1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commctrl.c 26 * 27 * Abstract: Contains all routines for control of the AFA comm layer 28 * 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/types.h> 34 #include <linux/sched.h> 35 #include <linux/pci.h> 36 #include <linux/spinlock.h> 37 #include <linux/slab.h> 38 #include <linux/completion.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/blkdev.h> 41 #include <asm/semaphore.h> 42 #include <asm/uaccess.h> 43 44 #include "aacraid.h" 45 46 /** 47 * ioctl_send_fib - send a FIB from userspace 48 * @dev: adapter is being processed 49 * @arg: arguments to the ioctl call 50 * 51 * This routine sends a fib to the adapter on behalf of a user level 52 * program. 53 */ 54 # define AAC_DEBUG_PREAMBLE KERN_INFO 55 # define AAC_DEBUG_POSTAMBLE 56 57 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg) 58 { 59 struct hw_fib * kfib; 60 struct fib *fibptr; 61 struct hw_fib * hw_fib = (struct hw_fib *)0; 62 dma_addr_t hw_fib_pa = (dma_addr_t)0LL; 63 unsigned size; 64 int retval; 65 66 fibptr = fib_alloc(dev); 67 if(fibptr == NULL) { 68 return -ENOMEM; 69 } 70 71 kfib = fibptr->hw_fib; 72 /* 73 * First copy in the header so that we can check the size field. 74 */ 75 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) { 76 fib_free(fibptr); 77 return -EFAULT; 78 } 79 /* 80 * Since we copy based on the fib header size, make sure that we 81 * will not overrun the buffer when we copy the memory. Return 82 * an error if we would. 83 */ 84 size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr); 85 if (size < le16_to_cpu(kfib->header.SenderSize)) 86 size = le16_to_cpu(kfib->header.SenderSize); 87 if (size > dev->max_fib_size) { 88 /* Highjack the hw_fib */ 89 hw_fib = fibptr->hw_fib; 90 hw_fib_pa = fibptr->hw_fib_pa; 91 fibptr->hw_fib = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa); 92 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size); 93 memcpy(kfib, hw_fib, dev->max_fib_size); 94 } 95 96 if (copy_from_user(kfib, arg, size)) { 97 retval = -EFAULT; 98 goto cleanup; 99 } 100 101 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) { 102 aac_adapter_interrupt(dev); 103 /* 104 * Since we didn't really send a fib, zero out the state to allow 105 * cleanup code not to assert. 106 */ 107 kfib->header.XferState = 0; 108 } else { 109 retval = fib_send(le16_to_cpu(kfib->header.Command), fibptr, 110 le16_to_cpu(kfib->header.Size) , FsaNormal, 111 1, 1, NULL, NULL); 112 if (retval) { 113 goto cleanup; 114 } 115 if (fib_complete(fibptr) != 0) { 116 retval = -EINVAL; 117 goto cleanup; 118 } 119 } 120 /* 121 * Make sure that the size returned by the adapter (which includes 122 * the header) is less than or equal to the size of a fib, so we 123 * don't corrupt application data. Then copy that size to the user 124 * buffer. (Don't try to add the header information again, since it 125 * was already included by the adapter.) 126 */ 127 128 retval = 0; 129 if (copy_to_user(arg, (void *)kfib, size)) 130 retval = -EFAULT; 131 cleanup: 132 if (hw_fib) { 133 pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa); 134 fibptr->hw_fib_pa = hw_fib_pa; 135 fibptr->hw_fib = hw_fib; 136 } 137 fib_free(fibptr); 138 return retval; 139 } 140 141 /** 142 * open_getadapter_fib - Get the next fib 143 * 144 * This routine will get the next Fib, if available, from the AdapterFibContext 145 * passed in from the user. 146 */ 147 148 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg) 149 { 150 struct aac_fib_context * fibctx; 151 int status; 152 153 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL); 154 if (fibctx == NULL) { 155 status = -ENOMEM; 156 } else { 157 unsigned long flags; 158 struct list_head * entry; 159 struct aac_fib_context * context; 160 161 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT; 162 fibctx->size = sizeof(struct aac_fib_context); 163 /* 164 * Yes yes, I know this could be an index, but we have a 165 * better guarantee of uniqueness for the locked loop below. 166 * Without the aid of a persistent history, this also helps 167 * reduce the chance that the opaque context would be reused. 168 */ 169 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF); 170 /* 171 * Initialize the mutex used to wait for the next AIF. 172 */ 173 init_MUTEX_LOCKED(&fibctx->wait_sem); 174 fibctx->wait = 0; 175 /* 176 * Initialize the fibs and set the count of fibs on 177 * the list to 0. 178 */ 179 fibctx->count = 0; 180 INIT_LIST_HEAD(&fibctx->fib_list); 181 fibctx->jiffies = jiffies/HZ; 182 /* 183 * Now add this context onto the adapter's 184 * AdapterFibContext list. 185 */ 186 spin_lock_irqsave(&dev->fib_lock, flags); 187 /* Ensure that we have a unique identifier */ 188 entry = dev->fib_list.next; 189 while (entry != &dev->fib_list) { 190 context = list_entry(entry, struct aac_fib_context, next); 191 if (context->unique == fibctx->unique) { 192 /* Not unique (32 bits) */ 193 fibctx->unique++; 194 entry = dev->fib_list.next; 195 } else { 196 entry = entry->next; 197 } 198 } 199 list_add_tail(&fibctx->next, &dev->fib_list); 200 spin_unlock_irqrestore(&dev->fib_lock, flags); 201 if (copy_to_user(arg, &fibctx->unique, 202 sizeof(fibctx->unique))) { 203 status = -EFAULT; 204 } else { 205 status = 0; 206 } 207 } 208 return status; 209 } 210 211 /** 212 * next_getadapter_fib - get the next fib 213 * @dev: adapter to use 214 * @arg: ioctl argument 215 * 216 * This routine will get the next Fib, if available, from the AdapterFibContext 217 * passed in from the user. 218 */ 219 220 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg) 221 { 222 struct fib_ioctl f; 223 struct fib *fib; 224 struct aac_fib_context *fibctx; 225 int status; 226 struct list_head * entry; 227 unsigned long flags; 228 229 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl))) 230 return -EFAULT; 231 /* 232 * Verify that the HANDLE passed in was a valid AdapterFibContext 233 * 234 * Search the list of AdapterFibContext addresses on the adapter 235 * to be sure this is a valid address 236 */ 237 entry = dev->fib_list.next; 238 fibctx = NULL; 239 240 while (entry != &dev->fib_list) { 241 fibctx = list_entry(entry, struct aac_fib_context, next); 242 /* 243 * Extract the AdapterFibContext from the Input parameters. 244 */ 245 if (fibctx->unique == f.fibctx) { /* We found a winner */ 246 break; 247 } 248 entry = entry->next; 249 fibctx = NULL; 250 } 251 if (!fibctx) { 252 dprintk ((KERN_INFO "Fib Context not found\n")); 253 return -EINVAL; 254 } 255 256 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 257 (fibctx->size != sizeof(struct aac_fib_context))) { 258 dprintk ((KERN_INFO "Fib Context corrupt?\n")); 259 return -EINVAL; 260 } 261 status = 0; 262 spin_lock_irqsave(&dev->fib_lock, flags); 263 /* 264 * If there are no fibs to send back, then either wait or return 265 * -EAGAIN 266 */ 267 return_fib: 268 if (!list_empty(&fibctx->fib_list)) { 269 struct list_head * entry; 270 /* 271 * Pull the next fib from the fibs 272 */ 273 entry = fibctx->fib_list.next; 274 list_del(entry); 275 276 fib = list_entry(entry, struct fib, fiblink); 277 fibctx->count--; 278 spin_unlock_irqrestore(&dev->fib_lock, flags); 279 if (copy_to_user(f.fib, fib->hw_fib, sizeof(struct hw_fib))) { 280 kfree(fib->hw_fib); 281 kfree(fib); 282 return -EFAULT; 283 } 284 /* 285 * Free the space occupied by this copy of the fib. 286 */ 287 kfree(fib->hw_fib); 288 kfree(fib); 289 status = 0; 290 } else { 291 spin_unlock_irqrestore(&dev->fib_lock, flags); 292 if (f.wait) { 293 if(down_interruptible(&fibctx->wait_sem) < 0) { 294 status = -EINTR; 295 } else { 296 /* Lock again and retry */ 297 spin_lock_irqsave(&dev->fib_lock, flags); 298 goto return_fib; 299 } 300 } else { 301 status = -EAGAIN; 302 } 303 } 304 fibctx->jiffies = jiffies/HZ; 305 return status; 306 } 307 308 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx) 309 { 310 struct fib *fib; 311 312 /* 313 * First free any FIBs that have not been consumed. 314 */ 315 while (!list_empty(&fibctx->fib_list)) { 316 struct list_head * entry; 317 /* 318 * Pull the next fib from the fibs 319 */ 320 entry = fibctx->fib_list.next; 321 list_del(entry); 322 fib = list_entry(entry, struct fib, fiblink); 323 fibctx->count--; 324 /* 325 * Free the space occupied by this copy of the fib. 326 */ 327 kfree(fib->hw_fib); 328 kfree(fib); 329 } 330 /* 331 * Remove the Context from the AdapterFibContext List 332 */ 333 list_del(&fibctx->next); 334 /* 335 * Invalidate context 336 */ 337 fibctx->type = 0; 338 /* 339 * Free the space occupied by the Context 340 */ 341 kfree(fibctx); 342 return 0; 343 } 344 345 /** 346 * close_getadapter_fib - close down user fib context 347 * @dev: adapter 348 * @arg: ioctl arguments 349 * 350 * This routine will close down the fibctx passed in from the user. 351 */ 352 353 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg) 354 { 355 struct aac_fib_context *fibctx; 356 int status; 357 unsigned long flags; 358 struct list_head * entry; 359 360 /* 361 * Verify that the HANDLE passed in was a valid AdapterFibContext 362 * 363 * Search the list of AdapterFibContext addresses on the adapter 364 * to be sure this is a valid address 365 */ 366 367 entry = dev->fib_list.next; 368 fibctx = NULL; 369 370 while(entry != &dev->fib_list) { 371 fibctx = list_entry(entry, struct aac_fib_context, next); 372 /* 373 * Extract the fibctx from the input parameters 374 */ 375 if (fibctx->unique == (u32)(unsigned long)arg) { 376 /* We found a winner */ 377 break; 378 } 379 entry = entry->next; 380 fibctx = NULL; 381 } 382 383 if (!fibctx) 384 return 0; /* Already gone */ 385 386 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 387 (fibctx->size != sizeof(struct aac_fib_context))) 388 return -EINVAL; 389 spin_lock_irqsave(&dev->fib_lock, flags); 390 status = aac_close_fib_context(dev, fibctx); 391 spin_unlock_irqrestore(&dev->fib_lock, flags); 392 return status; 393 } 394 395 /** 396 * check_revision - close down user fib context 397 * @dev: adapter 398 * @arg: ioctl arguments 399 * 400 * This routine returns the driver version. 401 * Under Linux, there have been no version incompatibilities, so this is 402 * simple! 403 */ 404 405 static int check_revision(struct aac_dev *dev, void __user *arg) 406 { 407 struct revision response; 408 char *driver_version = aac_driver_version; 409 u32 version; 410 411 response.compat = 1; 412 version = (simple_strtol(driver_version, 413 &driver_version, 10) << 24) | 0x00000400; 414 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16; 415 version += simple_strtol(driver_version + 1, NULL, 10); 416 response.version = cpu_to_le32(version); 417 # if (defined(AAC_DRIVER_BUILD)) 418 response.build = cpu_to_le32(AAC_DRIVER_BUILD); 419 # else 420 response.build = cpu_to_le32(9999); 421 # endif 422 423 if (copy_to_user(arg, &response, sizeof(response))) 424 return -EFAULT; 425 return 0; 426 } 427 428 429 /** 430 * 431 * aac_send_raw_scb 432 * 433 */ 434 435 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) 436 { 437 struct fib* srbfib; 438 int status; 439 struct aac_srb *srbcmd = NULL; 440 struct user_aac_srb *user_srbcmd = NULL; 441 struct user_aac_srb __user *user_srb = arg; 442 struct aac_srb_reply __user *user_reply; 443 struct aac_srb_reply* reply; 444 u32 fibsize = 0; 445 u32 flags = 0; 446 s32 rcode = 0; 447 u32 data_dir; 448 void __user *sg_user[32]; 449 void *sg_list[32]; 450 u32 sg_indx = 0; 451 u32 byte_count = 0; 452 u32 actual_fibsize = 0; 453 int i; 454 455 456 if (!capable(CAP_SYS_ADMIN)){ 457 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); 458 return -EPERM; 459 } 460 /* 461 * Allocate and initialize a Fib then setup a BlockWrite command 462 */ 463 if (!(srbfib = fib_alloc(dev))) { 464 return -ENOMEM; 465 } 466 fib_init(srbfib); 467 468 srbcmd = (struct aac_srb*) fib_data(srbfib); 469 470 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ 471 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ 472 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); 473 rcode = -EFAULT; 474 goto cleanup; 475 } 476 477 if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) { 478 rcode = -EINVAL; 479 goto cleanup; 480 } 481 482 user_srbcmd = kmalloc(fibsize, GFP_KERNEL); 483 if (!user_srbcmd) { 484 dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n")); 485 rcode = -ENOMEM; 486 goto cleanup; 487 } 488 if(copy_from_user(user_srbcmd, user_srb,fibsize)){ 489 dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n")); 490 rcode = -EFAULT; 491 goto cleanup; 492 } 493 494 user_reply = arg+fibsize; 495 496 flags = user_srbcmd->flags; /* from user in cpu order */ 497 // Fix up srb for endian and force some values 498 499 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this 500 srbcmd->channel = cpu_to_le32(user_srbcmd->channel); 501 srbcmd->id = cpu_to_le32(user_srbcmd->id); 502 srbcmd->lun = cpu_to_le32(user_srbcmd->lun); 503 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); 504 srbcmd->flags = cpu_to_le32(flags); 505 srbcmd->retry_limit = 0; // Obsolete parameter 506 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); 507 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); 508 509 switch (flags & (SRB_DataIn | SRB_DataOut)) { 510 case SRB_DataOut: 511 data_dir = DMA_TO_DEVICE; 512 break; 513 case (SRB_DataIn | SRB_DataOut): 514 data_dir = DMA_BIDIRECTIONAL; 515 break; 516 case SRB_DataIn: 517 data_dir = DMA_FROM_DEVICE; 518 break; 519 default: 520 data_dir = DMA_NONE; 521 } 522 if (user_srbcmd->sg.count > (sizeof(sg_list)/sizeof(sg_list[0]))) { 523 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", 524 le32_to_cpu(srbcmd->sg.count))); 525 rcode = -EINVAL; 526 goto cleanup; 527 } 528 if (dev->dac_support == 1) { 529 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; 530 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; 531 struct user_sgmap* usg; 532 byte_count = 0; 533 534 /* 535 * This should also catch if user used the 32 bit sgmap 536 */ 537 actual_fibsize = sizeof(struct aac_srb) - 538 sizeof(struct sgentry) + 539 ((upsg->count & 0xff) * 540 sizeof(struct sgentry)); 541 if(actual_fibsize != fibsize){ // User made a mistake - should not continue 542 dprintk((KERN_DEBUG"aacraid: Bad Size specified in Raw SRB command\n")); 543 rcode = -EINVAL; 544 goto cleanup; 545 } 546 usg = kmalloc(actual_fibsize - sizeof(struct aac_srb) 547 + sizeof(struct sgmap), GFP_KERNEL); 548 if (!usg) { 549 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); 550 rcode = -ENOMEM; 551 goto cleanup; 552 } 553 memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb) 554 + sizeof(struct sgmap)); 555 actual_fibsize = sizeof(struct aac_srb) - 556 sizeof(struct sgentry) + ((usg->count & 0xff) * 557 sizeof(struct sgentry64)); 558 if ((data_dir == DMA_NONE) && upsg->count) { 559 kfree (usg); 560 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n")); 561 rcode = -EINVAL; 562 goto cleanup; 563 } 564 565 for (i = 0; i < usg->count; i++) { 566 u64 addr; 567 void* p; 568 /* Does this really need to be GFP_DMA? */ 569 p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA); 570 if(p == 0) { 571 kfree (usg); 572 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 573 usg->sg[i].count,i,usg->count)); 574 rcode = -ENOMEM; 575 goto cleanup; 576 } 577 sg_user[i] = (void __user *)(long)usg->sg[i].addr; 578 sg_list[i] = p; // save so we can clean up later 579 sg_indx = i; 580 581 if( flags & SRB_DataOut ){ 582 if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){ 583 kfree (usg); 584 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 585 rcode = -EFAULT; 586 goto cleanup; 587 } 588 } 589 addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir); 590 591 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 592 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 593 psg->sg[i].count = cpu_to_le32(usg->sg[i].count); 594 byte_count += usg->sg[i].count; 595 } 596 kfree (usg); 597 598 srbcmd->count = cpu_to_le32(byte_count); 599 psg->count = cpu_to_le32(sg_indx+1); 600 status = fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); 601 } else { 602 struct user_sgmap* upsg = &user_srbcmd->sg; 603 struct sgmap* psg = &srbcmd->sg; 604 byte_count = 0; 605 606 actual_fibsize = sizeof (struct aac_srb) + (((user_srbcmd->sg.count & 0xff) - 1) * sizeof (struct sgentry)); 607 if(actual_fibsize != fibsize){ // User made a mistake - should not continue 608 dprintk((KERN_DEBUG"aacraid: Bad Size specified in Raw SRB command\n")); 609 rcode = -EINVAL; 610 goto cleanup; 611 } 612 if ((data_dir == DMA_NONE) && upsg->count) { 613 dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n")); 614 rcode = -EINVAL; 615 goto cleanup; 616 } 617 for (i = 0; i < upsg->count; i++) { 618 dma_addr_t addr; 619 void* p; 620 p = kmalloc(upsg->sg[i].count, GFP_KERNEL); 621 if(p == 0) { 622 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 623 upsg->sg[i].count, i, upsg->count)); 624 rcode = -ENOMEM; 625 goto cleanup; 626 } 627 sg_user[i] = (void __user *)(long)upsg->sg[i].addr; 628 sg_list[i] = p; // save so we can clean up later 629 sg_indx = i; 630 631 if( flags & SRB_DataOut ){ 632 if(copy_from_user(p, sg_user[i], 633 upsg->sg[i].count)) { 634 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 635 rcode = -EFAULT; 636 goto cleanup; 637 } 638 } 639 addr = pci_map_single(dev->pdev, p, 640 upsg->sg[i].count, data_dir); 641 642 psg->sg[i].addr = cpu_to_le32(addr); 643 psg->sg[i].count = cpu_to_le32(upsg->sg[i].count); 644 byte_count += upsg->sg[i].count; 645 } 646 srbcmd->count = cpu_to_le32(byte_count); 647 psg->count = cpu_to_le32(sg_indx+1); 648 status = fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); 649 } 650 651 if (status != 0){ 652 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); 653 rcode = -ENXIO; 654 goto cleanup; 655 } 656 657 if( flags & SRB_DataIn ) { 658 for(i = 0 ; i <= sg_indx; i++){ 659 byte_count = le32_to_cpu((dev->dac_support == 1) 660 ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count 661 : srbcmd->sg.sg[i].count); 662 if(copy_to_user(sg_user[i], sg_list[i], byte_count)){ 663 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); 664 rcode = -EFAULT; 665 goto cleanup; 666 667 } 668 } 669 } 670 671 reply = (struct aac_srb_reply *) fib_data(srbfib); 672 if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){ 673 dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n")); 674 rcode = -EFAULT; 675 goto cleanup; 676 } 677 678 cleanup: 679 kfree(user_srbcmd); 680 for(i=0; i <= sg_indx; i++){ 681 kfree(sg_list[i]); 682 } 683 fib_complete(srbfib); 684 fib_free(srbfib); 685 686 return rcode; 687 } 688 689 struct aac_pci_info { 690 u32 bus; 691 u32 slot; 692 }; 693 694 695 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg) 696 { 697 struct aac_pci_info pci_info; 698 699 pci_info.bus = dev->pdev->bus->number; 700 pci_info.slot = PCI_SLOT(dev->pdev->devfn); 701 702 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) { 703 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n")); 704 return -EFAULT; 705 } 706 return 0; 707 } 708 709 710 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg) 711 { 712 int status; 713 714 /* 715 * HBA gets first crack 716 */ 717 718 status = aac_dev_ioctl(dev, cmd, arg); 719 if(status != -ENOTTY) 720 return status; 721 722 switch (cmd) { 723 case FSACTL_MINIPORT_REV_CHECK: 724 status = check_revision(dev, arg); 725 break; 726 case FSACTL_SEND_LARGE_FIB: 727 case FSACTL_SENDFIB: 728 status = ioctl_send_fib(dev, arg); 729 break; 730 case FSACTL_OPEN_GET_ADAPTER_FIB: 731 status = open_getadapter_fib(dev, arg); 732 break; 733 case FSACTL_GET_NEXT_ADAPTER_FIB: 734 status = next_getadapter_fib(dev, arg); 735 break; 736 case FSACTL_CLOSE_GET_ADAPTER_FIB: 737 status = close_getadapter_fib(dev, arg); 738 break; 739 case FSACTL_SEND_RAW_SRB: 740 status = aac_send_raw_srb(dev,arg); 741 break; 742 case FSACTL_GET_PCI_INFO: 743 status = aac_get_pci_info(dev,arg); 744 break; 745 default: 746 status = -ENOTTY; 747 break; 748 } 749 return status; 750 } 751 752