xref: /openbmc/linux/drivers/scsi/aacraid/comminit.c (revision 3b64b188)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  comminit.c
27  *
28  * Abstract: This supports the initialization of the host adapter commuication interface.
29  *    This is a platform dependent module for the pci cyclone board.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/blkdev.h>
40 #include <linux/completion.h>
41 #include <linux/mm.h>
42 #include <scsi/scsi_host.h>
43 
44 #include "aacraid.h"
45 
46 struct aac_common aac_config = {
47 	.irq_mod = 1
48 };
49 
50 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
51 {
52 	unsigned char *base;
53 	unsigned long size, align;
54 	const unsigned long fibsize = 4096;
55 	const unsigned long printfbufsiz = 256;
56 	unsigned long host_rrq_size = 0;
57 	struct aac_init *init;
58 	dma_addr_t phys;
59 	unsigned long aac_max_hostphysmempages;
60 
61 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
62 	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2)
63 		host_rrq_size = (dev->scsi_host_ptr->can_queue
64 			+ AAC_NUM_MGT_FIB) * sizeof(u32);
65 	size = fibsize + sizeof(struct aac_init) + commsize +
66 			commalign + printfbufsiz + host_rrq_size;
67 
68 	base = pci_alloc_consistent(dev->pdev, size, &phys);
69 
70 	if(base == NULL)
71 	{
72 		printk(KERN_ERR "aacraid: unable to create mapping.\n");
73 		return 0;
74 	}
75 	dev->comm_addr = (void *)base;
76 	dev->comm_phys = phys;
77 	dev->comm_size = size;
78 
79 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
80 	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
81 		dev->host_rrq = (u32 *)(base + fibsize);
82 		dev->host_rrq_pa = phys + fibsize;
83 		memset(dev->host_rrq, 0, host_rrq_size);
84 	}
85 
86 	dev->init = (struct aac_init *)(base + fibsize + host_rrq_size);
87 	dev->init_pa = phys + fibsize + host_rrq_size;
88 
89 	init = dev->init;
90 
91 	init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
92 	if (dev->max_fib_size != sizeof(struct hw_fib))
93 		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
94 	init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
95 	init->fsrev = cpu_to_le32(dev->fsrev);
96 
97 	/*
98 	 *	Adapter Fibs are the first thing allocated so that they
99 	 *	start page aligned
100 	 */
101 	dev->aif_base_va = (struct hw_fib *)base;
102 
103 	init->AdapterFibsVirtualAddress = 0;
104 	init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
105 	init->AdapterFibsSize = cpu_to_le32(fibsize);
106 	init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
107 	/*
108 	 * number of 4k pages of host physical memory. The aacraid fw needs
109 	 * this number to be less than 4gb worth of pages. New firmware doesn't
110 	 * have any issues with the mapping system, but older Firmware did, and
111 	 * had *troubles* dealing with the math overloading past 32 bits, thus
112 	 * we must limit this field.
113 	 */
114 	aac_max_hostphysmempages = dma_get_required_mask(&dev->pdev->dev) >> 12;
115 	if (aac_max_hostphysmempages < AAC_MAX_HOSTPHYSMEMPAGES)
116 		init->HostPhysMemPages = cpu_to_le32(aac_max_hostphysmempages);
117 	else
118 		init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
119 
120 	init->InitFlags = cpu_to_le32(INITFLAGS_DRIVER_USES_UTC_TIME |
121 		INITFLAGS_DRIVER_SUPPORTS_PM);
122 	init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
123 	init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
124 	init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
125 	init->MaxNumAif = cpu_to_le32(dev->max_num_aif);
126 
127 	if (dev->comm_interface == AAC_COMM_MESSAGE) {
128 		init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED);
129 		dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n"));
130 	} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
131 		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_6);
132 		init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED |
133 			INITFLAGS_NEW_COMM_TYPE1_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED);
134 		init->HostRRQ_AddrHigh = cpu_to_le32((u32)((u64)dev->host_rrq_pa >> 32));
135 		init->HostRRQ_AddrLow = cpu_to_le32((u32)(dev->host_rrq_pa & 0xffffffff));
136 		dprintk((KERN_WARNING"aacraid: New Comm Interface type1 enabled\n"));
137 	} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
138 		init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_7);
139 		init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED |
140 			INITFLAGS_NEW_COMM_TYPE2_SUPPORTED | INITFLAGS_FAST_JBOD_SUPPORTED);
141 		init->HostRRQ_AddrHigh = cpu_to_le32((u32)((u64)dev->host_rrq_pa >> 32));
142 		init->HostRRQ_AddrLow = cpu_to_le32((u32)(dev->host_rrq_pa & 0xffffffff));
143 		init->MiniPortRevision = cpu_to_le32(0L);		/* number of MSI-X */
144 		dprintk((KERN_WARNING"aacraid: New Comm Interface type2 enabled\n"));
145 	}
146 
147 	/*
148 	 * Increment the base address by the amount already used
149 	 */
150 	base = base + fibsize + host_rrq_size + sizeof(struct aac_init);
151 	phys = (dma_addr_t)((ulong)phys + fibsize + host_rrq_size +
152 		sizeof(struct aac_init));
153 
154 	/*
155 	 *	Align the beginning of Headers to commalign
156 	 */
157 	align = (commalign - ((uintptr_t)(base) & (commalign - 1)));
158 	base = base + align;
159 	phys = phys + align;
160 	/*
161 	 *	Fill in addresses of the Comm Area Headers and Queues
162 	 */
163 	*commaddr = base;
164 	init->CommHeaderAddress = cpu_to_le32((u32)phys);
165 	/*
166 	 *	Increment the base address by the size of the CommArea
167 	 */
168 	base = base + commsize;
169 	phys = phys + commsize;
170 	/*
171 	 *	 Place the Printf buffer area after the Fast I/O comm area.
172 	 */
173 	dev->printfbuf = (void *)base;
174 	init->printfbuf = cpu_to_le32(phys);
175 	init->printfbufsiz = cpu_to_le32(printfbufsiz);
176 	memset(base, 0, printfbufsiz);
177 	return 1;
178 }
179 
180 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
181 {
182 	q->numpending = 0;
183 	q->dev = dev;
184 	init_waitqueue_head(&q->cmdready);
185 	INIT_LIST_HEAD(&q->cmdq);
186 	init_waitqueue_head(&q->qfull);
187 	spin_lock_init(&q->lockdata);
188 	q->lock = &q->lockdata;
189 	q->headers.producer = (__le32 *)mem;
190 	q->headers.consumer = (__le32 *)(mem+1);
191 	*(q->headers.producer) = cpu_to_le32(qsize);
192 	*(q->headers.consumer) = cpu_to_le32(qsize);
193 	q->entries = qsize;
194 }
195 
196 /**
197  *	aac_send_shutdown		-	shutdown an adapter
198  *	@dev: Adapter to shutdown
199  *
200  *	This routine will send a VM_CloseAll (shutdown) request to the adapter.
201  */
202 
203 int aac_send_shutdown(struct aac_dev * dev)
204 {
205 	struct fib * fibctx;
206 	struct aac_close *cmd;
207 	int status;
208 
209 	fibctx = aac_fib_alloc(dev);
210 	if (!fibctx)
211 		return -ENOMEM;
212 	aac_fib_init(fibctx);
213 
214 	cmd = (struct aac_close *) fib_data(fibctx);
215 
216 	cmd->command = cpu_to_le32(VM_CloseAll);
217 	cmd->cid = cpu_to_le32(0xffffffff);
218 
219 	status = aac_fib_send(ContainerCommand,
220 			  fibctx,
221 			  sizeof(struct aac_close),
222 			  FsaNormal,
223 			  -2 /* Timeout silently */, 1,
224 			  NULL, NULL);
225 
226 	if (status >= 0)
227 		aac_fib_complete(fibctx);
228 	/* FIB should be freed only after getting the response from the F/W */
229 	if (status != -ERESTARTSYS)
230 		aac_fib_free(fibctx);
231 	return status;
232 }
233 
234 /**
235  *	aac_comm_init	-	Initialise FSA data structures
236  *	@dev:	Adapter to initialise
237  *
238  *	Initializes the data structures that are required for the FSA commuication
239  *	interface to operate.
240  *	Returns
241  *		1 - if we were able to init the commuication interface.
242  *		0 - If there were errors initing. This is a fatal error.
243  */
244 
245 static int aac_comm_init(struct aac_dev * dev)
246 {
247 	unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
248 	unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
249 	u32 *headers;
250 	struct aac_entry * queues;
251 	unsigned long size;
252 	struct aac_queue_block * comm = dev->queues;
253 	/*
254 	 *	Now allocate and initialize the zone structures used as our
255 	 *	pool of FIB context records.  The size of the zone is based
256 	 *	on the system memory size.  We also initialize the mutex used
257 	 *	to protect the zone.
258 	 */
259 	spin_lock_init(&dev->fib_lock);
260 
261 	/*
262 	 *	Allocate the physically contiguous space for the commuication
263 	 *	queue headers.
264 	 */
265 
266 	size = hdrsize + queuesize;
267 
268 	if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
269 		return -ENOMEM;
270 
271 	queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
272 
273 	/* Adapter to Host normal priority Command queue */
274 	comm->queue[HostNormCmdQueue].base = queues;
275 	aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
276 	queues += HOST_NORM_CMD_ENTRIES;
277 	headers += 2;
278 
279 	/* Adapter to Host high priority command queue */
280 	comm->queue[HostHighCmdQueue].base = queues;
281 	aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
282 
283 	queues += HOST_HIGH_CMD_ENTRIES;
284 	headers +=2;
285 
286 	/* Host to adapter normal priority command queue */
287 	comm->queue[AdapNormCmdQueue].base = queues;
288 	aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
289 
290 	queues += ADAP_NORM_CMD_ENTRIES;
291 	headers += 2;
292 
293 	/* host to adapter high priority command queue */
294 	comm->queue[AdapHighCmdQueue].base = queues;
295 	aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
296 
297 	queues += ADAP_HIGH_CMD_ENTRIES;
298 	headers += 2;
299 
300 	/* adapter to host normal priority response queue */
301 	comm->queue[HostNormRespQueue].base = queues;
302 	aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
303 	queues += HOST_NORM_RESP_ENTRIES;
304 	headers += 2;
305 
306 	/* adapter to host high priority response queue */
307 	comm->queue[HostHighRespQueue].base = queues;
308 	aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
309 
310 	queues += HOST_HIGH_RESP_ENTRIES;
311 	headers += 2;
312 
313 	/* host to adapter normal priority response queue */
314 	comm->queue[AdapNormRespQueue].base = queues;
315 	aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
316 
317 	queues += ADAP_NORM_RESP_ENTRIES;
318 	headers += 2;
319 
320 	/* host to adapter high priority response queue */
321 	comm->queue[AdapHighRespQueue].base = queues;
322 	aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
323 
324 	comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
325 	comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
326 	comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
327 	comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
328 
329 	return 0;
330 }
331 
332 struct aac_dev *aac_init_adapter(struct aac_dev *dev)
333 {
334 	u32 status[5];
335 	struct Scsi_Host * host = dev->scsi_host_ptr;
336 	extern int aac_sync_mode;
337 
338 	/*
339 	 *	Check the preferred comm settings, defaults from template.
340 	 */
341 	dev->management_fib_count = 0;
342 	spin_lock_init(&dev->manage_lock);
343 	spin_lock_init(&dev->sync_lock);
344 	dev->max_fib_size = sizeof(struct hw_fib);
345 	dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
346 		- sizeof(struct aac_fibhdr)
347 		- sizeof(struct aac_write) + sizeof(struct sgentry))
348 			/ sizeof(struct sgentry);
349 	dev->comm_interface = AAC_COMM_PRODUCER;
350 	dev->raw_io_interface = dev->raw_io_64 = 0;
351 
352 	if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
353 		0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
354 	 		(status[0] == 0x00000001)) {
355 		if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_64))
356 			dev->raw_io_64 = 1;
357 		dev->sync_mode = aac_sync_mode;
358 		if (dev->a_ops.adapter_comm &&
359 			(status[1] & le32_to_cpu(AAC_OPT_NEW_COMM))) {
360 				dev->comm_interface = AAC_COMM_MESSAGE;
361 				dev->raw_io_interface = 1;
362 			if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE1))) {
363 				/* driver supports TYPE1 (Tupelo) */
364 				dev->comm_interface = AAC_COMM_MESSAGE_TYPE1;
365 			} else if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE2))) {
366 				/* driver supports TYPE2 (Denali) */
367 				dev->comm_interface = AAC_COMM_MESSAGE_TYPE2;
368 			} else if ((status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE4)) ||
369 				  (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE3))) {
370 				/* driver doesn't TYPE3 and TYPE4 */
371 				/* switch to sync. mode */
372 				dev->comm_interface = AAC_COMM_MESSAGE_TYPE2;
373 				dev->sync_mode = 1;
374 			}
375 		}
376 		if ((dev->comm_interface == AAC_COMM_MESSAGE) &&
377 		    (status[2] > dev->base_size)) {
378 			aac_adapter_ioremap(dev, 0);
379 			dev->base_size = status[2];
380 			if (aac_adapter_ioremap(dev, status[2])) {
381 				/* remap failed, go back ... */
382 				dev->comm_interface = AAC_COMM_PRODUCER;
383 				if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) {
384 					printk(KERN_WARNING
385 					  "aacraid: unable to map adapter.\n");
386 					return NULL;
387 				}
388 			}
389 		}
390 	}
391 	if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
392 	  0, 0, 0, 0, 0, 0,
393 	  status+0, status+1, status+2, status+3, status+4))
394 	 && (status[0] == 0x00000001)) {
395 		/*
396 		 *	status[1] >> 16		maximum command size in KB
397 		 *	status[1] & 0xFFFF	maximum FIB size
398 		 *	status[2] >> 16		maximum SG elements to driver
399 		 *	status[2] & 0xFFFF	maximum SG elements from driver
400 		 *	status[3] & 0xFFFF	maximum number FIBs outstanding
401 		 */
402 		host->max_sectors = (status[1] >> 16) << 1;
403 		/* Multiple of 32 for PMC */
404 		dev->max_fib_size = status[1] & 0xFFE0;
405 		host->sg_tablesize = status[2] >> 16;
406 		dev->sg_tablesize = status[2] & 0xFFFF;
407 		host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
408 		dev->max_num_aif = status[4] & 0xFFFF;
409 		/*
410 		 *	NOTE:
411 		 *	All these overrides are based on a fixed internal
412 		 *	knowledge and understanding of existing adapters,
413 		 *	acbsize should be set with caution.
414 		 */
415 		if (acbsize == 512) {
416 			host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
417 			dev->max_fib_size = 512;
418 			dev->sg_tablesize = host->sg_tablesize
419 			  = (512 - sizeof(struct aac_fibhdr)
420 			    - sizeof(struct aac_write) + sizeof(struct sgentry))
421 			     / sizeof(struct sgentry);
422 			host->can_queue = AAC_NUM_IO_FIB;
423 		} else if (acbsize == 2048) {
424 			host->max_sectors = 512;
425 			dev->max_fib_size = 2048;
426 			host->sg_tablesize = 65;
427 			dev->sg_tablesize = 81;
428 			host->can_queue = 512 - AAC_NUM_MGT_FIB;
429 		} else if (acbsize == 4096) {
430 			host->max_sectors = 1024;
431 			dev->max_fib_size = 4096;
432 			host->sg_tablesize = 129;
433 			dev->sg_tablesize = 166;
434 			host->can_queue = 256 - AAC_NUM_MGT_FIB;
435 		} else if (acbsize == 8192) {
436 			host->max_sectors = 2048;
437 			dev->max_fib_size = 8192;
438 			host->sg_tablesize = 257;
439 			dev->sg_tablesize = 337;
440 			host->can_queue = 128 - AAC_NUM_MGT_FIB;
441 		} else if (acbsize > 0) {
442 			printk("Illegal acbsize=%d ignored\n", acbsize);
443 		}
444 	}
445 	{
446 
447 		if (numacb > 0) {
448 			if (numacb < host->can_queue)
449 				host->can_queue = numacb;
450 			else
451 				printk("numacb=%d ignored\n", numacb);
452 		}
453 	}
454 
455 	/*
456 	 *	Ok now init the communication subsystem
457 	 */
458 
459 	dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
460 	if (dev->queues == NULL) {
461 		printk(KERN_ERR "Error could not allocate comm region.\n");
462 		return NULL;
463 	}
464 
465 	if (aac_comm_init(dev)<0){
466 		kfree(dev->queues);
467 		return NULL;
468 	}
469 	/*
470 	 *	Initialize the list of fibs
471 	 */
472 	if (aac_fib_setup(dev) < 0) {
473 		kfree(dev->queues);
474 		return NULL;
475 	}
476 
477 	INIT_LIST_HEAD(&dev->fib_list);
478 	INIT_LIST_HEAD(&dev->sync_fib_list);
479 
480 	return dev;
481 }
482 
483 
484