1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * comminit.c 26 * 27 * Abstract: This supports the initialization of the host adapter commuication interface. 28 * This is a platform dependent module for the pci cyclone board. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/blkdev.h> 40 #include <linux/completion.h> 41 #include <linux/mm.h> 42 #include <scsi/scsi_host.h> 43 #include <asm/semaphore.h> 44 45 #include "aacraid.h" 46 47 struct aac_common aac_config = { 48 .irq_mod = 1 49 }; 50 51 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign) 52 { 53 unsigned char *base; 54 unsigned long size, align; 55 const unsigned long fibsize = 4096; 56 const unsigned long printfbufsiz = 256; 57 struct aac_init *init; 58 dma_addr_t phys; 59 60 size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz; 61 62 63 base = pci_alloc_consistent(dev->pdev, size, &phys); 64 65 if(base == NULL) 66 { 67 printk(KERN_ERR "aacraid: unable to create mapping.\n"); 68 return 0; 69 } 70 dev->comm_addr = (void *)base; 71 dev->comm_phys = phys; 72 dev->comm_size = size; 73 74 dev->init = (struct aac_init *)(base + fibsize); 75 dev->init_pa = phys + fibsize; 76 77 init = dev->init; 78 79 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION); 80 if (dev->max_fib_size != sizeof(struct hw_fib)) 81 init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4); 82 init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION); 83 init->fsrev = cpu_to_le32(dev->fsrev); 84 85 /* 86 * Adapter Fibs are the first thing allocated so that they 87 * start page aligned 88 */ 89 dev->aif_base_va = (struct hw_fib *)base; 90 91 init->AdapterFibsVirtualAddress = 0; 92 init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys); 93 init->AdapterFibsSize = cpu_to_le32(fibsize); 94 init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib)); 95 /* 96 * number of 4k pages of host physical memory. The aacraid fw needs 97 * this number to be less than 4gb worth of pages. num_physpages is in 98 * system page units. New firmware doesn't have any issues with the 99 * mapping system, but older Firmware did, and had *troubles* dealing 100 * with the math overloading past 32 bits, thus we must limit this 101 * field. 102 * 103 * This assumes the memory is mapped zero->n, which isnt 104 * always true on real computers. It also has some slight problems 105 * with the GART on x86-64. I've btw never tried DMA from PCI space 106 * on this platform but don't be suprised if its problematic. 107 */ 108 #ifndef CONFIG_GART_IOMMU 109 if ((num_physpages << (PAGE_SHIFT - 12)) <= AAC_MAX_HOSTPHYSMEMPAGES) { 110 init->HostPhysMemPages = 111 cpu_to_le32(num_physpages << (PAGE_SHIFT-12)); 112 } else 113 #endif 114 { 115 init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES); 116 } 117 118 init->InitFlags = 0; 119 if (dev->new_comm_interface) { 120 init->InitFlags = cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED); 121 dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n")); 122 } 123 init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 124 init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9); 125 init->MaxFibSize = cpu_to_le32(dev->max_fib_size); 126 127 /* 128 * Increment the base address by the amount already used 129 */ 130 base = base + fibsize + sizeof(struct aac_init); 131 phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init)); 132 /* 133 * Align the beginning of Headers to commalign 134 */ 135 align = (commalign - ((unsigned long)(base) & (commalign - 1))); 136 base = base + align; 137 phys = phys + align; 138 /* 139 * Fill in addresses of the Comm Area Headers and Queues 140 */ 141 *commaddr = base; 142 init->CommHeaderAddress = cpu_to_le32((u32)phys); 143 /* 144 * Increment the base address by the size of the CommArea 145 */ 146 base = base + commsize; 147 phys = phys + commsize; 148 /* 149 * Place the Printf buffer area after the Fast I/O comm area. 150 */ 151 dev->printfbuf = (void *)base; 152 init->printfbuf = cpu_to_le32(phys); 153 init->printfbufsiz = cpu_to_le32(printfbufsiz); 154 memset(base, 0, printfbufsiz); 155 return 1; 156 } 157 158 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize) 159 { 160 q->numpending = 0; 161 q->dev = dev; 162 INIT_LIST_HEAD(&q->pendingq); 163 init_waitqueue_head(&q->cmdready); 164 INIT_LIST_HEAD(&q->cmdq); 165 init_waitqueue_head(&q->qfull); 166 spin_lock_init(&q->lockdata); 167 q->lock = &q->lockdata; 168 q->headers.producer = (__le32 *)mem; 169 q->headers.consumer = (__le32 *)(mem+1); 170 *(q->headers.producer) = cpu_to_le32(qsize); 171 *(q->headers.consumer) = cpu_to_le32(qsize); 172 q->entries = qsize; 173 } 174 175 /** 176 * aac_send_shutdown - shutdown an adapter 177 * @dev: Adapter to shutdown 178 * 179 * This routine will send a VM_CloseAll (shutdown) request to the adapter. 180 */ 181 182 int aac_send_shutdown(struct aac_dev * dev) 183 { 184 struct fib * fibctx; 185 struct aac_close *cmd; 186 int status; 187 188 fibctx = fib_alloc(dev); 189 if (!fibctx) 190 return -ENOMEM; 191 fib_init(fibctx); 192 193 cmd = (struct aac_close *) fib_data(fibctx); 194 195 cmd->command = cpu_to_le32(VM_CloseAll); 196 cmd->cid = cpu_to_le32(0xffffffff); 197 198 status = fib_send(ContainerCommand, 199 fibctx, 200 sizeof(struct aac_close), 201 FsaNormal, 202 -2 /* Timeout silently */, 1, 203 NULL, NULL); 204 205 if (status == 0) 206 fib_complete(fibctx); 207 fib_free(fibctx); 208 return status; 209 } 210 211 /** 212 * aac_comm_init - Initialise FSA data structures 213 * @dev: Adapter to initialise 214 * 215 * Initializes the data structures that are required for the FSA commuication 216 * interface to operate. 217 * Returns 218 * 1 - if we were able to init the commuication interface. 219 * 0 - If there were errors initing. This is a fatal error. 220 */ 221 222 static int aac_comm_init(struct aac_dev * dev) 223 { 224 unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2; 225 unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES; 226 u32 *headers; 227 struct aac_entry * queues; 228 unsigned long size; 229 struct aac_queue_block * comm = dev->queues; 230 /* 231 * Now allocate and initialize the zone structures used as our 232 * pool of FIB context records. The size of the zone is based 233 * on the system memory size. We also initialize the mutex used 234 * to protect the zone. 235 */ 236 spin_lock_init(&dev->fib_lock); 237 238 /* 239 * Allocate the physically contigous space for the commuication 240 * queue headers. 241 */ 242 243 size = hdrsize + queuesize; 244 245 if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT)) 246 return -ENOMEM; 247 248 queues = (struct aac_entry *)(((ulong)headers) + hdrsize); 249 250 /* Adapter to Host normal priority Command queue */ 251 comm->queue[HostNormCmdQueue].base = queues; 252 aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES); 253 queues += HOST_NORM_CMD_ENTRIES; 254 headers += 2; 255 256 /* Adapter to Host high priority command queue */ 257 comm->queue[HostHighCmdQueue].base = queues; 258 aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES); 259 260 queues += HOST_HIGH_CMD_ENTRIES; 261 headers +=2; 262 263 /* Host to adapter normal priority command queue */ 264 comm->queue[AdapNormCmdQueue].base = queues; 265 aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES); 266 267 queues += ADAP_NORM_CMD_ENTRIES; 268 headers += 2; 269 270 /* host to adapter high priority command queue */ 271 comm->queue[AdapHighCmdQueue].base = queues; 272 aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES); 273 274 queues += ADAP_HIGH_CMD_ENTRIES; 275 headers += 2; 276 277 /* adapter to host normal priority response queue */ 278 comm->queue[HostNormRespQueue].base = queues; 279 aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES); 280 queues += HOST_NORM_RESP_ENTRIES; 281 headers += 2; 282 283 /* adapter to host high priority response queue */ 284 comm->queue[HostHighRespQueue].base = queues; 285 aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES); 286 287 queues += HOST_HIGH_RESP_ENTRIES; 288 headers += 2; 289 290 /* host to adapter normal priority response queue */ 291 comm->queue[AdapNormRespQueue].base = queues; 292 aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES); 293 294 queues += ADAP_NORM_RESP_ENTRIES; 295 headers += 2; 296 297 /* host to adapter high priority response queue */ 298 comm->queue[AdapHighRespQueue].base = queues; 299 aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES); 300 301 comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock; 302 comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock; 303 comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock; 304 comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock; 305 306 return 0; 307 } 308 309 struct aac_dev *aac_init_adapter(struct aac_dev *dev) 310 { 311 u32 status[5]; 312 struct Scsi_Host * host = dev->scsi_host_ptr; 313 314 /* 315 * Check the preferred comm settings, defaults from template. 316 */ 317 dev->max_fib_size = sizeof(struct hw_fib); 318 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size 319 - sizeof(struct aac_fibhdr) 320 - sizeof(struct aac_write) + sizeof(struct sgentry)) 321 / sizeof(struct sgentry); 322 dev->new_comm_interface = 0; 323 dev->raw_io_64 = 0; 324 if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 325 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) && 326 (status[0] == 0x00000001)) { 327 if (status[1] & AAC_OPT_NEW_COMM_64) 328 dev->raw_io_64 = 1; 329 if (status[1] & AAC_OPT_NEW_COMM) 330 dev->new_comm_interface = dev->a_ops.adapter_send != 0; 331 if (dev->new_comm_interface && (status[2] > dev->base_size)) { 332 iounmap(dev->regs.sa); 333 dev->base_size = status[2]; 334 dprintk((KERN_DEBUG "ioremap(%lx,%d)\n", 335 host->base, status[2])); 336 dev->regs.sa = ioremap(host->base, status[2]); 337 if (dev->regs.sa == NULL) { 338 /* remap failed, go back ... */ 339 dev->new_comm_interface = 0; 340 dev->regs.sa = ioremap(host->base, 341 AAC_MIN_FOOTPRINT_SIZE); 342 if (dev->regs.sa == NULL) { 343 printk(KERN_WARNING 344 "aacraid: unable to map adapter.\n"); 345 return NULL; 346 } 347 } 348 } 349 } 350 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS, 351 0, 0, 0, 0, 0, 0, 352 status+0, status+1, status+2, status+3, status+4)) 353 && (status[0] == 0x00000001)) { 354 /* 355 * status[1] >> 16 maximum command size in KB 356 * status[1] & 0xFFFF maximum FIB size 357 * status[2] >> 16 maximum SG elements to driver 358 * status[2] & 0xFFFF maximum SG elements from driver 359 * status[3] & 0xFFFF maximum number FIBs outstanding 360 */ 361 host->max_sectors = (status[1] >> 16) << 1; 362 dev->max_fib_size = status[1] & 0xFFFF; 363 host->sg_tablesize = status[2] >> 16; 364 dev->sg_tablesize = status[2] & 0xFFFF; 365 host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB; 366 /* 367 * NOTE: 368 * All these overrides are based on a fixed internal 369 * knowledge and understanding of existing adapters, 370 * acbsize should be set with caution. 371 */ 372 if (acbsize == 512) { 373 host->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 374 dev->max_fib_size = 512; 375 dev->sg_tablesize = host->sg_tablesize 376 = (512 - sizeof(struct aac_fibhdr) 377 - sizeof(struct aac_write) + sizeof(struct sgentry)) 378 / sizeof(struct sgentry); 379 host->can_queue = AAC_NUM_IO_FIB; 380 } else if (acbsize == 2048) { 381 host->max_sectors = 512; 382 dev->max_fib_size = 2048; 383 host->sg_tablesize = 65; 384 dev->sg_tablesize = 81; 385 host->can_queue = 512 - AAC_NUM_MGT_FIB; 386 } else if (acbsize == 4096) { 387 host->max_sectors = 1024; 388 dev->max_fib_size = 4096; 389 host->sg_tablesize = 129; 390 dev->sg_tablesize = 166; 391 host->can_queue = 256 - AAC_NUM_MGT_FIB; 392 } else if (acbsize == 8192) { 393 host->max_sectors = 2048; 394 dev->max_fib_size = 8192; 395 host->sg_tablesize = 257; 396 dev->sg_tablesize = 337; 397 host->can_queue = 128 - AAC_NUM_MGT_FIB; 398 } else if (acbsize > 0) { 399 printk("Illegal acbsize=%d ignored\n", acbsize); 400 } 401 } 402 { 403 404 if (numacb > 0) { 405 if (numacb < host->can_queue) 406 host->can_queue = numacb; 407 else 408 printk("numacb=%d ignored\n", numacb); 409 } 410 } 411 412 /* 413 * Ok now init the communication subsystem 414 */ 415 416 dev->queues = (struct aac_queue_block *) kmalloc(sizeof(struct aac_queue_block), GFP_KERNEL); 417 if (dev->queues == NULL) { 418 printk(KERN_ERR "Error could not allocate comm region.\n"); 419 return NULL; 420 } 421 memset(dev->queues, 0, sizeof(struct aac_queue_block)); 422 423 if (aac_comm_init(dev)<0){ 424 kfree(dev->queues); 425 return NULL; 426 } 427 /* 428 * Initialize the list of fibs 429 */ 430 if(fib_setup(dev)<0){ 431 kfree(dev->queues); 432 return NULL; 433 } 434 435 INIT_LIST_HEAD(&dev->fib_list); 436 init_completion(&dev->aif_completion); 437 438 return dev; 439 } 440 441 442