xref: /openbmc/linux/drivers/scsi/aacraid/comminit.c (revision 1da177e4)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  comminit.c
26  *
27  * Abstract: This supports the initialization of the host adapter commuication interface.
28  *    This is a platform dependent module for the pci cyclone board.
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/blkdev.h>
40 #include <linux/completion.h>
41 #include <linux/mm.h>
42 #include <asm/semaphore.h>
43 
44 #include "aacraid.h"
45 
46 struct aac_common aac_config;
47 
48 static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
49 {
50 	unsigned char *base;
51 	unsigned long size, align;
52 	unsigned long fibsize = 4096;
53 	unsigned long printfbufsiz = 256;
54 	struct aac_init *init;
55 	dma_addr_t phys;
56 
57 	size = fibsize + sizeof(struct aac_init) + commsize + commalign + printfbufsiz;
58 
59 
60 	base = pci_alloc_consistent(dev->pdev, size, &phys);
61 
62 	if(base == NULL)
63 	{
64 		printk(KERN_ERR "aacraid: unable to create mapping.\n");
65 		return 0;
66 	}
67 	dev->comm_addr = (void *)base;
68 	dev->comm_phys = phys;
69 	dev->comm_size = size;
70 
71 	dev->init = (struct aac_init *)(base + fibsize);
72 	dev->init_pa = phys + fibsize;
73 
74 	init = dev->init;
75 
76 	init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
77 	init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
78 	init->fsrev = cpu_to_le32(dev->fsrev);
79 
80 	/*
81 	 *	Adapter Fibs are the first thing allocated so that they
82 	 *	start page aligned
83 	 */
84 	dev->aif_base_va = (struct hw_fib *)base;
85 
86 	init->AdapterFibsVirtualAddress = 0;
87 	init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
88 	init->AdapterFibsSize = cpu_to_le32(fibsize);
89 	init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
90 	/*
91 	 * number of 4k pages of host physical memory. The aacraid fw needs
92 	 * this number to be less than 4gb worth of pages. num_physpages is in
93 	 * system page units. New firmware doesn't have any issues with the
94 	 * mapping system, but older Firmware did, and had *troubles* dealing
95 	 * with the math overloading past 32 bits, thus we must limit this
96 	 * field.
97 	 *
98 	 * This assumes the memory is mapped zero->n, which isnt
99 	 * always true on real computers. It also has some slight problems
100 	 * with the GART on x86-64. I've btw never tried DMA from PCI space
101 	 * on this platform but don't be suprised if its problematic.
102 	 */
103 #ifndef CONFIG_GART_IOMMU
104 	if ((num_physpages << (PAGE_SHIFT - 12)) <= AAC_MAX_HOSTPHYSMEMPAGES) {
105 		init->HostPhysMemPages =
106 			cpu_to_le32(num_physpages << (PAGE_SHIFT-12));
107 	} else
108 #endif
109 	{
110 		init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
111 	}
112 
113 
114 	/*
115 	 * Increment the base address by the amount already used
116 	 */
117 	base = base + fibsize + sizeof(struct aac_init);
118 	phys = (dma_addr_t)((ulong)phys + fibsize + sizeof(struct aac_init));
119 	/*
120 	 *	Align the beginning of Headers to commalign
121 	 */
122 	align = (commalign - ((unsigned long)(base) & (commalign - 1)));
123 	base = base + align;
124 	phys = phys + align;
125 	/*
126 	 *	Fill in addresses of the Comm Area Headers and Queues
127 	 */
128 	*commaddr = base;
129 	init->CommHeaderAddress = cpu_to_le32((u32)phys);
130 	/*
131 	 *	Increment the base address by the size of the CommArea
132 	 */
133 	base = base + commsize;
134 	phys = phys + commsize;
135 	/*
136 	 *	 Place the Printf buffer area after the Fast I/O comm area.
137 	 */
138 	dev->printfbuf = (void *)base;
139 	init->printfbuf = cpu_to_le32(phys);
140 	init->printfbufsiz = cpu_to_le32(printfbufsiz);
141 	memset(base, 0, printfbufsiz);
142 	return 1;
143 }
144 
145 static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
146 {
147 	q->numpending = 0;
148 	q->dev = dev;
149 	INIT_LIST_HEAD(&q->pendingq);
150 	init_waitqueue_head(&q->cmdready);
151 	INIT_LIST_HEAD(&q->cmdq);
152 	init_waitqueue_head(&q->qfull);
153 	spin_lock_init(&q->lockdata);
154 	q->lock = &q->lockdata;
155 	q->headers.producer = mem;
156 	q->headers.consumer = mem+1;
157 	*(q->headers.producer) = cpu_to_le32(qsize);
158 	*(q->headers.consumer) = cpu_to_le32(qsize);
159 	q->entries = qsize;
160 }
161 
162 /**
163  *	aac_send_shutdown		-	shutdown an adapter
164  *	@dev: Adapter to shutdown
165  *
166  *	This routine will send a VM_CloseAll (shutdown) request to the adapter.
167  */
168 
169 int aac_send_shutdown(struct aac_dev * dev)
170 {
171 	struct fib * fibctx;
172 	struct aac_close *cmd;
173 	int status;
174 
175 	fibctx = fib_alloc(dev);
176 	fib_init(fibctx);
177 
178 	cmd = (struct aac_close *) fib_data(fibctx);
179 
180 	cmd->command = cpu_to_le32(VM_CloseAll);
181 	cmd->cid = cpu_to_le32(0xffffffff);
182 
183 	status = fib_send(ContainerCommand,
184 			  fibctx,
185 			  sizeof(struct aac_close),
186 			  FsaNormal,
187 			  1, 1,
188 			  NULL, NULL);
189 
190 	if (status == 0)
191 		fib_complete(fibctx);
192 	fib_free(fibctx);
193 	return status;
194 }
195 
196 /**
197  *	aac_comm_init	-	Initialise FSA data structures
198  *	@dev:	Adapter to initialise
199  *
200  *	Initializes the data structures that are required for the FSA commuication
201  *	interface to operate.
202  *	Returns
203  *		1 - if we were able to init the commuication interface.
204  *		0 - If there were errors initing. This is a fatal error.
205  */
206 
207 int aac_comm_init(struct aac_dev * dev)
208 {
209 	unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
210 	unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
211 	u32 *headers;
212 	struct aac_entry * queues;
213 	unsigned long size;
214 	struct aac_queue_block * comm = dev->queues;
215 	/*
216 	 *	Now allocate and initialize the zone structures used as our
217 	 *	pool of FIB context records.  The size of the zone is based
218 	 *	on the system memory size.  We also initialize the mutex used
219 	 *	to protect the zone.
220 	 */
221 	spin_lock_init(&dev->fib_lock);
222 
223 	/*
224 	 *	Allocate the physically contigous space for the commuication
225 	 *	queue headers.
226 	 */
227 
228 	size = hdrsize + queuesize;
229 
230 	if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
231 		return -ENOMEM;
232 
233 	queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
234 
235 	/* Adapter to Host normal priority Command queue */
236 	comm->queue[HostNormCmdQueue].base = queues;
237 	aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
238 	queues += HOST_NORM_CMD_ENTRIES;
239 	headers += 2;
240 
241 	/* Adapter to Host high priority command queue */
242 	comm->queue[HostHighCmdQueue].base = queues;
243 	aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
244 
245 	queues += HOST_HIGH_CMD_ENTRIES;
246 	headers +=2;
247 
248 	/* Host to adapter normal priority command queue */
249 	comm->queue[AdapNormCmdQueue].base = queues;
250 	aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
251 
252 	queues += ADAP_NORM_CMD_ENTRIES;
253 	headers += 2;
254 
255 	/* host to adapter high priority command queue */
256 	comm->queue[AdapHighCmdQueue].base = queues;
257 	aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
258 
259 	queues += ADAP_HIGH_CMD_ENTRIES;
260 	headers += 2;
261 
262 	/* adapter to host normal priority response queue */
263 	comm->queue[HostNormRespQueue].base = queues;
264 	aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
265 	queues += HOST_NORM_RESP_ENTRIES;
266 	headers += 2;
267 
268 	/* adapter to host high priority response queue */
269 	comm->queue[HostHighRespQueue].base = queues;
270 	aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
271 
272 	queues += HOST_HIGH_RESP_ENTRIES;
273 	headers += 2;
274 
275 	/* host to adapter normal priority response queue */
276 	comm->queue[AdapNormRespQueue].base = queues;
277 	aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
278 
279 	queues += ADAP_NORM_RESP_ENTRIES;
280 	headers += 2;
281 
282 	/* host to adapter high priority response queue */
283 	comm->queue[AdapHighRespQueue].base = queues;
284 	aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
285 
286 	comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
287 	comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
288 	comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
289 	comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
290 
291 	return 0;
292 }
293 
294 struct aac_dev *aac_init_adapter(struct aac_dev *dev)
295 {
296 	/*
297 	 *	Ok now init the communication subsystem
298 	 */
299 
300 	dev->queues = (struct aac_queue_block *) kmalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
301 	if (dev->queues == NULL) {
302 		printk(KERN_ERR "Error could not allocate comm region.\n");
303 		return NULL;
304 	}
305 	memset(dev->queues, 0, sizeof(struct aac_queue_block));
306 
307 	if (aac_comm_init(dev)<0){
308 		kfree(dev->queues);
309 		return NULL;
310 	}
311 	/*
312 	 *	Initialize the list of fibs
313 	 */
314 	if(fib_setup(dev)<0){
315 		kfree(dev->queues);
316 		return NULL;
317 	}
318 
319 	INIT_LIST_HEAD(&dev->fib_list);
320 	init_completion(&dev->aif_completion);
321 
322 	return dev;
323 }
324 
325 
326