	}
2023 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2024 
2025 	return num;
2026 }
2027 
2028 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2029 						struct fib **fib_pool,
2030 						unsigned int num)
2031 {
2032 	struct hw_fib **hw_fib_p;
2033 	struct fib **fib_p;
2034 
2035 	hw_fib_p = hw_fib_pool;
2036 	fib_p = fib_pool;
2037 	while (hw_fib_p < &hw_fib_pool[num]) {
2038 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2039 		if (!(*(hw_fib_p++))) {
2040 			--hw_fib_p;
2041 			break;
2042 		}
2043 
2044 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2045 		if (!(*(fib_p++))) {
2046 			kfree(*(--hw_fib_p));
2047 			break;
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * Get the actual number of allocated fibs
2053 	 */
2054 	num = hw_fib_p - hw_fib_pool;
2055 	return num;
2056 }
2057 
2058 static void wakeup_fibctx_threads(struct aac_dev *dev,
2059 						struct hw_fib **hw_fib_pool,
2060 						struct fib **fib_pool,
2061 						struct fib *fib,
2062 						struct hw_fib *hw_fib,
2063 						unsigned int num)
2064 {
2065 	unsigned long flagv;
2066 	struct list_head *entry;
2067 	struct hw_fib **hw_fib_p;
2068 	struct fib **fib_p;
2069 	u32 time_now, time_last;
2070 	struct hw_fib *hw_newfib;
2071 	struct fib *newfib;
2072 	struct aac_fib_context *fibctx;
2073 
2074 	time_now = jiffies/HZ;
2075 	spin_lock_irqsave(&dev->fib_lock, flagv);
2076 	entry = dev->fib_list.next;
2077 	/*
2078 	 * For each Context that is on the
2079 	 * fibctxList, make a copy of the
2080 	 * fib, and then set the event to wake up the
2081 	 * thread that is waiting for it.
2082 	 */
2083 
2084 	hw_fib_p = hw_fib_pool;
2085 	fib_p = fib_pool;
2086 	while (entry != &dev->fib_list) {
2087 		/*
2088 		 * Extract the fibctx
2089 		 */
2090 		fibctx = list_entry(entry, struct aac_fib_context,
2091 				next);
2092 		/*
2093 		 * Check if the queue is getting
2094 		 * backlogged
2095 		 */
2096 		if (fibctx->count > 20) {
2097 			/*
2098 			 * It's *not* jiffies folks,
2099 			 * but jiffies / HZ so do not
2100 			 * panic ...
2101 			 */
2102 			time_last = fibctx->jiffies;
2103 			/*
2104 			 * Has it been > 2 minutes
2105 			 * since the last read off
2106 			 * the queue?
2107 			 */
2108 			if ((time_now - time_last) > aif_timeout) {
2109 				entry = entry->next;
2110 				aac_close_fib_context(dev, fibctx);
2111 				continue;
2112 			}
2113 		}
2114 		/*
2115 		 * Warning: no sleep allowed while
2116 		 * holding spinlock
2117 		 */
2118 		if (hw_fib_p >= &hw_fib_pool[num]) {
2119 			pr_warn("aifd: didn't allocate NewFib\n");
2120 			entry = entry->next;
2121 			continue;
2122 		}
2123 
2124 		hw_newfib = *hw_fib_p;
2125 		*(hw_fib_p++) = NULL;
2126 		newfib = *fib_p;
2127 		*(fib_p++) = NULL;
2128 		/*
2129 		 * Make the copy of the FIB
2130 		 */
2131 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2132 		memcpy(newfib, fib, sizeof(struct fib));
2133 		newfib->hw_fib_va = hw_newfib;
2134 		/*
2135 		 * Put the FIB onto the
2136 		 * fibctx's fibs
2137 		 */
2138 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2139 		fibctx->count++;
2140 		/*
2141 		 * Set the event to wake up the
2142 		 * thread that is waiting.
2143 		 */
2144 		complete(&fibctx->completion);
2145 
2146 		entry = entry->next;
2147 	}
2148 	/*
2149 	 *	Set the status of this FIB
2150 	 */
2151 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2152 	aac_fib_adapter_complete(fib, sizeof(u32));
2153 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2154 
2155 }
2156 
2157 static void aac_process_events(struct aac_dev *dev)
2158 {
2159 	struct hw_fib *hw_fib;
2160 	struct fib *fib;
2161 	unsigned long flags;
2162 	spinlock_t *t_lock;
2163 
2164 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2165 	spin_lock_irqsave(t_lock, flags);
2166 
2167 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2168 		struct list_head *entry;
2169 		struct aac_aifcmd *aifcmd;
2170 		unsigned int  num;
2171 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2172 		struct fib **fib_pool, **fib_p;
2173 
2174 		set_current_state(TASK_RUNNING);
2175 
2176 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2177 		list_del(entry);
2178 
2179 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2180 		spin_unlock_irqrestore(t_lock, flags);
2181 
2182 		fib = list_entry(entry, struct fib, fiblink);
2183 		hw_fib = fib->hw_fib_va;
2184 		if (dev->sa_firmware) {
2185 			/* Thor AIF */
2186 			aac_handle_sa_aif(dev, fib);
2187 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2188 			goto free_fib;
2189 		}
2190 		/*
2191 		 *	We will process the FIB here or pass it to a
2192 		 *	worker thread that is TBD. We Really can't
2193 		 *	do anything at this point since we don't have
2194 		 *	anything defined for this thread to do.
2195 		 */
2196 		memset(fib, 0, sizeof(struct fib));
2197 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2198 		fib->size = sizeof(struct fib);
2199 		fib->hw_fib_va = hw_fib;
2200 		fib->data = hw_fib->data;
2201 		fib->dev = dev;
2202 		/*
2203 		 *	We only handle AifRequest fibs from the adapter.
2204 		 */
2205 
2206 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2207 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2208 			/* Handle Driver Notify Events */
2209 			aac_handle_aif(dev, fib);
2210 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2211 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2212 			goto free_fib;
2213 		}
2214 		/*
2215 		 * The u32 here is important and intended. We are using
2216 		 * 32bit wrapping time to fit the adapter field
2217 		 */
2218 
2219 		/* Sniff events */
2220 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2221 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2222 			aac_handle_aif(dev, fib);
2223 		}
2224 
2225 		/*
2226 		 * get number of fibs to process
2227 		 */
2228 		num = get_fib_count(dev);
2229 		if (!num)
2230 			goto free_fib;
2231 
2232 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2233 						GFP_KERNEL);
2234 		if (!hw_fib_pool)
2235 			goto free_fib;
2236 
2237 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2238 		if (!fib_pool)
2239 			goto free_hw_fib_pool;
2240 
2241 		/*
2242 		 * Fill up fib pointer pools with actual fibs
2243 		 * and hw_fibs
2244 		 */
2245 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2246 		if (!num)
2247 			goto free_mem;
2248 
2249 		/*
2250 		 * wakeup the thread that is waiting for
2251 		 * the response from fw (ioctl)
2252 		 */
2253 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2254 							    fib, hw_fib, num);
2255 
2256 free_mem:
2257 		/* Free up the remaining resources */
2258 		hw_fib_p = hw_fib_pool;
2259 		fib_p = fib_pool;
2260 		while (hw_fib_p < &hw_fib_pool[num]) {
2261 			kfree(*hw_fib_p);
2262 			kfree(*fib_p);
2263 			++fib_p;
2264 			++hw_fib_p;
2265 		}
2266 		kfree(fib_pool);
2267 free_hw_fib_pool:
2268 		kfree(hw_fib_pool);
2269 free_fib:
2270 		kfree(fib);
2271 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2272 		spin_lock_irqsave(t_lock, flags);
2273 	}
2274 	/*
2275 	 *	There are no more AIF's
2276 	 */
2277 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2278 	spin_unlock_irqrestore(t_lock, flags);
2279 }
2280 
2281 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2282 							u32 datasize)
2283 {
2284 	struct aac_srb *srbcmd;
2285 	struct sgmap64 *sg64;
2286 	dma_addr_t addr;
2287 	char *dma_buf;
2288 	struct fib *fibptr;
2289 	int ret = -ENOMEM;
2290 	u32 vbus, vid;
2291 
2292 	fibptr = aac_fib_alloc(dev);
2293 	if (!fibptr)
2294 		goto out;
2295 
2296 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2297 				     GFP_KERNEL);
2298 	if (!dma_buf)
2299 		goto fib_free_out;
2300 
2301 	aac_fib_init(fibptr);
2302 
2303 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2304 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2305 
2306 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2307 
2308 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2309 	srbcmd->channel = cpu_to_le32(vbus);
2310 	srbcmd->id = cpu_to_le32(vid);
2311 	srbcmd->lun = 0;
2312 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2313 	srbcmd->timeout = cpu_to_le32(10);
2314 	srbcmd->retry_limit = 0;
2315 	srbcmd->cdb_size = cpu_to_le32(12);
2316 	srbcmd->count = cpu_to_le32(datasize);
2317 
2318 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2319 	srbcmd->cdb[0] = BMIC_OUT;
2320 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2321 	memcpy(dma_buf, (char *)wellness_str, datasize);
2322 
2323 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2324 	sg64->count = cpu_to_le32(1);
2325 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2326 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2327 	sg64->sg[0].count = cpu_to_le32(datasize);
2328 
2329 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2330 				FsaNormal, 1, 1, NULL, NULL);
2331 
2332 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2333 
2334 	/*
2335 	 * Do not set XferState to zero unless
2336 	 * receives a response from F/W
2337 	 */
2338 	if (ret >= 0)
2339 		aac_fib_complete(fibptr);
2340 
2341 	/*
2342 	 * FIB should be freed only after
2343 	 * getting the response from the F/W
2344 	 */
2345 	if (ret != -ERESTARTSYS)
2346 		goto fib_free_out;
2347 
2348 out:
2349 	return ret;
2350 fib_free_out:
2351 	aac_fib_free(fibptr);
2352 	goto out;
2353 }
2354 
2355 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2356 {
2357 	struct tm cur_tm;
2358 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2359 	u32 datasize = sizeof(wellness_str);
2360 	time64_t local_time;
2361 	int ret = -ENODEV;
2362 
2363 	if (!dev->sa_firmware)
2364 		goto out;
2365 
2366 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2367 	time64_to_tm(local_time, 0, &cur_tm);
2368 	cur_tm.tm_mon += 1;
2369 	cur_tm.tm_year += 1900;
2370 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2371 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2372 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2373 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2374 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2375 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2376 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2377 
2378 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2379 
2380 out:
2381 	return ret;
2382 }
2383 
2384 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2385 {
2386 	int ret = -ENOMEM;
2387 	struct fib *fibptr;
2388 	__le32 *info;
2389 
2390 	fibptr = aac_fib_alloc(dev);
2391 	if (!fibptr)
2392 		goto out;
2393 
2394 	aac_fib_init(fibptr);
2395 	info = (__le32 *)fib_data(fibptr);
2396 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2397 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2398 					1, 1, NULL, NULL);
2399 
2400 	/*
2401 	 * Do not set XferState to zero unless
2402 	 * receives a response from F/W
2403 	 */
2404 	if (ret >= 0)
2405 		aac_fib_complete(fibptr);
2406 
2407 	/*
2408 	 * FIB should be freed only after
2409 	 * getting the response from the F/W
2410 	 */
2411 	if (ret != -ERESTARTSYS)
2412 		aac_fib_free(fibptr);
2413 
2414 out:
2415 	return ret;
2416 }
2417 
2418 /**
2419  *	aac_command_thread	-	command processing thread
2420  *	@data: Adapter to monitor
2421  *
2422  *	Waits on the commandready event in it's queue. When the event gets set
2423  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2424  *	until the queue is empty. When the queue is empty it will wait for
2425  *	more FIBs.
2426  */
2427 
2428 int aac_command_thread(void *data)
2429 {
2430 	struct aac_dev *dev = data;
2431 	DECLARE_WAITQUEUE(wait, current);
2432 	unsigned long next_jiffies = jiffies + HZ;
2433 	unsigned long next_check_jiffies = next_jiffies;
2434 	long difference = HZ;
2435 
2436 	/*
2437 	 *	We can only have one thread per adapter for AIF's.
2438 	 */
2439 	if (dev->aif_thread)
2440 		return -EINVAL;
2441 
2442 	/*
2443 	 *	Let the DPC know it has a place to send the AIF's to.
2444 	 */
2445 	dev->aif_thread = 1;
2446 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2447 	set_current_state(TASK_INTERRUPTIBLE);
2448 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2449 	while (1) {
2450 
2451 		aac_process_events(dev);
2452 
2453 		/*
2454 		 *	Background activity
2455 		 */
2456 		if ((time_before(next_check_jiffies,next_jiffies))
2457 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2458 			next_check_jiffies = next_jiffies;
2459 			if (aac_adapter_check_health(dev) == 0) {
2460 				difference = ((long)(unsigned)check_interval)
2461 					   * HZ;
2462 				next_check_jiffies = jiffies + difference;
2463 			} else if (!dev->queues)
2464 				break;
2465 		}
2466 		if (!time_before(next_check_jiffies,next_jiffies)
2467 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2468 			struct timespec64 now;
2469 			int ret;
2470 
2471 			/* Don't even try to talk to adapter if its sick */
2472 			ret = aac_adapter_check_health(dev);
2473 			if (ret || !dev->queues)
2474 				break;
2475 			next_check_jiffies = jiffies
2476 					   + ((long)(unsigned)check_interval)
2477 					   * HZ;
2478 			ktime_get_real_ts64(&now);
2479 
2480 			/* Synchronize our watches */
2481 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2482 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2483 				difference = HZ + HZ / 2 -
2484 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2485 			else {
2486 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2487 					++now.tv_sec;
2488 
2489 				if (dev->sa_firmware)
2490 					ret =
2491 					aac_send_safw_hostttime(dev, &now);
2492 				else
2493 					ret = aac_send_hosttime(dev, &now);
2494 
2495 				difference = (long)(unsigned)update_interval*HZ;
2496 			}
2497 			next_jiffies = jiffies + difference;
2498 			if (time_before(next_check_jiffies,next_jiffies))
2499 				difference = next_check_jiffies - jiffies;
2500 		}
2501 		if (difference <= 0)
2502 			difference = 1;
2503 		set_current_state(TASK_INTERRUPTIBLE);
2504 
2505 		if (kthread_should_stop())
2506 			break;
2507 
2508 		/*
2509 		 * we probably want usleep_range() here instead of the
2510 		 * jiffies computation
2511 		 */
2512 		schedule_timeout(difference);
2513 
2514 		if (kthread_should_stop())
2515 			break;
2516 	}
2517 	if (dev->queues)
2518 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2519 	dev->aif_thread = 0;
2520 	return 0;
2521 }
2522 
2523 int aac_acquire_irq(struct aac_dev *dev)
2524 {
2525 	int i;
2526 	int j;
2527 	int ret = 0;
2528 
2529 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2530 		for (i = 0; i < dev->max_msix; i++) {
2531 			dev->aac_msix[i].vector_no = i;
2532 			dev->aac_msix[i].dev = dev;
2533 			if (request_irq(pci_irq_vector(dev->pdev, i),
2534 					dev->a_ops.adapter_intr,
2535 					0, "aacraid", &(dev->aac_msix[i]))) {
2536 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2537 						dev->name, dev->id, i);
2538 				for (j = 0 ; j < i ; j++)
2539 					free_irq(pci_irq_vector(dev->pdev, j),
2540 						 &(dev->aac_msix[j]));
2541 				pci_disable_msix(dev->pdev);
2542 				ret = -1;
2543 			}
2544 		}
2545 	} else {
2546 		dev->aac_msix[0].vector_no = 0;
2547 		dev->aac_msix[0].dev = dev;
2548 
2549 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2550 			IRQF_SHARED, "aacraid",
2551 			&(dev->aac_msix[0])) < 0) {
2552 			if (dev->msi)
2553 				pci_disable_msi(dev->pdev);
2554 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2555 					dev->name, dev->id);
2556 			ret = -1;
2557 		}
2558 	}
2559 	return ret;
2560 }
2561 
2562 void aac_free_irq(struct aac_dev *dev)
2563 {
2564 	int i;
2565 
2566 	if (aac_is_src(dev)) {
2567 		if (dev->max_msix > 1) {
2568 			for (i = 0; i < dev->max_msix; i++)
2569 				free_irq(pci_irq_vector(dev->pdev, i),
2570 					 &(dev->aac_msix[i]));
2571 		} else {
2572 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2573 		}
2574 	} else {
2575 		free_irq(dev->pdev->irq, dev);
2576 	}
2577 	if (dev->msi)
2578 		pci_disable_msi(dev->pdev);
2579 	else if (dev->max_msix > 1)
2580 		pci_disable_msix(dev->pdev);
2581 }
2582