xref: /openbmc/linux/drivers/scsi/aacraid/commctrl.c (revision 3213486f)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commctrl.c
28  *
29  * Abstract: Contains all routines for control of the AFA comm layer
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h> /* ssleep prototype */
43 #include <linux/kthread.h>
44 #include <linux/uaccess.h>
45 #include <scsi/scsi_host.h>
46 
47 #include "aacraid.h"
48 
49 /**
50  *	ioctl_send_fib	-	send a FIB from userspace
51  *	@dev:	adapter is being processed
52  *	@arg:	arguments to the ioctl call
53  *
54  *	This routine sends a fib to the adapter on behalf of a user level
55  *	program.
56  */
57 # define AAC_DEBUG_PREAMBLE	KERN_INFO
58 # define AAC_DEBUG_POSTAMBLE
59 
60 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
61 {
62 	struct hw_fib * kfib;
63 	struct fib *fibptr;
64 	struct hw_fib * hw_fib = (struct hw_fib *)0;
65 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
66 	unsigned int size, osize;
67 	int retval;
68 
69 	if (dev->in_reset) {
70 		return -EBUSY;
71 	}
72 	fibptr = aac_fib_alloc(dev);
73 	if(fibptr == NULL) {
74 		return -ENOMEM;
75 	}
76 
77 	kfib = fibptr->hw_fib_va;
78 	/*
79 	 *	First copy in the header so that we can check the size field.
80 	 */
81 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
82 		aac_fib_free(fibptr);
83 		return -EFAULT;
84 	}
85 	/*
86 	 *	Since we copy based on the fib header size, make sure that we
87 	 *	will not overrun the buffer when we copy the memory. Return
88 	 *	an error if we would.
89 	 */
90 	osize = size = le16_to_cpu(kfib->header.Size) +
91 		sizeof(struct aac_fibhdr);
92 	if (size < le16_to_cpu(kfib->header.SenderSize))
93 		size = le16_to_cpu(kfib->header.SenderSize);
94 	if (size > dev->max_fib_size) {
95 		dma_addr_t daddr;
96 
97 		if (size > 2048) {
98 			retval = -EINVAL;
99 			goto cleanup;
100 		}
101 
102 		kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
103 					  GFP_KERNEL);
104 		if (!kfib) {
105 			retval = -ENOMEM;
106 			goto cleanup;
107 		}
108 
109 		/* Highjack the hw_fib */
110 		hw_fib = fibptr->hw_fib_va;
111 		hw_fib_pa = fibptr->hw_fib_pa;
112 		fibptr->hw_fib_va = kfib;
113 		fibptr->hw_fib_pa = daddr;
114 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
115 		memcpy(kfib, hw_fib, dev->max_fib_size);
116 	}
117 
118 	if (copy_from_user(kfib, arg, size)) {
119 		retval = -EFAULT;
120 		goto cleanup;
121 	}
122 
123 	/* Sanity check the second copy */
124 	if ((osize != le16_to_cpu(kfib->header.Size) +
125 		sizeof(struct aac_fibhdr))
126 		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
127 		retval = -EINVAL;
128 		goto cleanup;
129 	}
130 
131 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
132 		aac_adapter_interrupt(dev);
133 		/*
134 		 * Since we didn't really send a fib, zero out the state to allow
135 		 * cleanup code not to assert.
136 		 */
137 		kfib->header.XferState = 0;
138 	} else {
139 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
140 				le16_to_cpu(kfib->header.Size) , FsaNormal,
141 				1, 1, NULL, NULL);
142 		if (retval) {
143 			goto cleanup;
144 		}
145 		if (aac_fib_complete(fibptr) != 0) {
146 			retval = -EINVAL;
147 			goto cleanup;
148 		}
149 	}
150 	/*
151 	 *	Make sure that the size returned by the adapter (which includes
152 	 *	the header) is less than or equal to the size of a fib, so we
153 	 *	don't corrupt application data. Then copy that size to the user
154 	 *	buffer. (Don't try to add the header information again, since it
155 	 *	was already included by the adapter.)
156 	 */
157 
158 	retval = 0;
159 	if (copy_to_user(arg, (void *)kfib, size))
160 		retval = -EFAULT;
161 cleanup:
162 	if (hw_fib) {
163 		dma_free_coherent(&dev->pdev->dev, size, kfib,
164 				  fibptr->hw_fib_pa);
165 		fibptr->hw_fib_pa = hw_fib_pa;
166 		fibptr->hw_fib_va = hw_fib;
167 	}
168 	if (retval != -ERESTARTSYS)
169 		aac_fib_free(fibptr);
170 	return retval;
171 }
172 
173 /**
174  *	open_getadapter_fib	-	Get the next fib
175  *
176  *	This routine will get the next Fib, if available, from the AdapterFibContext
177  *	passed in from the user.
178  */
179 
180 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
181 {
182 	struct aac_fib_context * fibctx;
183 	int status;
184 
185 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
186 	if (fibctx == NULL) {
187 		status = -ENOMEM;
188 	} else {
189 		unsigned long flags;
190 		struct list_head * entry;
191 		struct aac_fib_context * context;
192 
193 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
194 		fibctx->size = sizeof(struct aac_fib_context);
195 		/*
196 		 *	Yes yes, I know this could be an index, but we have a
197 		 * better guarantee of uniqueness for the locked loop below.
198 		 * Without the aid of a persistent history, this also helps
199 		 * reduce the chance that the opaque context would be reused.
200 		 */
201 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
202 		/*
203 		 *	Initialize the mutex used to wait for the next AIF.
204 		 */
205 		init_completion(&fibctx->completion);
206 		fibctx->wait = 0;
207 		/*
208 		 *	Initialize the fibs and set the count of fibs on
209 		 *	the list to 0.
210 		 */
211 		fibctx->count = 0;
212 		INIT_LIST_HEAD(&fibctx->fib_list);
213 		fibctx->jiffies = jiffies/HZ;
214 		/*
215 		 *	Now add this context onto the adapter's
216 		 *	AdapterFibContext list.
217 		 */
218 		spin_lock_irqsave(&dev->fib_lock, flags);
219 		/* Ensure that we have a unique identifier */
220 		entry = dev->fib_list.next;
221 		while (entry != &dev->fib_list) {
222 			context = list_entry(entry, struct aac_fib_context, next);
223 			if (context->unique == fibctx->unique) {
224 				/* Not unique (32 bits) */
225 				fibctx->unique++;
226 				entry = dev->fib_list.next;
227 			} else {
228 				entry = entry->next;
229 			}
230 		}
231 		list_add_tail(&fibctx->next, &dev->fib_list);
232 		spin_unlock_irqrestore(&dev->fib_lock, flags);
233 		if (copy_to_user(arg, &fibctx->unique,
234 						sizeof(fibctx->unique))) {
235 			status = -EFAULT;
236 		} else {
237 			status = 0;
238 		}
239 	}
240 	return status;
241 }
242 
243 /**
244  *	next_getadapter_fib	-	get the next fib
245  *	@dev: adapter to use
246  *	@arg: ioctl argument
247  *
248  *	This routine will get the next Fib, if available, from the AdapterFibContext
249  *	passed in from the user.
250  */
251 
252 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
253 {
254 	struct fib_ioctl f;
255 	struct fib *fib;
256 	struct aac_fib_context *fibctx;
257 	int status;
258 	struct list_head * entry;
259 	unsigned long flags;
260 
261 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
262 		return -EFAULT;
263 	/*
264 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
265 	 *
266 	 *	Search the list of AdapterFibContext addresses on the adapter
267 	 *	to be sure this is a valid address
268 	 */
269 	spin_lock_irqsave(&dev->fib_lock, flags);
270 	entry = dev->fib_list.next;
271 	fibctx = NULL;
272 
273 	while (entry != &dev->fib_list) {
274 		fibctx = list_entry(entry, struct aac_fib_context, next);
275 		/*
276 		 *	Extract the AdapterFibContext from the Input parameters.
277 		 */
278 		if (fibctx->unique == f.fibctx) { /* We found a winner */
279 			break;
280 		}
281 		entry = entry->next;
282 		fibctx = NULL;
283 	}
284 	if (!fibctx) {
285 		spin_unlock_irqrestore(&dev->fib_lock, flags);
286 		dprintk ((KERN_INFO "Fib Context not found\n"));
287 		return -EINVAL;
288 	}
289 
290 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
291 		 (fibctx->size != sizeof(struct aac_fib_context))) {
292 		spin_unlock_irqrestore(&dev->fib_lock, flags);
293 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
294 		return -EINVAL;
295 	}
296 	status = 0;
297 	/*
298 	 *	If there are no fibs to send back, then either wait or return
299 	 *	-EAGAIN
300 	 */
301 return_fib:
302 	if (!list_empty(&fibctx->fib_list)) {
303 		/*
304 		 *	Pull the next fib from the fibs
305 		 */
306 		entry = fibctx->fib_list.next;
307 		list_del(entry);
308 
309 		fib = list_entry(entry, struct fib, fiblink);
310 		fibctx->count--;
311 		spin_unlock_irqrestore(&dev->fib_lock, flags);
312 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
313 			kfree(fib->hw_fib_va);
314 			kfree(fib);
315 			return -EFAULT;
316 		}
317 		/*
318 		 *	Free the space occupied by this copy of the fib.
319 		 */
320 		kfree(fib->hw_fib_va);
321 		kfree(fib);
322 		status = 0;
323 	} else {
324 		spin_unlock_irqrestore(&dev->fib_lock, flags);
325 		/* If someone killed the AIF aacraid thread, restart it */
326 		status = !dev->aif_thread;
327 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
328 			/* Be paranoid, be very paranoid! */
329 			kthread_stop(dev->thread);
330 			ssleep(1);
331 			dev->aif_thread = 0;
332 			dev->thread = kthread_run(aac_command_thread, dev,
333 						  "%s", dev->name);
334 			ssleep(1);
335 		}
336 		if (f.wait) {
337 			if (wait_for_completion_interruptible(&fibctx->completion) < 0) {
338 				status = -ERESTARTSYS;
339 			} else {
340 				/* Lock again and retry */
341 				spin_lock_irqsave(&dev->fib_lock, flags);
342 				goto return_fib;
343 			}
344 		} else {
345 			status = -EAGAIN;
346 		}
347 	}
348 	fibctx->jiffies = jiffies/HZ;
349 	return status;
350 }
351 
352 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
353 {
354 	struct fib *fib;
355 
356 	/*
357 	 *	First free any FIBs that have not been consumed.
358 	 */
359 	while (!list_empty(&fibctx->fib_list)) {
360 		struct list_head * entry;
361 		/*
362 		 *	Pull the next fib from the fibs
363 		 */
364 		entry = fibctx->fib_list.next;
365 		list_del(entry);
366 		fib = list_entry(entry, struct fib, fiblink);
367 		fibctx->count--;
368 		/*
369 		 *	Free the space occupied by this copy of the fib.
370 		 */
371 		kfree(fib->hw_fib_va);
372 		kfree(fib);
373 	}
374 	/*
375 	 *	Remove the Context from the AdapterFibContext List
376 	 */
377 	list_del(&fibctx->next);
378 	/*
379 	 *	Invalidate context
380 	 */
381 	fibctx->type = 0;
382 	/*
383 	 *	Free the space occupied by the Context
384 	 */
385 	kfree(fibctx);
386 	return 0;
387 }
388 
389 /**
390  *	close_getadapter_fib	-	close down user fib context
391  *	@dev: adapter
392  *	@arg: ioctl arguments
393  *
394  *	This routine will close down the fibctx passed in from the user.
395  */
396 
397 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
398 {
399 	struct aac_fib_context *fibctx;
400 	int status;
401 	unsigned long flags;
402 	struct list_head * entry;
403 
404 	/*
405 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
406 	 *
407 	 *	Search the list of AdapterFibContext addresses on the adapter
408 	 *	to be sure this is a valid address
409 	 */
410 
411 	entry = dev->fib_list.next;
412 	fibctx = NULL;
413 
414 	while(entry != &dev->fib_list) {
415 		fibctx = list_entry(entry, struct aac_fib_context, next);
416 		/*
417 		 *	Extract the fibctx from the input parameters
418 		 */
419 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
420 			break;
421 		entry = entry->next;
422 		fibctx = NULL;
423 	}
424 
425 	if (!fibctx)
426 		return 0; /* Already gone */
427 
428 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
429 		 (fibctx->size != sizeof(struct aac_fib_context)))
430 		return -EINVAL;
431 	spin_lock_irqsave(&dev->fib_lock, flags);
432 	status = aac_close_fib_context(dev, fibctx);
433 	spin_unlock_irqrestore(&dev->fib_lock, flags);
434 	return status;
435 }
436 
437 /**
438  *	check_revision	-	close down user fib context
439  *	@dev: adapter
440  *	@arg: ioctl arguments
441  *
442  *	This routine returns the driver version.
443  *	Under Linux, there have been no version incompatibilities, so this is
444  *	simple!
445  */
446 
447 static int check_revision(struct aac_dev *dev, void __user *arg)
448 {
449 	struct revision response;
450 	char *driver_version = aac_driver_version;
451 	u32 version;
452 
453 	response.compat = 1;
454 	version = (simple_strtol(driver_version,
455 				&driver_version, 10) << 24) | 0x00000400;
456 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
457 	version += simple_strtol(driver_version + 1, NULL, 10);
458 	response.version = cpu_to_le32(version);
459 #	ifdef AAC_DRIVER_BUILD
460 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
461 #	else
462 		response.build = cpu_to_le32(9999);
463 #	endif
464 
465 	if (copy_to_user(arg, &response, sizeof(response)))
466 		return -EFAULT;
467 	return 0;
468 }
469 
470 
471 /**
472  *
473  * aac_send_raw_scb
474  *
475  */
476 
477 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
478 {
479 	struct fib* srbfib;
480 	int status;
481 	struct aac_srb *srbcmd = NULL;
482 	struct aac_hba_cmd_req *hbacmd = NULL;
483 	struct user_aac_srb *user_srbcmd = NULL;
484 	struct user_aac_srb __user *user_srb = arg;
485 	struct aac_srb_reply __user *user_reply;
486 	u32 chn;
487 	u32 fibsize = 0;
488 	u32 flags = 0;
489 	s32 rcode = 0;
490 	u32 data_dir;
491 	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
492 	void *sg_list[HBA_MAX_SG_EMBEDDED];
493 	u32 sg_count[HBA_MAX_SG_EMBEDDED];
494 	u32 sg_indx = 0;
495 	u32 byte_count = 0;
496 	u32 actual_fibsize64, actual_fibsize = 0;
497 	int i;
498 	int is_native_device;
499 	u64 address;
500 
501 
502 	if (dev->in_reset) {
503 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
504 		return -EBUSY;
505 	}
506 	if (!capable(CAP_SYS_ADMIN)){
507 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
508 		return -EPERM;
509 	}
510 	/*
511 	 *	Allocate and initialize a Fib then setup a SRB command
512 	 */
513 	if (!(srbfib = aac_fib_alloc(dev))) {
514 		return -ENOMEM;
515 	}
516 
517 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
518 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
519 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
520 		rcode = -EFAULT;
521 		goto cleanup;
522 	}
523 
524 	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
525 	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
526 		rcode = -EINVAL;
527 		goto cleanup;
528 	}
529 
530 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
531 	if (!user_srbcmd) {
532 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
533 		rcode = -ENOMEM;
534 		goto cleanup;
535 	}
536 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
537 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
538 		rcode = -EFAULT;
539 		goto cleanup;
540 	}
541 
542 	flags = user_srbcmd->flags; /* from user in cpu order */
543 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
544 	case SRB_DataOut:
545 		data_dir = DMA_TO_DEVICE;
546 		break;
547 	case (SRB_DataIn | SRB_DataOut):
548 		data_dir = DMA_BIDIRECTIONAL;
549 		break;
550 	case SRB_DataIn:
551 		data_dir = DMA_FROM_DEVICE;
552 		break;
553 	default:
554 		data_dir = DMA_NONE;
555 	}
556 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
557 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
558 			user_srbcmd->sg.count));
559 		rcode = -EINVAL;
560 		goto cleanup;
561 	}
562 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
563 		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
564 		rcode = -EINVAL;
565 		goto cleanup;
566 	}
567 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
568 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
569 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
570 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
571 	/* User made a mistake - should not continue */
572 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
573 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
574 		  "Raw SRB command calculated fibsize=%lu;%lu "
575 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
576 		  "issued fibsize=%d\n",
577 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
578 		  sizeof(struct aac_srb), sizeof(struct sgentry),
579 		  sizeof(struct sgentry64), fibsize));
580 		rcode = -EINVAL;
581 		goto cleanup;
582 	}
583 
584 	chn = user_srbcmd->channel;
585 	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
586 		dev->hba_map[chn][user_srbcmd->id].devtype ==
587 		AAC_DEVTYPE_NATIVE_RAW) {
588 		is_native_device = 1;
589 		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
590 		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
591 
592 		/* iu_type is a parameter of aac_hba_send */
593 		switch (data_dir) {
594 		case DMA_TO_DEVICE:
595 			hbacmd->byte1 = 2;
596 			break;
597 		case DMA_FROM_DEVICE:
598 		case DMA_BIDIRECTIONAL:
599 			hbacmd->byte1 = 1;
600 			break;
601 		case DMA_NONE:
602 		default:
603 			break;
604 		}
605 		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
606 		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
607 
608 		/*
609 		 * we fill in reply_qid later in aac_src_deliver_message
610 		 * we fill in iu_type, request_id later in aac_hba_send
611 		 * we fill in emb_data_desc_count, data_length later
612 		 * in sg list build
613 		 */
614 
615 		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
616 
617 		address = (u64)srbfib->hw_error_pa;
618 		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
619 		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
620 		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
621 		hbacmd->emb_data_desc_count =
622 					cpu_to_le32(user_srbcmd->sg.count);
623 		srbfib->hbacmd_size = 64 +
624 			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
625 
626 	} else {
627 		is_native_device = 0;
628 		aac_fib_init(srbfib);
629 
630 		/* raw_srb FIB is not FastResponseCapable */
631 		srbfib->hw_fib_va->header.XferState &=
632 			~cpu_to_le32(FastResponseCapable);
633 
634 		srbcmd = (struct aac_srb *) fib_data(srbfib);
635 
636 		// Fix up srb for endian and force some values
637 
638 		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
639 		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
640 		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
641 		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
642 		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
643 		srbcmd->flags	 = cpu_to_le32(flags);
644 		srbcmd->retry_limit = 0; // Obsolete parameter
645 		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
646 		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
647 	}
648 
649 	byte_count = 0;
650 	if (is_native_device) {
651 		struct user_sgmap *usg32 = &user_srbcmd->sg;
652 		struct user_sgmap64 *usg64 =
653 			(struct user_sgmap64 *)&user_srbcmd->sg;
654 
655 		for (i = 0; i < usg32->count; i++) {
656 			void *p;
657 			u64 addr;
658 
659 			sg_count[i] = (actual_fibsize64 == fibsize) ?
660 				usg64->sg[i].count : usg32->sg[i].count;
661 			if (sg_count[i] >
662 				(dev->scsi_host_ptr->max_sectors << 9)) {
663 				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
664 					i, sg_count[i],
665 					dev->scsi_host_ptr->max_sectors << 9);
666 				rcode = -EINVAL;
667 				goto cleanup;
668 			}
669 
670 			p = kmalloc(sg_count[i], GFP_KERNEL);
671 			if (!p) {
672 				rcode = -ENOMEM;
673 				goto cleanup;
674 			}
675 
676 			if (actual_fibsize64 == fibsize) {
677 				addr = (u64)usg64->sg[i].addr[0];
678 				addr += ((u64)usg64->sg[i].addr[1]) << 32;
679 			} else {
680 				addr = (u64)usg32->sg[i].addr;
681 			}
682 
683 			sg_user[i] = (void __user *)(uintptr_t)addr;
684 			sg_list[i] = p; // save so we can clean up later
685 			sg_indx = i;
686 
687 			if (flags & SRB_DataOut) {
688 				if (copy_from_user(p, sg_user[i],
689 					sg_count[i])) {
690 					rcode = -EFAULT;
691 					goto cleanup;
692 				}
693 			}
694 			addr = pci_map_single(dev->pdev, p, sg_count[i],
695 						data_dir);
696 			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
697 			hbacmd->sge[i].addr_lo = cpu_to_le32(
698 						(u32)(addr & 0xffffffff));
699 			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
700 			hbacmd->sge[i].flags = 0;
701 			byte_count += sg_count[i];
702 		}
703 
704 		if (usg32->count > 0)	/* embedded sglist */
705 			hbacmd->sge[usg32->count-1].flags =
706 				cpu_to_le32(0x40000000);
707 		hbacmd->data_length = cpu_to_le32(byte_count);
708 
709 		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
710 					NULL, NULL);
711 
712 	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
713 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
714 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
715 
716 		/*
717 		 * This should also catch if user used the 32 bit sgmap
718 		 */
719 		if (actual_fibsize64 == fibsize) {
720 			actual_fibsize = actual_fibsize64;
721 			for (i = 0; i < upsg->count; i++) {
722 				u64 addr;
723 				void* p;
724 
725 				sg_count[i] = upsg->sg[i].count;
726 				if (sg_count[i] >
727 				    ((dev->adapter_info.options &
728 				     AAC_OPT_NEW_COMM) ?
729 				      (dev->scsi_host_ptr->max_sectors << 9) :
730 				      65536)) {
731 					rcode = -EINVAL;
732 					goto cleanup;
733 				}
734 
735 				p = kmalloc(sg_count[i], GFP_KERNEL);
736 				if(!p) {
737 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
738 					  sg_count[i], i, upsg->count));
739 					rcode = -ENOMEM;
740 					goto cleanup;
741 				}
742 				addr = (u64)upsg->sg[i].addr[0];
743 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
744 				sg_user[i] = (void __user *)(uintptr_t)addr;
745 				sg_list[i] = p; // save so we can clean up later
746 				sg_indx = i;
747 
748 				if (flags & SRB_DataOut) {
749 					if (copy_from_user(p, sg_user[i],
750 						sg_count[i])){
751 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
752 						rcode = -EFAULT;
753 						goto cleanup;
754 					}
755 				}
756 				addr = pci_map_single(dev->pdev, p,
757 							sg_count[i], data_dir);
758 
759 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
760 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
761 				byte_count += sg_count[i];
762 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
763 			}
764 		} else {
765 			struct user_sgmap* usg;
766 			usg = kmemdup(upsg,
767 				      actual_fibsize - sizeof(struct aac_srb)
768 				      + sizeof(struct sgmap), GFP_KERNEL);
769 			if (!usg) {
770 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
771 				rcode = -ENOMEM;
772 				goto cleanup;
773 			}
774 			actual_fibsize = actual_fibsize64;
775 
776 			for (i = 0; i < usg->count; i++) {
777 				u64 addr;
778 				void* p;
779 
780 				sg_count[i] = usg->sg[i].count;
781 				if (sg_count[i] >
782 				    ((dev->adapter_info.options &
783 				     AAC_OPT_NEW_COMM) ?
784 				      (dev->scsi_host_ptr->max_sectors << 9) :
785 				      65536)) {
786 					kfree(usg);
787 					rcode = -EINVAL;
788 					goto cleanup;
789 				}
790 
791 				p = kmalloc(sg_count[i], GFP_KERNEL);
792 				if(!p) {
793 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
794 						sg_count[i], i, usg->count));
795 					kfree(usg);
796 					rcode = -ENOMEM;
797 					goto cleanup;
798 				}
799 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
800 				sg_list[i] = p; // save so we can clean up later
801 				sg_indx = i;
802 
803 				if (flags & SRB_DataOut) {
804 					if (copy_from_user(p, sg_user[i],
805 						sg_count[i])) {
806 						kfree (usg);
807 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
808 						rcode = -EFAULT;
809 						goto cleanup;
810 					}
811 				}
812 				addr = pci_map_single(dev->pdev, p,
813 							sg_count[i], data_dir);
814 
815 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
816 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
817 				byte_count += sg_count[i];
818 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
819 			}
820 			kfree (usg);
821 		}
822 		srbcmd->count = cpu_to_le32(byte_count);
823 		if (user_srbcmd->sg.count)
824 			psg->count = cpu_to_le32(sg_indx+1);
825 		else
826 			psg->count = 0;
827 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
828 	} else {
829 		struct user_sgmap* upsg = &user_srbcmd->sg;
830 		struct sgmap* psg = &srbcmd->sg;
831 
832 		if (actual_fibsize64 == fibsize) {
833 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
834 			for (i = 0; i < upsg->count; i++) {
835 				uintptr_t addr;
836 				void* p;
837 
838 				sg_count[i] = usg->sg[i].count;
839 				if (sg_count[i] >
840 				    ((dev->adapter_info.options &
841 				     AAC_OPT_NEW_COMM) ?
842 				      (dev->scsi_host_ptr->max_sectors << 9) :
843 				      65536)) {
844 					rcode = -EINVAL;
845 					goto cleanup;
846 				}
847 				p = kmalloc(sg_count[i], GFP_KERNEL);
848 				if (!p) {
849 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
850 						sg_count[i], i, usg->count));
851 					rcode = -ENOMEM;
852 					goto cleanup;
853 				}
854 				addr = (u64)usg->sg[i].addr[0];
855 				addr += ((u64)usg->sg[i].addr[1]) << 32;
856 				sg_user[i] = (void __user *)addr;
857 				sg_list[i] = p; // save so we can clean up later
858 				sg_indx = i;
859 
860 				if (flags & SRB_DataOut) {
861 					if (copy_from_user(p, sg_user[i],
862 						sg_count[i])){
863 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
864 						rcode = -EFAULT;
865 						goto cleanup;
866 					}
867 				}
868 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
869 
870 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
871 				byte_count += usg->sg[i].count;
872 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
873 			}
874 		} else {
875 			for (i = 0; i < upsg->count; i++) {
876 				dma_addr_t addr;
877 				void* p;
878 
879 				sg_count[i] = upsg->sg[i].count;
880 				if (sg_count[i] >
881 				    ((dev->adapter_info.options &
882 				     AAC_OPT_NEW_COMM) ?
883 				      (dev->scsi_host_ptr->max_sectors << 9) :
884 				      65536)) {
885 					rcode = -EINVAL;
886 					goto cleanup;
887 				}
888 				p = kmalloc(sg_count[i], GFP_KERNEL);
889 				if (!p) {
890 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
891 					  sg_count[i], i, upsg->count));
892 					rcode = -ENOMEM;
893 					goto cleanup;
894 				}
895 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
896 				sg_list[i] = p; // save so we can clean up later
897 				sg_indx = i;
898 
899 				if (flags & SRB_DataOut) {
900 					if (copy_from_user(p, sg_user[i],
901 						sg_count[i])) {
902 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
903 						rcode = -EFAULT;
904 						goto cleanup;
905 					}
906 				}
907 				addr = pci_map_single(dev->pdev, p,
908 					sg_count[i], data_dir);
909 
910 				psg->sg[i].addr = cpu_to_le32(addr);
911 				byte_count += sg_count[i];
912 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
913 			}
914 		}
915 		srbcmd->count = cpu_to_le32(byte_count);
916 		if (user_srbcmd->sg.count)
917 			psg->count = cpu_to_le32(sg_indx+1);
918 		else
919 			psg->count = 0;
920 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
921 	}
922 
923 	if (status == -ERESTARTSYS) {
924 		rcode = -ERESTARTSYS;
925 		goto cleanup;
926 	}
927 
928 	if (status != 0) {
929 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
930 		rcode = -ENXIO;
931 		goto cleanup;
932 	}
933 
934 	if (flags & SRB_DataIn) {
935 		for(i = 0 ; i <= sg_indx; i++){
936 			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
937 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
938 				rcode = -EFAULT;
939 				goto cleanup;
940 
941 			}
942 		}
943 	}
944 
945 	user_reply = arg + fibsize;
946 	if (is_native_device) {
947 		struct aac_hba_resp *err =
948 			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
949 		struct aac_srb_reply reply;
950 
951 		memset(&reply, 0, sizeof(reply));
952 		reply.status = ST_OK;
953 		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
954 			/* fast response */
955 			reply.srb_status = SRB_STATUS_SUCCESS;
956 			reply.scsi_status = 0;
957 			reply.data_xfer_length = byte_count;
958 			reply.sense_data_size = 0;
959 			memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
960 		} else {
961 			reply.srb_status = err->service_response;
962 			reply.scsi_status = err->status;
963 			reply.data_xfer_length = byte_count -
964 				le32_to_cpu(err->residual_count);
965 			reply.sense_data_size = err->sense_response_data_len;
966 			memcpy(reply.sense_data, err->sense_response_buf,
967 				AAC_SENSE_BUFFERSIZE);
968 		}
969 		if (copy_to_user(user_reply, &reply,
970 			sizeof(struct aac_srb_reply))) {
971 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
972 			rcode = -EFAULT;
973 			goto cleanup;
974 		}
975 	} else {
976 		struct aac_srb_reply *reply;
977 
978 		reply = (struct aac_srb_reply *) fib_data(srbfib);
979 		if (copy_to_user(user_reply, reply,
980 			sizeof(struct aac_srb_reply))) {
981 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
982 			rcode = -EFAULT;
983 			goto cleanup;
984 		}
985 	}
986 
987 cleanup:
988 	kfree(user_srbcmd);
989 	if (rcode != -ERESTARTSYS) {
990 		for (i = 0; i <= sg_indx; i++)
991 			kfree(sg_list[i]);
992 		aac_fib_complete(srbfib);
993 		aac_fib_free(srbfib);
994 	}
995 
996 	return rcode;
997 }
998 
999 struct aac_pci_info {
1000 	u32 bus;
1001 	u32 slot;
1002 };
1003 
1004 
1005 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
1006 {
1007 	struct aac_pci_info pci_info;
1008 
1009 	pci_info.bus = dev->pdev->bus->number;
1010 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
1011 
1012 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
1013 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1014 		return -EFAULT;
1015 	}
1016 	return 0;
1017 }
1018 
1019 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1020 {
1021 	struct aac_hba_info hbainfo;
1022 
1023 	memset(&hbainfo, 0, sizeof(hbainfo));
1024 	hbainfo.adapter_number		= (u8) dev->id;
1025 	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
1026 	hbainfo.device_number		= (dev->pdev->devfn >> 3);
1027 	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);
1028 
1029 	hbainfo.vendor_id		= dev->pdev->vendor;
1030 	hbainfo.device_id		= dev->pdev->device;
1031 	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
1032 	hbainfo.sub_system_id		= dev->pdev->subsystem_device;
1033 
1034 	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1035 		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1036 		return -EFAULT;
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 struct aac_reset_iop {
1043 	u8	reset_type;
1044 };
1045 
1046 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1047 {
1048 	struct aac_reset_iop reset;
1049 	int retval;
1050 
1051 	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1052 		return -EFAULT;
1053 
1054 	dev->adapter_shutdown = 1;
1055 
1056 	mutex_unlock(&dev->ioctl_mutex);
1057 	retval = aac_reset_adapter(dev, 0, reset.reset_type);
1058 	mutex_lock(&dev->ioctl_mutex);
1059 
1060 	return retval;
1061 }
1062 
1063 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
1064 {
1065 	int status;
1066 
1067 	mutex_lock(&dev->ioctl_mutex);
1068 
1069 	if (dev->adapter_shutdown) {
1070 		status = -EACCES;
1071 		goto cleanup;
1072 	}
1073 
1074 	/*
1075 	 *	HBA gets first crack
1076 	 */
1077 
1078 	status = aac_dev_ioctl(dev, cmd, arg);
1079 	if (status != -ENOTTY)
1080 		goto cleanup;
1081 
1082 	switch (cmd) {
1083 	case FSACTL_MINIPORT_REV_CHECK:
1084 		status = check_revision(dev, arg);
1085 		break;
1086 	case FSACTL_SEND_LARGE_FIB:
1087 	case FSACTL_SENDFIB:
1088 		status = ioctl_send_fib(dev, arg);
1089 		break;
1090 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1091 		status = open_getadapter_fib(dev, arg);
1092 		break;
1093 	case FSACTL_GET_NEXT_ADAPTER_FIB:
1094 		status = next_getadapter_fib(dev, arg);
1095 		break;
1096 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1097 		status = close_getadapter_fib(dev, arg);
1098 		break;
1099 	case FSACTL_SEND_RAW_SRB:
1100 		status = aac_send_raw_srb(dev,arg);
1101 		break;
1102 	case FSACTL_GET_PCI_INFO:
1103 		status = aac_get_pci_info(dev,arg);
1104 		break;
1105 	case FSACTL_GET_HBA_INFO:
1106 		status = aac_get_hba_info(dev, arg);
1107 		break;
1108 	case FSACTL_RESET_IOP:
1109 		status = aac_send_reset_adapter(dev, arg);
1110 		break;
1111 
1112 	default:
1113 		status = -ENOTTY;
1114 		break;
1115 	}
1116 
1117 cleanup:
1118 	mutex_unlock(&dev->ioctl_mutex);
1119 
1120 	return status;
1121 }
1122 
1123