xref: /openbmc/linux/drivers/scsi/aacraid/commctrl.c (revision 8134d27103b35dbdc94d762f82ca0bfb00f349ff)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commctrl.c
28  *
29  * Abstract: Contains all routines for control of the AFA comm layer
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h> /* ssleep prototype */
43 #include <linux/kthread.h>
44 #include <linux/semaphore.h>
45 #include <linux/uaccess.h>
46 #include <scsi/scsi_host.h>
47 
48 #include "aacraid.h"
49 
50 /**
51  *	ioctl_send_fib	-	send a FIB from userspace
52  *	@dev:	adapter is being processed
53  *	@arg:	arguments to the ioctl call
54  *
55  *	This routine sends a fib to the adapter on behalf of a user level
56  *	program.
57  */
58 # define AAC_DEBUG_PREAMBLE	KERN_INFO
59 # define AAC_DEBUG_POSTAMBLE
60 
61 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
62 {
63 	struct hw_fib * kfib;
64 	struct fib *fibptr;
65 	struct hw_fib * hw_fib = (struct hw_fib *)0;
66 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
67 	unsigned int size, osize;
68 	int retval;
69 
70 	if (dev->in_reset) {
71 		return -EBUSY;
72 	}
73 	fibptr = aac_fib_alloc(dev);
74 	if(fibptr == NULL) {
75 		return -ENOMEM;
76 	}
77 
78 	kfib = fibptr->hw_fib_va;
79 	/*
80 	 *	First copy in the header so that we can check the size field.
81 	 */
82 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
83 		aac_fib_free(fibptr);
84 		return -EFAULT;
85 	}
86 	/*
87 	 *	Since we copy based on the fib header size, make sure that we
88 	 *	will not overrun the buffer when we copy the memory. Return
89 	 *	an error if we would.
90 	 */
91 	osize = size = le16_to_cpu(kfib->header.Size) +
92 		sizeof(struct aac_fibhdr);
93 	if (size < le16_to_cpu(kfib->header.SenderSize))
94 		size = le16_to_cpu(kfib->header.SenderSize);
95 	if (size > dev->max_fib_size) {
96 		dma_addr_t daddr;
97 
98 		if (size > 2048) {
99 			retval = -EINVAL;
100 			goto cleanup;
101 		}
102 
103 		kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
104 					  GFP_KERNEL);
105 		if (!kfib) {
106 			retval = -ENOMEM;
107 			goto cleanup;
108 		}
109 
110 		/* Highjack the hw_fib */
111 		hw_fib = fibptr->hw_fib_va;
112 		hw_fib_pa = fibptr->hw_fib_pa;
113 		fibptr->hw_fib_va = kfib;
114 		fibptr->hw_fib_pa = daddr;
115 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
116 		memcpy(kfib, hw_fib, dev->max_fib_size);
117 	}
118 
119 	if (copy_from_user(kfib, arg, size)) {
120 		retval = -EFAULT;
121 		goto cleanup;
122 	}
123 
124 	/* Sanity check the second copy */
125 	if ((osize != le16_to_cpu(kfib->header.Size) +
126 		sizeof(struct aac_fibhdr))
127 		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
128 		retval = -EINVAL;
129 		goto cleanup;
130 	}
131 
132 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
133 		aac_adapter_interrupt(dev);
134 		/*
135 		 * Since we didn't really send a fib, zero out the state to allow
136 		 * cleanup code not to assert.
137 		 */
138 		kfib->header.XferState = 0;
139 	} else {
140 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
141 				le16_to_cpu(kfib->header.Size) , FsaNormal,
142 				1, 1, NULL, NULL);
143 		if (retval) {
144 			goto cleanup;
145 		}
146 		if (aac_fib_complete(fibptr) != 0) {
147 			retval = -EINVAL;
148 			goto cleanup;
149 		}
150 	}
151 	/*
152 	 *	Make sure that the size returned by the adapter (which includes
153 	 *	the header) is less than or equal to the size of a fib, so we
154 	 *	don't corrupt application data. Then copy that size to the user
155 	 *	buffer. (Don't try to add the header information again, since it
156 	 *	was already included by the adapter.)
157 	 */
158 
159 	retval = 0;
160 	if (copy_to_user(arg, (void *)kfib, size))
161 		retval = -EFAULT;
162 cleanup:
163 	if (hw_fib) {
164 		dma_free_coherent(&dev->pdev->dev, size, kfib,
165 				  fibptr->hw_fib_pa);
166 		fibptr->hw_fib_pa = hw_fib_pa;
167 		fibptr->hw_fib_va = hw_fib;
168 	}
169 	if (retval != -ERESTARTSYS)
170 		aac_fib_free(fibptr);
171 	return retval;
172 }
173 
174 /**
175  *	open_getadapter_fib	-	Get the next fib
176  *
177  *	This routine will get the next Fib, if available, from the AdapterFibContext
178  *	passed in from the user.
179  */
180 
181 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
182 {
183 	struct aac_fib_context * fibctx;
184 	int status;
185 
186 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
187 	if (fibctx == NULL) {
188 		status = -ENOMEM;
189 	} else {
190 		unsigned long flags;
191 		struct list_head * entry;
192 		struct aac_fib_context * context;
193 
194 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
195 		fibctx->size = sizeof(struct aac_fib_context);
196 		/*
197 		 *	Yes yes, I know this could be an index, but we have a
198 		 * better guarantee of uniqueness for the locked loop below.
199 		 * Without the aid of a persistent history, this also helps
200 		 * reduce the chance that the opaque context would be reused.
201 		 */
202 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
203 		/*
204 		 *	Initialize the mutex used to wait for the next AIF.
205 		 */
206 		sema_init(&fibctx->wait_sem, 0);
207 		fibctx->wait = 0;
208 		/*
209 		 *	Initialize the fibs and set the count of fibs on
210 		 *	the list to 0.
211 		 */
212 		fibctx->count = 0;
213 		INIT_LIST_HEAD(&fibctx->fib_list);
214 		fibctx->jiffies = jiffies/HZ;
215 		/*
216 		 *	Now add this context onto the adapter's
217 		 *	AdapterFibContext list.
218 		 */
219 		spin_lock_irqsave(&dev->fib_lock, flags);
220 		/* Ensure that we have a unique identifier */
221 		entry = dev->fib_list.next;
222 		while (entry != &dev->fib_list) {
223 			context = list_entry(entry, struct aac_fib_context, next);
224 			if (context->unique == fibctx->unique) {
225 				/* Not unique (32 bits) */
226 				fibctx->unique++;
227 				entry = dev->fib_list.next;
228 			} else {
229 				entry = entry->next;
230 			}
231 		}
232 		list_add_tail(&fibctx->next, &dev->fib_list);
233 		spin_unlock_irqrestore(&dev->fib_lock, flags);
234 		if (copy_to_user(arg, &fibctx->unique,
235 						sizeof(fibctx->unique))) {
236 			status = -EFAULT;
237 		} else {
238 			status = 0;
239 		}
240 	}
241 	return status;
242 }
243 
244 /**
245  *	next_getadapter_fib	-	get the next fib
246  *	@dev: adapter to use
247  *	@arg: ioctl argument
248  *
249  *	This routine will get the next Fib, if available, from the AdapterFibContext
250  *	passed in from the user.
251  */
252 
253 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
254 {
255 	struct fib_ioctl f;
256 	struct fib *fib;
257 	struct aac_fib_context *fibctx;
258 	int status;
259 	struct list_head * entry;
260 	unsigned long flags;
261 
262 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
263 		return -EFAULT;
264 	/*
265 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
266 	 *
267 	 *	Search the list of AdapterFibContext addresses on the adapter
268 	 *	to be sure this is a valid address
269 	 */
270 	spin_lock_irqsave(&dev->fib_lock, flags);
271 	entry = dev->fib_list.next;
272 	fibctx = NULL;
273 
274 	while (entry != &dev->fib_list) {
275 		fibctx = list_entry(entry, struct aac_fib_context, next);
276 		/*
277 		 *	Extract the AdapterFibContext from the Input parameters.
278 		 */
279 		if (fibctx->unique == f.fibctx) { /* We found a winner */
280 			break;
281 		}
282 		entry = entry->next;
283 		fibctx = NULL;
284 	}
285 	if (!fibctx) {
286 		spin_unlock_irqrestore(&dev->fib_lock, flags);
287 		dprintk ((KERN_INFO "Fib Context not found\n"));
288 		return -EINVAL;
289 	}
290 
291 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
292 		 (fibctx->size != sizeof(struct aac_fib_context))) {
293 		spin_unlock_irqrestore(&dev->fib_lock, flags);
294 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
295 		return -EINVAL;
296 	}
297 	status = 0;
298 	/*
299 	 *	If there are no fibs to send back, then either wait or return
300 	 *	-EAGAIN
301 	 */
302 return_fib:
303 	if (!list_empty(&fibctx->fib_list)) {
304 		/*
305 		 *	Pull the next fib from the fibs
306 		 */
307 		entry = fibctx->fib_list.next;
308 		list_del(entry);
309 
310 		fib = list_entry(entry, struct fib, fiblink);
311 		fibctx->count--;
312 		spin_unlock_irqrestore(&dev->fib_lock, flags);
313 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
314 			kfree(fib->hw_fib_va);
315 			kfree(fib);
316 			return -EFAULT;
317 		}
318 		/*
319 		 *	Free the space occupied by this copy of the fib.
320 		 */
321 		kfree(fib->hw_fib_va);
322 		kfree(fib);
323 		status = 0;
324 	} else {
325 		spin_unlock_irqrestore(&dev->fib_lock, flags);
326 		/* If someone killed the AIF aacraid thread, restart it */
327 		status = !dev->aif_thread;
328 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
329 			/* Be paranoid, be very paranoid! */
330 			kthread_stop(dev->thread);
331 			ssleep(1);
332 			dev->aif_thread = 0;
333 			dev->thread = kthread_run(aac_command_thread, dev,
334 						  "%s", dev->name);
335 			ssleep(1);
336 		}
337 		if (f.wait) {
338 			if(down_interruptible(&fibctx->wait_sem) < 0) {
339 				status = -ERESTARTSYS;
340 			} else {
341 				/* Lock again and retry */
342 				spin_lock_irqsave(&dev->fib_lock, flags);
343 				goto return_fib;
344 			}
345 		} else {
346 			status = -EAGAIN;
347 		}
348 	}
349 	fibctx->jiffies = jiffies/HZ;
350 	return status;
351 }
352 
353 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
354 {
355 	struct fib *fib;
356 
357 	/*
358 	 *	First free any FIBs that have not been consumed.
359 	 */
360 	while (!list_empty(&fibctx->fib_list)) {
361 		struct list_head * entry;
362 		/*
363 		 *	Pull the next fib from the fibs
364 		 */
365 		entry = fibctx->fib_list.next;
366 		list_del(entry);
367 		fib = list_entry(entry, struct fib, fiblink);
368 		fibctx->count--;
369 		/*
370 		 *	Free the space occupied by this copy of the fib.
371 		 */
372 		kfree(fib->hw_fib_va);
373 		kfree(fib);
374 	}
375 	/*
376 	 *	Remove the Context from the AdapterFibContext List
377 	 */
378 	list_del(&fibctx->next);
379 	/*
380 	 *	Invalidate context
381 	 */
382 	fibctx->type = 0;
383 	/*
384 	 *	Free the space occupied by the Context
385 	 */
386 	kfree(fibctx);
387 	return 0;
388 }
389 
390 /**
391  *	close_getadapter_fib	-	close down user fib context
392  *	@dev: adapter
393  *	@arg: ioctl arguments
394  *
395  *	This routine will close down the fibctx passed in from the user.
396  */
397 
398 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
399 {
400 	struct aac_fib_context *fibctx;
401 	int status;
402 	unsigned long flags;
403 	struct list_head * entry;
404 
405 	/*
406 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
407 	 *
408 	 *	Search the list of AdapterFibContext addresses on the adapter
409 	 *	to be sure this is a valid address
410 	 */
411 
412 	entry = dev->fib_list.next;
413 	fibctx = NULL;
414 
415 	while(entry != &dev->fib_list) {
416 		fibctx = list_entry(entry, struct aac_fib_context, next);
417 		/*
418 		 *	Extract the fibctx from the input parameters
419 		 */
420 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
421 			break;
422 		entry = entry->next;
423 		fibctx = NULL;
424 	}
425 
426 	if (!fibctx)
427 		return 0; /* Already gone */
428 
429 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
430 		 (fibctx->size != sizeof(struct aac_fib_context)))
431 		return -EINVAL;
432 	spin_lock_irqsave(&dev->fib_lock, flags);
433 	status = aac_close_fib_context(dev, fibctx);
434 	spin_unlock_irqrestore(&dev->fib_lock, flags);
435 	return status;
436 }
437 
438 /**
439  *	check_revision	-	close down user fib context
440  *	@dev: adapter
441  *	@arg: ioctl arguments
442  *
443  *	This routine returns the driver version.
444  *	Under Linux, there have been no version incompatibilities, so this is
445  *	simple!
446  */
447 
448 static int check_revision(struct aac_dev *dev, void __user *arg)
449 {
450 	struct revision response;
451 	char *driver_version = aac_driver_version;
452 	u32 version;
453 
454 	response.compat = 1;
455 	version = (simple_strtol(driver_version,
456 				&driver_version, 10) << 24) | 0x00000400;
457 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
458 	version += simple_strtol(driver_version + 1, NULL, 10);
459 	response.version = cpu_to_le32(version);
460 #	ifdef AAC_DRIVER_BUILD
461 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
462 #	else
463 		response.build = cpu_to_le32(9999);
464 #	endif
465 
466 	if (copy_to_user(arg, &response, sizeof(response)))
467 		return -EFAULT;
468 	return 0;
469 }
470 
471 
472 /**
473  *
474  * aac_send_raw_scb
475  *
476  */
477 
478 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
479 {
480 	struct fib* srbfib;
481 	int status;
482 	struct aac_srb *srbcmd = NULL;
483 	struct aac_hba_cmd_req *hbacmd = NULL;
484 	struct user_aac_srb *user_srbcmd = NULL;
485 	struct user_aac_srb __user *user_srb = arg;
486 	struct aac_srb_reply __user *user_reply;
487 	u32 chn;
488 	u32 fibsize = 0;
489 	u32 flags = 0;
490 	s32 rcode = 0;
491 	u32 data_dir;
492 	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
493 	void *sg_list[HBA_MAX_SG_EMBEDDED];
494 	u32 sg_count[HBA_MAX_SG_EMBEDDED];
495 	u32 sg_indx = 0;
496 	u32 byte_count = 0;
497 	u32 actual_fibsize64, actual_fibsize = 0;
498 	int i;
499 	int is_native_device;
500 	u64 address;
501 
502 
503 	if (dev->in_reset) {
504 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
505 		return -EBUSY;
506 	}
507 	if (!capable(CAP_SYS_ADMIN)){
508 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
509 		return -EPERM;
510 	}
511 	/*
512 	 *	Allocate and initialize a Fib then setup a SRB command
513 	 */
514 	if (!(srbfib = aac_fib_alloc(dev))) {
515 		return -ENOMEM;
516 	}
517 
518 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
519 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
520 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
521 		rcode = -EFAULT;
522 		goto cleanup;
523 	}
524 
525 	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
526 	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
527 		rcode = -EINVAL;
528 		goto cleanup;
529 	}
530 
531 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
532 	if (!user_srbcmd) {
533 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
534 		rcode = -ENOMEM;
535 		goto cleanup;
536 	}
537 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
538 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
539 		rcode = -EFAULT;
540 		goto cleanup;
541 	}
542 
543 	flags = user_srbcmd->flags; /* from user in cpu order */
544 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
545 	case SRB_DataOut:
546 		data_dir = DMA_TO_DEVICE;
547 		break;
548 	case (SRB_DataIn | SRB_DataOut):
549 		data_dir = DMA_BIDIRECTIONAL;
550 		break;
551 	case SRB_DataIn:
552 		data_dir = DMA_FROM_DEVICE;
553 		break;
554 	default:
555 		data_dir = DMA_NONE;
556 	}
557 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
558 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
559 			user_srbcmd->sg.count));
560 		rcode = -EINVAL;
561 		goto cleanup;
562 	}
563 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
564 		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
565 		rcode = -EINVAL;
566 		goto cleanup;
567 	}
568 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
569 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
570 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
571 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
572 	/* User made a mistake - should not continue */
573 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
574 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
575 		  "Raw SRB command calculated fibsize=%lu;%lu "
576 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
577 		  "issued fibsize=%d\n",
578 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
579 		  sizeof(struct aac_srb), sizeof(struct sgentry),
580 		  sizeof(struct sgentry64), fibsize));
581 		rcode = -EINVAL;
582 		goto cleanup;
583 	}
584 
585 	chn = user_srbcmd->channel;
586 	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
587 		dev->hba_map[chn][user_srbcmd->id].devtype ==
588 		AAC_DEVTYPE_NATIVE_RAW) {
589 		is_native_device = 1;
590 		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
591 		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
592 
593 		/* iu_type is a parameter of aac_hba_send */
594 		switch (data_dir) {
595 		case DMA_TO_DEVICE:
596 			hbacmd->byte1 = 2;
597 			break;
598 		case DMA_FROM_DEVICE:
599 		case DMA_BIDIRECTIONAL:
600 			hbacmd->byte1 = 1;
601 			break;
602 		case DMA_NONE:
603 		default:
604 			break;
605 		}
606 		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
607 		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
608 
609 		/*
610 		 * we fill in reply_qid later in aac_src_deliver_message
611 		 * we fill in iu_type, request_id later in aac_hba_send
612 		 * we fill in emb_data_desc_count, data_length later
613 		 * in sg list build
614 		 */
615 
616 		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
617 
618 		address = (u64)srbfib->hw_error_pa;
619 		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
620 		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
621 		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
622 		hbacmd->emb_data_desc_count =
623 					cpu_to_le32(user_srbcmd->sg.count);
624 		srbfib->hbacmd_size = 64 +
625 			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
626 
627 	} else {
628 		is_native_device = 0;
629 		aac_fib_init(srbfib);
630 
631 		/* raw_srb FIB is not FastResponseCapable */
632 		srbfib->hw_fib_va->header.XferState &=
633 			~cpu_to_le32(FastResponseCapable);
634 
635 		srbcmd = (struct aac_srb *) fib_data(srbfib);
636 
637 		// Fix up srb for endian and force some values
638 
639 		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
640 		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
641 		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
642 		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
643 		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
644 		srbcmd->flags	 = cpu_to_le32(flags);
645 		srbcmd->retry_limit = 0; // Obsolete parameter
646 		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
647 		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
648 	}
649 
650 	byte_count = 0;
651 	if (is_native_device) {
652 		struct user_sgmap *usg32 = &user_srbcmd->sg;
653 		struct user_sgmap64 *usg64 =
654 			(struct user_sgmap64 *)&user_srbcmd->sg;
655 
656 		for (i = 0; i < usg32->count; i++) {
657 			void *p;
658 			u64 addr;
659 
660 			sg_count[i] = (actual_fibsize64 == fibsize) ?
661 				usg64->sg[i].count : usg32->sg[i].count;
662 			if (sg_count[i] >
663 				(dev->scsi_host_ptr->max_sectors << 9)) {
664 				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
665 					i, sg_count[i],
666 					dev->scsi_host_ptr->max_sectors << 9);
667 				rcode = -EINVAL;
668 				goto cleanup;
669 			}
670 
671 			p = kmalloc(sg_count[i], GFP_KERNEL);
672 			if (!p) {
673 				rcode = -ENOMEM;
674 				goto cleanup;
675 			}
676 
677 			if (actual_fibsize64 == fibsize) {
678 				addr = (u64)usg64->sg[i].addr[0];
679 				addr += ((u64)usg64->sg[i].addr[1]) << 32;
680 			} else {
681 				addr = (u64)usg32->sg[i].addr;
682 			}
683 
684 			sg_user[i] = (void __user *)(uintptr_t)addr;
685 			sg_list[i] = p; // save so we can clean up later
686 			sg_indx = i;
687 
688 			if (flags & SRB_DataOut) {
689 				if (copy_from_user(p, sg_user[i],
690 					sg_count[i])) {
691 					rcode = -EFAULT;
692 					goto cleanup;
693 				}
694 			}
695 			addr = pci_map_single(dev->pdev, p, sg_count[i],
696 						data_dir);
697 			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
698 			hbacmd->sge[i].addr_lo = cpu_to_le32(
699 						(u32)(addr & 0xffffffff));
700 			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
701 			hbacmd->sge[i].flags = 0;
702 			byte_count += sg_count[i];
703 		}
704 
705 		if (usg32->count > 0)	/* embedded sglist */
706 			hbacmd->sge[usg32->count-1].flags =
707 				cpu_to_le32(0x40000000);
708 		hbacmd->data_length = cpu_to_le32(byte_count);
709 
710 		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
711 					NULL, NULL);
712 
713 	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
714 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
715 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
716 
717 		/*
718 		 * This should also catch if user used the 32 bit sgmap
719 		 */
720 		if (actual_fibsize64 == fibsize) {
721 			actual_fibsize = actual_fibsize64;
722 			for (i = 0; i < upsg->count; i++) {
723 				u64 addr;
724 				void* p;
725 
726 				sg_count[i] = upsg->sg[i].count;
727 				if (sg_count[i] >
728 				    ((dev->adapter_info.options &
729 				     AAC_OPT_NEW_COMM) ?
730 				      (dev->scsi_host_ptr->max_sectors << 9) :
731 				      65536)) {
732 					rcode = -EINVAL;
733 					goto cleanup;
734 				}
735 
736 				p = kmalloc(sg_count[i], GFP_KERNEL);
737 				if(!p) {
738 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
739 					  sg_count[i], i, upsg->count));
740 					rcode = -ENOMEM;
741 					goto cleanup;
742 				}
743 				addr = (u64)upsg->sg[i].addr[0];
744 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
745 				sg_user[i] = (void __user *)(uintptr_t)addr;
746 				sg_list[i] = p; // save so we can clean up later
747 				sg_indx = i;
748 
749 				if (flags & SRB_DataOut) {
750 					if (copy_from_user(p, sg_user[i],
751 						sg_count[i])){
752 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
753 						rcode = -EFAULT;
754 						goto cleanup;
755 					}
756 				}
757 				addr = pci_map_single(dev->pdev, p,
758 							sg_count[i], data_dir);
759 
760 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
761 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
762 				byte_count += sg_count[i];
763 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
764 			}
765 		} else {
766 			struct user_sgmap* usg;
767 			usg = kmemdup(upsg,
768 				      actual_fibsize - sizeof(struct aac_srb)
769 				      + sizeof(struct sgmap), GFP_KERNEL);
770 			if (!usg) {
771 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
772 				rcode = -ENOMEM;
773 				goto cleanup;
774 			}
775 			actual_fibsize = actual_fibsize64;
776 
777 			for (i = 0; i < usg->count; i++) {
778 				u64 addr;
779 				void* p;
780 
781 				sg_count[i] = usg->sg[i].count;
782 				if (sg_count[i] >
783 				    ((dev->adapter_info.options &
784 				     AAC_OPT_NEW_COMM) ?
785 				      (dev->scsi_host_ptr->max_sectors << 9) :
786 				      65536)) {
787 					kfree(usg);
788 					rcode = -EINVAL;
789 					goto cleanup;
790 				}
791 
792 				p = kmalloc(sg_count[i], GFP_KERNEL);
793 				if(!p) {
794 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
795 						sg_count[i], i, usg->count));
796 					kfree(usg);
797 					rcode = -ENOMEM;
798 					goto cleanup;
799 				}
800 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
801 				sg_list[i] = p; // save so we can clean up later
802 				sg_indx = i;
803 
804 				if (flags & SRB_DataOut) {
805 					if (copy_from_user(p, sg_user[i],
806 						sg_count[i])) {
807 						kfree (usg);
808 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
809 						rcode = -EFAULT;
810 						goto cleanup;
811 					}
812 				}
813 				addr = pci_map_single(dev->pdev, p,
814 							sg_count[i], data_dir);
815 
816 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
817 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
818 				byte_count += sg_count[i];
819 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
820 			}
821 			kfree (usg);
822 		}
823 		srbcmd->count = cpu_to_le32(byte_count);
824 		if (user_srbcmd->sg.count)
825 			psg->count = cpu_to_le32(sg_indx+1);
826 		else
827 			psg->count = 0;
828 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
829 	} else {
830 		struct user_sgmap* upsg = &user_srbcmd->sg;
831 		struct sgmap* psg = &srbcmd->sg;
832 
833 		if (actual_fibsize64 == fibsize) {
834 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
835 			for (i = 0; i < upsg->count; i++) {
836 				uintptr_t addr;
837 				void* p;
838 
839 				sg_count[i] = usg->sg[i].count;
840 				if (sg_count[i] >
841 				    ((dev->adapter_info.options &
842 				     AAC_OPT_NEW_COMM) ?
843 				      (dev->scsi_host_ptr->max_sectors << 9) :
844 				      65536)) {
845 					rcode = -EINVAL;
846 					goto cleanup;
847 				}
848 				p = kmalloc(sg_count[i], GFP_KERNEL);
849 				if (!p) {
850 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
851 						sg_count[i], i, usg->count));
852 					rcode = -ENOMEM;
853 					goto cleanup;
854 				}
855 				addr = (u64)usg->sg[i].addr[0];
856 				addr += ((u64)usg->sg[i].addr[1]) << 32;
857 				sg_user[i] = (void __user *)addr;
858 				sg_list[i] = p; // save so we can clean up later
859 				sg_indx = i;
860 
861 				if (flags & SRB_DataOut) {
862 					if (copy_from_user(p, sg_user[i],
863 						sg_count[i])){
864 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
865 						rcode = -EFAULT;
866 						goto cleanup;
867 					}
868 				}
869 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
870 
871 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
872 				byte_count += usg->sg[i].count;
873 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
874 			}
875 		} else {
876 			for (i = 0; i < upsg->count; i++) {
877 				dma_addr_t addr;
878 				void* p;
879 
880 				sg_count[i] = upsg->sg[i].count;
881 				if (sg_count[i] >
882 				    ((dev->adapter_info.options &
883 				     AAC_OPT_NEW_COMM) ?
884 				      (dev->scsi_host_ptr->max_sectors << 9) :
885 				      65536)) {
886 					rcode = -EINVAL;
887 					goto cleanup;
888 				}
889 				p = kmalloc(sg_count[i], GFP_KERNEL);
890 				if (!p) {
891 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
892 					  sg_count[i], i, upsg->count));
893 					rcode = -ENOMEM;
894 					goto cleanup;
895 				}
896 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
897 				sg_list[i] = p; // save so we can clean up later
898 				sg_indx = i;
899 
900 				if (flags & SRB_DataOut) {
901 					if (copy_from_user(p, sg_user[i],
902 						sg_count[i])) {
903 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
904 						rcode = -EFAULT;
905 						goto cleanup;
906 					}
907 				}
908 				addr = pci_map_single(dev->pdev, p,
909 					sg_count[i], data_dir);
910 
911 				psg->sg[i].addr = cpu_to_le32(addr);
912 				byte_count += sg_count[i];
913 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
914 			}
915 		}
916 		srbcmd->count = cpu_to_le32(byte_count);
917 		if (user_srbcmd->sg.count)
918 			psg->count = cpu_to_le32(sg_indx+1);
919 		else
920 			psg->count = 0;
921 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
922 	}
923 
924 	if (status == -ERESTARTSYS) {
925 		rcode = -ERESTARTSYS;
926 		goto cleanup;
927 	}
928 
929 	if (status != 0) {
930 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
931 		rcode = -ENXIO;
932 		goto cleanup;
933 	}
934 
935 	if (flags & SRB_DataIn) {
936 		for(i = 0 ; i <= sg_indx; i++){
937 			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
938 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
939 				rcode = -EFAULT;
940 				goto cleanup;
941 
942 			}
943 		}
944 	}
945 
946 	user_reply = arg + fibsize;
947 	if (is_native_device) {
948 		struct aac_hba_resp *err =
949 			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
950 		struct aac_srb_reply reply;
951 
952 		memset(&reply, 0, sizeof(reply));
953 		reply.status = ST_OK;
954 		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
955 			/* fast response */
956 			reply.srb_status = SRB_STATUS_SUCCESS;
957 			reply.scsi_status = 0;
958 			reply.data_xfer_length = byte_count;
959 			reply.sense_data_size = 0;
960 			memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
961 		} else {
962 			reply.srb_status = err->service_response;
963 			reply.scsi_status = err->status;
964 			reply.data_xfer_length = byte_count -
965 				le32_to_cpu(err->residual_count);
966 			reply.sense_data_size = err->sense_response_data_len;
967 			memcpy(reply.sense_data, err->sense_response_buf,
968 				AAC_SENSE_BUFFERSIZE);
969 		}
970 		if (copy_to_user(user_reply, &reply,
971 			sizeof(struct aac_srb_reply))) {
972 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
973 			rcode = -EFAULT;
974 			goto cleanup;
975 		}
976 	} else {
977 		struct aac_srb_reply *reply;
978 
979 		reply = (struct aac_srb_reply *) fib_data(srbfib);
980 		if (copy_to_user(user_reply, reply,
981 			sizeof(struct aac_srb_reply))) {
982 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
983 			rcode = -EFAULT;
984 			goto cleanup;
985 		}
986 	}
987 
988 cleanup:
989 	kfree(user_srbcmd);
990 	if (rcode != -ERESTARTSYS) {
991 		for (i = 0; i <= sg_indx; i++)
992 			kfree(sg_list[i]);
993 		aac_fib_complete(srbfib);
994 		aac_fib_free(srbfib);
995 	}
996 
997 	return rcode;
998 }
999 
1000 struct aac_pci_info {
1001 	u32 bus;
1002 	u32 slot;
1003 };
1004 
1005 
1006 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
1007 {
1008 	struct aac_pci_info pci_info;
1009 
1010 	pci_info.bus = dev->pdev->bus->number;
1011 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
1012 
1013 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
1014 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1015 		return -EFAULT;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1021 {
1022 	struct aac_hba_info hbainfo;
1023 
1024 	memset(&hbainfo, 0, sizeof(hbainfo));
1025 	hbainfo.adapter_number		= (u8) dev->id;
1026 	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
1027 	hbainfo.device_number		= (dev->pdev->devfn >> 3);
1028 	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);
1029 
1030 	hbainfo.vendor_id		= dev->pdev->vendor;
1031 	hbainfo.device_id		= dev->pdev->device;
1032 	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
1033 	hbainfo.sub_system_id		= dev->pdev->subsystem_device;
1034 
1035 	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1036 		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1037 		return -EFAULT;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 struct aac_reset_iop {
1044 	u8	reset_type;
1045 };
1046 
1047 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1048 {
1049 	struct aac_reset_iop reset;
1050 	int retval;
1051 
1052 	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1053 		return -EFAULT;
1054 
1055 	dev->adapter_shutdown = 1;
1056 
1057 	mutex_unlock(&dev->ioctl_mutex);
1058 	retval = aac_reset_adapter(dev, 0, reset.reset_type);
1059 	mutex_lock(&dev->ioctl_mutex);
1060 
1061 	return retval;
1062 }
1063 
1064 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
1065 {
1066 	int status;
1067 
1068 	mutex_lock(&dev->ioctl_mutex);
1069 
1070 	if (dev->adapter_shutdown) {
1071 		status = -EACCES;
1072 		goto cleanup;
1073 	}
1074 
1075 	/*
1076 	 *	HBA gets first crack
1077 	 */
1078 
1079 	status = aac_dev_ioctl(dev, cmd, arg);
1080 	if (status != -ENOTTY)
1081 		goto cleanup;
1082 
1083 	switch (cmd) {
1084 	case FSACTL_MINIPORT_REV_CHECK:
1085 		status = check_revision(dev, arg);
1086 		break;
1087 	case FSACTL_SEND_LARGE_FIB:
1088 	case FSACTL_SENDFIB:
1089 		status = ioctl_send_fib(dev, arg);
1090 		break;
1091 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1092 		status = open_getadapter_fib(dev, arg);
1093 		break;
1094 	case FSACTL_GET_NEXT_ADAPTER_FIB:
1095 		status = next_getadapter_fib(dev, arg);
1096 		break;
1097 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1098 		status = close_getadapter_fib(dev, arg);
1099 		break;
1100 	case FSACTL_SEND_RAW_SRB:
1101 		status = aac_send_raw_srb(dev,arg);
1102 		break;
1103 	case FSACTL_GET_PCI_INFO:
1104 		status = aac_get_pci_info(dev,arg);
1105 		break;
1106 	case FSACTL_GET_HBA_INFO:
1107 		status = aac_get_hba_info(dev, arg);
1108 		break;
1109 	case FSACTL_RESET_IOP:
1110 		status = aac_send_reset_adapter(dev, arg);
1111 		break;
1112 
1113 	default:
1114 		status = -ENOTTY;
1115 		break;
1116 	}
1117 
1118 cleanup:
1119 	mutex_unlock(&dev->ioctl_mutex);
1120 
1121 	return status;
1122 }
1123 
1124