xref: /openbmc/linux/drivers/scsi/aacraid/comminit.c (revision 87c2ce3b)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  comminit.c
26  *
27  * Abstract: This supports the initialization of the host adapter commuication interface.
28  *    This is a platform dependent module for the pci cyclone board.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/blkdev.h>
40 #include <linux/completion.h>
41 #include <linux/mm.h>
42 #include <scsi/scsi_host.h>
43 #include <asm/semaphore.h>
44 
45 #include "aacraid.h"
46 
47 struct aac_common aac_config = {
48 	.irq_mod = 1
49 };
50 
51 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
52 {
53 	unsigned char *base;
54 	unsigned long size, align;
55 	const unsigned long fibsize = 4096;
56 	const unsigned long printfbufsiz = 256;
57 	struct aac_init *init;
58 	dma_addr_t phys;
59 
60 	size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz;
61 
62 
63 	base = pci_alloc_consistent(dev->pdev, size, &phys);
64 
65 	if(base == NULL)
66 	{
67 		printk(KERN_ERR "aacraid: unable to create mapping.\n");
68 		return 0;
69 	}
70 	dev->comm_addr = (void *)base;
71 	dev->comm_phys = phys;
72 	dev->comm_size = size;
73 
74 	dev->init = (struct aac_init *)(base + fibsize);
75 	dev->init_pa = phys + fibsize;
76 
77 	init = dev->init;
78 
79 	init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
80 	if (dev->max_fib_size != sizeof(struct hw_fib))
81 		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
82 	init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
83 	init->fsrev = cpu_to_le32(dev->fsrev);
84 
85 	/*
86 	 *	Adapter Fibs are the first thing allocated so that they
87 	 *	start page aligned
88 	 */
89 	dev->aif_base_va = (struct hw_fib *)base;
90 
91 	init->AdapterFibsVirtualAddress = 0;
92 	init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
93 	init->AdapterFibsSize = cpu_to_le32(fibsize);
94 	init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
95 	/*
96 	 * number of 4k pages of host physical memory. The aacraid fw needs
97 	 * this number to be less than 4gb worth of pages. num_physpages is in
98 	 * system page units. New firmware doesn't have any issues with the
99 	 * mapping system, but older Firmware did, and had *troubles* dealing
100 	 * with the math overloading past 32 bits, thus we must limit this
101 	 * field.
102 	 *
103 	 * This assumes the memory is mapped zero->n, which isnt
104 	 * always true on real computers. It also has some slight problems
105 	 * with the GART on x86-64. I've btw never tried DMA from PCI space
106 	 * on this platform but don't be suprised if its problematic.
107 	 */
108 #ifndef CONFIG_GART_IOMMU
109 	if ((num_physpages << (PAGE_SHIFT - 12)) <= AAC_MAX_HOSTPHYSMEMPAGES) {
110 		init->HostPhysMemPages =
111 			cpu_to_le32(num_physpages << (PAGE_SHIFT-12));
112 	} else
113 #endif
114 	{
115 		init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
116 	}
117 
118 	init->InitFlags = 0;
119 	if (dev->new_comm_interface) {
120 		init->InitFlags = cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED);
121 		dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n"));
122 	}
123 	init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124 	init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
125 	init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
126 
127 	/*
128 	 * Increment the base address by the amount already used
129 	 */
130 	base = base + fibsize + sizeof(struct aac_init);
131 	phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init));
132 	/*
133 	 *	Align the beginning of Headers to commalign
134 	 */
135 	align = (commalign - ((unsigned long)(base) & (commalign - 1)));
136 	base = base + align;
137 	phys = phys + align;
138 	/*
139 	 *	Fill in addresses of the Comm Area Headers and Queues
140 	 */
141 	*commaddr = base;
142 	init->CommHeaderAddress = cpu_to_le32((u32)phys);
143 	/*
144 	 *	Increment the base address by the size of the CommArea
145 	 */
146 	base = base + commsize;
147 	phys = phys + commsize;
148 	/*
149 	 *	 Place the Printf buffer area after the Fast I/O comm area.
150 	 */
151 	dev->printfbuf = (void *)base;
152 	init->printfbuf = cpu_to_le32(phys);
153 	init->printfbufsiz = cpu_to_le32(printfbufsiz);
154 	memset(base, 0, printfbufsiz);
155 	return 1;
156 }
157 
158 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
159 {
160 	q->numpending = 0;
161 	q->dev = dev;
162 	INIT_LIST_HEAD(&q->pendingq);
163 	init_waitqueue_head(&q->cmdready);
164 	INIT_LIST_HEAD(&q->cmdq);
165 	init_waitqueue_head(&q->qfull);
166 	spin_lock_init(&q->lockdata);
167 	q->lock = &q->lockdata;
168 	q->headers.producer = (__le32 *)mem;
169 	q->headers.consumer = (__le32 *)(mem+1);
170 	*(q->headers.producer) = cpu_to_le32(qsize);
171 	*(q->headers.consumer) = cpu_to_le32(qsize);
172 	q->entries = qsize;
173 }
174 
175 /**
176  *	aac_send_shutdown		-	shutdown an adapter
177  *	@dev: Adapter to shutdown
178  *
179  *	This routine will send a VM_CloseAll (shutdown) request to the adapter.
180  */
181 
182 int aac_send_shutdown(struct aac_dev * dev)
183 {
184 	struct fib * fibctx;
185 	struct aac_close *cmd;
186 	int status;
187 
188 	fibctx = fib_alloc(dev);
189 	if (!fibctx)
190 		return -ENOMEM;
191 	fib_init(fibctx);
192 
193 	cmd = (struct aac_close *) fib_data(fibctx);
194 
195 	cmd->command = cpu_to_le32(VM_CloseAll);
196 	cmd->cid = cpu_to_le32(0xffffffff);
197 
198 	status = fib_send(ContainerCommand,
199 			  fibctx,
200 			  sizeof(struct aac_close),
201 			  FsaNormal,
202 			  -2 /* Timeout silently */, 1,
203 			  NULL, NULL);
204 
205 	if (status == 0)
206 		fib_complete(fibctx);
207 	fib_free(fibctx);
208 	return status;
209 }
210 
211 /**
212  *	aac_comm_init	-	Initialise FSA data structures
213  *	@dev:	Adapter to initialise
214  *
215  *	Initializes the data structures that are required for the FSA commuication
216  *	interface to operate.
217  *	Returns
218  *		1 - if we were able to init the commuication interface.
219  *		0 - If there were errors initing. This is a fatal error.
220  */
221 
222 static int aac_comm_init(struct aac_dev * dev)
223 {
224 	unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
225 	unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
226 	u32 *headers;
227 	struct aac_entry * queues;
228 	unsigned long size;
229 	struct aac_queue_block * comm = dev->queues;
230 	/*
231 	 *	Now allocate and initialize the zone structures used as our
232 	 *	pool of FIB context records.  The size of the zone is based
233 	 *	on the system memory size.  We also initialize the mutex used
234 	 *	to protect the zone.
235 	 */
236 	spin_lock_init(&dev->fib_lock);
237 
238 	/*
239 	 *	Allocate the physically contigous space for the commuication
240 	 *	queue headers.
241 	 */
242 
243 	size = hdrsize + queuesize;
244 
245 	if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
246 		return -ENOMEM;
247 
248 	queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
249 
250 	/* Adapter to Host normal priority Command queue */
251 	comm->queue[HostNormCmdQueue].base = queues;
252 	aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
253 	queues += HOST_NORM_CMD_ENTRIES;
254 	headers += 2;
255 
256 	/* Adapter to Host high priority command queue */
257 	comm->queue[HostHighCmdQueue].base = queues;
258 	aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
259 
260 	queues += HOST_HIGH_CMD_ENTRIES;
261 	headers +=2;
262 
263 	/* Host to adapter normal priority command queue */
264 	comm->queue[AdapNormCmdQueue].base = queues;
265 	aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
266 
267 	queues += ADAP_NORM_CMD_ENTRIES;
268 	headers += 2;
269 
270 	/* host to adapter high priority command queue */
271 	comm->queue[AdapHighCmdQueue].base = queues;
272 	aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
273 
274 	queues += ADAP_HIGH_CMD_ENTRIES;
275 	headers += 2;
276 
277 	/* adapter to host normal priority response queue */
278 	comm->queue[HostNormRespQueue].base = queues;
279 	aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
280 	queues += HOST_NORM_RESP_ENTRIES;
281 	headers += 2;
282 
283 	/* adapter to host high priority response queue */
284 	comm->queue[HostHighRespQueue].base = queues;
285 	aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
286 
287 	queues += HOST_HIGH_RESP_ENTRIES;
288 	headers += 2;
289 
290 	/* host to adapter normal priority response queue */
291 	comm->queue[AdapNormRespQueue].base = queues;
292 	aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
293 
294 	queues += ADAP_NORM_RESP_ENTRIES;
295 	headers += 2;
296 
297 	/* host to adapter high priority response queue */
298 	comm->queue[AdapHighRespQueue].base = queues;
299 	aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
300 
301 	comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
302 	comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
303 	comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
304 	comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
305 
306 	return 0;
307 }
308 
309 struct aac_dev *aac_init_adapter(struct aac_dev *dev)
310 {
311 	u32 status[5];
312 	struct Scsi_Host * host = dev->scsi_host_ptr;
313 
314 	/*
315 	 *	Check the preferred comm settings, defaults from template.
316 	 */
317 	dev->max_fib_size = sizeof(struct hw_fib);
318 	dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
319 		- sizeof(struct aac_fibhdr)
320 		- sizeof(struct aac_write) + sizeof(struct sgentry))
321 			/ sizeof(struct sgentry);
322 	dev->new_comm_interface = 0;
323 	dev->raw_io_64 = 0;
324 	if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
325 		0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
326 	 		(status[0] == 0x00000001)) {
327 		if (status[1] & AAC_OPT_NEW_COMM_64)
328 			dev->raw_io_64 = 1;
329 		if (status[1] & AAC_OPT_NEW_COMM)
330 			dev->new_comm_interface = dev->a_ops.adapter_send != 0;
331 		if (dev->new_comm_interface && (status[2] > dev->base_size)) {
332 			iounmap(dev->regs.sa);
333 			dev->base_size = status[2];
334 			dprintk((KERN_DEBUG "ioremap(%lx,%d)\n",
335 			  host->base, status[2]));
336 			dev->regs.sa = ioremap(host->base, status[2]);
337 			if (dev->regs.sa == NULL) {
338 				/* remap failed, go back ... */
339 				dev->new_comm_interface = 0;
340 				dev->regs.sa = ioremap(host->base,
341 						AAC_MIN_FOOTPRINT_SIZE);
342 				if (dev->regs.sa == NULL) {
343 					printk(KERN_WARNING
344 					  "aacraid: unable to map adapter.\n");
345 					return NULL;
346 				}
347 			}
348 		}
349 	}
350 	if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
351 	  0, 0, 0, 0, 0, 0,
352 	  status+0, status+1, status+2, status+3, status+4))
353 	 && (status[0] == 0x00000001)) {
354 		/*
355 		 *	status[1] >> 16		maximum command size in KB
356 		 *	status[1] & 0xFFFF	maximum FIB size
357 		 *	status[2] >> 16		maximum SG elements to driver
358 		 *	status[2] & 0xFFFF	maximum SG elements from driver
359 		 *	status[3] & 0xFFFF	maximum number FIBs outstanding
360 		 */
361 		host->max_sectors = (status[1] >> 16) << 1;
362 		dev->max_fib_size = status[1] & 0xFFFF;
363 		host->sg_tablesize = status[2] >> 16;
364 		dev->sg_tablesize = status[2] & 0xFFFF;
365 		host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
366 		/*
367 		 *	NOTE:
368 		 *	All these overrides are based on a fixed internal
369 		 *	knowledge and understanding of existing adapters,
370 		 *	acbsize should be set with caution.
371 		 */
372 		if (acbsize == 512) {
373 			host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
374 			dev->max_fib_size = 512;
375 			dev->sg_tablesize = host->sg_tablesize
376 			  = (512 - sizeof(struct aac_fibhdr)
377 			    - sizeof(struct aac_write) + sizeof(struct sgentry))
378 			     / sizeof(struct sgentry);
379 			host->can_queue = AAC_NUM_IO_FIB;
380 		} else if (acbsize == 2048) {
381 			host->max_sectors = 512;
382 			dev->max_fib_size = 2048;
383 			host->sg_tablesize = 65;
384 			dev->sg_tablesize = 81;
385 			host->can_queue = 512 - AAC_NUM_MGT_FIB;
386 		} else if (acbsize == 4096) {
387 			host->max_sectors = 1024;
388 			dev->max_fib_size = 4096;
389 			host->sg_tablesize = 129;
390 			dev->sg_tablesize = 166;
391 			host->can_queue = 256 - AAC_NUM_MGT_FIB;
392 		} else if (acbsize == 8192) {
393 			host->max_sectors = 2048;
394 			dev->max_fib_size = 8192;
395 			host->sg_tablesize = 257;
396 			dev->sg_tablesize = 337;
397 			host->can_queue = 128 - AAC_NUM_MGT_FIB;
398 		} else if (acbsize > 0) {
399 			printk("Illegal acbsize=%d ignored\n", acbsize);
400 		}
401 	}
402 	{
403 
404 		if (numacb > 0) {
405 			if (numacb < host->can_queue)
406 				host->can_queue = numacb;
407 			else
408 				printk("numacb=%d ignored\n", numacb);
409 		}
410 	}
411 
412 	/*
413 	 *	Ok now init the communication subsystem
414 	 */
415 
416 	dev->queues = (struct aac_queue_block *) kmalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
417 	if (dev->queues == NULL) {
418 		printk(KERN_ERR "Error could not allocate comm region.\n");
419 		return NULL;
420 	}
421 	memset(dev->queues, 0, sizeof(struct aac_queue_block));
422 
423 	if (aac_comm_init(dev)<0){
424 		kfree(dev->queues);
425 		return NULL;
426 	}
427 	/*
428 	 *	Initialize the list of fibs
429 	 */
430 	if(fib_setup(dev)<0){
431 		kfree(dev->queues);
432 		return NULL;
433 	}
434 
435 	INIT_LIST_HEAD(&dev->fib_list);
436 	init_completion(&dev->aif_completion);
437 
438 	return dev;
439 }
440 
441 
442