xref: /openbmc/linux/drivers/scsi/aacraid/commctrl.c (revision 1c2dd16a)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commctrl.c
28  *
29  * Abstract: Contains all routines for control of the AFA comm layer
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h> /* ssleep prototype */
43 #include <linux/kthread.h>
44 #include <linux/semaphore.h>
45 #include <linux/uaccess.h>
46 #include <scsi/scsi_host.h>
47 
48 #include "aacraid.h"
49 
50 /**
51  *	ioctl_send_fib	-	send a FIB from userspace
52  *	@dev:	adapter is being processed
53  *	@arg:	arguments to the ioctl call
54  *
55  *	This routine sends a fib to the adapter on behalf of a user level
56  *	program.
57  */
58 # define AAC_DEBUG_PREAMBLE	KERN_INFO
59 # define AAC_DEBUG_POSTAMBLE
60 
61 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
62 {
63 	struct hw_fib * kfib;
64 	struct fib *fibptr;
65 	struct hw_fib * hw_fib = (struct hw_fib *)0;
66 	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
67 	unsigned int size, osize;
68 	int retval;
69 
70 	if (dev->in_reset) {
71 		return -EBUSY;
72 	}
73 	fibptr = aac_fib_alloc(dev);
74 	if(fibptr == NULL) {
75 		return -ENOMEM;
76 	}
77 
78 	kfib = fibptr->hw_fib_va;
79 	/*
80 	 *	First copy in the header so that we can check the size field.
81 	 */
82 	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
83 		aac_fib_free(fibptr);
84 		return -EFAULT;
85 	}
86 	/*
87 	 *	Since we copy based on the fib header size, make sure that we
88 	 *	will not overrun the buffer when we copy the memory. Return
89 	 *	an error if we would.
90 	 */
91 	osize = size = le16_to_cpu(kfib->header.Size) +
92 		sizeof(struct aac_fibhdr);
93 	if (size < le16_to_cpu(kfib->header.SenderSize))
94 		size = le16_to_cpu(kfib->header.SenderSize);
95 	if (size > dev->max_fib_size) {
96 		dma_addr_t daddr;
97 
98 		if (size > 2048) {
99 			retval = -EINVAL;
100 			goto cleanup;
101 		}
102 
103 		kfib = pci_alloc_consistent(dev->pdev, size, &daddr);
104 		if (!kfib) {
105 			retval = -ENOMEM;
106 			goto cleanup;
107 		}
108 
109 		/* Highjack the hw_fib */
110 		hw_fib = fibptr->hw_fib_va;
111 		hw_fib_pa = fibptr->hw_fib_pa;
112 		fibptr->hw_fib_va = kfib;
113 		fibptr->hw_fib_pa = daddr;
114 		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
115 		memcpy(kfib, hw_fib, dev->max_fib_size);
116 	}
117 
118 	if (copy_from_user(kfib, arg, size)) {
119 		retval = -EFAULT;
120 		goto cleanup;
121 	}
122 
123 	/* Sanity check the second copy */
124 	if ((osize != le16_to_cpu(kfib->header.Size) +
125 		sizeof(struct aac_fibhdr))
126 		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
127 		retval = -EINVAL;
128 		goto cleanup;
129 	}
130 
131 	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
132 		aac_adapter_interrupt(dev);
133 		/*
134 		 * Since we didn't really send a fib, zero out the state to allow
135 		 * cleanup code not to assert.
136 		 */
137 		kfib->header.XferState = 0;
138 	} else {
139 		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
140 				le16_to_cpu(kfib->header.Size) , FsaNormal,
141 				1, 1, NULL, NULL);
142 		if (retval) {
143 			goto cleanup;
144 		}
145 		if (aac_fib_complete(fibptr) != 0) {
146 			retval = -EINVAL;
147 			goto cleanup;
148 		}
149 	}
150 	/*
151 	 *	Make sure that the size returned by the adapter (which includes
152 	 *	the header) is less than or equal to the size of a fib, so we
153 	 *	don't corrupt application data. Then copy that size to the user
154 	 *	buffer. (Don't try to add the header information again, since it
155 	 *	was already included by the adapter.)
156 	 */
157 
158 	retval = 0;
159 	if (copy_to_user(arg, (void *)kfib, size))
160 		retval = -EFAULT;
161 cleanup:
162 	if (hw_fib) {
163 		pci_free_consistent(dev->pdev, size, kfib, fibptr->hw_fib_pa);
164 		fibptr->hw_fib_pa = hw_fib_pa;
165 		fibptr->hw_fib_va = hw_fib;
166 	}
167 	if (retval != -ERESTARTSYS)
168 		aac_fib_free(fibptr);
169 	return retval;
170 }
171 
172 /**
173  *	open_getadapter_fib	-	Get the next fib
174  *
175  *	This routine will get the next Fib, if available, from the AdapterFibContext
176  *	passed in from the user.
177  */
178 
179 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
180 {
181 	struct aac_fib_context * fibctx;
182 	int status;
183 
184 	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
185 	if (fibctx == NULL) {
186 		status = -ENOMEM;
187 	} else {
188 		unsigned long flags;
189 		struct list_head * entry;
190 		struct aac_fib_context * context;
191 
192 		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
193 		fibctx->size = sizeof(struct aac_fib_context);
194 		/*
195 		 *	Yes yes, I know this could be an index, but we have a
196 		 * better guarantee of uniqueness for the locked loop below.
197 		 * Without the aid of a persistent history, this also helps
198 		 * reduce the chance that the opaque context would be reused.
199 		 */
200 		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
201 		/*
202 		 *	Initialize the mutex used to wait for the next AIF.
203 		 */
204 		sema_init(&fibctx->wait_sem, 0);
205 		fibctx->wait = 0;
206 		/*
207 		 *	Initialize the fibs and set the count of fibs on
208 		 *	the list to 0.
209 		 */
210 		fibctx->count = 0;
211 		INIT_LIST_HEAD(&fibctx->fib_list);
212 		fibctx->jiffies = jiffies/HZ;
213 		/*
214 		 *	Now add this context onto the adapter's
215 		 *	AdapterFibContext list.
216 		 */
217 		spin_lock_irqsave(&dev->fib_lock, flags);
218 		/* Ensure that we have a unique identifier */
219 		entry = dev->fib_list.next;
220 		while (entry != &dev->fib_list) {
221 			context = list_entry(entry, struct aac_fib_context, next);
222 			if (context->unique == fibctx->unique) {
223 				/* Not unique (32 bits) */
224 				fibctx->unique++;
225 				entry = dev->fib_list.next;
226 			} else {
227 				entry = entry->next;
228 			}
229 		}
230 		list_add_tail(&fibctx->next, &dev->fib_list);
231 		spin_unlock_irqrestore(&dev->fib_lock, flags);
232 		if (copy_to_user(arg, &fibctx->unique,
233 						sizeof(fibctx->unique))) {
234 			status = -EFAULT;
235 		} else {
236 			status = 0;
237 		}
238 	}
239 	return status;
240 }
241 
242 /**
243  *	next_getadapter_fib	-	get the next fib
244  *	@dev: adapter to use
245  *	@arg: ioctl argument
246  *
247  *	This routine will get the next Fib, if available, from the AdapterFibContext
248  *	passed in from the user.
249  */
250 
251 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
252 {
253 	struct fib_ioctl f;
254 	struct fib *fib;
255 	struct aac_fib_context *fibctx;
256 	int status;
257 	struct list_head * entry;
258 	unsigned long flags;
259 
260 	if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl)))
261 		return -EFAULT;
262 	/*
263 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
264 	 *
265 	 *	Search the list of AdapterFibContext addresses on the adapter
266 	 *	to be sure this is a valid address
267 	 */
268 	spin_lock_irqsave(&dev->fib_lock, flags);
269 	entry = dev->fib_list.next;
270 	fibctx = NULL;
271 
272 	while (entry != &dev->fib_list) {
273 		fibctx = list_entry(entry, struct aac_fib_context, next);
274 		/*
275 		 *	Extract the AdapterFibContext from the Input parameters.
276 		 */
277 		if (fibctx->unique == f.fibctx) { /* We found a winner */
278 			break;
279 		}
280 		entry = entry->next;
281 		fibctx = NULL;
282 	}
283 	if (!fibctx) {
284 		spin_unlock_irqrestore(&dev->fib_lock, flags);
285 		dprintk ((KERN_INFO "Fib Context not found\n"));
286 		return -EINVAL;
287 	}
288 
289 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
290 		 (fibctx->size != sizeof(struct aac_fib_context))) {
291 		spin_unlock_irqrestore(&dev->fib_lock, flags);
292 		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
293 		return -EINVAL;
294 	}
295 	status = 0;
296 	/*
297 	 *	If there are no fibs to send back, then either wait or return
298 	 *	-EAGAIN
299 	 */
300 return_fib:
301 	if (!list_empty(&fibctx->fib_list)) {
302 		/*
303 		 *	Pull the next fib from the fibs
304 		 */
305 		entry = fibctx->fib_list.next;
306 		list_del(entry);
307 
308 		fib = list_entry(entry, struct fib, fiblink);
309 		fibctx->count--;
310 		spin_unlock_irqrestore(&dev->fib_lock, flags);
311 		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
312 			kfree(fib->hw_fib_va);
313 			kfree(fib);
314 			return -EFAULT;
315 		}
316 		/*
317 		 *	Free the space occupied by this copy of the fib.
318 		 */
319 		kfree(fib->hw_fib_va);
320 		kfree(fib);
321 		status = 0;
322 	} else {
323 		spin_unlock_irqrestore(&dev->fib_lock, flags);
324 		/* If someone killed the AIF aacraid thread, restart it */
325 		status = !dev->aif_thread;
326 		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
327 			/* Be paranoid, be very paranoid! */
328 			kthread_stop(dev->thread);
329 			ssleep(1);
330 			dev->aif_thread = 0;
331 			dev->thread = kthread_run(aac_command_thread, dev,
332 						  "%s", dev->name);
333 			ssleep(1);
334 		}
335 		if (f.wait) {
336 			if(down_interruptible(&fibctx->wait_sem) < 0) {
337 				status = -ERESTARTSYS;
338 			} else {
339 				/* Lock again and retry */
340 				spin_lock_irqsave(&dev->fib_lock, flags);
341 				goto return_fib;
342 			}
343 		} else {
344 			status = -EAGAIN;
345 		}
346 	}
347 	fibctx->jiffies = jiffies/HZ;
348 	return status;
349 }
350 
351 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
352 {
353 	struct fib *fib;
354 
355 	/*
356 	 *	First free any FIBs that have not been consumed.
357 	 */
358 	while (!list_empty(&fibctx->fib_list)) {
359 		struct list_head * entry;
360 		/*
361 		 *	Pull the next fib from the fibs
362 		 */
363 		entry = fibctx->fib_list.next;
364 		list_del(entry);
365 		fib = list_entry(entry, struct fib, fiblink);
366 		fibctx->count--;
367 		/*
368 		 *	Free the space occupied by this copy of the fib.
369 		 */
370 		kfree(fib->hw_fib_va);
371 		kfree(fib);
372 	}
373 	/*
374 	 *	Remove the Context from the AdapterFibContext List
375 	 */
376 	list_del(&fibctx->next);
377 	/*
378 	 *	Invalidate context
379 	 */
380 	fibctx->type = 0;
381 	/*
382 	 *	Free the space occupied by the Context
383 	 */
384 	kfree(fibctx);
385 	return 0;
386 }
387 
388 /**
389  *	close_getadapter_fib	-	close down user fib context
390  *	@dev: adapter
391  *	@arg: ioctl arguments
392  *
393  *	This routine will close down the fibctx passed in from the user.
394  */
395 
396 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
397 {
398 	struct aac_fib_context *fibctx;
399 	int status;
400 	unsigned long flags;
401 	struct list_head * entry;
402 
403 	/*
404 	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
405 	 *
406 	 *	Search the list of AdapterFibContext addresses on the adapter
407 	 *	to be sure this is a valid address
408 	 */
409 
410 	entry = dev->fib_list.next;
411 	fibctx = NULL;
412 
413 	while(entry != &dev->fib_list) {
414 		fibctx = list_entry(entry, struct aac_fib_context, next);
415 		/*
416 		 *	Extract the fibctx from the input parameters
417 		 */
418 		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
419 			break;
420 		entry = entry->next;
421 		fibctx = NULL;
422 	}
423 
424 	if (!fibctx)
425 		return 0; /* Already gone */
426 
427 	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
428 		 (fibctx->size != sizeof(struct aac_fib_context)))
429 		return -EINVAL;
430 	spin_lock_irqsave(&dev->fib_lock, flags);
431 	status = aac_close_fib_context(dev, fibctx);
432 	spin_unlock_irqrestore(&dev->fib_lock, flags);
433 	return status;
434 }
435 
436 /**
437  *	check_revision	-	close down user fib context
438  *	@dev: adapter
439  *	@arg: ioctl arguments
440  *
441  *	This routine returns the driver version.
442  *	Under Linux, there have been no version incompatibilities, so this is
443  *	simple!
444  */
445 
446 static int check_revision(struct aac_dev *dev, void __user *arg)
447 {
448 	struct revision response;
449 	char *driver_version = aac_driver_version;
450 	u32 version;
451 
452 	response.compat = 1;
453 	version = (simple_strtol(driver_version,
454 				&driver_version, 10) << 24) | 0x00000400;
455 	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
456 	version += simple_strtol(driver_version + 1, NULL, 10);
457 	response.version = cpu_to_le32(version);
458 #	ifdef AAC_DRIVER_BUILD
459 		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
460 #	else
461 		response.build = cpu_to_le32(9999);
462 #	endif
463 
464 	if (copy_to_user(arg, &response, sizeof(response)))
465 		return -EFAULT;
466 	return 0;
467 }
468 
469 
470 /**
471  *
472  * aac_send_raw_scb
473  *
474  */
475 
476 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
477 {
478 	struct fib* srbfib;
479 	int status;
480 	struct aac_srb *srbcmd = NULL;
481 	struct aac_hba_cmd_req *hbacmd = NULL;
482 	struct user_aac_srb *user_srbcmd = NULL;
483 	struct user_aac_srb __user *user_srb = arg;
484 	struct aac_srb_reply __user *user_reply;
485 	u32 chn;
486 	u32 fibsize = 0;
487 	u32 flags = 0;
488 	s32 rcode = 0;
489 	u32 data_dir;
490 	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
491 	void *sg_list[HBA_MAX_SG_EMBEDDED];
492 	u32 sg_count[HBA_MAX_SG_EMBEDDED];
493 	u32 sg_indx = 0;
494 	u32 byte_count = 0;
495 	u32 actual_fibsize64, actual_fibsize = 0;
496 	int i;
497 	int is_native_device;
498 	u64 address;
499 
500 
501 	if (dev->in_reset) {
502 		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
503 		return -EBUSY;
504 	}
505 	if (!capable(CAP_SYS_ADMIN)){
506 		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
507 		return -EPERM;
508 	}
509 	/*
510 	 *	Allocate and initialize a Fib then setup a SRB command
511 	 */
512 	if (!(srbfib = aac_fib_alloc(dev))) {
513 		return -ENOMEM;
514 	}
515 
516 	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
517 	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
518 		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
519 		rcode = -EFAULT;
520 		goto cleanup;
521 	}
522 
523 	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
524 	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
525 		rcode = -EINVAL;
526 		goto cleanup;
527 	}
528 
529 	user_srbcmd = kmalloc(fibsize, GFP_KERNEL);
530 	if (!user_srbcmd) {
531 		dprintk((KERN_DEBUG"aacraid: Could not make a copy of the srb\n"));
532 		rcode = -ENOMEM;
533 		goto cleanup;
534 	}
535 	if(copy_from_user(user_srbcmd, user_srb,fibsize)){
536 		dprintk((KERN_DEBUG"aacraid: Could not copy srb from user\n"));
537 		rcode = -EFAULT;
538 		goto cleanup;
539 	}
540 
541 	flags = user_srbcmd->flags; /* from user in cpu order */
542 	switch (flags & (SRB_DataIn | SRB_DataOut)) {
543 	case SRB_DataOut:
544 		data_dir = DMA_TO_DEVICE;
545 		break;
546 	case (SRB_DataIn | SRB_DataOut):
547 		data_dir = DMA_BIDIRECTIONAL;
548 		break;
549 	case SRB_DataIn:
550 		data_dir = DMA_FROM_DEVICE;
551 		break;
552 	default:
553 		data_dir = DMA_NONE;
554 	}
555 	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
556 		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
557 			user_srbcmd->sg.count));
558 		rcode = -EINVAL;
559 		goto cleanup;
560 	}
561 	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
562 		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
563 		rcode = -EINVAL;
564 		goto cleanup;
565 	}
566 	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
567 		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
568 	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
569 	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
570 	/* User made a mistake - should not continue */
571 	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
572 		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
573 		  "Raw SRB command calculated fibsize=%lu;%lu "
574 		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
575 		  "issued fibsize=%d\n",
576 		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
577 		  sizeof(struct aac_srb), sizeof(struct sgentry),
578 		  sizeof(struct sgentry64), fibsize));
579 		rcode = -EINVAL;
580 		goto cleanup;
581 	}
582 
583 	chn = user_srbcmd->channel;
584 	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
585 		dev->hba_map[chn][user_srbcmd->id].devtype ==
586 		AAC_DEVTYPE_NATIVE_RAW) {
587 		is_native_device = 1;
588 		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
589 		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
590 
591 		/* iu_type is a parameter of aac_hba_send */
592 		switch (data_dir) {
593 		case DMA_TO_DEVICE:
594 			hbacmd->byte1 = 2;
595 			break;
596 		case DMA_FROM_DEVICE:
597 		case DMA_BIDIRECTIONAL:
598 			hbacmd->byte1 = 1;
599 			break;
600 		case DMA_NONE:
601 		default:
602 			break;
603 		}
604 		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
605 		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;
606 
607 		/*
608 		 * we fill in reply_qid later in aac_src_deliver_message
609 		 * we fill in iu_type, request_id later in aac_hba_send
610 		 * we fill in emb_data_desc_count, data_length later
611 		 * in sg list build
612 		 */
613 
614 		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));
615 
616 		address = (u64)srbfib->hw_error_pa;
617 		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
618 		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
619 		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
620 		hbacmd->emb_data_desc_count =
621 					cpu_to_le32(user_srbcmd->sg.count);
622 		srbfib->hbacmd_size = 64 +
623 			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);
624 
625 	} else {
626 		is_native_device = 0;
627 		aac_fib_init(srbfib);
628 
629 		/* raw_srb FIB is not FastResponseCapable */
630 		srbfib->hw_fib_va->header.XferState &=
631 			~cpu_to_le32(FastResponseCapable);
632 
633 		srbcmd = (struct aac_srb *) fib_data(srbfib);
634 
635 		// Fix up srb for endian and force some values
636 
637 		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
638 		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
639 		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
640 		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
641 		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
642 		srbcmd->flags	 = cpu_to_le32(flags);
643 		srbcmd->retry_limit = 0; // Obsolete parameter
644 		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
645 		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
646 	}
647 
648 	byte_count = 0;
649 	if (is_native_device) {
650 		struct user_sgmap *usg32 = &user_srbcmd->sg;
651 		struct user_sgmap64 *usg64 =
652 			(struct user_sgmap64 *)&user_srbcmd->sg;
653 
654 		for (i = 0; i < usg32->count; i++) {
655 			void *p;
656 			u64 addr;
657 
658 			sg_count[i] = (actual_fibsize64 == fibsize) ?
659 				usg64->sg[i].count : usg32->sg[i].count;
660 			if (sg_count[i] >
661 				(dev->scsi_host_ptr->max_sectors << 9)) {
662 				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
663 					i, sg_count[i],
664 					dev->scsi_host_ptr->max_sectors << 9);
665 				rcode = -EINVAL;
666 				goto cleanup;
667 			}
668 
669 			p = kmalloc(sg_count[i], GFP_KERNEL|__GFP_DMA);
670 			if (!p) {
671 				rcode = -ENOMEM;
672 				goto cleanup;
673 			}
674 
675 			if (actual_fibsize64 == fibsize) {
676 				addr = (u64)usg64->sg[i].addr[0];
677 				addr += ((u64)usg64->sg[i].addr[1]) << 32;
678 			} else {
679 				addr = (u64)usg32->sg[i].addr;
680 			}
681 
682 			sg_user[i] = (void __user *)(uintptr_t)addr;
683 			sg_list[i] = p; // save so we can clean up later
684 			sg_indx = i;
685 
686 			if (flags & SRB_DataOut) {
687 				if (copy_from_user(p, sg_user[i],
688 					sg_count[i])) {
689 					rcode = -EFAULT;
690 					goto cleanup;
691 				}
692 			}
693 			addr = pci_map_single(dev->pdev, p, sg_count[i],
694 						data_dir);
695 			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
696 			hbacmd->sge[i].addr_lo = cpu_to_le32(
697 						(u32)(addr & 0xffffffff));
698 			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
699 			hbacmd->sge[i].flags = 0;
700 			byte_count += sg_count[i];
701 		}
702 
703 		if (usg32->count > 0)	/* embedded sglist */
704 			hbacmd->sge[usg32->count-1].flags =
705 				cpu_to_le32(0x40000000);
706 		hbacmd->data_length = cpu_to_le32(byte_count);
707 
708 		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
709 					NULL, NULL);
710 
711 	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
712 		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
713 		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;
714 
715 		/*
716 		 * This should also catch if user used the 32 bit sgmap
717 		 */
718 		if (actual_fibsize64 == fibsize) {
719 			actual_fibsize = actual_fibsize64;
720 			for (i = 0; i < upsg->count; i++) {
721 				u64 addr;
722 				void* p;
723 
724 				sg_count[i] = upsg->sg[i].count;
725 				if (sg_count[i] >
726 				    ((dev->adapter_info.options &
727 				     AAC_OPT_NEW_COMM) ?
728 				      (dev->scsi_host_ptr->max_sectors << 9) :
729 				      65536)) {
730 					rcode = -EINVAL;
731 					goto cleanup;
732 				}
733 				/* Does this really need to be GFP_DMA? */
734 				p = kmalloc(sg_count[i], GFP_KERNEL|__GFP_DMA);
735 				if(!p) {
736 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
737 					  sg_count[i], i, upsg->count));
738 					rcode = -ENOMEM;
739 					goto cleanup;
740 				}
741 				addr = (u64)upsg->sg[i].addr[0];
742 				addr += ((u64)upsg->sg[i].addr[1]) << 32;
743 				sg_user[i] = (void __user *)(uintptr_t)addr;
744 				sg_list[i] = p; // save so we can clean up later
745 				sg_indx = i;
746 
747 				if (flags & SRB_DataOut) {
748 					if (copy_from_user(p, sg_user[i],
749 						sg_count[i])){
750 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
751 						rcode = -EFAULT;
752 						goto cleanup;
753 					}
754 				}
755 				addr = pci_map_single(dev->pdev, p,
756 							sg_count[i], data_dir);
757 
758 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
759 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
760 				byte_count += sg_count[i];
761 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
762 			}
763 		} else {
764 			struct user_sgmap* usg;
765 			usg = kmemdup(upsg,
766 				      actual_fibsize - sizeof(struct aac_srb)
767 				      + sizeof(struct sgmap), GFP_KERNEL);
768 			if (!usg) {
769 				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
770 				rcode = -ENOMEM;
771 				goto cleanup;
772 			}
773 			actual_fibsize = actual_fibsize64;
774 
775 			for (i = 0; i < usg->count; i++) {
776 				u64 addr;
777 				void* p;
778 
779 				sg_count[i] = usg->sg[i].count;
780 				if (sg_count[i] >
781 				    ((dev->adapter_info.options &
782 				     AAC_OPT_NEW_COMM) ?
783 				      (dev->scsi_host_ptr->max_sectors << 9) :
784 				      65536)) {
785 					kfree(usg);
786 					rcode = -EINVAL;
787 					goto cleanup;
788 				}
789 				/* Does this really need to be GFP_DMA? */
790 				p = kmalloc(sg_count[i], GFP_KERNEL|__GFP_DMA);
791 				if(!p) {
792 					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
793 						sg_count[i], i, usg->count));
794 					kfree(usg);
795 					rcode = -ENOMEM;
796 					goto cleanup;
797 				}
798 				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
799 				sg_list[i] = p; // save so we can clean up later
800 				sg_indx = i;
801 
802 				if (flags & SRB_DataOut) {
803 					if (copy_from_user(p, sg_user[i],
804 						sg_count[i])) {
805 						kfree (usg);
806 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
807 						rcode = -EFAULT;
808 						goto cleanup;
809 					}
810 				}
811 				addr = pci_map_single(dev->pdev, p,
812 							sg_count[i], data_dir);
813 
814 				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
815 				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
816 				byte_count += sg_count[i];
817 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
818 			}
819 			kfree (usg);
820 		}
821 		srbcmd->count = cpu_to_le32(byte_count);
822 		if (user_srbcmd->sg.count)
823 			psg->count = cpu_to_le32(sg_indx+1);
824 		else
825 			psg->count = 0;
826 		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
827 	} else {
828 		struct user_sgmap* upsg = &user_srbcmd->sg;
829 		struct sgmap* psg = &srbcmd->sg;
830 
831 		if (actual_fibsize64 == fibsize) {
832 			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
833 			for (i = 0; i < upsg->count; i++) {
834 				uintptr_t addr;
835 				void* p;
836 
837 				sg_count[i] = usg->sg[i].count;
838 				if (sg_count[i] >
839 				    ((dev->adapter_info.options &
840 				     AAC_OPT_NEW_COMM) ?
841 				      (dev->scsi_host_ptr->max_sectors << 9) :
842 				      65536)) {
843 					rcode = -EINVAL;
844 					goto cleanup;
845 				}
846 				/* Does this really need to be GFP_DMA? */
847 				p = kmalloc(sg_count[i], GFP_KERNEL|__GFP_DMA);
848 				if (!p) {
849 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
850 						sg_count[i], i, usg->count));
851 					rcode = -ENOMEM;
852 					goto cleanup;
853 				}
854 				addr = (u64)usg->sg[i].addr[0];
855 				addr += ((u64)usg->sg[i].addr[1]) << 32;
856 				sg_user[i] = (void __user *)addr;
857 				sg_list[i] = p; // save so we can clean up later
858 				sg_indx = i;
859 
860 				if (flags & SRB_DataOut) {
861 					if (copy_from_user(p, sg_user[i],
862 						sg_count[i])){
863 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
864 						rcode = -EFAULT;
865 						goto cleanup;
866 					}
867 				}
868 				addr = pci_map_single(dev->pdev, p, usg->sg[i].count, data_dir);
869 
870 				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
871 				byte_count += usg->sg[i].count;
872 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
873 			}
874 		} else {
875 			for (i = 0; i < upsg->count; i++) {
876 				dma_addr_t addr;
877 				void* p;
878 
879 				sg_count[i] = upsg->sg[i].count;
880 				if (sg_count[i] >
881 				    ((dev->adapter_info.options &
882 				     AAC_OPT_NEW_COMM) ?
883 				      (dev->scsi_host_ptr->max_sectors << 9) :
884 				      65536)) {
885 					rcode = -EINVAL;
886 					goto cleanup;
887 				}
888 				p = kmalloc(sg_count[i], GFP_KERNEL);
889 				if (!p) {
890 					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
891 					  sg_count[i], i, upsg->count));
892 					rcode = -ENOMEM;
893 					goto cleanup;
894 				}
895 				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
896 				sg_list[i] = p; // save so we can clean up later
897 				sg_indx = i;
898 
899 				if (flags & SRB_DataOut) {
900 					if (copy_from_user(p, sg_user[i],
901 						sg_count[i])) {
902 						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
903 						rcode = -EFAULT;
904 						goto cleanup;
905 					}
906 				}
907 				addr = pci_map_single(dev->pdev, p,
908 					sg_count[i], data_dir);
909 
910 				psg->sg[i].addr = cpu_to_le32(addr);
911 				byte_count += sg_count[i];
912 				psg->sg[i].count = cpu_to_le32(sg_count[i]);
913 			}
914 		}
915 		srbcmd->count = cpu_to_le32(byte_count);
916 		if (user_srbcmd->sg.count)
917 			psg->count = cpu_to_le32(sg_indx+1);
918 		else
919 			psg->count = 0;
920 		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
921 	}
922 
923 	if (status == -ERESTARTSYS) {
924 		rcode = -ERESTARTSYS;
925 		goto cleanup;
926 	}
927 
928 	if (status != 0) {
929 		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
930 		rcode = -ENXIO;
931 		goto cleanup;
932 	}
933 
934 	if (flags & SRB_DataIn) {
935 		for(i = 0 ; i <= sg_indx; i++){
936 			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
937 				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
938 				rcode = -EFAULT;
939 				goto cleanup;
940 
941 			}
942 		}
943 	}
944 
945 	user_reply = arg + fibsize;
946 	if (is_native_device) {
947 		struct aac_hba_resp *err =
948 			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
949 		struct aac_srb_reply reply;
950 
951 		reply.status = ST_OK;
952 		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
953 			/* fast response */
954 			reply.srb_status = SRB_STATUS_SUCCESS;
955 			reply.scsi_status = 0;
956 			reply.data_xfer_length = byte_count;
957 		} else {
958 			reply.srb_status = err->service_response;
959 			reply.scsi_status = err->status;
960 			reply.data_xfer_length = byte_count -
961 				le32_to_cpu(err->residual_count);
962 			reply.sense_data_size = err->sense_response_data_len;
963 			memcpy(reply.sense_data, err->sense_response_buf,
964 				AAC_SENSE_BUFFERSIZE);
965 		}
966 		if (copy_to_user(user_reply, &reply,
967 			sizeof(struct aac_srb_reply))) {
968 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
969 			rcode = -EFAULT;
970 			goto cleanup;
971 		}
972 	} else {
973 		struct aac_srb_reply *reply;
974 
975 		reply = (struct aac_srb_reply *) fib_data(srbfib);
976 		if (copy_to_user(user_reply, reply,
977 			sizeof(struct aac_srb_reply))) {
978 			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
979 			rcode = -EFAULT;
980 			goto cleanup;
981 		}
982 	}
983 
984 cleanup:
985 	kfree(user_srbcmd);
986 	if (rcode != -ERESTARTSYS) {
987 		for (i = 0; i <= sg_indx; i++)
988 			kfree(sg_list[i]);
989 		aac_fib_complete(srbfib);
990 		aac_fib_free(srbfib);
991 	}
992 
993 	return rcode;
994 }
995 
996 struct aac_pci_info {
997 	u32 bus;
998 	u32 slot;
999 };
1000 
1001 
1002 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
1003 {
1004 	struct aac_pci_info pci_info;
1005 
1006 	pci_info.bus = dev->pdev->bus->number;
1007 	pci_info.slot = PCI_SLOT(dev->pdev->devfn);
1008 
1009 	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
1010 		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
1011 		return -EFAULT;
1012 	}
1013 	return 0;
1014 }
1015 
1016 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
1017 {
1018 	struct aac_hba_info hbainfo;
1019 
1020 	hbainfo.adapter_number		= (u8) dev->id;
1021 	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
1022 	hbainfo.device_number		= (dev->pdev->devfn >> 3);
1023 	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);
1024 
1025 	hbainfo.vendor_id		= dev->pdev->vendor;
1026 	hbainfo.device_id		= dev->pdev->device;
1027 	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
1028 	hbainfo.sub_system_id		= dev->pdev->subsystem_device;
1029 
1030 	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
1031 		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
1032 		return -EFAULT;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 struct aac_reset_iop {
1039 	u8	reset_type;
1040 };
1041 
1042 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
1043 {
1044 	struct aac_reset_iop reset;
1045 	int retval;
1046 
1047 	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
1048 		return -EFAULT;
1049 
1050 	retval = aac_reset_adapter(dev, 0, reset.reset_type);
1051 	return retval;
1052 
1053 }
1054 
1055 int aac_do_ioctl(struct aac_dev * dev, int cmd, void __user *arg)
1056 {
1057 	int status;
1058 
1059 	mutex_lock(&dev->ioctl_mutex);
1060 
1061 	if (dev->adapter_shutdown) {
1062 		status = -EACCES;
1063 		goto cleanup;
1064 	}
1065 
1066 	/*
1067 	 *	HBA gets first crack
1068 	 */
1069 
1070 	status = aac_dev_ioctl(dev, cmd, arg);
1071 	if (status != -ENOTTY)
1072 		goto cleanup;
1073 
1074 	switch (cmd) {
1075 	case FSACTL_MINIPORT_REV_CHECK:
1076 		status = check_revision(dev, arg);
1077 		break;
1078 	case FSACTL_SEND_LARGE_FIB:
1079 	case FSACTL_SENDFIB:
1080 		status = ioctl_send_fib(dev, arg);
1081 		break;
1082 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1083 		status = open_getadapter_fib(dev, arg);
1084 		break;
1085 	case FSACTL_GET_NEXT_ADAPTER_FIB:
1086 		status = next_getadapter_fib(dev, arg);
1087 		break;
1088 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1089 		status = close_getadapter_fib(dev, arg);
1090 		break;
1091 	case FSACTL_SEND_RAW_SRB:
1092 		status = aac_send_raw_srb(dev,arg);
1093 		break;
1094 	case FSACTL_GET_PCI_INFO:
1095 		status = aac_get_pci_info(dev,arg);
1096 		break;
1097 	case FSACTL_GET_HBA_INFO:
1098 		status = aac_get_hba_info(dev, arg);
1099 		break;
1100 	case FSACTL_RESET_IOP:
1101 		status = aac_send_reset_adapter(dev, arg);
1102 		break;
1103 
1104 	default:
1105 		status = -ENOTTY;
1106 		break;
1107 	}
1108 
1109 cleanup:
1110 	mutex_unlock(&dev->ioctl_mutex);
1111 
1112 	return status;
1113 }
1114 
1115