1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * commctrl.c 15 * 16 * Abstract: Contains all routines for control of the AFA comm layer 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/blkdev.h> 28 #include <linux/delay.h> /* ssleep prototype */ 29 #include <linux/kthread.h> 30 #include <linux/uaccess.h> 31 #include <scsi/scsi_host.h> 32 33 #include "aacraid.h" 34 35 # define AAC_DEBUG_PREAMBLE KERN_INFO 36 # define AAC_DEBUG_POSTAMBLE 37 /** 38 * ioctl_send_fib - send a FIB from userspace 39 * @dev: adapter is being processed 40 * @arg: arguments to the ioctl call 41 * 42 * This routine sends a fib to the adapter on behalf of a user level 43 * program. 44 */ 45 static int ioctl_send_fib(struct aac_dev * dev, void __user *arg) 46 { 47 struct hw_fib * kfib; 48 struct fib *fibptr; 49 struct hw_fib * hw_fib = (struct hw_fib *)0; 50 dma_addr_t hw_fib_pa = (dma_addr_t)0LL; 51 unsigned int size, osize; 52 int retval; 53 54 if (dev->in_reset) { 55 return -EBUSY; 56 } 57 fibptr = aac_fib_alloc(dev); 58 if(fibptr == NULL) { 59 return -ENOMEM; 60 } 61 62 kfib = fibptr->hw_fib_va; 63 /* 64 * First copy in the header so that we can check the size field. 65 */ 66 if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) { 67 aac_fib_free(fibptr); 68 return -EFAULT; 69 } 70 /* 71 * Since we copy based on the fib header size, make sure that we 72 * will not overrun the buffer when we copy the memory. Return 73 * an error if we would. 74 */ 75 osize = size = le16_to_cpu(kfib->header.Size) + 76 sizeof(struct aac_fibhdr); 77 if (size < le16_to_cpu(kfib->header.SenderSize)) 78 size = le16_to_cpu(kfib->header.SenderSize); 79 if (size > dev->max_fib_size) { 80 dma_addr_t daddr; 81 82 if (size > 2048) { 83 retval = -EINVAL; 84 goto cleanup; 85 } 86 87 kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr, 88 GFP_KERNEL); 89 if (!kfib) { 90 retval = -ENOMEM; 91 goto cleanup; 92 } 93 94 /* Highjack the hw_fib */ 95 hw_fib = fibptr->hw_fib_va; 96 hw_fib_pa = fibptr->hw_fib_pa; 97 fibptr->hw_fib_va = kfib; 98 fibptr->hw_fib_pa = daddr; 99 memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size); 100 memcpy(kfib, hw_fib, dev->max_fib_size); 101 } 102 103 if (copy_from_user(kfib, arg, size)) { 104 retval = -EFAULT; 105 goto cleanup; 106 } 107 108 /* Sanity check the second copy */ 109 if ((osize != le16_to_cpu(kfib->header.Size) + 110 sizeof(struct aac_fibhdr)) 111 || (size < le16_to_cpu(kfib->header.SenderSize))) { 112 retval = -EINVAL; 113 goto cleanup; 114 } 115 116 if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) { 117 aac_adapter_interrupt(dev); 118 /* 119 * Since we didn't really send a fib, zero out the state to allow 120 * cleanup code not to assert. 121 */ 122 kfib->header.XferState = 0; 123 } else { 124 retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr, 125 le16_to_cpu(kfib->header.Size) , FsaNormal, 126 1, 1, NULL, NULL); 127 if (retval) { 128 goto cleanup; 129 } 130 if (aac_fib_complete(fibptr) != 0) { 131 retval = -EINVAL; 132 goto cleanup; 133 } 134 } 135 /* 136 * Make sure that the size returned by the adapter (which includes 137 * the header) is less than or equal to the size of a fib, so we 138 * don't corrupt application data. Then copy that size to the user 139 * buffer. (Don't try to add the header information again, since it 140 * was already included by the adapter.) 141 */ 142 143 retval = 0; 144 if (copy_to_user(arg, (void *)kfib, size)) 145 retval = -EFAULT; 146 cleanup: 147 if (hw_fib) { 148 dma_free_coherent(&dev->pdev->dev, size, kfib, 149 fibptr->hw_fib_pa); 150 fibptr->hw_fib_pa = hw_fib_pa; 151 fibptr->hw_fib_va = hw_fib; 152 } 153 if (retval != -ERESTARTSYS) 154 aac_fib_free(fibptr); 155 return retval; 156 } 157 158 /** 159 * open_getadapter_fib - Get the next fib 160 * @dev: adapter is being processed 161 * @arg: arguments to the open call 162 * 163 * This routine will get the next Fib, if available, from the AdapterFibContext 164 * passed in from the user. 165 */ 166 static int open_getadapter_fib(struct aac_dev * dev, void __user *arg) 167 { 168 struct aac_fib_context * fibctx; 169 int status; 170 171 fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL); 172 if (fibctx == NULL) { 173 status = -ENOMEM; 174 } else { 175 unsigned long flags; 176 struct list_head * entry; 177 struct aac_fib_context * context; 178 179 fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT; 180 fibctx->size = sizeof(struct aac_fib_context); 181 /* 182 * Yes yes, I know this could be an index, but we have a 183 * better guarantee of uniqueness for the locked loop below. 184 * Without the aid of a persistent history, this also helps 185 * reduce the chance that the opaque context would be reused. 186 */ 187 fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF); 188 /* 189 * Initialize the mutex used to wait for the next AIF. 190 */ 191 init_completion(&fibctx->completion); 192 fibctx->wait = 0; 193 /* 194 * Initialize the fibs and set the count of fibs on 195 * the list to 0. 196 */ 197 fibctx->count = 0; 198 INIT_LIST_HEAD(&fibctx->fib_list); 199 fibctx->jiffies = jiffies/HZ; 200 /* 201 * Now add this context onto the adapter's 202 * AdapterFibContext list. 203 */ 204 spin_lock_irqsave(&dev->fib_lock, flags); 205 /* Ensure that we have a unique identifier */ 206 entry = dev->fib_list.next; 207 while (entry != &dev->fib_list) { 208 context = list_entry(entry, struct aac_fib_context, next); 209 if (context->unique == fibctx->unique) { 210 /* Not unique (32 bits) */ 211 fibctx->unique++; 212 entry = dev->fib_list.next; 213 } else { 214 entry = entry->next; 215 } 216 } 217 list_add_tail(&fibctx->next, &dev->fib_list); 218 spin_unlock_irqrestore(&dev->fib_lock, flags); 219 if (copy_to_user(arg, &fibctx->unique, 220 sizeof(fibctx->unique))) { 221 status = -EFAULT; 222 } else { 223 status = 0; 224 } 225 } 226 return status; 227 } 228 229 /** 230 * next_getadapter_fib - get the next fib 231 * @dev: adapter to use 232 * @arg: ioctl argument 233 * 234 * This routine will get the next Fib, if available, from the AdapterFibContext 235 * passed in from the user. 236 */ 237 static int next_getadapter_fib(struct aac_dev * dev, void __user *arg) 238 { 239 struct fib_ioctl f; 240 struct fib *fib; 241 struct aac_fib_context *fibctx; 242 int status; 243 struct list_head * entry; 244 unsigned long flags; 245 246 if(copy_from_user((void *)&f, arg, sizeof(struct fib_ioctl))) 247 return -EFAULT; 248 /* 249 * Verify that the HANDLE passed in was a valid AdapterFibContext 250 * 251 * Search the list of AdapterFibContext addresses on the adapter 252 * to be sure this is a valid address 253 */ 254 spin_lock_irqsave(&dev->fib_lock, flags); 255 entry = dev->fib_list.next; 256 fibctx = NULL; 257 258 while (entry != &dev->fib_list) { 259 fibctx = list_entry(entry, struct aac_fib_context, next); 260 /* 261 * Extract the AdapterFibContext from the Input parameters. 262 */ 263 if (fibctx->unique == f.fibctx) { /* We found a winner */ 264 break; 265 } 266 entry = entry->next; 267 fibctx = NULL; 268 } 269 if (!fibctx) { 270 spin_unlock_irqrestore(&dev->fib_lock, flags); 271 dprintk ((KERN_INFO "Fib Context not found\n")); 272 return -EINVAL; 273 } 274 275 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 276 (fibctx->size != sizeof(struct aac_fib_context))) { 277 spin_unlock_irqrestore(&dev->fib_lock, flags); 278 dprintk ((KERN_INFO "Fib Context corrupt?\n")); 279 return -EINVAL; 280 } 281 status = 0; 282 /* 283 * If there are no fibs to send back, then either wait or return 284 * -EAGAIN 285 */ 286 return_fib: 287 if (!list_empty(&fibctx->fib_list)) { 288 /* 289 * Pull the next fib from the fibs 290 */ 291 entry = fibctx->fib_list.next; 292 list_del(entry); 293 294 fib = list_entry(entry, struct fib, fiblink); 295 fibctx->count--; 296 spin_unlock_irqrestore(&dev->fib_lock, flags); 297 if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) { 298 kfree(fib->hw_fib_va); 299 kfree(fib); 300 return -EFAULT; 301 } 302 /* 303 * Free the space occupied by this copy of the fib. 304 */ 305 kfree(fib->hw_fib_va); 306 kfree(fib); 307 status = 0; 308 } else { 309 spin_unlock_irqrestore(&dev->fib_lock, flags); 310 /* If someone killed the AIF aacraid thread, restart it */ 311 status = !dev->aif_thread; 312 if (status && !dev->in_reset && dev->queues && dev->fsa_dev) { 313 /* Be paranoid, be very paranoid! */ 314 kthread_stop(dev->thread); 315 ssleep(1); 316 dev->aif_thread = 0; 317 dev->thread = kthread_run(aac_command_thread, dev, 318 "%s", dev->name); 319 ssleep(1); 320 } 321 if (f.wait) { 322 if (wait_for_completion_interruptible(&fibctx->completion) < 0) { 323 status = -ERESTARTSYS; 324 } else { 325 /* Lock again and retry */ 326 spin_lock_irqsave(&dev->fib_lock, flags); 327 goto return_fib; 328 } 329 } else { 330 status = -EAGAIN; 331 } 332 } 333 fibctx->jiffies = jiffies/HZ; 334 return status; 335 } 336 337 int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx) 338 { 339 struct fib *fib; 340 341 /* 342 * First free any FIBs that have not been consumed. 343 */ 344 while (!list_empty(&fibctx->fib_list)) { 345 struct list_head * entry; 346 /* 347 * Pull the next fib from the fibs 348 */ 349 entry = fibctx->fib_list.next; 350 list_del(entry); 351 fib = list_entry(entry, struct fib, fiblink); 352 fibctx->count--; 353 /* 354 * Free the space occupied by this copy of the fib. 355 */ 356 kfree(fib->hw_fib_va); 357 kfree(fib); 358 } 359 /* 360 * Remove the Context from the AdapterFibContext List 361 */ 362 list_del(&fibctx->next); 363 /* 364 * Invalidate context 365 */ 366 fibctx->type = 0; 367 /* 368 * Free the space occupied by the Context 369 */ 370 kfree(fibctx); 371 return 0; 372 } 373 374 /** 375 * close_getadapter_fib - close down user fib context 376 * @dev: adapter 377 * @arg: ioctl arguments 378 * 379 * This routine will close down the fibctx passed in from the user. 380 */ 381 382 static int close_getadapter_fib(struct aac_dev * dev, void __user *arg) 383 { 384 struct aac_fib_context *fibctx; 385 int status; 386 unsigned long flags; 387 struct list_head * entry; 388 389 /* 390 * Verify that the HANDLE passed in was a valid AdapterFibContext 391 * 392 * Search the list of AdapterFibContext addresses on the adapter 393 * to be sure this is a valid address 394 */ 395 396 entry = dev->fib_list.next; 397 fibctx = NULL; 398 399 while(entry != &dev->fib_list) { 400 fibctx = list_entry(entry, struct aac_fib_context, next); 401 /* 402 * Extract the fibctx from the input parameters 403 */ 404 if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */ 405 break; 406 entry = entry->next; 407 fibctx = NULL; 408 } 409 410 if (!fibctx) 411 return 0; /* Already gone */ 412 413 if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) || 414 (fibctx->size != sizeof(struct aac_fib_context))) 415 return -EINVAL; 416 spin_lock_irqsave(&dev->fib_lock, flags); 417 status = aac_close_fib_context(dev, fibctx); 418 spin_unlock_irqrestore(&dev->fib_lock, flags); 419 return status; 420 } 421 422 /** 423 * check_revision - close down user fib context 424 * @dev: adapter 425 * @arg: ioctl arguments 426 * 427 * This routine returns the driver version. 428 * Under Linux, there have been no version incompatibilities, so this is 429 * simple! 430 */ 431 432 static int check_revision(struct aac_dev *dev, void __user *arg) 433 { 434 struct revision response; 435 char *driver_version = aac_driver_version; 436 u32 version; 437 438 response.compat = 1; 439 version = (simple_strtol(driver_version, 440 &driver_version, 10) << 24) | 0x00000400; 441 version += simple_strtol(driver_version + 1, &driver_version, 10) << 16; 442 version += simple_strtol(driver_version + 1, NULL, 10); 443 response.version = cpu_to_le32(version); 444 # ifdef AAC_DRIVER_BUILD 445 response.build = cpu_to_le32(AAC_DRIVER_BUILD); 446 # else 447 response.build = cpu_to_le32(9999); 448 # endif 449 450 if (copy_to_user(arg, &response, sizeof(response))) 451 return -EFAULT; 452 return 0; 453 } 454 455 456 /** 457 * aac_send_raw_scb 458 * @dev: adapter is being processed 459 * @arg: arguments to the send call 460 */ 461 static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg) 462 { 463 struct fib* srbfib; 464 int status; 465 struct aac_srb *srbcmd = NULL; 466 struct aac_hba_cmd_req *hbacmd = NULL; 467 struct user_aac_srb *user_srbcmd = NULL; 468 struct user_aac_srb __user *user_srb = arg; 469 struct aac_srb_reply __user *user_reply; 470 u32 chn; 471 u32 fibsize = 0; 472 u32 flags = 0; 473 s32 rcode = 0; 474 u32 data_dir; 475 void __user *sg_user[HBA_MAX_SG_EMBEDDED]; 476 void *sg_list[HBA_MAX_SG_EMBEDDED]; 477 u32 sg_count[HBA_MAX_SG_EMBEDDED]; 478 u32 sg_indx = 0; 479 u32 byte_count = 0; 480 u32 actual_fibsize64, actual_fibsize = 0; 481 int i; 482 int is_native_device; 483 u64 address; 484 485 486 if (dev->in_reset) { 487 dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n")); 488 return -EBUSY; 489 } 490 if (!capable(CAP_SYS_ADMIN)){ 491 dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n")); 492 return -EPERM; 493 } 494 /* 495 * Allocate and initialize a Fib then setup a SRB command 496 */ 497 if (!(srbfib = aac_fib_alloc(dev))) { 498 return -ENOMEM; 499 } 500 501 memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */ 502 if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){ 503 dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n")); 504 rcode = -EFAULT; 505 goto cleanup; 506 } 507 508 if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) || 509 (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) { 510 rcode = -EINVAL; 511 goto cleanup; 512 } 513 514 user_srbcmd = memdup_user(user_srb, fibsize); 515 if (IS_ERR(user_srbcmd)) { 516 rcode = PTR_ERR(user_srbcmd); 517 user_srbcmd = NULL; 518 goto cleanup; 519 } 520 521 flags = user_srbcmd->flags; /* from user in cpu order */ 522 switch (flags & (SRB_DataIn | SRB_DataOut)) { 523 case SRB_DataOut: 524 data_dir = DMA_TO_DEVICE; 525 break; 526 case (SRB_DataIn | SRB_DataOut): 527 data_dir = DMA_BIDIRECTIONAL; 528 break; 529 case SRB_DataIn: 530 data_dir = DMA_FROM_DEVICE; 531 break; 532 default: 533 data_dir = DMA_NONE; 534 } 535 if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) { 536 dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n", 537 user_srbcmd->sg.count)); 538 rcode = -EINVAL; 539 goto cleanup; 540 } 541 if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) { 542 dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n")); 543 rcode = -EINVAL; 544 goto cleanup; 545 } 546 actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 547 ((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry)); 548 actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) * 549 (sizeof(struct sgentry64) - sizeof(struct sgentry)); 550 /* User made a mistake - should not continue */ 551 if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) { 552 dprintk((KERN_DEBUG"aacraid: Bad Size specified in " 553 "Raw SRB command calculated fibsize=%lu;%lu " 554 "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu " 555 "issued fibsize=%d\n", 556 actual_fibsize, actual_fibsize64, user_srbcmd->sg.count, 557 sizeof(struct aac_srb), sizeof(struct sgentry), 558 sizeof(struct sgentry64), fibsize)); 559 rcode = -EINVAL; 560 goto cleanup; 561 } 562 563 chn = user_srbcmd->channel; 564 if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS && 565 dev->hba_map[chn][user_srbcmd->id].devtype == 566 AAC_DEVTYPE_NATIVE_RAW) { 567 is_native_device = 1; 568 hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va; 569 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 570 571 /* iu_type is a parameter of aac_hba_send */ 572 switch (data_dir) { 573 case DMA_TO_DEVICE: 574 hbacmd->byte1 = 2; 575 break; 576 case DMA_FROM_DEVICE: 577 case DMA_BIDIRECTIONAL: 578 hbacmd->byte1 = 1; 579 break; 580 case DMA_NONE: 581 default: 582 break; 583 } 584 hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun); 585 hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus; 586 587 /* 588 * we fill in reply_qid later in aac_src_deliver_message 589 * we fill in iu_type, request_id later in aac_hba_send 590 * we fill in emb_data_desc_count, data_length later 591 * in sg list build 592 */ 593 594 memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb)); 595 596 address = (u64)srbfib->hw_error_pa; 597 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 598 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 599 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 600 hbacmd->emb_data_desc_count = 601 cpu_to_le32(user_srbcmd->sg.count); 602 srbfib->hbacmd_size = 64 + 603 user_srbcmd->sg.count * sizeof(struct aac_hba_sgl); 604 605 } else { 606 is_native_device = 0; 607 aac_fib_init(srbfib); 608 609 /* raw_srb FIB is not FastResponseCapable */ 610 srbfib->hw_fib_va->header.XferState &= 611 ~cpu_to_le32(FastResponseCapable); 612 613 srbcmd = (struct aac_srb *) fib_data(srbfib); 614 615 // Fix up srb for endian and force some values 616 617 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this 618 srbcmd->channel = cpu_to_le32(user_srbcmd->channel); 619 srbcmd->id = cpu_to_le32(user_srbcmd->id); 620 srbcmd->lun = cpu_to_le32(user_srbcmd->lun); 621 srbcmd->timeout = cpu_to_le32(user_srbcmd->timeout); 622 srbcmd->flags = cpu_to_le32(flags); 623 srbcmd->retry_limit = 0; // Obsolete parameter 624 srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size); 625 memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb)); 626 } 627 628 byte_count = 0; 629 if (is_native_device) { 630 struct user_sgmap *usg32 = &user_srbcmd->sg; 631 struct user_sgmap64 *usg64 = 632 (struct user_sgmap64 *)&user_srbcmd->sg; 633 634 for (i = 0; i < usg32->count; i++) { 635 void *p; 636 u64 addr; 637 638 sg_count[i] = (actual_fibsize64 == fibsize) ? 639 usg64->sg[i].count : usg32->sg[i].count; 640 if (sg_count[i] > 641 (dev->scsi_host_ptr->max_sectors << 9)) { 642 pr_err("aacraid: upsg->sg[%d].count=%u>%u\n", 643 i, sg_count[i], 644 dev->scsi_host_ptr->max_sectors << 9); 645 rcode = -EINVAL; 646 goto cleanup; 647 } 648 649 p = kmalloc(sg_count[i], GFP_KERNEL); 650 if (!p) { 651 rcode = -ENOMEM; 652 goto cleanup; 653 } 654 655 if (actual_fibsize64 == fibsize) { 656 addr = (u64)usg64->sg[i].addr[0]; 657 addr += ((u64)usg64->sg[i].addr[1]) << 32; 658 } else { 659 addr = (u64)usg32->sg[i].addr; 660 } 661 662 sg_user[i] = (void __user *)(uintptr_t)addr; 663 sg_list[i] = p; // save so we can clean up later 664 sg_indx = i; 665 666 if (flags & SRB_DataOut) { 667 if (copy_from_user(p, sg_user[i], 668 sg_count[i])) { 669 rcode = -EFAULT; 670 goto cleanup; 671 } 672 } 673 addr = dma_map_single(&dev->pdev->dev, p, sg_count[i], 674 data_dir); 675 hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32)); 676 hbacmd->sge[i].addr_lo = cpu_to_le32( 677 (u32)(addr & 0xffffffff)); 678 hbacmd->sge[i].len = cpu_to_le32(sg_count[i]); 679 hbacmd->sge[i].flags = 0; 680 byte_count += sg_count[i]; 681 } 682 683 if (usg32->count > 0) /* embedded sglist */ 684 hbacmd->sge[usg32->count-1].flags = 685 cpu_to_le32(0x40000000); 686 hbacmd->data_length = cpu_to_le32(byte_count); 687 688 status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib, 689 NULL, NULL); 690 691 } else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) { 692 struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg; 693 struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg; 694 695 /* 696 * This should also catch if user used the 32 bit sgmap 697 */ 698 if (actual_fibsize64 == fibsize) { 699 actual_fibsize = actual_fibsize64; 700 for (i = 0; i < upsg->count; i++) { 701 u64 addr; 702 void* p; 703 704 sg_count[i] = upsg->sg[i].count; 705 if (sg_count[i] > 706 ((dev->adapter_info.options & 707 AAC_OPT_NEW_COMM) ? 708 (dev->scsi_host_ptr->max_sectors << 9) : 709 65536)) { 710 rcode = -EINVAL; 711 goto cleanup; 712 } 713 714 p = kmalloc(sg_count[i], GFP_KERNEL); 715 if(!p) { 716 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 717 sg_count[i], i, upsg->count)); 718 rcode = -ENOMEM; 719 goto cleanup; 720 } 721 addr = (u64)upsg->sg[i].addr[0]; 722 addr += ((u64)upsg->sg[i].addr[1]) << 32; 723 sg_user[i] = (void __user *)(uintptr_t)addr; 724 sg_list[i] = p; // save so we can clean up later 725 sg_indx = i; 726 727 if (flags & SRB_DataOut) { 728 if (copy_from_user(p, sg_user[i], 729 sg_count[i])){ 730 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 731 rcode = -EFAULT; 732 goto cleanup; 733 } 734 } 735 addr = dma_map_single(&dev->pdev->dev, p, 736 sg_count[i], data_dir); 737 738 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 739 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 740 byte_count += sg_count[i]; 741 psg->sg[i].count = cpu_to_le32(sg_count[i]); 742 } 743 } else { 744 struct user_sgmap* usg; 745 usg = kmemdup(upsg, 746 actual_fibsize - sizeof(struct aac_srb) 747 + sizeof(struct sgmap), GFP_KERNEL); 748 if (!usg) { 749 dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n")); 750 rcode = -ENOMEM; 751 goto cleanup; 752 } 753 actual_fibsize = actual_fibsize64; 754 755 for (i = 0; i < usg->count; i++) { 756 u64 addr; 757 void* p; 758 759 sg_count[i] = usg->sg[i].count; 760 if (sg_count[i] > 761 ((dev->adapter_info.options & 762 AAC_OPT_NEW_COMM) ? 763 (dev->scsi_host_ptr->max_sectors << 9) : 764 65536)) { 765 kfree(usg); 766 rcode = -EINVAL; 767 goto cleanup; 768 } 769 770 p = kmalloc(sg_count[i], GFP_KERNEL); 771 if(!p) { 772 dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 773 sg_count[i], i, usg->count)); 774 kfree(usg); 775 rcode = -ENOMEM; 776 goto cleanup; 777 } 778 sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr; 779 sg_list[i] = p; // save so we can clean up later 780 sg_indx = i; 781 782 if (flags & SRB_DataOut) { 783 if (copy_from_user(p, sg_user[i], 784 sg_count[i])) { 785 kfree (usg); 786 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 787 rcode = -EFAULT; 788 goto cleanup; 789 } 790 } 791 addr = dma_map_single(&dev->pdev->dev, p, 792 sg_count[i], data_dir); 793 794 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 795 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 796 byte_count += sg_count[i]; 797 psg->sg[i].count = cpu_to_le32(sg_count[i]); 798 } 799 kfree (usg); 800 } 801 srbcmd->count = cpu_to_le32(byte_count); 802 if (user_srbcmd->sg.count) 803 psg->count = cpu_to_le32(sg_indx+1); 804 else 805 psg->count = 0; 806 status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL); 807 } else { 808 struct user_sgmap* upsg = &user_srbcmd->sg; 809 struct sgmap* psg = &srbcmd->sg; 810 811 if (actual_fibsize64 == fibsize) { 812 struct user_sgmap64* usg = (struct user_sgmap64 *)upsg; 813 for (i = 0; i < upsg->count; i++) { 814 uintptr_t addr; 815 void* p; 816 817 sg_count[i] = usg->sg[i].count; 818 if (sg_count[i] > 819 ((dev->adapter_info.options & 820 AAC_OPT_NEW_COMM) ? 821 (dev->scsi_host_ptr->max_sectors << 9) : 822 65536)) { 823 rcode = -EINVAL; 824 goto cleanup; 825 } 826 p = kmalloc(sg_count[i], GFP_KERNEL); 827 if (!p) { 828 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 829 sg_count[i], i, usg->count)); 830 rcode = -ENOMEM; 831 goto cleanup; 832 } 833 addr = (u64)usg->sg[i].addr[0]; 834 addr += ((u64)usg->sg[i].addr[1]) << 32; 835 sg_user[i] = (void __user *)addr; 836 sg_list[i] = p; // save so we can clean up later 837 sg_indx = i; 838 839 if (flags & SRB_DataOut) { 840 if (copy_from_user(p, sg_user[i], 841 sg_count[i])){ 842 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 843 rcode = -EFAULT; 844 goto cleanup; 845 } 846 } 847 addr = dma_map_single(&dev->pdev->dev, p, 848 usg->sg[i].count, 849 data_dir); 850 851 psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff); 852 byte_count += usg->sg[i].count; 853 psg->sg[i].count = cpu_to_le32(sg_count[i]); 854 } 855 } else { 856 for (i = 0; i < upsg->count; i++) { 857 dma_addr_t addr; 858 void* p; 859 860 sg_count[i] = upsg->sg[i].count; 861 if (sg_count[i] > 862 ((dev->adapter_info.options & 863 AAC_OPT_NEW_COMM) ? 864 (dev->scsi_host_ptr->max_sectors << 9) : 865 65536)) { 866 rcode = -EINVAL; 867 goto cleanup; 868 } 869 p = kmalloc(sg_count[i], GFP_KERNEL); 870 if (!p) { 871 dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n", 872 sg_count[i], i, upsg->count)); 873 rcode = -ENOMEM; 874 goto cleanup; 875 } 876 sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr; 877 sg_list[i] = p; // save so we can clean up later 878 sg_indx = i; 879 880 if (flags & SRB_DataOut) { 881 if (copy_from_user(p, sg_user[i], 882 sg_count[i])) { 883 dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n")); 884 rcode = -EFAULT; 885 goto cleanup; 886 } 887 } 888 addr = dma_map_single(&dev->pdev->dev, p, 889 sg_count[i], data_dir); 890 891 psg->sg[i].addr = cpu_to_le32(addr); 892 byte_count += sg_count[i]; 893 psg->sg[i].count = cpu_to_le32(sg_count[i]); 894 } 895 } 896 srbcmd->count = cpu_to_le32(byte_count); 897 if (user_srbcmd->sg.count) 898 psg->count = cpu_to_le32(sg_indx+1); 899 else 900 psg->count = 0; 901 status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL); 902 } 903 904 if (status == -ERESTARTSYS) { 905 rcode = -ERESTARTSYS; 906 goto cleanup; 907 } 908 909 if (status != 0) { 910 dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n")); 911 rcode = -ENXIO; 912 goto cleanup; 913 } 914 915 if (flags & SRB_DataIn) { 916 for(i = 0 ; i <= sg_indx; i++){ 917 if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) { 918 dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n")); 919 rcode = -EFAULT; 920 goto cleanup; 921 922 } 923 } 924 } 925 926 user_reply = arg + fibsize; 927 if (is_native_device) { 928 struct aac_hba_resp *err = 929 &((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err; 930 struct aac_srb_reply reply; 931 932 memset(&reply, 0, sizeof(reply)); 933 reply.status = ST_OK; 934 if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) { 935 /* fast response */ 936 reply.srb_status = SRB_STATUS_SUCCESS; 937 reply.scsi_status = 0; 938 reply.data_xfer_length = byte_count; 939 reply.sense_data_size = 0; 940 memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE); 941 } else { 942 reply.srb_status = err->service_response; 943 reply.scsi_status = err->status; 944 reply.data_xfer_length = byte_count - 945 le32_to_cpu(err->residual_count); 946 reply.sense_data_size = err->sense_response_data_len; 947 memcpy(reply.sense_data, err->sense_response_buf, 948 AAC_SENSE_BUFFERSIZE); 949 } 950 if (copy_to_user(user_reply, &reply, 951 sizeof(struct aac_srb_reply))) { 952 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n")); 953 rcode = -EFAULT; 954 goto cleanup; 955 } 956 } else { 957 struct aac_srb_reply *reply; 958 959 reply = (struct aac_srb_reply *) fib_data(srbfib); 960 if (copy_to_user(user_reply, reply, 961 sizeof(struct aac_srb_reply))) { 962 dprintk((KERN_DEBUG"aacraid: Copy to user failed\n")); 963 rcode = -EFAULT; 964 goto cleanup; 965 } 966 } 967 968 cleanup: 969 kfree(user_srbcmd); 970 if (rcode != -ERESTARTSYS) { 971 for (i = 0; i <= sg_indx; i++) 972 kfree(sg_list[i]); 973 aac_fib_complete(srbfib); 974 aac_fib_free(srbfib); 975 } 976 977 return rcode; 978 } 979 980 struct aac_pci_info { 981 u32 bus; 982 u32 slot; 983 }; 984 985 986 static int aac_get_pci_info(struct aac_dev* dev, void __user *arg) 987 { 988 struct aac_pci_info pci_info; 989 990 pci_info.bus = dev->pdev->bus->number; 991 pci_info.slot = PCI_SLOT(dev->pdev->devfn); 992 993 if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) { 994 dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n")); 995 return -EFAULT; 996 } 997 return 0; 998 } 999 1000 static int aac_get_hba_info(struct aac_dev *dev, void __user *arg) 1001 { 1002 struct aac_hba_info hbainfo; 1003 1004 memset(&hbainfo, 0, sizeof(hbainfo)); 1005 hbainfo.adapter_number = (u8) dev->id; 1006 hbainfo.system_io_bus_number = dev->pdev->bus->number; 1007 hbainfo.device_number = (dev->pdev->devfn >> 3); 1008 hbainfo.function_number = (dev->pdev->devfn & 0x0007); 1009 1010 hbainfo.vendor_id = dev->pdev->vendor; 1011 hbainfo.device_id = dev->pdev->device; 1012 hbainfo.sub_vendor_id = dev->pdev->subsystem_vendor; 1013 hbainfo.sub_system_id = dev->pdev->subsystem_device; 1014 1015 if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) { 1016 dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n")); 1017 return -EFAULT; 1018 } 1019 1020 return 0; 1021 } 1022 1023 struct aac_reset_iop { 1024 u8 reset_type; 1025 }; 1026 1027 static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg) 1028 { 1029 struct aac_reset_iop reset; 1030 int retval; 1031 1032 if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop))) 1033 return -EFAULT; 1034 1035 dev->adapter_shutdown = 1; 1036 1037 mutex_unlock(&dev->ioctl_mutex); 1038 retval = aac_reset_adapter(dev, 0, reset.reset_type); 1039 mutex_lock(&dev->ioctl_mutex); 1040 1041 return retval; 1042 } 1043 1044 int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 1045 { 1046 int status; 1047 1048 mutex_lock(&dev->ioctl_mutex); 1049 1050 if (dev->adapter_shutdown) { 1051 status = -EACCES; 1052 goto cleanup; 1053 } 1054 1055 /* 1056 * HBA gets first crack 1057 */ 1058 1059 status = aac_dev_ioctl(dev, cmd, arg); 1060 if (status != -ENOTTY) 1061 goto cleanup; 1062 1063 switch (cmd) { 1064 case FSACTL_MINIPORT_REV_CHECK: 1065 status = check_revision(dev, arg); 1066 break; 1067 case FSACTL_SEND_LARGE_FIB: 1068 case FSACTL_SENDFIB: 1069 status = ioctl_send_fib(dev, arg); 1070 break; 1071 case FSACTL_OPEN_GET_ADAPTER_FIB: 1072 status = open_getadapter_fib(dev, arg); 1073 break; 1074 case FSACTL_GET_NEXT_ADAPTER_FIB: 1075 status = next_getadapter_fib(dev, arg); 1076 break; 1077 case FSACTL_CLOSE_GET_ADAPTER_FIB: 1078 status = close_getadapter_fib(dev, arg); 1079 break; 1080 case FSACTL_SEND_RAW_SRB: 1081 status = aac_send_raw_srb(dev,arg); 1082 break; 1083 case FSACTL_GET_PCI_INFO: 1084 status = aac_get_pci_info(dev,arg); 1085 break; 1086 case FSACTL_GET_HBA_INFO: 1087 status = aac_get_hba_info(dev, arg); 1088 break; 1089 case FSACTL_RESET_IOP: 1090 status = aac_send_reset_adapter(dev, arg); 1091 break; 1092 1093 default: 1094 status = -ENOTTY; 1095 break; 1096 } 1097 1098 cleanup: 1099 mutex_unlock(&dev->ioctl_mutex); 1100 1101 return status; 1102 } 1103 1104