xref: /openbmc/linux/drivers/scsi/aacraid/commctrl.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commctrl.c
15  *
16  * Abstract: Contains all routines for control of the AFA comm layer
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/blkdev.h>
28 #include <linux/delay.h> /* ssleep prototype */
29 #include <linux/kthread.h>
30 #include <linux/uaccess.h>
31 #include <scsi/scsi_host.h>
32 
33 #include "aacraid.h"
34 
35 # define AAC_DEBUG_PREAMBLE	KERN_INFO
36 # define AAC_DEBUG_POSTAMBLE
37 /**
38  *	ioctl_send_fib	-	send a FIB from userspace
39  *	@dev:	adapter is being processed
40  *	@arg:	arguments to the ioctl call
41  *
42  *	This routine sends a fib to the adapter on behalf of a user level
43  *	program.
44  */
45 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
46 {
47 	struct hw_fib * kfib;
48 	struct fib *fibptr;
49 	struct hw_fib * hw_fib = (struct hw_fib *)0;
50 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
51 	unsigned int size, osize;
52 	int retval;
53 
54 	if (dev->in_reset) {
55 		return -EBUSY;
56 	}
57 	fibptr = aac_fib_alloc(dev);
58 	if(fibptr == NULL) {
59 		return -ENOMEM;
60 	}
61 
62 	kfib = fibptr->hw_fib_va;
63 	/*
64 	 *	First copy in the header so that we can check the size field.
65 	 */
66 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
67 		aac_fib_free(fibptr);
68 		return -EFAULT;
69 	}
70 	/*
71 	 *	Since we copy based on the fib header size, make sure that we
72 	 *	will not overrun the buffer when we copy the memory. Return
73 	 *	an error if we would.
74 	 */
75 	osize = size = le16_to_cpu(kfib->header.Size) +
76 		sizeof(struct aac_fibhdr);
77 	if (size < le16_to_cpu(kfib->header.SenderSize))
78 		size = le16_to_cpu(kfib->header.SenderSize);
79 	if (size > dev->max_fib_size) {
80 		dma_addr_t daddr;
81 
82 		if (size > 2048) {
83 			retval = -EINVAL;
84 			goto cleanup;
85 		}
86 
87 		kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
88 					  GFP_KERNEL);
89 		if (!kfib) {
90 			retval = -ENOMEM;
91 			goto cleanup;
92 		}
93 
94 		/* Highjack the hw_fib */
95 		hw_fib = fibptr->hw_fib_va;
96 		hw_fib_pa = fibptr->hw_fib_pa;
97 		fibptr->hw_fib_va = kfib;
98 		fibptr->hw_fib_pa = daddr;
99 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
100 		memcpy(kfib, hw_fib, dev->max_fib_size);
101 	}
102 
103 	if (copy_from_user(kfib, arg, size)) {
104 		retval = -EFAULT;
105 		goto cleanup;
106 	}
107 
108 	/* Sanity check the second copy */
109 	if ((osize != le16_to_cpu(kfib->header.Size) +
110 		sizeof(struct aac_fibhdr))
111 		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
112 		retval = -EINVAL;
113 		goto cleanup;
114 	}
115 
116 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
117 		aac_adapter_interrupt(dev);
118 		/*
119 		 * Since we didn't really send a fib, zero out the state to allow
120 		 * cleanup code not to assert.
121 		 */
122 		kfib->header.XferState = 0;
123 	} else {
124 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
125 				le16_to_cpu(kfib->header.Size) , FsaNormal,
126 				1, 1, NULL, NULL);
127 		if (retval) {
128 			goto cleanup;
129 		}
130 		if (aac_fib_complete(fibptr) != 0) {
131 			retval = -EINVAL;
132 			goto cleanup;
133 		}
134 	}
135 	/*
136 	 *	Make sure that the size returned by the adapter (which includes
137 	 *	the header) is less than or equal to the size of a fib, so we
138 	 *	don't corrupt application data. Then copy that size to the user
139 	 *	buffer. (Don't try to add the header information again, since it
140 	 *	was already included by the adapter.)
141 	 */
142 
143 	retval = 0;
144 	if (copy_to_user(arg, (void *)kfib, size))
145 		retval = -EFAULT;
146 cleanup:
147 	if (hw_fib) {
148 		dma_free_coherent(&dev->pdev->dev, size, kfib,
149 				  fibptr->hw_fib_pa);
150 		fibptr->hw_fib_pa = hw_fib_pa;
151 		fibptr->hw_fib_va = hw_fib;
152 	}
153 	if (retval != -ERESTARTSYS)
154 		aac_fib_free(fibptr);
155 	return retval;
156 }
157 
158 /**
159  *	open_getadapter_fib	-	Get the next fib
160  *	@dev:	adapter is being processed
161  *	@arg:	arguments to the open call
162  *
163  *	This routine will get the next Fib, if available, from the AdapterFibContext
164  *	passed in from the user.
165  */
166 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
167 {
168 	struct aac_fib_context * fibctx;
169 	int status;
170 
171 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
172 	if (fibctx == NULL) {
173 		status = -ENOMEM;
174 	} else {
175 		unsigned long flags;
176 		struct list_head * entry;
177 		struct aac_fib_context * context;
178 
179 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
180 		fibctx->size = sizeof(struct aac_fib_context);
181 		/*
182 		 *	Yes yes, I know this could be an index, but we have a
183 		 * better guarantee of uniqueness for the locked loop below.
184 		 * Without the aid of a persistent history, this also helps
185 		 * reduce the chance that the opaque context would be reused.
186 		 */
187 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
188 		/*
189 		 *	Initialize the mutex used to wait for the next AIF.
190 		 */
191 		init_completion(&fibctx->completion);
192 		fibctx->wait = 0;
193 		/*
194 		 *	Initialize the fibs and set the count of fibs on
195 		 *	the list to 0.
196 		 */
197 		fibctx->count = 0;
198 		INIT_LIST_HEAD(&fibctx->fib_list);
199 		fibctx->jiffies = jiffies/HZ;
200 		/*
201 		 *	Now add this context onto the adapter's
202 		 *	AdapterFibContext list.
203 		 */
204 		spin_lock_irqsave(&dev->fib_lock, flags);
205 		/* Ensure that we have a unique identifier */
206 		entry = dev->fib_list.next;
207 		while (entry != &dev->fib_list) {
208 			context = list_entry(entry, struct aac_fib_context, next);
209 			if (context->unique == fibctx->unique) {
210 				/* Not unique (32 bits) */
211 				fibctx->unique++;
212 				entry = dev->fib_list.next;
213 			} else {
214 				entry = entry->next;
215 			}
216 		}
217 		list_add_tail(&fibctx->next, &dev->fib_list);
218 		spin_unlock_irqrestore(&dev->fib_lock, flags);
219 		if (copy_to_user(arg, &fibctx->unique,
220 						sizeof(fibctx->unique))) {
221 			status = -EFAULT;
222 		} else {
223 			status = 0;
224 		}
225 	}
226 	return status;
227 }
228 
229 /**
230  *	next_getadapter_fib	-	get the next fib
231  *	@dev: adapter to use
232  *	@arg: ioctl argument
233  *
234  *	This routine will get the next Fib, if available, from the AdapterFibContext
235  *	passed in from the user.
236  */
237 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
238 {
239 	struct fib_ioctl f;
240 	struct fib *fib;
241 	struct aac_fib_context *fibctx;
242 	int status;
243 	struct list_head * entry;
244 	unsigned long flags;
245 
246 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
247 		return -EFAULT;
248 	/*
249 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
250 	 *
251 	 *	Search the list of AdapterFibContext addresses on the adapter
252 	 *	to be sure this is a valid address
253 	 */
254 	spin_lock_irqsave(&dev->fib_lock, flags);
255 	entry = dev->fib_list.next;
256 	fibctx = NULL;
257 
258 	while (entry != &dev->fib_list) {
259 		fibctx = list_entry(entry, struct aac_fib_context, next);
260 		/*
261 		 *	Extract the AdapterFibContext from the Input parameters.
262 		 */
263 		if (fibctx->unique == f.fibctx) { /* We found a winner */
264 			break;
265 		}
266 		entry = entry->next;
267 		fibctx = NULL;
268 	}
269 	if (!fibctx) {
270 		spin_unlock_irqrestore(&dev->fib_lock, flags);
271 		dprintk ((KERN_INFO "Fib Context not found\n"));
272 		return -EINVAL;
273 	}
274 
275 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
276 		 (fibctx->size != sizeof(struct aac_fib_context))) {
277 		spin_unlock_irqrestore(&dev->fib_lock, flags);
278 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
279 		return -EINVAL;
280 	}
281 	status = 0;
282 	/*
283 	 *	If there are no fibs to send back, then either wait or return
284 	 *	-EAGAIN
285 	 */
286 return_fib:
287 	if (!list_empty(&fibctx->fib_list)) {
288 		/*
289 		 *	Pull the next fib from the fibs
290 		 */
291 		entry = fibctx->fib_list.next;
292 		list_del(entry);
293 
294 		fib = list_entry(entry, struct fib, fiblink);
295 		fibctx->count--;
296 		spin_unlock_irqrestore(&dev->fib_lock, flags);
297 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
298 			kfree(fib->hw_fib_va);
299 			kfree(fib);
300 			return -EFAULT;
301 		}
302 		/*
303 		 *	Free the space occupied by this copy of the fib.
304 		 */
305 		kfree(fib->hw_fib_va);
306 		kfree(fib);
307 		status = 0;
308 	} else {
309 		spin_unlock_irqrestore(&dev->fib_lock, flags);
310 		/* If someone killed the AIF aacraid thread, restart it */
311 		status = !dev->aif_thread;
312 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
313 			/* Be paranoid, be very paranoid! */
314 			kthread_stop(dev->thread);
315 			ssleep(1);
316 			dev->aif_thread = 0;
317 			dev->thread = kthread_run(aac_command_thread, dev,
318 						  "%s", dev->name);
319 			ssleep(1);
320 		}
321 		if (f.wait) {
322 			if (wait_for_completion_interruptible(&fibctx->completion) < 0) {
323 				status = -ERESTARTSYS;
324 			} else {
325 				/* Lock again and retry */
326 				spin_lock_irqsave(&dev->fib_lock, flags);
327 				goto return_fib;
328 			}
329 		} else {
330 			status = -EAGAIN;
331 		}
332 	}
333 	fibctx->jiffies = jiffies/HZ;
334 	return status;
335 }
336 
337 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
338 {
339 	struct fib *fib;
340 
341 	/*
342 	 *	First free any FIBs that have not been consumed.
343 	 */
344 	while (!list_empty(&fibctx->fib_list)) {
345 		struct list_head * entry;
346 		/*
347 		 *	Pull the next fib from the fibs
348 		 */
349 		entry = fibctx->fib_list.next;
350 		list_del(entry);
351 		fib = list_entry(entry, struct fib, fiblink);
352 		fibctx->count--;
353 		/*
354 		 *	Free the space occupied by this copy of the fib.
355 		 */
356 		kfree(fib->hw_fib_va);
357 		kfree(fib);
358 	}
359 	/*
360 	 *	Remove the Context from the AdapterFibContext List
361 	 */
362 	list_del(&fibctx->next);
363 	/*
364 	 *	Invalidate context
365 	 */
366 	fibctx->type = 0;
367 	/*
368 	 *	Free the space occupied by the Context
369 	 */
370 	kfree(fibctx);
371 	return 0;
372 }
373 
374 /**
375  *	close_getadapter_fib	-	close down user fib context
376  *	@dev: adapter
377  *	@arg: ioctl arguments
378  *
379  *	This routine will close down the fibctx passed in from the user.
380  */
381 
382 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
383 {
384 	struct aac_fib_context *fibctx;
385 	int status;
386 	unsigned long flags;
387 	struct list_head * entry;
388 
389 	/*
390 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
391 	 *
392 	 *	Search the list of AdapterFibContext addresses on the adapter
393 	 *	to be sure this is a valid address
394 	 */
395 
396 	entry = dev->fib_list.next;
397 	fibctx = NULL;
398 
399 	while(entry != &dev->fib_list) {
400 		fibctx = list_entry(entry, struct aac_fib_context, next);
401 		/*
402 		 *	Extract the fibctx from the input parameters
403 		 */
404 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
405 			break;
406 		entry = entry->next;
407 		fibctx = NULL;
408 	}
409 
410 	if (!fibctx)
411 		return 0; /* Already gone */
412 
413 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
414 		 (fibctx->size != sizeof(struct aac_fib_context)))
415 		return -EINVAL;
416 	spin_lock_irqsave(&dev->fib_lock, flags);
417 	status = aac_close_fib_context(dev, fibctx);
418 	spin_unlock_irqrestore(&dev->fib_lock, flags);
419 	return status;
420 }
421 
422 /**
423  *	check_revision	-	close down user fib context
424  *	@dev: adapter
425  *	@arg: ioctl arguments
426  *
427  *	This routine returns the driver version.
428  *	Under Linux, there have been no version incompatibilities, so this is
429  *	simple!
430  */
431 
432 static int check_revision(struct aac_dev *dev, void __user *arg)
433 {
434 	struct revision response;
435 	char *driver_version = aac_driver_version;
436 	u32 version;
437 
438 	response.compat = 1;
439 	version = (simple_strtol(driver_version,
440 				&driver_version, 10) << 24) | 0x00000400;
441 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
442 	version += simple_strtol(driver_version + 1, NULL, 10);
443 	response.version = cpu_to_le32(version);
444 #	ifdef AAC_DRIVER_BUILD
445 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
446 #	else
447 		response.build = cpu_to_le32(9999);
448 #	endif
449 
450 	if (copy_to_user(arg, &response, sizeof(response)))
451 		return -EFAULT;
452 	return 0;
453 }
454 
455 
456 /**
457  * aac_send_raw_scb
458  *	@dev:	adapter is being processed
459  *	@arg:	arguments to the send call
460  */
461 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
462 {
463 	struct fib* srbfib;
464 	int status;
465 	struct aac_srb *srbcmd = NULL;
466 	struct aac_hba_cmd_req *hbacmd = NULL;
467 	struct user_aac_srb *user_srbcmd = NULL;
468 	struct user_aac_srb __user *user_srb = arg;
469 	struct aac_srb_reply __user *user_reply;
470 	u32 chn;
471 	u32 fibsize = 0;
472 	u32 flags = 0;
473 	s32 rcode = 0;
474 	u32 data_dir;
475 	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
476 	void *sg_list[HBA_MAX_SG_EMBEDDED];
477 	u32 sg_count[HBA_MAX_SG_EMBEDDED];
478 	u32 sg_indx = 0;
479 	u32 byte_count = 0;
480 	u32 actual_fibsize64, actual_fibsize = 0;
481 	int i;
482 	int is_native_device;
483 	u64 address;
484 
485 
486 	if (dev->in_reset) {
487 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
488 		return -EBUSY;
489 	}
490 	if (!capable(CAP_SYS_ADMIN)){
491 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
492 		return -EPERM;
493 	}
494 	/*
495 	 *	Allocate and initialize a Fib then setup a SRB command
496 	 */
497 	if (!(srbfib = aac_fib_alloc(dev))) {
498 		return -ENOMEM;
499 	}
500 
501 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
502 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
503 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
504 		rcode = -EFAULT;
505 		goto cleanup;
506 	}
507 
508 	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
509 	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
510 		rcode = -EINVAL;
511 		goto cleanup;
512 	}
513 
514 	user_srbcmd = memdup_user(user_srb, fibsize);
515 	if (IS_ERR(user_srbcmd)) {
516 		rcode = PTR_ERR(user_srbcmd);
517 		user_srbcmd = NULL;
518 		goto cleanup;
519 	}
520 
521 	flags = user_srbcmd->flags; /* from user in cpu order */
522 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
523 	case SRB_DataOut:
524 		data_dir = DMA_TO_DEVICE;
525 		break;
526 	case (SRB_DataIn | SRB_DataOut):
527 		data_dir = DMA_BIDIRECTIONAL;
528 		break;
529 	case SRB_DataIn:
530 		data_dir = DMA_FROM_DEVICE;
531 		break;
532 	default:
533 		data_dir = DMA_NONE;
534 	}
535 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
536 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
537 			user_srbcmd->sg.count));
538 		rcode = -EINVAL;
539 		goto cleanup;
540 	}
541 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
542 		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
543 		rcode = -EINVAL;
544 		goto cleanup;
545 	}
546 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
547 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
548 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
549 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
550 	/* User made a mistake - should not continue */
551 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
552 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
553 		  "Raw SRB command calculated fibsize=%lu;%lu "
554 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
555 		  "issued fibsize=%d\n",
556 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
557 		  sizeof(struct aac_srb), sizeof(struct sgentry),
558 		  sizeof(struct sgentry64), fibsize));
559 		rcode = -EINVAL;
560 		goto cleanup;
561 	}
562 
563 	chn = user_srbcmd->channel;
564 	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
565 		dev->hba_map[chn][user_srbcmd->id].devtype ==
566 		AAC_DEVTYPE_NATIVE_RAW) {
567 		is_native_device = 1;
568 		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
569 		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
570 
571 		/* iu_type is a parameter of aac_hba_send */
572 		switch (data_dir) {
573 		case DMA_TO_DEVICE:
574 			hbacmd->byte1 = 2;
575 			break;
576 		case DMA_FROM_DEVICE:
577 		case DMA_BIDIRECTIONAL:
578 			hbacmd->byte1 = 1;
579 			break;
580 		case DMA_NONE:
581 		default:
582 			break;
583 		}
584 		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
585 		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
586 
587 		/*
588 		 * we fill in reply_qid later in aac_src_deliver_message
589 		 * we fill in iu_type, request_id later in aac_hba_send
590 		 * we fill in emb_data_desc_count, data_length later
591 		 * in sg list build
592 		 */
593 
594 		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
595 
596 		address = (u64)srbfib->hw_error_pa;
597 		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
598 		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
599 		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
600 		hbacmd->emb_data_desc_count =
601 					cpu_to_le32(user_srbcmd->sg.count);
602 		srbfib->hbacmd_size = 64 +
603 			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
604 
605 	} else {
606 		is_native_device = 0;
607 		aac_fib_init(srbfib);
608 
609 		/* raw_srb FIB is not FastResponseCapable */
610 		srbfib->hw_fib_va->header.XferState &=
611 			~cpu_to_le32(FastResponseCapable);
612 
613 		srbcmd = (struct aac_srb *) fib_data(srbfib);
614 
615 		// Fix up srb for endian and force some values
616 
617 		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
618 		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
619 		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
620 		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
621 		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
622 		srbcmd->flags	 = cpu_to_le32(flags);
623 		srbcmd->retry_limit = 0; // Obsolete parameter
624 		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
625 		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
626 	}
627 
628 	byte_count = 0;
629 	if (is_native_device) {
630 		struct user_sgmap *usg32 = &user_srbcmd->sg;
631 		struct user_sgmap64 *usg64 =
632 			(struct user_sgmap64 *)&user_srbcmd->sg;
633 
634 		for (i = 0; i < usg32->count; i++) {
635 			void *p;
636 			u64 addr;
637 
638 			sg_count[i] = (actual_fibsize64 == fibsize) ?
639 				usg64->sg[i].count : usg32->sg[i].count;
640 			if (sg_count[i] >
641 				(dev->scsi_host_ptr->max_sectors << 9)) {
642 				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
643 					i, sg_count[i],
644 					dev->scsi_host_ptr->max_sectors << 9);
645 				rcode = -EINVAL;
646 				goto cleanup;
647 			}
648 
649 			p = kmalloc(sg_count[i], GFP_KERNEL);
650 			if (!p) {
651 				rcode = -ENOMEM;
652 				goto cleanup;
653 			}
654 
655 			if (actual_fibsize64 == fibsize) {
656 				addr = (u64)usg64->sg[i].addr[0];
657 				addr += ((u64)usg64->sg[i].addr[1]) << 32;
658 			} else {
659 				addr = (u64)usg32->sg[i].addr;
660 			}
661 
662 			sg_user[i] = (void __user *)(uintptr_t)addr;
663 			sg_list[i] = p; // save so we can clean up later
664 			sg_indx = i;
665 
666 			if (flags & SRB_DataOut) {
667 				if (copy_from_user(p, sg_user[i],
668 					sg_count[i])) {
669 					rcode = -EFAULT;
670 					goto cleanup;
671 				}
672 			}
673 			addr = dma_map_single(&dev->pdev->dev, p, sg_count[i],
674 					      data_dir);
675 			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
676 			hbacmd->sge[i].addr_lo = cpu_to_le32(
677 						(u32)(addr & 0xffffffff));
678 			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
679 			hbacmd->sge[i].flags = 0;
680 			byte_count += sg_count[i];
681 		}
682 
683 		if (usg32->count > 0)	/* embedded sglist */
684 			hbacmd->sge[usg32->count-1].flags =
685 				cpu_to_le32(0x40000000);
686 		hbacmd->data_length = cpu_to_le32(byte_count);
687 
688 		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
689 					NULL, NULL);
690 
691 	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
692 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
693 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
694 
695 		/*
696 		 * This should also catch if user used the 32 bit sgmap
697 		 */
698 		if (actual_fibsize64 == fibsize) {
699 			actual_fibsize = actual_fibsize64;
700 			for (i = 0; i < upsg->count; i++) {
701 				u64 addr;
702 				void* p;
703 
704 				sg_count[i] = upsg->sg[i].count;
705 				if (sg_count[i] >
706 				    ((dev->adapter_info.options &
707 				     AAC_OPT_NEW_COMM) ?
708 				      (dev->scsi_host_ptr->max_sectors << 9) :
709 				      65536)) {
710 					rcode = -EINVAL;
711 					goto cleanup;
712 				}
713 
714 				p = kmalloc(sg_count[i], GFP_KERNEL);
715 				if(!p) {
716 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
717 					  sg_count[i], i, upsg->count));
718 					rcode = -ENOMEM;
719 					goto cleanup;
720 				}
721 				addr = (u64)upsg->sg[i].addr[0];
722 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
723 				sg_user[i] = (void __user *)(uintptr_t)addr;
724 				sg_list[i] = p; // save so we can clean up later
725 				sg_indx = i;
726 
727 				if (flags & SRB_DataOut) {
728 					if (copy_from_user(p, sg_user[i],
729 						sg_count[i])){
730 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
731 						rcode = -EFAULT;
732 						goto cleanup;
733 					}
734 				}
735 				addr = dma_map_single(&dev->pdev->dev, p,
736 						      sg_count[i], data_dir);
737 
738 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
739 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
740 				byte_count += sg_count[i];
741 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
742 			}
743 		} else {
744 			struct user_sgmap* usg;
745 			usg = kmemdup(upsg,
746 				      actual_fibsize - sizeof(struct aac_srb)
747 				      + sizeof(struct sgmap), GFP_KERNEL);
748 			if (!usg) {
749 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
750 				rcode = -ENOMEM;
751 				goto cleanup;
752 			}
753 			actual_fibsize = actual_fibsize64;
754 
755 			for (i = 0; i < usg->count; i++) {
756 				u64 addr;
757 				void* p;
758 
759 				sg_count[i] = usg->sg[i].count;
760 				if (sg_count[i] >
761 				    ((dev->adapter_info.options &
762 				     AAC_OPT_NEW_COMM) ?
763 				      (dev->scsi_host_ptr->max_sectors << 9) :
764 				      65536)) {
765 					kfree(usg);
766 					rcode = -EINVAL;
767 					goto cleanup;
768 				}
769 
770 				p = kmalloc(sg_count[i], GFP_KERNEL);
771 				if(!p) {
772 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
773 						sg_count[i], i, usg->count));
774 					kfree(usg);
775 					rcode = -ENOMEM;
776 					goto cleanup;
777 				}
778 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
779 				sg_list[i] = p; // save so we can clean up later
780 				sg_indx = i;
781 
782 				if (flags & SRB_DataOut) {
783 					if (copy_from_user(p, sg_user[i],
784 						sg_count[i])) {
785 						kfree (usg);
786 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
787 						rcode = -EFAULT;
788 						goto cleanup;
789 					}
790 				}
791 				addr = dma_map_single(&dev->pdev->dev, p,
792 						      sg_count[i], data_dir);
793 
794 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
795 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
796 				byte_count += sg_count[i];
797 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
798 			}
799 			kfree (usg);
800 		}
801 		srbcmd->count = cpu_to_le32(byte_count);
802 		if (user_srbcmd->sg.count)
803 			psg->count = cpu_to_le32(sg_indx+1);
804 		else
805 			psg->count = 0;
806 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
807 	} else {
808 		struct user_sgmap* upsg = &user_srbcmd->sg;
809 		struct sgmap* psg = &srbcmd->sg;
810 
811 		if (actual_fibsize64 == fibsize) {
812 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
813 			for (i = 0; i < upsg->count; i++) {
814 				uintptr_t addr;
815 				void* p;
816 
817 				sg_count[i] = usg->sg[i].count;
818 				if (sg_count[i] >
819 				    ((dev->adapter_info.options &
820 				     AAC_OPT_NEW_COMM) ?
821 				      (dev->scsi_host_ptr->max_sectors << 9) :
822 				      65536)) {
823 					rcode = -EINVAL;
824 					goto cleanup;
825 				}
826 				p = kmalloc(sg_count[i], GFP_KERNEL);
827 				if (!p) {
828 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
829 						sg_count[i], i, usg->count));
830 					rcode = -ENOMEM;
831 					goto cleanup;
832 				}
833 				addr = (u64)usg->sg[i].addr[0];
834 				addr += ((u64)usg->sg[i].addr[1]) << 32;
835 				sg_user[i] = (void __user *)addr;
836 				sg_list[i] = p; // save so we can clean up later
837 				sg_indx = i;
838 
839 				if (flags & SRB_DataOut) {
840 					if (copy_from_user(p, sg_user[i],
841 						sg_count[i])){
842 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
843 						rcode = -EFAULT;
844 						goto cleanup;
845 					}
846 				}
847 				addr = dma_map_single(&dev->pdev->dev, p,
848 						      usg->sg[i].count,
849 						      data_dir);
850 
851 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
852 				byte_count += usg->sg[i].count;
853 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
854 			}
855 		} else {
856 			for (i = 0; i < upsg->count; i++) {
857 				dma_addr_t addr;
858 				void* p;
859 
860 				sg_count[i] = upsg->sg[i].count;
861 				if (sg_count[i] >
862 				    ((dev->adapter_info.options &
863 				     AAC_OPT_NEW_COMM) ?
864 				      (dev->scsi_host_ptr->max_sectors << 9) :
865 				      65536)) {
866 					rcode = -EINVAL;
867 					goto cleanup;
868 				}
869 				p = kmalloc(sg_count[i], GFP_KERNEL);
870 				if (!p) {
871 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
872 					  sg_count[i], i, upsg->count));
873 					rcode = -ENOMEM;
874 					goto cleanup;
875 				}
876 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
877 				sg_list[i] = p; // save so we can clean up later
878 				sg_indx = i;
879 
880 				if (flags & SRB_DataOut) {
881 					if (copy_from_user(p, sg_user[i],
882 						sg_count[i])) {
883 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
884 						rcode = -EFAULT;
885 						goto cleanup;
886 					}
887 				}
888 				addr = dma_map_single(&dev->pdev->dev, p,
889 						      sg_count[i], data_dir);
890 
891 				psg->sg[i].addr = cpu_to_le32(addr);
892 				byte_count += sg_count[i];
893 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
894 			}
895 		}
896 		srbcmd->count = cpu_to_le32(byte_count);
897 		if (user_srbcmd->sg.count)
898 			psg->count = cpu_to_le32(sg_indx+1);
899 		else
900 			psg->count = 0;
901 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
902 	}
903 
904 	if (status == -ERESTARTSYS) {
905 		rcode = -ERESTARTSYS;
906 		goto cleanup;
907 	}
908 
909 	if (status != 0) {
910 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
911 		rcode = -ENXIO;
912 		goto cleanup;
913 	}
914 
915 	if (flags & SRB_DataIn) {
916 		for(i = 0 ; i <= sg_indx; i++){
917 			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
918 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
919 				rcode = -EFAULT;
920 				goto cleanup;
921 
922 			}
923 		}
924 	}
925 
926 	user_reply = arg + fibsize;
927 	if (is_native_device) {
928 		struct aac_hba_resp *err =
929 			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
930 		struct aac_srb_reply reply;
931 
932 		memset(&reply, 0, sizeof(reply));
933 		reply.status = ST_OK;
934 		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
935 			/* fast response */
936 			reply.srb_status = SRB_STATUS_SUCCESS;
937 			reply.scsi_status = 0;
938 			reply.data_xfer_length = byte_count;
939 			reply.sense_data_size = 0;
940 			memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
941 		} else {
942 			reply.srb_status = err->service_response;
943 			reply.scsi_status = err->status;
944 			reply.data_xfer_length = byte_count -
945 				le32_to_cpu(err->residual_count);
946 			reply.sense_data_size = err->sense_response_data_len;
947 			memcpy(reply.sense_data, err->sense_response_buf,
948 				AAC_SENSE_BUFFERSIZE);
949 		}
950 		if (copy_to_user(user_reply, &reply,
951 			sizeof(struct aac_srb_reply))) {
952 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
953 			rcode = -EFAULT;
954 			goto cleanup;
955 		}
956 	} else {
957 		struct aac_srb_reply *reply;
958 
959 		reply = (struct aac_srb_reply *) fib_data(srbfib);
960 		if (copy_to_user(user_reply, reply,
961 			sizeof(struct aac_srb_reply))) {
962 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
963 			rcode = -EFAULT;
964 			goto cleanup;
965 		}
966 	}
967 
968 cleanup:
969 	kfree(user_srbcmd);
970 	if (rcode != -ERESTARTSYS) {
971 		for (i = 0; i <= sg_indx; i++)
972 			kfree(sg_list[i]);
973 		aac_fib_complete(srbfib);
974 		aac_fib_free(srbfib);
975 	}
976 
977 	return rcode;
978 }
979 
980 struct aac_pci_info {
981 	u32 bus;
982 	u32 slot;
983 };
984 
985 
986 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
987 {
988 	struct aac_pci_info pci_info;
989 
990 	pci_info.bus = dev->pdev->bus->number;
991 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
992 
993 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
994 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
995 		return -EFAULT;
996 	}
997 	return 0;
998 }
999 
1000 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1001 {
1002 	struct aac_hba_info hbainfo;
1003 
1004 	memset(&hbainfo, 0, sizeof(hbainfo));
1005 	hbainfo.adapter_number		= (u8) dev->id;
1006 	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
1007 	hbainfo.device_number		= (dev->pdev->devfn >> 3);
1008 	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);
1009 
1010 	hbainfo.vendor_id		= dev->pdev->vendor;
1011 	hbainfo.device_id		= dev->pdev->device;
1012 	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
1013 	hbainfo.sub_system_id		= dev->pdev->subsystem_device;
1014 
1015 	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1016 		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1017 		return -EFAULT;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 struct aac_reset_iop {
1024 	u8	reset_type;
1025 };
1026 
1027 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1028 {
1029 	struct aac_reset_iop reset;
1030 	int retval;
1031 
1032 	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1033 		return -EFAULT;
1034 
1035 	dev->adapter_shutdown = 1;
1036 
1037 	mutex_unlock(&dev->ioctl_mutex);
1038 	retval = aac_reset_adapter(dev, 0, reset.reset_type);
1039 	mutex_lock(&dev->ioctl_mutex);
1040 
1041 	return retval;
1042 }
1043 
1044 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
1045 {
1046 	int status;
1047 
1048 	mutex_lock(&dev->ioctl_mutex);
1049 
1050 	if (dev->adapter_shutdown) {
1051 		status = -EACCES;
1052 		goto cleanup;
1053 	}
1054 
1055 	/*
1056 	 *	HBA gets first crack
1057 	 */
1058 
1059 	status = aac_dev_ioctl(dev, cmd, arg);
1060 	if (status != -ENOTTY)
1061 		goto cleanup;
1062 
1063 	switch (cmd) {
1064 	case FSACTL_MINIPORT_REV_CHECK:
1065 		status = check_revision(dev, arg);
1066 		break;
1067 	case FSACTL_SEND_LARGE_FIB:
1068 	case FSACTL_SENDFIB:
1069 		status = ioctl_send_fib(dev, arg);
1070 		break;
1071 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1072 		status = open_getadapter_fib(dev, arg);
1073 		break;
1074 	case FSACTL_GET_NEXT_ADAPTER_FIB:
1075 		status = next_getadapter_fib(dev, arg);
1076 		break;
1077 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1078 		status = close_getadapter_fib(dev, arg);
1079 		break;
1080 	case FSACTL_SEND_RAW_SRB:
1081 		status = aac_send_raw_srb(dev,arg);
1082 		break;
1083 	case FSACTL_GET_PCI_INFO:
1084 		status = aac_get_pci_info(dev,arg);
1085 		break;
1086 	case FSACTL_GET_HBA_INFO:
1087 		status = aac_get_hba_info(dev, arg);
1088 		break;
1089 	case FSACTL_RESET_IOP:
1090 		status = aac_send_reset_adapter(dev, arg);
1091 		break;
1092 
1093 	default:
1094 		status = -ENOTTY;
1095 		break;
1096 	}
1097 
1098 cleanup:
1099 	mutex_unlock(&dev->ioctl_mutex);
1100 
1101 	return status;
1102 }
1103 
1104