xref: /openbmc/linux/drivers/scsi/aacraid/commctrl.c (revision 643d1f7f)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commctrl.c
26  *
27  * Abstract: Contains all routines for control of the AFA comm layer
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/pci.h>
35 #include <linux/spinlock.h>
36 #include <linux/slab.h>
37 #include <linux/completion.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h> /* ssleep prototype */
41 #include <linux/kthread.h>
42 #include <asm/semaphore.h>
43 #include <asm/uaccess.h>
44 
45 #include "aacraid.h"
46 
47 /**
48  *	ioctl_send_fib	-	send a FIB from userspace
49  *	@dev:	adapter is being processed
50  *	@arg:	arguments to the ioctl call
51  *
52  *	This routine sends a fib to the adapter on behalf of a user level
53  *	program.
54  */
55 # define AAC_DEBUG_PREAMBLE	KERN_INFO
56 # define AAC_DEBUG_POSTAMBLE
57 
58 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
59 {
60 	struct hw_fib * kfib;
61 	struct fib *fibptr;
62 	struct hw_fib * hw_fib = (struct hw_fib *)0;
63 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
64 	unsigned size;
65 	int retval;
66 
67 	if (dev->in_reset) {
68 		return -EBUSY;
69 	}
70 	fibptr = aac_fib_alloc(dev);
71 	if(fibptr == NULL) {
72 		return -ENOMEM;
73 	}
74 
75 	kfib = fibptr->hw_fib_va;
76 	/*
77 	 *	First copy in the header so that we can check the size field.
78 	 */
79 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
80 		aac_fib_free(fibptr);
81 		return -EFAULT;
82 	}
83 	/*
84 	 *	Since we copy based on the fib header size, make sure that we
85 	 *	will not overrun the buffer when we copy the memory. Return
86 	 *	an error if we would.
87 	 */
88 	size = le16_to_cpu(kfib->header.Size) + sizeof(struct aac_fibhdr);
89 	if (size < le16_to_cpu(kfib->header.SenderSize))
90 		size = le16_to_cpu(kfib->header.SenderSize);
91 	if (size > dev->max_fib_size) {
92 		if (size > 2048) {
93 			retval = -EINVAL;
94 			goto cleanup;
95 		}
96 		/* Highjack the hw_fib */
97 		hw_fib = fibptr->hw_fib_va;
98 		hw_fib_pa = fibptr->hw_fib_pa;
99 		fibptr->hw_fib_va = kfib = pci_alloc_consistent(dev->pdev, size, &fibptr->hw_fib_pa);
100 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
101 		memcpy(kfib, hw_fib, dev->max_fib_size);
102 	}
103 
104 	if (copy_from_user(kfib, arg, size)) {
105 		retval = -EFAULT;
106 		goto cleanup;
107 	}
108 
109 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
110 		aac_adapter_interrupt(dev);
111 		/*
112 		 * Since we didn't really send a fib, zero out the state to allow
113 		 * cleanup code not to assert.
114 		 */
115 		kfib->header.XferState = 0;
116 	} else {
117 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
118 				le16_to_cpu(kfib->header.Size) , FsaNormal,
119 				1, 1, NULL, NULL);
120 		if (retval) {
121 			goto cleanup;
122 		}
123 		if (aac_fib_complete(fibptr) != 0) {
124 			retval = -EINVAL;
125 			goto cleanup;
126 		}
127 	}
128 	/*
129 	 *	Make sure that the size returned by the adapter (which includes
130 	 *	the header) is less than or equal to the size of a fib, so we
131 	 *	don't corrupt application data. Then copy that size to the user
132 	 *	buffer. (Don't try to add the header information again, since it
133 	 *	was already included by the adapter.)
134 	 */
135 
136 	retval = 0;
137 	if (copy_to_user(arg, (void *)kfib, size))
138 		retval = -EFAULT;
139 cleanup:
140 	if (hw_fib) {
141 		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
142 		fibptr->hw_fib_pa = hw_fib_pa;
143 		fibptr->hw_fib_va = hw_fib;
144 	}
145 	if (retval != -EINTR)
146 		aac_fib_free(fibptr);
147 	return retval;
148 }
149 
150 /**
151  *	open_getadapter_fib	-	Get the next fib
152  *
153  *	This routine will get the next Fib, if available, from the AdapterFibContext
154  *	passed in from the user.
155  */
156 
157 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
158 {
159 	struct aac_fib_context * fibctx;
160 	int status;
161 
162 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
163 	if (fibctx == NULL) {
164 		status = -ENOMEM;
165 	} else {
166 		unsigned long flags;
167 		struct list_head * entry;
168 		struct aac_fib_context * context;
169 
170 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
171 		fibctx->size = sizeof(struct aac_fib_context);
172 		/*
173 		 *	Yes yes, I know this could be an index, but we have a
174 		 * better guarantee of uniqueness for the locked loop below.
175 		 * Without the aid of a persistent history, this also helps
176 		 * reduce the chance that the opaque context would be reused.
177 		 */
178 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
179 		/*
180 		 *	Initialize the mutex used to wait for the next AIF.
181 		 */
182 		init_MUTEX_LOCKED(&fibctx->wait_sem);
183 		fibctx->wait = 0;
184 		/*
185 		 *	Initialize the fibs and set the count of fibs on
186 		 *	the list to 0.
187 		 */
188 		fibctx->count = 0;
189 		INIT_LIST_HEAD(&fibctx->fib_list);
190 		fibctx->jiffies = jiffies/HZ;
191 		/*
192 		 *	Now add this context onto the adapter's
193 		 *	AdapterFibContext list.
194 		 */
195 		spin_lock_irqsave(&dev->fib_lock, flags);
196 		/* Ensure that we have a unique identifier */
197 		entry = dev->fib_list.next;
198 		while (entry != &dev->fib_list) {
199 			context = list_entry(entry, struct aac_fib_context, next);
200 			if (context->unique == fibctx->unique) {
201 				/* Not unique (32 bits) */
202 				fibctx->unique++;
203 				entry = dev->fib_list.next;
204 			} else {
205 				entry = entry->next;
206 			}
207 		}
208 		list_add_tail(&fibctx->next, &dev->fib_list);
209 		spin_unlock_irqrestore(&dev->fib_lock, flags);
210 		if (copy_to_user(arg, &fibctx->unique,
211 						sizeof(fibctx->unique))) {
212 			status = -EFAULT;
213 		} else {
214 			status = 0;
215 		}
216 	}
217 	return status;
218 }
219 
220 /**
221  *	next_getadapter_fib	-	get the next fib
222  *	@dev: adapter to use
223  *	@arg: ioctl argument
224  *
225  *	This routine will get the next Fib, if available, from the AdapterFibContext
226  *	passed in from the user.
227  */
228 
229 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
230 {
231 	struct fib_ioctl f;
232 	struct fib *fib;
233 	struct aac_fib_context *fibctx;
234 	int status;
235 	struct list_head * entry;
236 	unsigned long flags;
237 
238 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
239 		return -EFAULT;
240 	/*
241 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
242 	 *
243 	 *	Search the list of AdapterFibContext addresses on the adapter
244 	 *	to be sure this is a valid address
245 	 */
246 	entry = dev->fib_list.next;
247 	fibctx = NULL;
248 
249 	while (entry != &dev->fib_list) {
250 		fibctx = list_entry(entry, struct aac_fib_context, next);
251 		/*
252 		 *	Extract the AdapterFibContext from the Input parameters.
253 		 */
254 		if (fibctx->unique == f.fibctx) {   /* We found a winner */
255 			break;
256 		}
257 		entry = entry->next;
258 		fibctx = NULL;
259 	}
260 	if (!fibctx) {
261 		dprintk ((KERN_INFO "Fib Context not found\n"));
262 		return -EINVAL;
263 	}
264 
265 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
266 		 (fibctx->size != sizeof(struct aac_fib_context))) {
267 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
268 		return -EINVAL;
269 	}
270 	status = 0;
271 	spin_lock_irqsave(&dev->fib_lock, flags);
272 	/*
273 	 *	If there are no fibs to send back, then either wait or return
274 	 *	-EAGAIN
275 	 */
276 return_fib:
277 	if (!list_empty(&fibctx->fib_list)) {
278 		/*
279 		 *	Pull the next fib from the fibs
280 		 */
281 		entry = fibctx->fib_list.next;
282 		list_del(entry);
283 
284 		fib = list_entry(entry, struct fib, fiblink);
285 		fibctx->count--;
286 		spin_unlock_irqrestore(&dev->fib_lock, flags);
287 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
288 			kfree(fib->hw_fib_va);
289 			kfree(fib);
290 			return -EFAULT;
291 		}
292 		/*
293 		 *	Free the space occupied by this copy of the fib.
294 		 */
295 		kfree(fib->hw_fib_va);
296 		kfree(fib);
297 		status = 0;
298 	} else {
299 		spin_unlock_irqrestore(&dev->fib_lock, flags);
300 		/* If someone killed the AIF aacraid thread, restart it */
301 		status = !dev->aif_thread;
302 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
303 			/* Be paranoid, be very paranoid! */
304 			kthread_stop(dev->thread);
305 			ssleep(1);
306 			dev->aif_thread = 0;
307 			dev->thread = kthread_run(aac_command_thread, dev, dev->name);
308 			ssleep(1);
309 		}
310 		if (f.wait) {
311 			if(down_interruptible(&fibctx->wait_sem) < 0) {
312 				status = -EINTR;
313 			} else {
314 				/* Lock again and retry */
315 				spin_lock_irqsave(&dev->fib_lock, flags);
316 				goto return_fib;
317 			}
318 		} else {
319 			status = -EAGAIN;
320 		}
321 	}
322 	fibctx->jiffies = jiffies/HZ;
323 	return status;
324 }
325 
326 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
327 {
328 	struct fib *fib;
329 
330 	/*
331 	 *	First free any FIBs that have not been consumed.
332 	 */
333 	while (!list_empty(&fibctx->fib_list)) {
334 		struct list_head * entry;
335 		/*
336 		 *	Pull the next fib from the fibs
337 		 */
338 		entry = fibctx->fib_list.next;
339 		list_del(entry);
340 		fib = list_entry(entry, struct fib, fiblink);
341 		fibctx->count--;
342 		/*
343 		 *	Free the space occupied by this copy of the fib.
344 		 */
345 		kfree(fib->hw_fib_va);
346 		kfree(fib);
347 	}
348 	/*
349 	 *	Remove the Context from the AdapterFibContext List
350 	 */
351 	list_del(&fibctx->next);
352 	/*
353 	 *	Invalidate context
354 	 */
355 	fibctx->type = 0;
356 	/*
357 	 *	Free the space occupied by the Context
358 	 */
359 	kfree(fibctx);
360 	return 0;
361 }
362 
363 /**
364  *	close_getadapter_fib	-	close down user fib context
365  *	@dev: adapter
366  *	@arg: ioctl arguments
367  *
368  *	This routine will close down the fibctx passed in from the user.
369  */
370 
371 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
372 {
373 	struct aac_fib_context *fibctx;
374 	int status;
375 	unsigned long flags;
376 	struct list_head * entry;
377 
378 	/*
379 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
380 	 *
381 	 *	Search the list of AdapterFibContext addresses on the adapter
382 	 *	to be sure this is a valid address
383 	 */
384 
385 	entry = dev->fib_list.next;
386 	fibctx = NULL;
387 
388 	while(entry != &dev->fib_list) {
389 		fibctx = list_entry(entry, struct aac_fib_context, next);
390 		/*
391 		 *	Extract the fibctx from the input parameters
392 		 */
393 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
394 			break;
395 		entry = entry->next;
396 		fibctx = NULL;
397 	}
398 
399 	if (!fibctx)
400 		return 0; /* Already gone */
401 
402 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
403 		 (fibctx->size != sizeof(struct aac_fib_context)))
404 		return -EINVAL;
405 	spin_lock_irqsave(&dev->fib_lock, flags);
406 	status = aac_close_fib_context(dev, fibctx);
407 	spin_unlock_irqrestore(&dev->fib_lock, flags);
408 	return status;
409 }
410 
411 /**
412  *	check_revision	-	close down user fib context
413  *	@dev: adapter
414  *	@arg: ioctl arguments
415  *
416  *	This routine returns the driver version.
417  *      Under Linux, there have been no version incompatibilities, so this is
418  *      simple!
419  */
420 
421 static int check_revision(struct aac_dev *dev, void __user *arg)
422 {
423 	struct revision response;
424 	char *driver_version = aac_driver_version;
425 	u32 version;
426 
427 	response.compat = 1;
428 	version = (simple_strtol(driver_version,
429 				&driver_version, 10) << 24) | 0x00000400;
430 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
431 	version += simple_strtol(driver_version + 1, NULL, 10);
432 	response.version = cpu_to_le32(version);
433 #	ifdef AAC_DRIVER_BUILD
434 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
435 #	else
436 		response.build = cpu_to_le32(9999);
437 #	endif
438 
439 	if (copy_to_user(arg, &response, sizeof(response)))
440 		return -EFAULT;
441 	return 0;
442 }
443 
444 
445 /**
446  *
447  * aac_send_raw_scb
448  *
449  */
450 
451 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
452 {
453 	struct fib* srbfib;
454 	int status;
455 	struct aac_srb *srbcmd = NULL;
456 	struct user_aac_srb *user_srbcmd = NULL;
457 	struct user_aac_srb __user *user_srb = arg;
458 	struct aac_srb_reply __user *user_reply;
459 	struct aac_srb_reply* reply;
460 	u32 fibsize = 0;
461 	u32 flags = 0;
462 	s32 rcode = 0;
463 	u32 data_dir;
464 	void __user *sg_user[32];
465 	void *sg_list[32];
466 	u32   sg_indx = 0;
467 	u32 byte_count = 0;
468 	u32 actual_fibsize64, actual_fibsize = 0;
469 	int i;
470 
471 
472 	if (dev->in_reset) {
473 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
474 		return -EBUSY;
475 	}
476 	if (!capable(CAP_SYS_ADMIN)){
477 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
478 		return -EPERM;
479 	}
480 	/*
481 	 *	Allocate and initialize a Fib then setup a SRB command
482 	 */
483 	if (!(srbfib = aac_fib_alloc(dev))) {
484 		return -ENOMEM;
485 	}
486 	aac_fib_init(srbfib);
487 
488 	srbcmd = (struct aac_srb*) fib_data(srbfib);
489 
490 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
491 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
492 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
493 		rcode = -EFAULT;
494 		goto cleanup;
495 	}
496 
497 	if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr))) {
498 		rcode = -EINVAL;
499 		goto cleanup;
500 	}
501 
502 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
503 	if (!user_srbcmd) {
504 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
505 		rcode = -ENOMEM;
506 		goto cleanup;
507 	}
508 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
509 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
510 		rcode = -EFAULT;
511 		goto cleanup;
512 	}
513 
514 	user_reply = arg+fibsize;
515 
516 	flags = user_srbcmd->flags; /* from user in cpu order */
517 	// Fix up srb for endian and force some values
518 
519 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);	// Force this
520 	srbcmd->channel  = cpu_to_le32(user_srbcmd->channel);
521 	srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
522 	srbcmd->lun      = cpu_to_le32(user_srbcmd->lun);
523 	srbcmd->timeout  = cpu_to_le32(user_srbcmd->timeout);
524 	srbcmd->flags    = cpu_to_le32(flags);
525 	srbcmd->retry_limit = 0; // Obsolete parameter
526 	srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
527 	memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
528 
529 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
530 	case SRB_DataOut:
531 		data_dir = DMA_TO_DEVICE;
532 		break;
533 	case (SRB_DataIn | SRB_DataOut):
534 		data_dir = DMA_BIDIRECTIONAL;
535 		break;
536 	case SRB_DataIn:
537 		data_dir = DMA_FROM_DEVICE;
538 		break;
539 	default:
540 		data_dir = DMA_NONE;
541 	}
542 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
543 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
544 		  le32_to_cpu(srbcmd->sg.count)));
545 		rcode = -EINVAL;
546 		goto cleanup;
547 	}
548 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
549 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
550 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
551 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
552 	/* User made a mistake - should not continue */
553 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
554 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
555 		  "Raw SRB command calculated fibsize=%lu;%lu "
556 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
557 		  "issued fibsize=%d\n",
558 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
559 		  sizeof(struct aac_srb), sizeof(struct sgentry),
560 		  sizeof(struct sgentry64), fibsize));
561 		rcode = -EINVAL;
562 		goto cleanup;
563 	}
564 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
565 		dprintk((KERN_DEBUG"aacraid: SG with no direction specified in Raw SRB command\n"));
566 		rcode = -EINVAL;
567 		goto cleanup;
568 	}
569 	byte_count = 0;
570 	if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
571 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
572 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
573 
574 		/*
575 		 * This should also catch if user used the 32 bit sgmap
576 		 */
577 		if (actual_fibsize64 == fibsize) {
578 			actual_fibsize = actual_fibsize64;
579 			for (i = 0; i < upsg->count; i++) {
580 				u64 addr;
581 				void* p;
582 				/* Does this really need to be GFP_DMA? */
583 				p = kmalloc(upsg->sg[i].count,GFP_KERNEL|__GFP_DMA);
584 				if(!p) {
585 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
586 					  upsg->sg[i].count,i,upsg->count));
587 					rcode = -ENOMEM;
588 					goto cleanup;
589 				}
590 				addr = (u64)upsg->sg[i].addr[0];
591 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
592 				sg_user[i] = (void __user *)(uintptr_t)addr;
593 				sg_list[i] = p; // save so we can clean up later
594 				sg_indx = i;
595 
596 				if (flags & SRB_DataOut) {
597 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
598 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
599 						rcode = -EFAULT;
600 						goto cleanup;
601 					}
602 				}
603 				addr = pci_map_single(dev->pdev, p, upsg->sg[i].count, data_dir);
604 
605 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
606 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
607 				byte_count += upsg->sg[i].count;
608 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
609 			}
610 		} else {
611 			struct user_sgmap* usg;
612 			usg = kmalloc(actual_fibsize - sizeof(struct aac_srb)
613 			  + sizeof(struct sgmap), GFP_KERNEL);
614 			if (!usg) {
615 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
616 				rcode = -ENOMEM;
617 				goto cleanup;
618 			}
619 			memcpy (usg, upsg, actual_fibsize - sizeof(struct aac_srb)
620 			  + sizeof(struct sgmap));
621 			actual_fibsize = actual_fibsize64;
622 
623 			for (i = 0; i < usg->count; i++) {
624 				u64 addr;
625 				void* p;
626 				/* Does this really need to be GFP_DMA? */
627 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
628 				if(!p) {
629 					kfree (usg);
630 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
631 					  usg->sg[i].count,i,usg->count));
632 					rcode = -ENOMEM;
633 					goto cleanup;
634 				}
635 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
636 				sg_list[i] = p; // save so we can clean up later
637 				sg_indx = i;
638 
639 				if (flags & SRB_DataOut) {
640 					if(copy_from_user(p,sg_user[i],upsg->sg[i].count)){
641 						kfree (usg);
642 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
643 						rcode = -EFAULT;
644 						goto cleanup;
645 					}
646 				}
647 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
648 
649 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
650 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
651 				byte_count += usg->sg[i].count;
652 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
653 			}
654 			kfree (usg);
655 		}
656 		srbcmd->count = cpu_to_le32(byte_count);
657 		psg->count = cpu_to_le32(sg_indx+1);
658 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
659 	} else {
660 		struct user_sgmap* upsg = &user_srbcmd->sg;
661 		struct sgmap* psg = &srbcmd->sg;
662 
663 		if (actual_fibsize64 == fibsize) {
664 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
665 			for (i = 0; i < upsg->count; i++) {
666 				uintptr_t addr;
667 				void* p;
668 				/* Does this really need to be GFP_DMA? */
669 				p = kmalloc(usg->sg[i].count,GFP_KERNEL|__GFP_DMA);
670 				if(!p) {
671 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
672 					  usg->sg[i].count,i,usg->count));
673 					rcode = -ENOMEM;
674 					goto cleanup;
675 				}
676 				addr = (u64)usg->sg[i].addr[0];
677 				addr += ((u64)usg->sg[i].addr[1]) << 32;
678 				sg_user[i] = (void __user *)addr;
679 				sg_list[i] = p; // save so we can clean up later
680 				sg_indx = i;
681 
682 				if (flags & SRB_DataOut) {
683 					if(copy_from_user(p,sg_user[i],usg->sg[i].count)){
684 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
685 						rcode = -EFAULT;
686 						goto cleanup;
687 					}
688 				}
689 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
690 
691 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
692 				byte_count += usg->sg[i].count;
693 				psg->sg[i].count = cpu_to_le32(usg->sg[i].count);
694 			}
695 		} else {
696 			for (i = 0; i < upsg->count; i++) {
697 				dma_addr_t addr;
698 				void* p;
699 				p = kmalloc(upsg->sg[i].count, GFP_KERNEL);
700 				if (!p) {
701 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
702 					  upsg->sg[i].count, i, upsg->count));
703 					rcode = -ENOMEM;
704 					goto cleanup;
705 				}
706 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
707 				sg_list[i] = p; // save so we can clean up later
708 				sg_indx = i;
709 
710 				if (flags & SRB_DataOut) {
711 					if(copy_from_user(p, sg_user[i],
712 							upsg->sg[i].count)) {
713 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
714 						rcode = -EFAULT;
715 						goto cleanup;
716 					}
717 				}
718 				addr = pci_map_single(dev->pdev, p,
719 					upsg->sg[i].count, data_dir);
720 
721 				psg->sg[i].addr = cpu_to_le32(addr);
722 				byte_count += upsg->sg[i].count;
723 				psg->sg[i].count = cpu_to_le32(upsg->sg[i].count);
724 			}
725 		}
726 		srbcmd->count = cpu_to_le32(byte_count);
727 		psg->count = cpu_to_le32(sg_indx+1);
728 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
729 	}
730 	if (status == -EINTR) {
731 		rcode = -EINTR;
732 		goto cleanup;
733 	}
734 
735 	if (status != 0){
736 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
737 		rcode = -ENXIO;
738 		goto cleanup;
739 	}
740 
741 	if (flags & SRB_DataIn) {
742 		for(i = 0 ; i <= sg_indx; i++){
743 			byte_count = le32_to_cpu(
744 			  (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)
745 			      ? ((struct sgmap64*)&srbcmd->sg)->sg[i].count
746 			      : srbcmd->sg.sg[i].count);
747 			if(copy_to_user(sg_user[i], sg_list[i], byte_count)){
748 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
749 				rcode = -EFAULT;
750 				goto cleanup;
751 
752 			}
753 		}
754 	}
755 
756 	reply = (struct aac_srb_reply *) fib_data(srbfib);
757 	if(copy_to_user(user_reply,reply,sizeof(struct aac_srb_reply))){
758 		dprintk((KERN_DEBUG"aacraid: Could not copy reply to user\n"));
759 		rcode = -EFAULT;
760 		goto cleanup;
761 	}
762 
763 cleanup:
764 	kfree(user_srbcmd);
765 	for(i=0; i <= sg_indx; i++){
766 		kfree(sg_list[i]);
767 	}
768 	if (rcode != -EINTR) {
769 		aac_fib_complete(srbfib);
770 		aac_fib_free(srbfib);
771 	}
772 
773 	return rcode;
774 }
775 
776 struct aac_pci_info {
777 	u32 bus;
778 	u32 slot;
779 };
780 
781 
782 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
783 {
784 	struct aac_pci_info pci_info;
785 
786 	pci_info.bus = dev->pdev->bus->number;
787 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
788 
789        if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
790 	       dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
791 	       return -EFAULT;
792 	}
793 	return 0;
794 }
795 
796 
797 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
798 {
799 	int status;
800 
801 	/*
802 	 *	HBA gets first crack
803 	 */
804 
805 	status = aac_dev_ioctl(dev, cmd, arg);
806 	if(status != -ENOTTY)
807 		return status;
808 
809 	switch (cmd) {
810 	case FSACTL_MINIPORT_REV_CHECK:
811 		status = check_revision(dev, arg);
812 		break;
813 	case FSACTL_SEND_LARGE_FIB:
814 	case FSACTL_SENDFIB:
815 		status = ioctl_send_fib(dev, arg);
816 		break;
817 	case FSACTL_OPEN_GET_ADAPTER_FIB:
818 		status = open_getadapter_fib(dev, arg);
819 		break;
820 	case FSACTL_GET_NEXT_ADAPTER_FIB:
821 		status = next_getadapter_fib(dev, arg);
822 		break;
823 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
824 		status = close_getadapter_fib(dev, arg);
825 		break;
826 	case FSACTL_SEND_RAW_SRB:
827 		status = aac_send_raw_srb(dev,arg);
828 		break;
829 	case FSACTL_GET_PCI_INFO:
830 		status = aac_get_pci_info(dev,arg);
831 		break;
832 	default:
833 		status = -ENOTTY;
834 		break;
835 	}
836 	return status;
837 }
838 
839