xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 06d5d6b7f9948a89543e1160ef852d57892c750d)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52 
53 #include "aacraid.h"
54 
55 /**
56  *	fib_map_alloc		-	allocate the fib objects
57  *	@dev: Adapter to allocate for
58  *
59  *	Allocate and map the shared PCI space for the FIB blocks used to
60  *	talk to the Adaptec firmware.
61  */
62 
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67 	else
68 		dev->max_cmd_size = dev->max_fib_size;
69 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71 	} else {
72 		dev->max_cmd_size = dev->max_fib_size;
73 	}
74 
75 	dprintk((KERN_INFO
76 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82 		&dev->hw_fib_pa, GFP_KERNEL);
83 	if (dev->hw_fib_va == NULL)
84 		return -ENOMEM;
85 	return 0;
86 }
87 
88 /**
89  *	aac_fib_map_free		-	free the fib objects
90  *	@dev: Adapter to free
91  *
92  *	Free the PCI mappings and the memory allocated for FIB blocks
93  *	on this adapter.
94  */
95 
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98 	size_t alloc_size;
99 	size_t fib_size;
100 	int num_fibs;
101 
102 	if(!dev->hw_fib_va || !dev->max_cmd_size)
103 		return;
104 
105 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108 
109 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110 			  dev->hw_fib_pa);
111 
112 	dev->hw_fib_va = NULL;
113 	dev->hw_fib_pa = 0;
114 }
115 
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118 	u32 i = 0;
119 	u32 vector = 1;
120 	struct fib *fibptr = NULL;
121 
122 	for (i = 0, fibptr = &dev->fibs[i];
123 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124 		i++, fibptr++) {
125 		if ((dev->max_msix == 1) ||
126 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127 			- dev->vector_cap))) {
128 			fibptr->vector_no = 0;
129 		} else {
130 			fibptr->vector_no = vector;
131 			vector++;
132 			if (vector == dev->max_msix)
133 				vector = 1;
134 		}
135 	}
136 }
137 
138 /**
139  *	aac_fib_setup	-	setup the fibs
140  *	@dev: Adapter to set up
141  *
142  *	Allocate the PCI space for the fibs, map it and then initialise the
143  *	fib area, the unmapped fib data and also the free list
144  */
145 
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148 	struct fib *fibptr;
149 	struct hw_fib *hw_fib;
150 	dma_addr_t hw_fib_pa;
151 	int i;
152 	u32 max_cmds;
153 
154 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
155 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160 	}
161 	if (i<0)
162 		return -ENOMEM;
163 
164 	memset(dev->hw_fib_va, 0,
165 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167 
168 	/* 32 byte alignment for PMC */
169 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171 					(hw_fib_pa - dev->hw_fib_pa));
172 
173 	/* add Xport header */
174 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175 		sizeof(struct aac_fib_xporthdr));
176 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177 
178 	/*
179 	 *	Initialise the fibs
180 	 */
181 	for (i = 0, fibptr = &dev->fibs[i];
182 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183 		i++, fibptr++)
184 	{
185 		fibptr->flags = 0;
186 		fibptr->size = sizeof(struct fib);
187 		fibptr->dev = dev;
188 		fibptr->hw_fib_va = hw_fib;
189 		fibptr->data = (void *) fibptr->hw_fib_va->data;
190 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
191 		init_completion(&fibptr->event_wait);
192 		spin_lock_init(&fibptr->event_lock);
193 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194 		hw_fib->header.SenderSize =
195 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
196 		fibptr->hw_fib_pa = hw_fib_pa;
197 		fibptr->hw_sgl_pa = hw_fib_pa +
198 			offsetof(struct aac_hba_cmd_req, sge[2]);
199 		/*
200 		 * one element is for the ptr to the separate sg list,
201 		 * second element for 32 byte alignment
202 		 */
203 		fibptr->hw_error_pa = hw_fib_pa +
204 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205 
206 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208 		hw_fib_pa = hw_fib_pa +
209 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210 	}
211 
212 	/*
213 	 *Assign vector numbers to fibs
214 	 */
215 	aac_fib_vector_assign(dev);
216 
217 	/*
218 	 *	Add the fib chain to the free list
219 	 */
220 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221 	/*
222 	*	Set 8 fibs aside for management tools
223 	*/
224 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225 	return 0;
226 }
227 
228 /**
229  *	aac_fib_alloc_tag-allocate a fib using tags
230  *	@dev: Adapter to allocate the fib for
231  *
232  *	Allocate a fib from the adapter fib pool using tags
233  *	from the blk layer.
234  */
235 
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238 	struct fib *fibptr;
239 
240 	fibptr = &dev->fibs[scmd->request->tag];
241 	/*
242 	 *	Null out fields that depend on being zero at the start of
243 	 *	each I/O
244 	 */
245 	fibptr->hw_fib_va->header.XferState = 0;
246 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247 	fibptr->callback_data = NULL;
248 	fibptr->callback = NULL;
249 
250 	return fibptr;
251 }
252 
253 /**
254  *	aac_fib_alloc	-	allocate a fib
255  *	@dev: Adapter to allocate the fib for
256  *
257  *	Allocate a fib from the adapter fib pool. If the pool is empty we
258  *	return NULL.
259  */
260 
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263 	struct fib * fibptr;
264 	unsigned long flags;
265 	spin_lock_irqsave(&dev->fib_lock, flags);
266 	fibptr = dev->free_fib;
267 	if(!fibptr){
268 		spin_unlock_irqrestore(&dev->fib_lock, flags);
269 		return fibptr;
270 	}
271 	dev->free_fib = fibptr->next;
272 	spin_unlock_irqrestore(&dev->fib_lock, flags);
273 	/*
274 	 *	Set the proper node type code and node byte size
275 	 */
276 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277 	fibptr->size = sizeof(struct fib);
278 	/*
279 	 *	Null out fields that depend on being zero at the start of
280 	 *	each I/O
281 	 */
282 	fibptr->hw_fib_va->header.XferState = 0;
283 	fibptr->flags = 0;
284 	fibptr->callback = NULL;
285 	fibptr->callback_data = NULL;
286 
287 	return fibptr;
288 }
289 
290 /**
291  *	aac_fib_free	-	free a fib
292  *	@fibptr: fib to free up
293  *
294  *	Frees up a fib and places it on the appropriate queue
295  */
296 
297 void aac_fib_free(struct fib *fibptr)
298 {
299 	unsigned long flags;
300 
301 	if (fibptr->done == 2)
302 		return;
303 
304 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306 		aac_config.fib_timeouts++;
307 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308 		fibptr->hw_fib_va->header.XferState != 0) {
309 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310 			 (void*)fibptr,
311 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312 	}
313 	fibptr->next = fibptr->dev->free_fib;
314 	fibptr->dev->free_fib = fibptr;
315 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317 
318 /**
319  *	aac_fib_init	-	initialise a fib
320  *	@fibptr: The fib to initialize
321  *
322  *	Set up the generic fib fields ready for use
323  */
324 
325 void aac_fib_init(struct fib *fibptr)
326 {
327 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
328 
329 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330 	hw_fib->header.StructType = FIB_MAGIC;
331 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336 
337 /**
338  *	fib_deallocate		-	deallocate a fib
339  *	@fibptr: fib to deallocate
340  *
341  *	Will deallocate and return to the free pool the FIB pointed to by the
342  *	caller.
343  */
344 
345 static void fib_dealloc(struct fib * fibptr)
346 {
347 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
348 	hw_fib->header.XferState = 0;
349 }
350 
351 /*
352  *	Commuication primitives define and support the queuing method we use to
353  *	support host to adapter commuication. All queue accesses happen through
354  *	these routines and are the only routines which have a knowledge of the
355  *	 how these queues are implemented.
356  */
357 
358 /**
359  *	aac_get_entry		-	get a queue entry
360  *	@dev: Adapter
361  *	@qid: Queue Number
362  *	@entry: Entry return
363  *	@index: Index return
364  *	@nonotify: notification control
365  *
366  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
367  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368  *	returned.
369  */
370 
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373 	struct aac_queue * q;
374 	unsigned long idx;
375 
376 	/*
377 	 *	All of the queues wrap when they reach the end, so we check
378 	 *	to see if they have reached the end and if they have we just
379 	 *	set the index back to zero. This is a wrap. You could or off
380 	 *	the high bits in all updates but this is a bit faster I think.
381 	 */
382 
383 	q = &dev->queues->queue[qid];
384 
385 	idx = *index = le32_to_cpu(*(q->headers.producer));
386 	/* Interrupt Moderation, only interrupt for first two entries */
387 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
388 		if (--idx == 0) {
389 			if (qid == AdapNormCmdQueue)
390 				idx = ADAP_NORM_CMD_ENTRIES;
391 			else
392 				idx = ADAP_NORM_RESP_ENTRIES;
393 		}
394 		if (idx != le32_to_cpu(*(q->headers.consumer)))
395 			*nonotify = 1;
396 	}
397 
398 	if (qid == AdapNormCmdQueue) {
399 		if (*index >= ADAP_NORM_CMD_ENTRIES)
400 			*index = 0; /* Wrap to front of the Producer Queue. */
401 	} else {
402 		if (*index >= ADAP_NORM_RESP_ENTRIES)
403 			*index = 0; /* Wrap to front of the Producer Queue. */
404 	}
405 
406 	/* Queue is full */
407 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409 				qid, atomic_read(&q->numpending));
410 		return 0;
411 	} else {
412 		*entry = q->base + *index;
413 		return 1;
414 	}
415 }
416 
417 /**
418  *	aac_queue_get		-	get the next free QE
419  *	@dev: Adapter
420  *	@index: Returned index
421  *	@priority: Priority of fib
422  *	@fib: Fib to associate with the queue entry
423  *	@wait: Wait if queue full
424  *	@fibptr: Driver fib object to go with fib
425  *	@nonotify: Don't notify the adapter
426  *
427  *	Gets the next free QE off the requested priorty adapter command
428  *	queue and associates the Fib with the QE. The QE represented by
429  *	index is ready to insert on the queue when this routine returns
430  *	success.
431  */
432 
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435 	struct aac_entry * entry = NULL;
436 	int map = 0;
437 
438 	if (qid == AdapNormCmdQueue) {
439 		/*  if no entries wait for some if caller wants to */
440 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441 			printk(KERN_ERR "GetEntries failed\n");
442 		}
443 		/*
444 		 *	Setup queue entry with a command, status and fib mapped
445 		 */
446 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447 		map = 1;
448 	} else {
449 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450 			/* if no entries wait for some if caller wants to */
451 		}
452 		/*
453 		 *	Setup queue entry with command, status and fib mapped
454 		 */
455 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456 		entry->addr = hw_fib->header.SenderFibAddress;
457 			/* Restore adapters pointer to the FIB */
458 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
459 		map = 0;
460 	}
461 	/*
462 	 *	If MapFib is true than we need to map the Fib and put pointers
463 	 *	in the queue entry.
464 	 */
465 	if (map)
466 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467 	return 0;
468 }
469 
470 /*
471  *	Define the highest level of host to adapter communication routines.
472  *	These routines will support host to adapter FS commuication. These
473  *	routines have no knowledge of the commuication method used. This level
474  *	sends and receives FIBs. This level has no knowledge of how these FIBs
475  *	get passed back and forth.
476  */
477 
478 /**
479  *	aac_fib_send	-	send a fib to the adapter
480  *	@command: Command to send
481  *	@fibptr: The fib
482  *	@size: Size of fib data area
483  *	@priority: Priority of Fib
484  *	@wait: Async/sync select
485  *	@reply: True if a reply is wanted
486  *	@callback: Called with reply
487  *	@callback_data: Passed to callback
488  *
489  *	Sends the requested FIB to the adapter and optionally will wait for a
490  *	response FIB. If the caller does not wish to wait for a response than
491  *	an event to wait on must be supplied. This event will be set when a
492  *	response FIB is received from the adapter.
493  */
494 
495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
496 		int priority, int wait, int reply, fib_callback callback,
497 		void *callback_data)
498 {
499 	struct aac_dev * dev = fibptr->dev;
500 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
501 	unsigned long flags = 0;
502 	unsigned long mflags = 0;
503 	unsigned long sflags = 0;
504 
505 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
506 		return -EBUSY;
507 
508 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
509 		return -EINVAL;
510 
511 	/*
512 	 *	There are 5 cases with the wait and response requested flags.
513 	 *	The only invalid cases are if the caller requests to wait and
514 	 *	does not request a response and if the caller does not want a
515 	 *	response and the Fib is not allocated from pool. If a response
516 	 *	is not requested the Fib will just be deallocaed by the DPC
517 	 *	routine when the response comes back from the adapter. No
518 	 *	further processing will be done besides deleting the Fib. We
519 	 *	will have a debug mode where the adapter can notify the host
520 	 *	it had a problem and the host can log that fact.
521 	 */
522 	fibptr->flags = 0;
523 	if (wait && !reply) {
524 		return -EINVAL;
525 	} else if (!wait && reply) {
526 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
527 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
528 	} else if (!wait && !reply) {
529 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
530 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
531 	} else if (wait && reply) {
532 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
533 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
534 	}
535 	/*
536 	 *	Map the fib into 32bits by using the fib number
537 	 */
538 
539 	hw_fib->header.SenderFibAddress =
540 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
541 
542 	/* use the same shifted value for handle to be compatible
543 	 * with the new native hba command handle
544 	 */
545 	hw_fib->header.Handle =
546 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
547 
548 	/*
549 	 *	Set FIB state to indicate where it came from and if we want a
550 	 *	response from the adapter. Also load the command from the
551 	 *	caller.
552 	 *
553 	 *	Map the hw fib pointer as a 32bit value
554 	 */
555 	hw_fib->header.Command = cpu_to_le16(command);
556 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
557 	/*
558 	 *	Set the size of the Fib we want to send to the adapter
559 	 */
560 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
561 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
562 		return -EMSGSIZE;
563 	}
564 	/*
565 	 *	Get a queue entry connect the FIB to it and send an notify
566 	 *	the adapter a command is ready.
567 	 */
568 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
569 
570 	/*
571 	 *	Fill in the Callback and CallbackContext if we are not
572 	 *	going to wait.
573 	 */
574 	if (!wait) {
575 		fibptr->callback = callback;
576 		fibptr->callback_data = callback_data;
577 		fibptr->flags = FIB_CONTEXT_FLAG;
578 	}
579 
580 	fibptr->done = 0;
581 
582 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
583 
584 	dprintk((KERN_DEBUG "Fib contents:.\n"));
585 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
586 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
587 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
588 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
589 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
590 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
591 
592 	if (!dev->queues)
593 		return -EBUSY;
594 
595 	if (wait) {
596 
597 		spin_lock_irqsave(&dev->manage_lock, mflags);
598 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
599 			printk(KERN_INFO "No management Fibs Available:%d\n",
600 						dev->management_fib_count);
601 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
602 			return -EBUSY;
603 		}
604 		dev->management_fib_count++;
605 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
606 		spin_lock_irqsave(&fibptr->event_lock, flags);
607 	}
608 
609 	if (dev->sync_mode) {
610 		if (wait)
611 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
612 		spin_lock_irqsave(&dev->sync_lock, sflags);
613 		if (dev->sync_fib) {
614 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
615 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
616 		} else {
617 			dev->sync_fib = fibptr;
618 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
619 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
620 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
621 				NULL, NULL, NULL, NULL, NULL);
622 		}
623 		if (wait) {
624 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
625 			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
626 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
627 				return -EFAULT;
628 			}
629 			return 0;
630 		}
631 		return -EINPROGRESS;
632 	}
633 
634 	if (aac_adapter_deliver(fibptr) != 0) {
635 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
636 		if (wait) {
637 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
638 			spin_lock_irqsave(&dev->manage_lock, mflags);
639 			dev->management_fib_count--;
640 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
641 		}
642 		return -EBUSY;
643 	}
644 
645 
646 	/*
647 	 *	If the caller wanted us to wait for response wait now.
648 	 */
649 
650 	if (wait) {
651 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
652 		/* Only set for first known interruptable command */
653 		if (wait < 0) {
654 			/*
655 			 * *VERY* Dangerous to time out a command, the
656 			 * assumption is made that we have no hope of
657 			 * functioning because an interrupt routing or other
658 			 * hardware failure has occurred.
659 			 */
660 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
661 			while (!try_wait_for_completion(&fibptr->event_wait)) {
662 				int blink;
663 				if (time_is_before_eq_jiffies(timeout)) {
664 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
665 					atomic_dec(&q->numpending);
666 					if (wait == -1) {
667 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
668 						  "Usually a result of a PCI interrupt routing problem;\n"
669 						  "update mother board BIOS or consider utilizing one of\n"
670 						  "the SAFE mode kernel options (acpi, apic etc)\n");
671 					}
672 					return -ETIMEDOUT;
673 				}
674 
675 				if (unlikely(aac_pci_offline(dev)))
676 					return -EFAULT;
677 
678 				if ((blink = aac_adapter_check_health(dev)) > 0) {
679 					if (wait == -1) {
680 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
681 						  "Usually a result of a serious unrecoverable hardware problem\n",
682 						  blink);
683 					}
684 					return -EFAULT;
685 				}
686 				/*
687 				 * Allow other processes / CPUS to use core
688 				 */
689 				schedule();
690 			}
691 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
692 			/* Do nothing ... satisfy
693 			 * wait_for_completion_interruptible must_check */
694 		}
695 
696 		spin_lock_irqsave(&fibptr->event_lock, flags);
697 		if (fibptr->done == 0) {
698 			fibptr->done = 2; /* Tell interrupt we aborted */
699 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
700 			return -ERESTARTSYS;
701 		}
702 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
703 		BUG_ON(fibptr->done == 0);
704 
705 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
706 			return -ETIMEDOUT;
707 		return 0;
708 	}
709 	/*
710 	 *	If the user does not want a response than return success otherwise
711 	 *	return pending
712 	 */
713 	if (reply)
714 		return -EINPROGRESS;
715 	else
716 		return 0;
717 }
718 
719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
720 		void *callback_data)
721 {
722 	struct aac_dev *dev = fibptr->dev;
723 	int wait;
724 	unsigned long flags = 0;
725 	unsigned long mflags = 0;
726 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
727 			fibptr->hw_fib_va;
728 
729 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
730 	if (callback) {
731 		wait = 0;
732 		fibptr->callback = callback;
733 		fibptr->callback_data = callback_data;
734 	} else
735 		wait = 1;
736 
737 
738 	hbacmd->iu_type = command;
739 
740 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
741 		/* bit1 of request_id must be 0 */
742 		hbacmd->request_id =
743 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
744 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
745 	} else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
746 		return -EINVAL;
747 
748 
749 	if (wait) {
750 		spin_lock_irqsave(&dev->manage_lock, mflags);
751 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
752 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
753 			return -EBUSY;
754 		}
755 		dev->management_fib_count++;
756 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
757 		spin_lock_irqsave(&fibptr->event_lock, flags);
758 	}
759 
760 	if (aac_adapter_deliver(fibptr) != 0) {
761 		if (wait) {
762 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
763 			spin_lock_irqsave(&dev->manage_lock, mflags);
764 			dev->management_fib_count--;
765 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
766 		}
767 		return -EBUSY;
768 	}
769 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
770 
771 	if (wait) {
772 
773 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
774 
775 		if (unlikely(aac_pci_offline(dev)))
776 			return -EFAULT;
777 
778 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
779 		if (wait_for_completion_interruptible(&fibptr->event_wait))
780 			fibptr->done = 2;
781 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
782 
783 		spin_lock_irqsave(&fibptr->event_lock, flags);
784 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
785 			fibptr->done = 2; /* Tell interrupt we aborted */
786 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
787 			return -ERESTARTSYS;
788 		}
789 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
790 		WARN_ON(fibptr->done == 0);
791 
792 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
793 			return -ETIMEDOUT;
794 
795 		return 0;
796 	}
797 
798 	return -EINPROGRESS;
799 }
800 
801 /**
802  *	aac_consumer_get	-	get the top of the queue
803  *	@dev: Adapter
804  *	@q: Queue
805  *	@entry: Return entry
806  *
807  *	Will return a pointer to the entry on the top of the queue requested that
808  *	we are a consumer of, and return the address of the queue entry. It does
809  *	not change the state of the queue.
810  */
811 
812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
813 {
814 	u32 index;
815 	int status;
816 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
817 		status = 0;
818 	} else {
819 		/*
820 		 *	The consumer index must be wrapped if we have reached
821 		 *	the end of the queue, else we just use the entry
822 		 *	pointed to by the header index
823 		 */
824 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
825 			index = 0;
826 		else
827 			index = le32_to_cpu(*q->headers.consumer);
828 		*entry = q->base + index;
829 		status = 1;
830 	}
831 	return(status);
832 }
833 
834 /**
835  *	aac_consumer_free	-	free consumer entry
836  *	@dev: Adapter
837  *	@q: Queue
838  *	@qid: Queue ident
839  *
840  *	Frees up the current top of the queue we are a consumer of. If the
841  *	queue was full notify the producer that the queue is no longer full.
842  */
843 
844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
845 {
846 	int wasfull = 0;
847 	u32 notify;
848 
849 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
850 		wasfull = 1;
851 
852 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853 		*q->headers.consumer = cpu_to_le32(1);
854 	else
855 		le32_add_cpu(q->headers.consumer, 1);
856 
857 	if (wasfull) {
858 		switch (qid) {
859 
860 		case HostNormCmdQueue:
861 			notify = HostNormCmdNotFull;
862 			break;
863 		case HostNormRespQueue:
864 			notify = HostNormRespNotFull;
865 			break;
866 		default:
867 			BUG();
868 			return;
869 		}
870 		aac_adapter_notify(dev, notify);
871 	}
872 }
873 
874 /**
875  *	aac_fib_adapter_complete	-	complete adapter issued fib
876  *	@fibptr: fib to complete
877  *	@size: size of fib
878  *
879  *	Will do all necessary work to complete a FIB that was sent from
880  *	the adapter.
881  */
882 
883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
884 {
885 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
886 	struct aac_dev * dev = fibptr->dev;
887 	struct aac_queue * q;
888 	unsigned long nointr = 0;
889 	unsigned long qflags;
890 
891 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
892 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
893 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
894 		kfree(hw_fib);
895 		return 0;
896 	}
897 
898 	if (hw_fib->header.XferState == 0) {
899 		if (dev->comm_interface == AAC_COMM_MESSAGE)
900 			kfree(hw_fib);
901 		return 0;
902 	}
903 	/*
904 	 *	If we plan to do anything check the structure type first.
905 	 */
906 	if (hw_fib->header.StructType != FIB_MAGIC &&
907 	    hw_fib->header.StructType != FIB_MAGIC2 &&
908 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
909 		if (dev->comm_interface == AAC_COMM_MESSAGE)
910 			kfree(hw_fib);
911 		return -EINVAL;
912 	}
913 	/*
914 	 *	This block handles the case where the adapter had sent us a
915 	 *	command and we have finished processing the command. We
916 	 *	call completeFib when we are done processing the command
917 	 *	and want to send a response back to the adapter. This will
918 	 *	send the completed cdb to the adapter.
919 	 */
920 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
921 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
922 			kfree (hw_fib);
923 		} else {
924 			u32 index;
925 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
926 			if (size) {
927 				size += sizeof(struct aac_fibhdr);
928 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
929 					return -EMSGSIZE;
930 				hw_fib->header.Size = cpu_to_le16(size);
931 			}
932 			q = &dev->queues->queue[AdapNormRespQueue];
933 			spin_lock_irqsave(q->lock, qflags);
934 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
935 			*(q->headers.producer) = cpu_to_le32(index + 1);
936 			spin_unlock_irqrestore(q->lock, qflags);
937 			if (!(nointr & (int)aac_config.irq_mod))
938 				aac_adapter_notify(dev, AdapNormRespQueue);
939 		}
940 	} else {
941 		printk(KERN_WARNING "aac_fib_adapter_complete: "
942 			"Unknown xferstate detected.\n");
943 		BUG();
944 	}
945 	return 0;
946 }
947 
948 /**
949  *	aac_fib_complete	-	fib completion handler
950  *	@fib: FIB to complete
951  *
952  *	Will do all necessary work to complete a FIB.
953  */
954 
955 int aac_fib_complete(struct fib *fibptr)
956 {
957 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
958 
959 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
960 		fib_dealloc(fibptr);
961 		return 0;
962 	}
963 
964 	/*
965 	 *	Check for a fib which has already been completed or with a
966 	 *	status wait timeout
967 	 */
968 
969 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
970 		return 0;
971 	/*
972 	 *	If we plan to do anything check the structure type first.
973 	 */
974 
975 	if (hw_fib->header.StructType != FIB_MAGIC &&
976 	    hw_fib->header.StructType != FIB_MAGIC2 &&
977 	    hw_fib->header.StructType != FIB_MAGIC2_64)
978 		return -EINVAL;
979 	/*
980 	 *	This block completes a cdb which orginated on the host and we
981 	 *	just need to deallocate the cdb or reinit it. At this point the
982 	 *	command is complete that we had sent to the adapter and this
983 	 *	cdb could be reused.
984 	 */
985 
986 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
987 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
988 	{
989 		fib_dealloc(fibptr);
990 	}
991 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
992 	{
993 		/*
994 		 *	This handles the case when the host has aborted the I/O
995 		 *	to the adapter because the adapter is not responding
996 		 */
997 		fib_dealloc(fibptr);
998 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
999 		fib_dealloc(fibptr);
1000 	} else {
1001 		BUG();
1002 	}
1003 	return 0;
1004 }
1005 
1006 /**
1007  *	aac_printf	-	handle printf from firmware
1008  *	@dev: Adapter
1009  *	@val: Message info
1010  *
1011  *	Print a message passed to us by the controller firmware on the
1012  *	Adaptec board
1013  */
1014 
1015 void aac_printf(struct aac_dev *dev, u32 val)
1016 {
1017 	char *cp = dev->printfbuf;
1018 	if (dev->printf_enabled)
1019 	{
1020 		int length = val & 0xffff;
1021 		int level = (val >> 16) & 0xffff;
1022 
1023 		/*
1024 		 *	The size of the printfbuf is set in port.c
1025 		 *	There is no variable or define for it
1026 		 */
1027 		if (length > 255)
1028 			length = 255;
1029 		if (cp[length] != 0)
1030 			cp[length] = 0;
1031 		if (level == LOG_AAC_HIGH_ERROR)
1032 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1033 		else
1034 			printk(KERN_INFO "%s:%s", dev->name, cp);
1035 	}
1036 	memset(cp, 0, 256);
1037 }
1038 
1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1040 {
1041 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1042 }
1043 
1044 
1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1046 {
1047 	switch (aac_aif_data(aifcmd, 1)) {
1048 	case AifBuCacheDataLoss:
1049 		if (aac_aif_data(aifcmd, 2))
1050 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1051 			aac_aif_data(aifcmd, 2));
1052 		else
1053 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1054 		break;
1055 	case AifBuCacheDataRecover:
1056 		if (aac_aif_data(aifcmd, 2))
1057 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1058 			aac_aif_data(aifcmd, 2));
1059 		else
1060 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1061 		break;
1062 	}
1063 }
1064 
1065 /**
1066  *	aac_handle_aif		-	Handle a message from the firmware
1067  *	@dev: Which adapter this fib is from
1068  *	@fibptr: Pointer to fibptr from adapter
1069  *
1070  *	This routine handles a driver notify fib from the adapter and
1071  *	dispatches it to the appropriate routine for handling.
1072  */
1073 
1074 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1076 {
1077 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1078 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1079 	u32 channel, id, lun, container;
1080 	struct scsi_device *device;
1081 	enum {
1082 		NOTHING,
1083 		DELETE,
1084 		ADD,
1085 		CHANGE
1086 	} device_config_needed = NOTHING;
1087 
1088 	/* Sniff for container changes */
1089 
1090 	if (!dev || !dev->fsa_dev)
1091 		return;
1092 	container = channel = id = lun = (u32)-1;
1093 
1094 	/*
1095 	 *	We have set this up to try and minimize the number of
1096 	 * re-configures that take place. As a result of this when
1097 	 * certain AIF's come in we will set a flag waiting for another
1098 	 * type of AIF before setting the re-config flag.
1099 	 */
1100 	switch (le32_to_cpu(aifcmd->command)) {
1101 	case AifCmdDriverNotify:
1102 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1103 		case AifRawDeviceRemove:
1104 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1105 			if ((container >> 28)) {
1106 				container = (u32)-1;
1107 				break;
1108 			}
1109 			channel = (container >> 24) & 0xF;
1110 			if (channel >= dev->maximum_num_channels) {
1111 				container = (u32)-1;
1112 				break;
1113 			}
1114 			id = container & 0xFFFF;
1115 			if (id >= dev->maximum_num_physicals) {
1116 				container = (u32)-1;
1117 				break;
1118 			}
1119 			lun = (container >> 16) & 0xFF;
1120 			container = (u32)-1;
1121 			channel = aac_phys_to_logical(channel);
1122 			device_config_needed = DELETE;
1123 			break;
1124 
1125 		/*
1126 		 *	Morph or Expand complete
1127 		 */
1128 		case AifDenMorphComplete:
1129 		case AifDenVolumeExtendComplete:
1130 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1131 			if (container >= dev->maximum_num_containers)
1132 				break;
1133 
1134 			/*
1135 			 *	Find the scsi_device associated with the SCSI
1136 			 * address. Make sure we have the right array, and if
1137 			 * so set the flag to initiate a new re-config once we
1138 			 * see an AifEnConfigChange AIF come through.
1139 			 */
1140 
1141 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1142 				device = scsi_device_lookup(dev->scsi_host_ptr,
1143 					CONTAINER_TO_CHANNEL(container),
1144 					CONTAINER_TO_ID(container),
1145 					CONTAINER_TO_LUN(container));
1146 				if (device) {
1147 					dev->fsa_dev[container].config_needed = CHANGE;
1148 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1149 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1150 					scsi_device_put(device);
1151 				}
1152 			}
1153 		}
1154 
1155 		/*
1156 		 *	If we are waiting on something and this happens to be
1157 		 * that thing then set the re-configure flag.
1158 		 */
1159 		if (container != (u32)-1) {
1160 			if (container >= dev->maximum_num_containers)
1161 				break;
1162 			if ((dev->fsa_dev[container].config_waiting_on ==
1163 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1164 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1165 				dev->fsa_dev[container].config_waiting_on = 0;
1166 		} else for (container = 0;
1167 		    container < dev->maximum_num_containers; ++container) {
1168 			if ((dev->fsa_dev[container].config_waiting_on ==
1169 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1170 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1171 				dev->fsa_dev[container].config_waiting_on = 0;
1172 		}
1173 		break;
1174 
1175 	case AifCmdEventNotify:
1176 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1177 		case AifEnBatteryEvent:
1178 			dev->cache_protected =
1179 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1180 			break;
1181 		/*
1182 		 *	Add an Array.
1183 		 */
1184 		case AifEnAddContainer:
1185 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186 			if (container >= dev->maximum_num_containers)
1187 				break;
1188 			dev->fsa_dev[container].config_needed = ADD;
1189 			dev->fsa_dev[container].config_waiting_on =
1190 				AifEnConfigChange;
1191 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192 			break;
1193 
1194 		/*
1195 		 *	Delete an Array.
1196 		 */
1197 		case AifEnDeleteContainer:
1198 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199 			if (container >= dev->maximum_num_containers)
1200 				break;
1201 			dev->fsa_dev[container].config_needed = DELETE;
1202 			dev->fsa_dev[container].config_waiting_on =
1203 				AifEnConfigChange;
1204 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1205 			break;
1206 
1207 		/*
1208 		 *	Container change detected. If we currently are not
1209 		 * waiting on something else, setup to wait on a Config Change.
1210 		 */
1211 		case AifEnContainerChange:
1212 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1213 			if (container >= dev->maximum_num_containers)
1214 				break;
1215 			if (dev->fsa_dev[container].config_waiting_on &&
1216 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1217 				break;
1218 			dev->fsa_dev[container].config_needed = CHANGE;
1219 			dev->fsa_dev[container].config_waiting_on =
1220 				AifEnConfigChange;
1221 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1222 			break;
1223 
1224 		case AifEnConfigChange:
1225 			break;
1226 
1227 		case AifEnAddJBOD:
1228 		case AifEnDeleteJBOD:
1229 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1230 			if ((container >> 28)) {
1231 				container = (u32)-1;
1232 				break;
1233 			}
1234 			channel = (container >> 24) & 0xF;
1235 			if (channel >= dev->maximum_num_channels) {
1236 				container = (u32)-1;
1237 				break;
1238 			}
1239 			id = container & 0xFFFF;
1240 			if (id >= dev->maximum_num_physicals) {
1241 				container = (u32)-1;
1242 				break;
1243 			}
1244 			lun = (container >> 16) & 0xFF;
1245 			container = (u32)-1;
1246 			channel = aac_phys_to_logical(channel);
1247 			device_config_needed =
1248 			  (((__le32 *)aifcmd->data)[0] ==
1249 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1250 			if (device_config_needed == ADD) {
1251 				device = scsi_device_lookup(dev->scsi_host_ptr,
1252 					channel,
1253 					id,
1254 					lun);
1255 				if (device) {
1256 					scsi_remove_device(device);
1257 					scsi_device_put(device);
1258 				}
1259 			}
1260 			break;
1261 
1262 		case AifEnEnclosureManagement:
1263 			/*
1264 			 * If in JBOD mode, automatic exposure of new
1265 			 * physical target to be suppressed until configured.
1266 			 */
1267 			if (dev->jbod)
1268 				break;
1269 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1270 			case EM_DRIVE_INSERTION:
1271 			case EM_DRIVE_REMOVAL:
1272 			case EM_SES_DRIVE_INSERTION:
1273 			case EM_SES_DRIVE_REMOVAL:
1274 				container = le32_to_cpu(
1275 					((__le32 *)aifcmd->data)[2]);
1276 				if ((container >> 28)) {
1277 					container = (u32)-1;
1278 					break;
1279 				}
1280 				channel = (container >> 24) & 0xF;
1281 				if (channel >= dev->maximum_num_channels) {
1282 					container = (u32)-1;
1283 					break;
1284 				}
1285 				id = container & 0xFFFF;
1286 				lun = (container >> 16) & 0xFF;
1287 				container = (u32)-1;
1288 				if (id >= dev->maximum_num_physicals) {
1289 					/* legacy dev_t ? */
1290 					if ((0x2000 <= id) || lun || channel ||
1291 					  ((channel = (id >> 7) & 0x3F) >=
1292 					  dev->maximum_num_channels))
1293 						break;
1294 					lun = (id >> 4) & 7;
1295 					id &= 0xF;
1296 				}
1297 				channel = aac_phys_to_logical(channel);
1298 				device_config_needed =
1299 				  ((((__le32 *)aifcmd->data)[3]
1300 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1301 				    (((__le32 *)aifcmd->data)[3]
1302 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1303 				  ADD : DELETE;
1304 				break;
1305 			}
1306 			break;
1307 		case AifBuManagerEvent:
1308 			aac_handle_aif_bu(dev, aifcmd);
1309 			break;
1310 		}
1311 
1312 		/*
1313 		 *	If we are waiting on something and this happens to be
1314 		 * that thing then set the re-configure flag.
1315 		 */
1316 		if (container != (u32)-1) {
1317 			if (container >= dev->maximum_num_containers)
1318 				break;
1319 			if ((dev->fsa_dev[container].config_waiting_on ==
1320 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1321 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1322 				dev->fsa_dev[container].config_waiting_on = 0;
1323 		} else for (container = 0;
1324 		    container < dev->maximum_num_containers; ++container) {
1325 			if ((dev->fsa_dev[container].config_waiting_on ==
1326 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1327 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1328 				dev->fsa_dev[container].config_waiting_on = 0;
1329 		}
1330 		break;
1331 
1332 	case AifCmdJobProgress:
1333 		/*
1334 		 *	These are job progress AIF's. When a Clear is being
1335 		 * done on a container it is initially created then hidden from
1336 		 * the OS. When the clear completes we don't get a config
1337 		 * change so we monitor the job status complete on a clear then
1338 		 * wait for a container change.
1339 		 */
1340 
1341 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1342 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1343 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1344 			for (container = 0;
1345 			    container < dev->maximum_num_containers;
1346 			    ++container) {
1347 				/*
1348 				 * Stomp on all config sequencing for all
1349 				 * containers?
1350 				 */
1351 				dev->fsa_dev[container].config_waiting_on =
1352 					AifEnContainerChange;
1353 				dev->fsa_dev[container].config_needed = ADD;
1354 				dev->fsa_dev[container].config_waiting_stamp =
1355 					jiffies;
1356 			}
1357 		}
1358 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1359 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1360 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1361 			for (container = 0;
1362 			    container < dev->maximum_num_containers;
1363 			    ++container) {
1364 				/*
1365 				 * Stomp on all config sequencing for all
1366 				 * containers?
1367 				 */
1368 				dev->fsa_dev[container].config_waiting_on =
1369 					AifEnContainerChange;
1370 				dev->fsa_dev[container].config_needed = DELETE;
1371 				dev->fsa_dev[container].config_waiting_stamp =
1372 					jiffies;
1373 			}
1374 		}
1375 		break;
1376 	}
1377 
1378 	container = 0;
1379 retry_next:
1380 	if (device_config_needed == NOTHING) {
1381 		for (; container < dev->maximum_num_containers; ++container) {
1382 			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1383 			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1384 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1385 				device_config_needed =
1386 					dev->fsa_dev[container].config_needed;
1387 				dev->fsa_dev[container].config_needed = NOTHING;
1388 				channel = CONTAINER_TO_CHANNEL(container);
1389 				id = CONTAINER_TO_ID(container);
1390 				lun = CONTAINER_TO_LUN(container);
1391 				break;
1392 			}
1393 		}
1394 	}
1395 	if (device_config_needed == NOTHING)
1396 		return;
1397 
1398 	/*
1399 	 *	If we decided that a re-configuration needs to be done,
1400 	 * schedule it here on the way out the door, please close the door
1401 	 * behind you.
1402 	 */
1403 
1404 	/*
1405 	 *	Find the scsi_device associated with the SCSI address,
1406 	 * and mark it as changed, invalidating the cache. This deals
1407 	 * with changes to existing device IDs.
1408 	 */
1409 
1410 	if (!dev || !dev->scsi_host_ptr)
1411 		return;
1412 	/*
1413 	 * force reload of disk info via aac_probe_container
1414 	 */
1415 	if ((channel == CONTAINER_CHANNEL) &&
1416 	  (device_config_needed != NOTHING)) {
1417 		if (dev->fsa_dev[container].valid == 1)
1418 			dev->fsa_dev[container].valid = 2;
1419 		aac_probe_container(dev, container);
1420 	}
1421 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1422 	if (device) {
1423 		switch (device_config_needed) {
1424 		case DELETE:
1425 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1426 			scsi_remove_device(device);
1427 #else
1428 			if (scsi_device_online(device)) {
1429 				scsi_device_set_state(device, SDEV_OFFLINE);
1430 				sdev_printk(KERN_INFO, device,
1431 					"Device offlined - %s\n",
1432 					(channel == CONTAINER_CHANNEL) ?
1433 						"array deleted" :
1434 						"enclosure services event");
1435 			}
1436 #endif
1437 			break;
1438 		case ADD:
1439 			if (!scsi_device_online(device)) {
1440 				sdev_printk(KERN_INFO, device,
1441 					"Device online - %s\n",
1442 					(channel == CONTAINER_CHANNEL) ?
1443 						"array created" :
1444 						"enclosure services event");
1445 				scsi_device_set_state(device, SDEV_RUNNING);
1446 			}
1447 			/* FALLTHRU */
1448 		case CHANGE:
1449 			if ((channel == CONTAINER_CHANNEL)
1450 			 && (!dev->fsa_dev[container].valid)) {
1451 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1452 				scsi_remove_device(device);
1453 #else
1454 				if (!scsi_device_online(device))
1455 					break;
1456 				scsi_device_set_state(device, SDEV_OFFLINE);
1457 				sdev_printk(KERN_INFO, device,
1458 					"Device offlined - %s\n",
1459 					"array failed");
1460 #endif
1461 				break;
1462 			}
1463 			scsi_rescan_device(&device->sdev_gendev);
1464 
1465 		default:
1466 			break;
1467 		}
1468 		scsi_device_put(device);
1469 		device_config_needed = NOTHING;
1470 	}
1471 	if (device_config_needed == ADD)
1472 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1473 	if (channel == CONTAINER_CHANNEL) {
1474 		container++;
1475 		device_config_needed = NOTHING;
1476 		goto retry_next;
1477 	}
1478 }
1479 
1480 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1481 {
1482 	int index, quirks;
1483 	int retval;
1484 	struct Scsi_Host *host;
1485 	struct scsi_device *dev;
1486 	struct scsi_cmnd *command;
1487 	struct scsi_cmnd *command_list;
1488 	int jafo = 0;
1489 	int bled;
1490 	u64 dmamask;
1491 	int num_of_fibs = 0;
1492 
1493 	/*
1494 	 * Assumptions:
1495 	 *	- host is locked, unless called by the aacraid thread.
1496 	 *	  (a matter of convenience, due to legacy issues surrounding
1497 	 *	  eh_host_adapter_reset).
1498 	 *	- in_reset is asserted, so no new i/o is getting to the
1499 	 *	  card.
1500 	 *	- The card is dead, or will be very shortly ;-/ so no new
1501 	 *	  commands are completing in the interrupt service.
1502 	 */
1503 	host = aac->scsi_host_ptr;
1504 	scsi_block_requests(host);
1505 	aac_adapter_disable_int(aac);
1506 	if (aac->thread && aac->thread->pid != current->pid) {
1507 		spin_unlock_irq(host->host_lock);
1508 		kthread_stop(aac->thread);
1509 		aac->thread = NULL;
1510 		jafo = 1;
1511 	}
1512 
1513 	/*
1514 	 *	If a positive health, means in a known DEAD PANIC
1515 	 * state and the adapter could be reset to `try again'.
1516 	 */
1517 	bled = forced ? 0 : aac_adapter_check_health(aac);
1518 	retval = aac_adapter_restart(aac, bled, reset_type);
1519 
1520 	if (retval)
1521 		goto out;
1522 
1523 	/*
1524 	 *	Loop through the fibs, close the synchronous FIBS
1525 	 */
1526 	retval = 1;
1527 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1528 	for (index = 0; index <  num_of_fibs; index++) {
1529 
1530 		struct fib *fib = &aac->fibs[index];
1531 		__le32 XferState = fib->hw_fib_va->header.XferState;
1532 		bool is_response_expected = false;
1533 
1534 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1535 		   (XferState & cpu_to_le32(ResponseExpected)))
1536 			is_response_expected = true;
1537 
1538 		if (is_response_expected
1539 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1540 			unsigned long flagv;
1541 			spin_lock_irqsave(&fib->event_lock, flagv);
1542 			complete(&fib->event_wait);
1543 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1544 			schedule();
1545 			retval = 0;
1546 		}
1547 	}
1548 	/* Give some extra time for ioctls to complete. */
1549 	if (retval == 0)
1550 		ssleep(2);
1551 	index = aac->cardtype;
1552 
1553 	/*
1554 	 * Re-initialize the adapter, first free resources, then carefully
1555 	 * apply the initialization sequence to come back again. Only risk
1556 	 * is a change in Firmware dropping cache, it is assumed the caller
1557 	 * will ensure that i/o is queisced and the card is flushed in that
1558 	 * case.
1559 	 */
1560 	aac_free_irq(aac);
1561 	aac_fib_map_free(aac);
1562 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1563 			  aac->comm_phys);
1564 	aac->comm_addr = NULL;
1565 	aac->comm_phys = 0;
1566 	kfree(aac->queues);
1567 	aac->queues = NULL;
1568 	kfree(aac->fsa_dev);
1569 	aac->fsa_dev = NULL;
1570 
1571 	dmamask = DMA_BIT_MASK(32);
1572 	quirks = aac_get_driver_ident(index)->quirks;
1573 	if (quirks & AAC_QUIRK_31BIT)
1574 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1575 	else if (!(quirks & AAC_QUIRK_SRC))
1576 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1577 	else
1578 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1579 
1580 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1581 		dmamask = DMA_BIT_MASK(31);
1582 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1583 	}
1584 
1585 	if (retval)
1586 		goto out;
1587 
1588 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1589 		goto out;
1590 
1591 	if (jafo) {
1592 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1593 					  aac->name);
1594 		if (IS_ERR(aac->thread)) {
1595 			retval = PTR_ERR(aac->thread);
1596 			aac->thread = NULL;
1597 			goto out;
1598 		}
1599 	}
1600 	(void)aac_get_adapter_info(aac);
1601 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1602 		host->sg_tablesize = 34;
1603 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1604 	}
1605 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1606 		host->sg_tablesize = 17;
1607 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1608 	}
1609 	aac_get_config_status(aac, 1);
1610 	aac_get_containers(aac);
1611 	/*
1612 	 * This is where the assumption that the Adapter is quiesced
1613 	 * is important.
1614 	 */
1615 	command_list = NULL;
1616 	__shost_for_each_device(dev, host) {
1617 		unsigned long flags;
1618 		spin_lock_irqsave(&dev->list_lock, flags);
1619 		list_for_each_entry(command, &dev->cmd_list, list)
1620 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1621 				command->SCp.buffer = (struct scatterlist *)command_list;
1622 				command_list = command;
1623 			}
1624 		spin_unlock_irqrestore(&dev->list_lock, flags);
1625 	}
1626 	while ((command = command_list)) {
1627 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1628 		command->SCp.buffer = NULL;
1629 		command->result = DID_OK << 16
1630 		  | COMMAND_COMPLETE << 8
1631 		  | SAM_STAT_TASK_SET_FULL;
1632 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1633 		command->scsi_done(command);
1634 	}
1635 	/*
1636 	 * Any Device that was already marked offline needs to be marked
1637 	 * running
1638 	 */
1639 	__shost_for_each_device(dev, host) {
1640 		if (!scsi_device_online(dev))
1641 			scsi_device_set_state(dev, SDEV_RUNNING);
1642 	}
1643 	retval = 0;
1644 
1645 out:
1646 	aac->in_reset = 0;
1647 	scsi_unblock_requests(host);
1648 
1649 	/*
1650 	 * Issue bus rescan to catch any configuration that might have
1651 	 * occurred
1652 	 */
1653 	if (!retval && !is_kdump_kernel()) {
1654 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1655 		aac_schedule_safw_scan_worker(aac);
1656 	}
1657 
1658 	if (jafo) {
1659 		spin_lock_irq(host->host_lock);
1660 	}
1661 	return retval;
1662 }
1663 
1664 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1665 {
1666 	unsigned long flagv = 0;
1667 	int retval;
1668 	struct Scsi_Host * host;
1669 	int bled;
1670 
1671 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1672 		return -EBUSY;
1673 
1674 	if (aac->in_reset) {
1675 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1676 		return -EBUSY;
1677 	}
1678 	aac->in_reset = 1;
1679 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1680 
1681 	/*
1682 	 * Wait for all commands to complete to this specific
1683 	 * target (block maximum 60 seconds). Although not necessary,
1684 	 * it does make us a good storage citizen.
1685 	 */
1686 	host = aac->scsi_host_ptr;
1687 	scsi_block_requests(host);
1688 
1689 	/* Quiesce build, flush cache, write through mode */
1690 	if (forced < 2)
1691 		aac_send_shutdown(aac);
1692 	spin_lock_irqsave(host->host_lock, flagv);
1693 	bled = forced ? forced :
1694 			(aac_check_reset != 0 && aac_check_reset != 1);
1695 	retval = _aac_reset_adapter(aac, bled, reset_type);
1696 	spin_unlock_irqrestore(host->host_lock, flagv);
1697 
1698 	if ((forced < 2) && (retval == -ENODEV)) {
1699 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1700 		struct fib * fibctx = aac_fib_alloc(aac);
1701 		if (fibctx) {
1702 			struct aac_pause *cmd;
1703 			int status;
1704 
1705 			aac_fib_init(fibctx);
1706 
1707 			cmd = (struct aac_pause *) fib_data(fibctx);
1708 
1709 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1710 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1711 			cmd->timeout = cpu_to_le32(1);
1712 			cmd->min = cpu_to_le32(1);
1713 			cmd->noRescan = cpu_to_le32(1);
1714 			cmd->count = cpu_to_le32(0);
1715 
1716 			status = aac_fib_send(ContainerCommand,
1717 			  fibctx,
1718 			  sizeof(struct aac_pause),
1719 			  FsaNormal,
1720 			  -2 /* Timeout silently */, 1,
1721 			  NULL, NULL);
1722 
1723 			if (status >= 0)
1724 				aac_fib_complete(fibctx);
1725 			/* FIB should be freed only after getting
1726 			 * the response from the F/W */
1727 			if (status != -ERESTARTSYS)
1728 				aac_fib_free(fibctx);
1729 		}
1730 	}
1731 
1732 	return retval;
1733 }
1734 
1735 int aac_check_health(struct aac_dev * aac)
1736 {
1737 	int BlinkLED;
1738 	unsigned long time_now, flagv = 0;
1739 	struct list_head * entry;
1740 
1741 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1742 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1743 		return 0;
1744 
1745 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1746 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1747 		return 0; /* OK */
1748 	}
1749 
1750 	aac->in_reset = 1;
1751 
1752 	/* Fake up an AIF:
1753 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1754 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1755 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1756 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1757 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1758 	 *	aac.aifcmd.data[3] = BlinkLED
1759 	 */
1760 
1761 	time_now = jiffies/HZ;
1762 	entry = aac->fib_list.next;
1763 
1764 	/*
1765 	 * For each Context that is on the
1766 	 * fibctxList, make a copy of the
1767 	 * fib, and then set the event to wake up the
1768 	 * thread that is waiting for it.
1769 	 */
1770 	while (entry != &aac->fib_list) {
1771 		/*
1772 		 * Extract the fibctx
1773 		 */
1774 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1775 		struct hw_fib * hw_fib;
1776 		struct fib * fib;
1777 		/*
1778 		 * Check if the queue is getting
1779 		 * backlogged
1780 		 */
1781 		if (fibctx->count > 20) {
1782 			/*
1783 			 * It's *not* jiffies folks,
1784 			 * but jiffies / HZ, so do not
1785 			 * panic ...
1786 			 */
1787 			u32 time_last = fibctx->jiffies;
1788 			/*
1789 			 * Has it been > 2 minutes
1790 			 * since the last read off
1791 			 * the queue?
1792 			 */
1793 			if ((time_now - time_last) > aif_timeout) {
1794 				entry = entry->next;
1795 				aac_close_fib_context(aac, fibctx);
1796 				continue;
1797 			}
1798 		}
1799 		/*
1800 		 * Warning: no sleep allowed while
1801 		 * holding spinlock
1802 		 */
1803 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1804 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1805 		if (fib && hw_fib) {
1806 			struct aac_aifcmd * aif;
1807 
1808 			fib->hw_fib_va = hw_fib;
1809 			fib->dev = aac;
1810 			aac_fib_init(fib);
1811 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1812 			fib->size = sizeof (struct fib);
1813 			fib->data = hw_fib->data;
1814 			aif = (struct aac_aifcmd *)hw_fib->data;
1815 			aif->command = cpu_to_le32(AifCmdEventNotify);
1816 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1817 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1818 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1819 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1820 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1821 
1822 			/*
1823 			 * Put the FIB onto the
1824 			 * fibctx's fibs
1825 			 */
1826 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1827 			fibctx->count++;
1828 			/*
1829 			 * Set the event to wake up the
1830 			 * thread that will waiting.
1831 			 */
1832 			complete(&fibctx->completion);
1833 		} else {
1834 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1835 			kfree(fib);
1836 			kfree(hw_fib);
1837 		}
1838 		entry = entry->next;
1839 	}
1840 
1841 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1842 
1843 	if (BlinkLED < 0) {
1844 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1845 				aac->name, BlinkLED);
1846 		goto out;
1847 	}
1848 
1849 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1850 
1851 out:
1852 	aac->in_reset = 0;
1853 	return BlinkLED;
1854 }
1855 
1856 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1857 {
1858 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1859 }
1860 
1861 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1862 								int bus,
1863 								int target)
1864 {
1865 	if (bus != CONTAINER_CHANNEL)
1866 		bus = aac_phys_to_logical(bus);
1867 
1868 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1869 }
1870 
1871 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1872 {
1873 	if (bus != CONTAINER_CHANNEL)
1874 		bus = aac_phys_to_logical(bus);
1875 
1876 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1877 }
1878 
1879 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1880 {
1881 	if (sdev)
1882 		scsi_device_put(sdev);
1883 }
1884 
1885 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1886 {
1887 	struct scsi_device *sdev;
1888 
1889 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1890 	scsi_remove_device(sdev);
1891 	aac_put_safw_scsi_device(sdev);
1892 }
1893 
1894 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1895 	int bus, int target)
1896 {
1897 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1898 }
1899 
1900 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1901 {
1902 	if (is_safw_raid_volume(dev, bus, target))
1903 		return dev->fsa_dev[target].valid;
1904 	else
1905 		return aac_is_safw_scan_count_equal(dev, bus, target);
1906 }
1907 
1908 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1909 {
1910 	int is_exposed = 0;
1911 	struct scsi_device *sdev;
1912 
1913 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1914 	if (sdev)
1915 		is_exposed = 1;
1916 	aac_put_safw_scsi_device(sdev);
1917 
1918 	return is_exposed;
1919 }
1920 
1921 static int aac_update_safw_host_devices(struct aac_dev *dev)
1922 {
1923 	int i;
1924 	int bus;
1925 	int target;
1926 	int is_exposed = 0;
1927 	int rcode = 0;
1928 
1929 	rcode = aac_setup_safw_adapter(dev);
1930 	if (unlikely(rcode < 0)) {
1931 		goto out;
1932 	}
1933 
1934 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1935 
1936 		bus = get_bus_number(i);
1937 		target = get_target_number(i);
1938 
1939 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1940 
1941 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1942 			aac_add_safw_device(dev, bus, target);
1943 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1944 								is_exposed)
1945 			aac_remove_safw_device(dev, bus, target);
1946 	}
1947 out:
1948 	return rcode;
1949 }
1950 
1951 static int aac_scan_safw_host(struct aac_dev *dev)
1952 {
1953 	int rcode = 0;
1954 
1955 	rcode = aac_update_safw_host_devices(dev);
1956 	if (rcode)
1957 		aac_schedule_safw_scan_worker(dev);
1958 
1959 	return rcode;
1960 }
1961 
1962 int aac_scan_host(struct aac_dev *dev)
1963 {
1964 	int rcode = 0;
1965 
1966 	mutex_lock(&dev->scan_mutex);
1967 	if (dev->sa_firmware)
1968 		rcode = aac_scan_safw_host(dev);
1969 	else
1970 		scsi_scan_host(dev->scsi_host_ptr);
1971 	mutex_unlock(&dev->scan_mutex);
1972 
1973 	return rcode;
1974 }
1975 
1976 /**
1977  *	aac_handle_sa_aif	Handle a message from the firmware
1978  *	@dev: Which adapter this fib is from
1979  *	@fibptr: Pointer to fibptr from adapter
1980  *
1981  *	This routine handles a driver notify fib from the adapter and
1982  *	dispatches it to the appropriate routine for handling.
1983  */
1984 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1985 {
1986 	int i;
1987 	u32 events = 0;
1988 
1989 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1990 		events = SA_AIF_HOTPLUG;
1991 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1992 		events = SA_AIF_HARDWARE;
1993 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1994 		events = SA_AIF_PDEV_CHANGE;
1995 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1996 		events = SA_AIF_LDEV_CHANGE;
1997 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1998 		events = SA_AIF_BPSTAT_CHANGE;
1999 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
2000 		events = SA_AIF_BPCFG_CHANGE;
2001 
2002 	switch (events) {
2003 	case SA_AIF_HOTPLUG:
2004 	case SA_AIF_HARDWARE:
2005 	case SA_AIF_PDEV_CHANGE:
2006 	case SA_AIF_LDEV_CHANGE:
2007 	case SA_AIF_BPCFG_CHANGE:
2008 
2009 		aac_scan_host(dev);
2010 
2011 		break;
2012 
2013 	case SA_AIF_BPSTAT_CHANGE:
2014 		/* currently do nothing */
2015 		break;
2016 	}
2017 
2018 	for (i = 1; i <= 10; ++i) {
2019 		events = src_readl(dev, MUnit.IDR);
2020 		if (events & (1<<23)) {
2021 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2022 				i, 10);
2023 			ssleep(1);
2024 		}
2025 	}
2026 }
2027 
2028 static int get_fib_count(struct aac_dev *dev)
2029 {
2030 	unsigned int num = 0;
2031 	struct list_head *entry;
2032 	unsigned long flagv;
2033 
2034 	/*
2035 	 * Warning: no sleep allowed while
2036 	 * holding spinlock. We take the estimate
2037 	 * and pre-allocate a set of fibs outside the
2038 	 * lock.
2039 	 */
2040 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2041 			/ sizeof(struct hw_fib); /* some extra */
2042 	spin_lock_irqsave(&dev->fib_lock, flagv);
2043 	entry = dev->fib_list.next;
2044 	while (entry != &dev->fib_list) {
2045 		entry = entry->next;
2046 		++num;
2047 	}
2048 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2049 
2050 	return num;
2051 }
2052 
2053 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2054 						struct fib **fib_pool,
2055 						unsigned int num)
2056 {
2057 	struct hw_fib **hw_fib_p;
2058 	struct fib **fib_p;
2059 
2060 	hw_fib_p = hw_fib_pool;
2061 	fib_p = fib_pool;
2062 	while (hw_fib_p < &hw_fib_pool[num]) {
2063 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2064 		if (!(*(hw_fib_p++))) {
2065 			--hw_fib_p;
2066 			break;
2067 		}
2068 
2069 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2070 		if (!(*(fib_p++))) {
2071 			kfree(*(--hw_fib_p));
2072 			break;
2073 		}
2074 	}
2075 
2076 	/*
2077 	 * Get the actual number of allocated fibs
2078 	 */
2079 	num = hw_fib_p - hw_fib_pool;
2080 	return num;
2081 }
2082 
2083 static void wakeup_fibctx_threads(struct aac_dev *dev,
2084 						struct hw_fib **hw_fib_pool,
2085 						struct fib **fib_pool,
2086 						struct fib *fib,
2087 						struct hw_fib *hw_fib,
2088 						unsigned int num)
2089 {
2090 	unsigned long flagv;
2091 	struct list_head *entry;
2092 	struct hw_fib **hw_fib_p;
2093 	struct fib **fib_p;
2094 	u32 time_now, time_last;
2095 	struct hw_fib *hw_newfib;
2096 	struct fib *newfib;
2097 	struct aac_fib_context *fibctx;
2098 
2099 	time_now = jiffies/HZ;
2100 	spin_lock_irqsave(&dev->fib_lock, flagv);
2101 	entry = dev->fib_list.next;
2102 	/*
2103 	 * For each Context that is on the
2104 	 * fibctxList, make a copy of the
2105 	 * fib, and then set the event to wake up the
2106 	 * thread that is waiting for it.
2107 	 */
2108 
2109 	hw_fib_p = hw_fib_pool;
2110 	fib_p = fib_pool;
2111 	while (entry != &dev->fib_list) {
2112 		/*
2113 		 * Extract the fibctx
2114 		 */
2115 		fibctx = list_entry(entry, struct aac_fib_context,
2116 				next);
2117 		/*
2118 		 * Check if the queue is getting
2119 		 * backlogged
2120 		 */
2121 		if (fibctx->count > 20) {
2122 			/*
2123 			 * It's *not* jiffies folks,
2124 			 * but jiffies / HZ so do not
2125 			 * panic ...
2126 			 */
2127 			time_last = fibctx->jiffies;
2128 			/*
2129 			 * Has it been > 2 minutes
2130 			 * since the last read off
2131 			 * the queue?
2132 			 */
2133 			if ((time_now - time_last) > aif_timeout) {
2134 				entry = entry->next;
2135 				aac_close_fib_context(dev, fibctx);
2136 				continue;
2137 			}
2138 		}
2139 		/*
2140 		 * Warning: no sleep allowed while
2141 		 * holding spinlock
2142 		 */
2143 		if (hw_fib_p >= &hw_fib_pool[num]) {
2144 			pr_warn("aifd: didn't allocate NewFib\n");
2145 			entry = entry->next;
2146 			continue;
2147 		}
2148 
2149 		hw_newfib = *hw_fib_p;
2150 		*(hw_fib_p++) = NULL;
2151 		newfib = *fib_p;
2152 		*(fib_p++) = NULL;
2153 		/*
2154 		 * Make the copy of the FIB
2155 		 */
2156 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2157 		memcpy(newfib, fib, sizeof(struct fib));
2158 		newfib->hw_fib_va = hw_newfib;
2159 		/*
2160 		 * Put the FIB onto the
2161 		 * fibctx's fibs
2162 		 */
2163 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2164 		fibctx->count++;
2165 		/*
2166 		 * Set the event to wake up the
2167 		 * thread that is waiting.
2168 		 */
2169 		complete(&fibctx->completion);
2170 
2171 		entry = entry->next;
2172 	}
2173 	/*
2174 	 *	Set the status of this FIB
2175 	 */
2176 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2177 	aac_fib_adapter_complete(fib, sizeof(u32));
2178 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2179 
2180 }
2181 
2182 static void aac_process_events(struct aac_dev *dev)
2183 {
2184 	struct hw_fib *hw_fib;
2185 	struct fib *fib;
2186 	unsigned long flags;
2187 	spinlock_t *t_lock;
2188 
2189 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2190 	spin_lock_irqsave(t_lock, flags);
2191 
2192 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2193 		struct list_head *entry;
2194 		struct aac_aifcmd *aifcmd;
2195 		unsigned int  num;
2196 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2197 		struct fib **fib_pool, **fib_p;
2198 
2199 		set_current_state(TASK_RUNNING);
2200 
2201 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2202 		list_del(entry);
2203 
2204 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2205 		spin_unlock_irqrestore(t_lock, flags);
2206 
2207 		fib = list_entry(entry, struct fib, fiblink);
2208 		hw_fib = fib->hw_fib_va;
2209 		if (dev->sa_firmware) {
2210 			/* Thor AIF */
2211 			aac_handle_sa_aif(dev, fib);
2212 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213 			goto free_fib;
2214 		}
2215 		/*
2216 		 *	We will process the FIB here or pass it to a
2217 		 *	worker thread that is TBD. We Really can't
2218 		 *	do anything at this point since we don't have
2219 		 *	anything defined for this thread to do.
2220 		 */
2221 		memset(fib, 0, sizeof(struct fib));
2222 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2223 		fib->size = sizeof(struct fib);
2224 		fib->hw_fib_va = hw_fib;
2225 		fib->data = hw_fib->data;
2226 		fib->dev = dev;
2227 		/*
2228 		 *	We only handle AifRequest fibs from the adapter.
2229 		 */
2230 
2231 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2232 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2233 			/* Handle Driver Notify Events */
2234 			aac_handle_aif(dev, fib);
2235 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2236 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2237 			goto free_fib;
2238 		}
2239 		/*
2240 		 * The u32 here is important and intended. We are using
2241 		 * 32bit wrapping time to fit the adapter field
2242 		 */
2243 
2244 		/* Sniff events */
2245 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2246 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2247 			aac_handle_aif(dev, fib);
2248 		}
2249 
2250 		/*
2251 		 * get number of fibs to process
2252 		 */
2253 		num = get_fib_count(dev);
2254 		if (!num)
2255 			goto free_fib;
2256 
2257 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2258 						GFP_KERNEL);
2259 		if (!hw_fib_pool)
2260 			goto free_fib;
2261 
2262 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2263 		if (!fib_pool)
2264 			goto free_hw_fib_pool;
2265 
2266 		/*
2267 		 * Fill up fib pointer pools with actual fibs
2268 		 * and hw_fibs
2269 		 */
2270 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2271 		if (!num)
2272 			goto free_mem;
2273 
2274 		/*
2275 		 * wakeup the thread that is waiting for
2276 		 * the response from fw (ioctl)
2277 		 */
2278 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2279 							    fib, hw_fib, num);
2280 
2281 free_mem:
2282 		/* Free up the remaining resources */
2283 		hw_fib_p = hw_fib_pool;
2284 		fib_p = fib_pool;
2285 		while (hw_fib_p < &hw_fib_pool[num]) {
2286 			kfree(*hw_fib_p);
2287 			kfree(*fib_p);
2288 			++fib_p;
2289 			++hw_fib_p;
2290 		}
2291 		kfree(fib_pool);
2292 free_hw_fib_pool:
2293 		kfree(hw_fib_pool);
2294 free_fib:
2295 		kfree(fib);
2296 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2297 		spin_lock_irqsave(t_lock, flags);
2298 	}
2299 	/*
2300 	 *	There are no more AIF's
2301 	 */
2302 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2303 	spin_unlock_irqrestore(t_lock, flags);
2304 }
2305 
2306 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2307 							u32 datasize)
2308 {
2309 	struct aac_srb *srbcmd;
2310 	struct sgmap64 *sg64;
2311 	dma_addr_t addr;
2312 	char *dma_buf;
2313 	struct fib *fibptr;
2314 	int ret = -ENOMEM;
2315 	u32 vbus, vid;
2316 
2317 	fibptr = aac_fib_alloc(dev);
2318 	if (!fibptr)
2319 		goto out;
2320 
2321 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2322 				     GFP_KERNEL);
2323 	if (!dma_buf)
2324 		goto fib_free_out;
2325 
2326 	aac_fib_init(fibptr);
2327 
2328 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2329 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2330 
2331 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2332 
2333 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2334 	srbcmd->channel = cpu_to_le32(vbus);
2335 	srbcmd->id = cpu_to_le32(vid);
2336 	srbcmd->lun = 0;
2337 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2338 	srbcmd->timeout = cpu_to_le32(10);
2339 	srbcmd->retry_limit = 0;
2340 	srbcmd->cdb_size = cpu_to_le32(12);
2341 	srbcmd->count = cpu_to_le32(datasize);
2342 
2343 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2344 	srbcmd->cdb[0] = BMIC_OUT;
2345 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2346 	memcpy(dma_buf, (char *)wellness_str, datasize);
2347 
2348 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2349 	sg64->count = cpu_to_le32(1);
2350 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2351 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2352 	sg64->sg[0].count = cpu_to_le32(datasize);
2353 
2354 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2355 				FsaNormal, 1, 1, NULL, NULL);
2356 
2357 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2358 
2359 	/*
2360 	 * Do not set XferState to zero unless
2361 	 * receives a response from F/W
2362 	 */
2363 	if (ret >= 0)
2364 		aac_fib_complete(fibptr);
2365 
2366 	/*
2367 	 * FIB should be freed only after
2368 	 * getting the response from the F/W
2369 	 */
2370 	if (ret != -ERESTARTSYS)
2371 		goto fib_free_out;
2372 
2373 out:
2374 	return ret;
2375 fib_free_out:
2376 	aac_fib_free(fibptr);
2377 	goto out;
2378 }
2379 
2380 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2381 {
2382 	struct tm cur_tm;
2383 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2384 	u32 datasize = sizeof(wellness_str);
2385 	time64_t local_time;
2386 	int ret = -ENODEV;
2387 
2388 	if (!dev->sa_firmware)
2389 		goto out;
2390 
2391 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2392 	time64_to_tm(local_time, 0, &cur_tm);
2393 	cur_tm.tm_mon += 1;
2394 	cur_tm.tm_year += 1900;
2395 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2396 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2397 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2398 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2399 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2400 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2401 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2402 
2403 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2404 
2405 out:
2406 	return ret;
2407 }
2408 
2409 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2410 {
2411 	int ret = -ENOMEM;
2412 	struct fib *fibptr;
2413 	__le32 *info;
2414 
2415 	fibptr = aac_fib_alloc(dev);
2416 	if (!fibptr)
2417 		goto out;
2418 
2419 	aac_fib_init(fibptr);
2420 	info = (__le32 *)fib_data(fibptr);
2421 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2422 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2423 					1, 1, NULL, NULL);
2424 
2425 	/*
2426 	 * Do not set XferState to zero unless
2427 	 * receives a response from F/W
2428 	 */
2429 	if (ret >= 0)
2430 		aac_fib_complete(fibptr);
2431 
2432 	/*
2433 	 * FIB should be freed only after
2434 	 * getting the response from the F/W
2435 	 */
2436 	if (ret != -ERESTARTSYS)
2437 		aac_fib_free(fibptr);
2438 
2439 out:
2440 	return ret;
2441 }
2442 
2443 /**
2444  *	aac_command_thread	-	command processing thread
2445  *	@dev: Adapter to monitor
2446  *
2447  *	Waits on the commandready event in it's queue. When the event gets set
2448  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2449  *	until the queue is empty. When the queue is empty it will wait for
2450  *	more FIBs.
2451  */
2452 
2453 int aac_command_thread(void *data)
2454 {
2455 	struct aac_dev *dev = data;
2456 	DECLARE_WAITQUEUE(wait, current);
2457 	unsigned long next_jiffies = jiffies + HZ;
2458 	unsigned long next_check_jiffies = next_jiffies;
2459 	long difference = HZ;
2460 
2461 	/*
2462 	 *	We can only have one thread per adapter for AIF's.
2463 	 */
2464 	if (dev->aif_thread)
2465 		return -EINVAL;
2466 
2467 	/*
2468 	 *	Let the DPC know it has a place to send the AIF's to.
2469 	 */
2470 	dev->aif_thread = 1;
2471 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2472 	set_current_state(TASK_INTERRUPTIBLE);
2473 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2474 	while (1) {
2475 
2476 		aac_process_events(dev);
2477 
2478 		/*
2479 		 *	Background activity
2480 		 */
2481 		if ((time_before(next_check_jiffies,next_jiffies))
2482 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2483 			next_check_jiffies = next_jiffies;
2484 			if (aac_adapter_check_health(dev) == 0) {
2485 				difference = ((long)(unsigned)check_interval)
2486 					   * HZ;
2487 				next_check_jiffies = jiffies + difference;
2488 			} else if (!dev->queues)
2489 				break;
2490 		}
2491 		if (!time_before(next_check_jiffies,next_jiffies)
2492 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2493 			struct timespec64 now;
2494 			int ret;
2495 
2496 			/* Don't even try to talk to adapter if its sick */
2497 			ret = aac_adapter_check_health(dev);
2498 			if (ret || !dev->queues)
2499 				break;
2500 			next_check_jiffies = jiffies
2501 					   + ((long)(unsigned)check_interval)
2502 					   * HZ;
2503 			ktime_get_real_ts64(&now);
2504 
2505 			/* Synchronize our watches */
2506 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2507 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2508 				difference = HZ + HZ / 2 -
2509 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2510 			else {
2511 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2512 					++now.tv_sec;
2513 
2514 				if (dev->sa_firmware)
2515 					ret =
2516 					aac_send_safw_hostttime(dev, &now);
2517 				else
2518 					ret = aac_send_hosttime(dev, &now);
2519 
2520 				difference = (long)(unsigned)update_interval*HZ;
2521 			}
2522 			next_jiffies = jiffies + difference;
2523 			if (time_before(next_check_jiffies,next_jiffies))
2524 				difference = next_check_jiffies - jiffies;
2525 		}
2526 		if (difference <= 0)
2527 			difference = 1;
2528 		set_current_state(TASK_INTERRUPTIBLE);
2529 
2530 		if (kthread_should_stop())
2531 			break;
2532 
2533 		/*
2534 		 * we probably want usleep_range() here instead of the
2535 		 * jiffies computation
2536 		 */
2537 		schedule_timeout(difference);
2538 
2539 		if (kthread_should_stop())
2540 			break;
2541 	}
2542 	if (dev->queues)
2543 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2544 	dev->aif_thread = 0;
2545 	return 0;
2546 }
2547 
2548 int aac_acquire_irq(struct aac_dev *dev)
2549 {
2550 	int i;
2551 	int j;
2552 	int ret = 0;
2553 
2554 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2555 		for (i = 0; i < dev->max_msix; i++) {
2556 			dev->aac_msix[i].vector_no = i;
2557 			dev->aac_msix[i].dev = dev;
2558 			if (request_irq(pci_irq_vector(dev->pdev, i),
2559 					dev->a_ops.adapter_intr,
2560 					0, "aacraid", &(dev->aac_msix[i]))) {
2561 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2562 						dev->name, dev->id, i);
2563 				for (j = 0 ; j < i ; j++)
2564 					free_irq(pci_irq_vector(dev->pdev, j),
2565 						 &(dev->aac_msix[j]));
2566 				pci_disable_msix(dev->pdev);
2567 				ret = -1;
2568 			}
2569 		}
2570 	} else {
2571 		dev->aac_msix[0].vector_no = 0;
2572 		dev->aac_msix[0].dev = dev;
2573 
2574 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2575 			IRQF_SHARED, "aacraid",
2576 			&(dev->aac_msix[0])) < 0) {
2577 			if (dev->msi)
2578 				pci_disable_msi(dev->pdev);
2579 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2580 					dev->name, dev->id);
2581 			ret = -1;
2582 		}
2583 	}
2584 	return ret;
2585 }
2586 
2587 void aac_free_irq(struct aac_dev *dev)
2588 {
2589 	int i;
2590 
2591 	if (aac_is_src(dev)) {
2592 		if (dev->max_msix > 1) {
2593 			for (i = 0; i < dev->max_msix; i++)
2594 				free_irq(pci_irq_vector(dev->pdev, i),
2595 					 &(dev->aac_msix[i]));
2596 		} else {
2597 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2598 		}
2599 	} else {
2600 		free_irq(dev->pdev->irq, dev);
2601 	}
2602 	if (dev->msi)
2603 		pci_disable_msi(dev->pdev);
2604 	else if (dev->max_msix > 1)
2605 		pci_disable_msix(dev->pdev);
2606 }
2607