xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision fb960bd2)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  aachba.c
28  *
29  * Abstract: Contains Interfaces to manage IOs.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
44 
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_host.h>
49 
50 #include "aacraid.h"
51 
52 /* values for inqd_pdt: Peripheral device type in plain English */
53 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
54 #define	INQD_PDT_PROC	0x03	/* Processor device */
55 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
56 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
57 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
58 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
59 
60 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
61 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
62 
63 /*
64  *	Sense codes
65  */
66 
67 #define SENCODE_NO_SENSE			0x00
68 #define SENCODE_END_OF_DATA			0x00
69 #define SENCODE_BECOMING_READY			0x04
70 #define SENCODE_INIT_CMD_REQUIRED		0x04
71 #define SENCODE_UNRECOVERED_READ_ERROR		0x11
72 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
73 #define SENCODE_INVALID_COMMAND			0x20
74 #define SENCODE_LBA_OUT_OF_RANGE		0x21
75 #define SENCODE_INVALID_CDB_FIELD		0x24
76 #define SENCODE_LUN_NOT_SUPPORTED		0x25
77 #define SENCODE_INVALID_PARAM_FIELD		0x26
78 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
79 #define SENCODE_PARAM_VALUE_INVALID		0x26
80 #define SENCODE_RESET_OCCURRED			0x29
81 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
82 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
83 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
84 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
85 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
86 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
87 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
88 #define SENCODE_OVERLAPPED_COMMAND		0x4E
89 
90 /*
91  *	Additional sense codes
92  */
93 
94 #define ASENCODE_NO_SENSE			0x00
95 #define ASENCODE_END_OF_DATA			0x05
96 #define ASENCODE_BECOMING_READY			0x01
97 #define ASENCODE_INIT_CMD_REQUIRED		0x02
98 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
99 #define ASENCODE_INVALID_COMMAND		0x00
100 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
101 #define ASENCODE_INVALID_CDB_FIELD		0x00
102 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
103 #define ASENCODE_INVALID_PARAM_FIELD		0x00
104 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
105 #define ASENCODE_PARAM_VALUE_INVALID		0x02
106 #define ASENCODE_RESET_OCCURRED			0x00
107 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
108 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
109 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
110 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
111 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
112 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
113 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
114 #define ASENCODE_OVERLAPPED_COMMAND		0x00
115 
116 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
117 
118 #define BYTE0(x) (unsigned char)(x)
119 #define BYTE1(x) (unsigned char)((x) >> 8)
120 #define BYTE2(x) (unsigned char)((x) >> 16)
121 #define BYTE3(x) (unsigned char)((x) >> 24)
122 
123 /* MODE_SENSE data format */
124 typedef struct {
125 	struct {
126 		u8	data_length;
127 		u8	med_type;
128 		u8	dev_par;
129 		u8	bd_length;
130 	} __attribute__((packed)) hd;
131 	struct {
132 		u8	dens_code;
133 		u8	block_count[3];
134 		u8	reserved;
135 		u8	block_length[3];
136 	} __attribute__((packed)) bd;
137 		u8	mpc_buf[3];
138 } __attribute__((packed)) aac_modep_data;
139 
140 /* MODE_SENSE_10 data format */
141 typedef struct {
142 	struct {
143 		u8	data_length[2];
144 		u8	med_type;
145 		u8	dev_par;
146 		u8	rsrvd[2];
147 		u8	bd_length[2];
148 	} __attribute__((packed)) hd;
149 	struct {
150 		u8	dens_code;
151 		u8	block_count[3];
152 		u8	reserved;
153 		u8	block_length[3];
154 	} __attribute__((packed)) bd;
155 		u8	mpc_buf[3];
156 } __attribute__((packed)) aac_modep10_data;
157 
158 /*------------------------------------------------------------------------------
159  *              S T R U C T S / T Y P E D E F S
160  *----------------------------------------------------------------------------*/
161 /* SCSI inquiry data */
162 struct inquiry_data {
163 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
164 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
165 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
166 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
167 	u8 inqd_len;	/* Additional length (n-4) */
168 	u8 inqd_pad1[2];/* Reserved - must be zero */
169 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
170 	u8 inqd_vid[8];	/* Vendor ID */
171 	u8 inqd_pid[16];/* Product ID */
172 	u8 inqd_prl[4];	/* Product Revision Level */
173 };
174 
175 /* Added for VPD 0x83 */
176 struct  tvpd_id_descriptor_type_1 {
177 	u8 codeset:4;		/* VPD_CODE_SET */
178 	u8 reserved:4;
179 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
180 	u8 reserved2:4;
181 	u8 reserved3;
182 	u8 identifierlength;
183 	u8 venid[8];
184 	u8 productid[16];
185 	u8 serialnumber[8];	/* SN in ASCII */
186 
187 };
188 
189 struct tvpd_id_descriptor_type_2 {
190 	u8 codeset:4;		/* VPD_CODE_SET */
191 	u8 reserved:4;
192 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
193 	u8 reserved2:4;
194 	u8 reserved3;
195 	u8 identifierlength;
196 	struct teu64id {
197 		u32 Serial;
198 		 /* The serial number supposed to be 40 bits,
199 		  * bit we only support 32, so make the last byte zero. */
200 		u8 reserved;
201 		u8 venid[3];
202 	} eu64id;
203 
204 };
205 
206 struct tvpd_id_descriptor_type_3 {
207 	u8 codeset : 4;          /* VPD_CODE_SET */
208 	u8 reserved : 4;
209 	u8 identifiertype : 4;   /* VPD_IDENTIFIER_TYPE */
210 	u8 reserved2 : 4;
211 	u8 reserved3;
212 	u8 identifierlength;
213 	u8 Identifier[16];
214 };
215 
216 struct tvpd_page83 {
217 	u8 DeviceType:5;
218 	u8 DeviceTypeQualifier:3;
219 	u8 PageCode;
220 	u8 reserved;
221 	u8 PageLength;
222 	struct tvpd_id_descriptor_type_1 type1;
223 	struct tvpd_id_descriptor_type_2 type2;
224 	struct tvpd_id_descriptor_type_3 type3;
225 };
226 
227 /*
228  *              M O D U L E   G L O B A L S
229  */
230 
231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
235 				struct aac_raw_io2 *rio2, int sg_max);
236 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
237 				struct aac_hba_cmd_req *hbacmd,
238 				int sg_max, u64 sg_address);
239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
240 				int pages, int nseg, int nseg_new);
241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
243 #ifdef AAC_DETAILED_STATUS_INFO
244 static char *aac_get_status_string(u32 status);
245 #endif
246 
247 /*
248  *	Non dasd selection is handled entirely in aachba now
249  */
250 
251 static int nondasd = -1;
252 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
253 static int dacmode = -1;
254 int aac_msi;
255 int aac_commit = -1;
256 int startup_timeout = 180;
257 int aif_timeout = 120;
258 int aac_sync_mode;  /* Only Sync. transfer - disabled */
259 int aac_convert_sgl = 1;	/* convert non-conformable s/g list - enabled */
260 
261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
263 	" 0=off, 1=on");
264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
266 	" 0=off, 1=on");
267 module_param(nondasd, int, S_IRUGO|S_IWUSR);
268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
269 	" 0=off, 1=on");
270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
272 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
273 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
274 	"\tbit 2 - Disable only if Battery is protecting Cache");
275 module_param(dacmode, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
277 	" 0=off, 1=on");
278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
280 	" adapter for foreign arrays.\n"
281 	"This is typically needed in systems that do not have a BIOS."
282 	" 0=off, 1=on");
283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
284 MODULE_PARM_DESC(msi, "IRQ handling."
285 	" 0=PIC(default), 1=MSI, 2=MSI-X)");
286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
288 	" adapter to have it's kernel up and\n"
289 	"running. This is typically adjusted for large systems that do not"
290 	" have a BIOS.");
291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
293 	" applications to pick up AIFs before\n"
294 	"deregistering them. This is typically adjusted for heavily burdened"
295 	" systems.");
296 
297 int aac_fib_dump;
298 module_param(aac_fib_dump, int, 0644);
299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
300 
301 int numacb = -1;
302 module_param(numacb, int, S_IRUGO|S_IWUSR);
303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
304 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
305 	" to use suggestion from Firmware.");
306 
307 int acbsize = -1;
308 module_param(acbsize, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
310 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
311 	" suggestion from Firmware.");
312 
313 int update_interval = 30 * 60;
314 module_param(update_interval, int, S_IRUGO|S_IWUSR);
315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
316 	" updates issued to adapter.");
317 
318 int check_interval = 60;
319 module_param(check_interval, int, S_IRUGO|S_IWUSR);
320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
321 	" checks.");
322 
323 int aac_check_reset = 1;
324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
326 	" adapter. a value of -1 forces the reset to adapters programmed to"
327 	" ignore it.");
328 
329 int expose_physicals = -1;
330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
332 	" -1=protect 0=off, 1=on");
333 
334 int aac_reset_devices;
335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
337 
338 int aac_wwn = 1;
339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
341 	"\t0 - Disable\n"
342 	"\t1 - Array Meta Data Signature (default)\n"
343 	"\t2 - Adapter Serial Number");
344 
345 
346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
347 		struct fib *fibptr) {
348 	struct scsi_device *device;
349 
350 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
351 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
352 		aac_fib_complete(fibptr);
353 		return 0;
354 	}
355 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
356 	device = scsicmd->device;
357 	if (unlikely(!device)) {
358 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
359 		aac_fib_complete(fibptr);
360 		return 0;
361 	}
362 	return 1;
363 }
364 
365 /**
366  *	aac_get_config_status	-	check the adapter configuration
367  *	@common: adapter to query
368  *
369  *	Query config status, and commit the configuration if needed.
370  */
371 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
372 {
373 	int status = 0;
374 	struct fib * fibptr;
375 
376 	if (!(fibptr = aac_fib_alloc(dev)))
377 		return -ENOMEM;
378 
379 	aac_fib_init(fibptr);
380 	{
381 		struct aac_get_config_status *dinfo;
382 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
383 
384 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
385 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
386 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
387 	}
388 
389 	status = aac_fib_send(ContainerCommand,
390 			    fibptr,
391 			    sizeof (struct aac_get_config_status),
392 			    FsaNormal,
393 			    1, 1,
394 			    NULL, NULL);
395 	if (status < 0) {
396 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
397 	} else {
398 		struct aac_get_config_status_resp *reply
399 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
400 		dprintk((KERN_WARNING
401 		  "aac_get_config_status: response=%d status=%d action=%d\n",
402 		  le32_to_cpu(reply->response),
403 		  le32_to_cpu(reply->status),
404 		  le32_to_cpu(reply->data.action)));
405 		if ((le32_to_cpu(reply->response) != ST_OK) ||
406 		     (le32_to_cpu(reply->status) != CT_OK) ||
407 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
408 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
409 			status = -EINVAL;
410 		}
411 	}
412 	/* Do not set XferState to zero unless receives a response from F/W */
413 	if (status >= 0)
414 		aac_fib_complete(fibptr);
415 
416 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
417 	if (status >= 0) {
418 		if ((aac_commit == 1) || commit_flag) {
419 			struct aac_commit_config * dinfo;
420 			aac_fib_init(fibptr);
421 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
422 
423 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
424 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
425 
426 			status = aac_fib_send(ContainerCommand,
427 				    fibptr,
428 				    sizeof (struct aac_commit_config),
429 				    FsaNormal,
430 				    1, 1,
431 				    NULL, NULL);
432 			/* Do not set XferState to zero unless
433 			 * receives a response from F/W */
434 			if (status >= 0)
435 				aac_fib_complete(fibptr);
436 		} else if (aac_commit == 0) {
437 			printk(KERN_WARNING
438 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
439 		}
440 	}
441 	/* FIB should be freed only after getting the response from the F/W */
442 	if (status != -ERESTARTSYS)
443 		aac_fib_free(fibptr);
444 	return status;
445 }
446 
447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
448 {
449 	char inq_data;
450 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
451 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
452 		inq_data &= 0xdf;
453 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
454 	}
455 }
456 
457 /**
458  *	aac_get_containers	-	list containers
459  *	@common: adapter to probe
460  *
461  *	Make a list of all containers on this controller
462  */
463 int aac_get_containers(struct aac_dev *dev)
464 {
465 	struct fsa_dev_info *fsa_dev_ptr;
466 	u32 index;
467 	int status = 0;
468 	struct fib * fibptr;
469 	struct aac_get_container_count *dinfo;
470 	struct aac_get_container_count_resp *dresp;
471 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
472 
473 	if (!(fibptr = aac_fib_alloc(dev)))
474 		return -ENOMEM;
475 
476 	aac_fib_init(fibptr);
477 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
478 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
479 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
480 
481 	status = aac_fib_send(ContainerCommand,
482 		    fibptr,
483 		    sizeof (struct aac_get_container_count),
484 		    FsaNormal,
485 		    1, 1,
486 		    NULL, NULL);
487 	if (status >= 0) {
488 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
489 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
490 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
491 		    AAC_OPTION_SUPPORTED_240_VOLUMES) {
492 			maximum_num_containers =
493 				le32_to_cpu(dresp->MaxSimpleVolumes);
494 		}
495 		aac_fib_complete(fibptr);
496 	}
497 	/* FIB should be freed only after getting the response from the F/W */
498 	if (status != -ERESTARTSYS)
499 		aac_fib_free(fibptr);
500 
501 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
502 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
503 	if (dev->fsa_dev == NULL ||
504 		dev->maximum_num_containers != maximum_num_containers) {
505 
506 		fsa_dev_ptr = dev->fsa_dev;
507 
508 		dev->fsa_dev = kcalloc(maximum_num_containers,
509 					sizeof(*fsa_dev_ptr), GFP_KERNEL);
510 
511 		kfree(fsa_dev_ptr);
512 		fsa_dev_ptr = NULL;
513 
514 
515 		if (!dev->fsa_dev)
516 			return -ENOMEM;
517 
518 		dev->maximum_num_containers = maximum_num_containers;
519 	}
520 	for (index = 0; index < dev->maximum_num_containers; index++) {
521 		dev->fsa_dev[index].devname[0] = '\0';
522 		dev->fsa_dev[index].valid = 0;
523 
524 		status = aac_probe_container(dev, index);
525 
526 		if (status < 0) {
527 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
528 			break;
529 		}
530 	}
531 	return status;
532 }
533 
534 static void get_container_name_callback(void *context, struct fib * fibptr)
535 {
536 	struct aac_get_name_resp * get_name_reply;
537 	struct scsi_cmnd * scsicmd;
538 
539 	scsicmd = (struct scsi_cmnd *) context;
540 
541 	if (!aac_valid_context(scsicmd, fibptr))
542 		return;
543 
544 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
545 	BUG_ON(fibptr == NULL);
546 
547 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
548 	/* Failure is irrelevant, using default value instead */
549 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
550 	 && (get_name_reply->data[0] != '\0')) {
551 		char *sp = get_name_reply->data;
552 		int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
553 
554 		sp[data_size - 1] = '\0';
555 		while (*sp == ' ')
556 			++sp;
557 		if (*sp) {
558 			struct inquiry_data inq;
559 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
560 			int count = sizeof(d);
561 			char *dp = d;
562 			do {
563 				*dp++ = (*sp) ? *sp++ : ' ';
564 			} while (--count > 0);
565 
566 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
567 			memcpy(inq.inqd_pid, d, sizeof(d));
568 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
569 		}
570 	}
571 
572 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
573 
574 	aac_fib_complete(fibptr);
575 	scsicmd->scsi_done(scsicmd);
576 }
577 
578 /**
579  *	aac_get_container_name	-	get container name, none blocking.
580  */
581 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
582 {
583 	int status;
584 	int data_size;
585 	struct aac_get_name *dinfo;
586 	struct fib * cmd_fibcontext;
587 	struct aac_dev * dev;
588 
589 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
590 
591 	data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
592 
593 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
594 
595 	aac_fib_init(cmd_fibcontext);
596 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
597 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
598 
599 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
600 	dinfo->type = cpu_to_le32(CT_READ_NAME);
601 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
602 	dinfo->count = cpu_to_le32(data_size - 1);
603 
604 	status = aac_fib_send(ContainerCommand,
605 		  cmd_fibcontext,
606 		  sizeof(struct aac_get_name_resp),
607 		  FsaNormal,
608 		  0, 1,
609 		  (fib_callback)get_container_name_callback,
610 		  (void *) scsicmd);
611 
612 	/*
613 	 *	Check that the command queued to the controller
614 	 */
615 	if (status == -EINPROGRESS)
616 		return 0;
617 
618 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
619 	aac_fib_complete(cmd_fibcontext);
620 	return -1;
621 }
622 
623 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
624 {
625 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
626 
627 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
628 		return aac_scsi_cmd(scsicmd);
629 
630 	scsicmd->result = DID_NO_CONNECT << 16;
631 	scsicmd->scsi_done(scsicmd);
632 	return 0;
633 }
634 
635 static void _aac_probe_container2(void * context, struct fib * fibptr)
636 {
637 	struct fsa_dev_info *fsa_dev_ptr;
638 	int (*callback)(struct scsi_cmnd *);
639 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
640 	int i;
641 
642 
643 	if (!aac_valid_context(scsicmd, fibptr))
644 		return;
645 
646 	scsicmd->SCp.Status = 0;
647 	fsa_dev_ptr = fibptr->dev->fsa_dev;
648 	if (fsa_dev_ptr) {
649 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
650 		__le32 sup_options2;
651 
652 		fsa_dev_ptr += scmd_id(scsicmd);
653 		sup_options2 =
654 			fibptr->dev->supplement_adapter_info.supported_options2;
655 
656 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
657 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
658 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
659 			if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
660 				dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
661 				fsa_dev_ptr->block_size = 0x200;
662 			} else {
663 				fsa_dev_ptr->block_size =
664 					le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
665 			}
666 			for (i = 0; i < 16; i++)
667 				fsa_dev_ptr->identifier[i] =
668 					dresp->mnt[0].fileinfo.bdevinfo
669 								.identifier[i];
670 			fsa_dev_ptr->valid = 1;
671 			/* sense_key holds the current state of the spin-up */
672 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
673 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
674 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
675 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
676 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
677 			fsa_dev_ptr->size
678 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
679 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
680 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
681 		}
682 		if ((fsa_dev_ptr->valid & 1) == 0)
683 			fsa_dev_ptr->valid = 0;
684 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
685 	}
686 	aac_fib_complete(fibptr);
687 	aac_fib_free(fibptr);
688 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
689 	scsicmd->SCp.ptr = NULL;
690 	(*callback)(scsicmd);
691 	return;
692 }
693 
694 static void _aac_probe_container1(void * context, struct fib * fibptr)
695 {
696 	struct scsi_cmnd * scsicmd;
697 	struct aac_mount * dresp;
698 	struct aac_query_mount *dinfo;
699 	int status;
700 
701 	dresp = (struct aac_mount *) fib_data(fibptr);
702 	if (!aac_supports_2T(fibptr->dev)) {
703 		dresp->mnt[0].capacityhigh = 0;
704 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
705 			(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
706 			_aac_probe_container2(context, fibptr);
707 			return;
708 		}
709 	}
710 	scsicmd = (struct scsi_cmnd *) context;
711 
712 	if (!aac_valid_context(scsicmd, fibptr))
713 		return;
714 
715 	aac_fib_init(fibptr);
716 
717 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
718 
719 	if (fibptr->dev->supplement_adapter_info.supported_options2 &
720 	    AAC_OPTION_VARIABLE_BLOCK_SIZE)
721 		dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
722 	else
723 		dinfo->command = cpu_to_le32(VM_NameServe64);
724 
725 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
726 	dinfo->type = cpu_to_le32(FT_FILESYS);
727 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
728 
729 	status = aac_fib_send(ContainerCommand,
730 			  fibptr,
731 			  sizeof(struct aac_query_mount),
732 			  FsaNormal,
733 			  0, 1,
734 			  _aac_probe_container2,
735 			  (void *) scsicmd);
736 	/*
737 	 *	Check that the command queued to the controller
738 	 */
739 	if (status < 0 && status != -EINPROGRESS) {
740 		/* Inherit results from VM_NameServe, if any */
741 		dresp->status = cpu_to_le32(ST_OK);
742 		_aac_probe_container2(context, fibptr);
743 	}
744 }
745 
746 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
747 {
748 	struct fib * fibptr;
749 	int status = -ENOMEM;
750 
751 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
752 		struct aac_query_mount *dinfo;
753 
754 		aac_fib_init(fibptr);
755 
756 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
757 
758 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
759 		    AAC_OPTION_VARIABLE_BLOCK_SIZE)
760 			dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
761 		else
762 			dinfo->command = cpu_to_le32(VM_NameServe);
763 
764 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
765 		dinfo->type = cpu_to_le32(FT_FILESYS);
766 		scsicmd->SCp.ptr = (char *)callback;
767 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
768 
769 		status = aac_fib_send(ContainerCommand,
770 			  fibptr,
771 			  sizeof(struct aac_query_mount),
772 			  FsaNormal,
773 			  0, 1,
774 			  _aac_probe_container1,
775 			  (void *) scsicmd);
776 		/*
777 		 *	Check that the command queued to the controller
778 		 */
779 		if (status == -EINPROGRESS)
780 			return 0;
781 
782 		if (status < 0) {
783 			scsicmd->SCp.ptr = NULL;
784 			aac_fib_complete(fibptr);
785 			aac_fib_free(fibptr);
786 		}
787 	}
788 	if (status < 0) {
789 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
790 		if (fsa_dev_ptr) {
791 			fsa_dev_ptr += scmd_id(scsicmd);
792 			if ((fsa_dev_ptr->valid & 1) == 0) {
793 				fsa_dev_ptr->valid = 0;
794 				return (*callback)(scsicmd);
795 			}
796 		}
797 	}
798 	return status;
799 }
800 
801 /**
802  *	aac_probe_container		-	query a logical volume
803  *	@dev: device to query
804  *	@cid: container identifier
805  *
806  *	Queries the controller about the given volume. The volume information
807  *	is updated in the struct fsa_dev_info structure rather than returned.
808  */
809 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
810 {
811 	scsicmd->device = NULL;
812 	return 0;
813 }
814 
815 int aac_probe_container(struct aac_dev *dev, int cid)
816 {
817 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
818 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
819 	int status;
820 
821 	if (!scsicmd || !scsidev) {
822 		kfree(scsicmd);
823 		kfree(scsidev);
824 		return -ENOMEM;
825 	}
826 	scsicmd->list.next = NULL;
827 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
828 
829 	scsicmd->device = scsidev;
830 	scsidev->sdev_state = 0;
831 	scsidev->id = cid;
832 	scsidev->host = dev->scsi_host_ptr;
833 
834 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
835 		while (scsicmd->device == scsidev)
836 			schedule();
837 	kfree(scsidev);
838 	status = scsicmd->SCp.Status;
839 	kfree(scsicmd);
840 	return status;
841 }
842 
843 /* Local Structure to set SCSI inquiry data strings */
844 struct scsi_inq {
845 	char vid[8];         /* Vendor ID */
846 	char pid[16];        /* Product ID */
847 	char prl[4];         /* Product Revision Level */
848 };
849 
850 /**
851  *	InqStrCopy	-	string merge
852  *	@a:	string to copy from
853  *	@b:	string to copy to
854  *
855  *	Copy a String from one location to another
856  *	without copying \0
857  */
858 
859 static void inqstrcpy(char *a, char *b)
860 {
861 
862 	while (*a != (char)0)
863 		*b++ = *a++;
864 }
865 
866 static char *container_types[] = {
867 	"None",
868 	"Volume",
869 	"Mirror",
870 	"Stripe",
871 	"RAID5",
872 	"SSRW",
873 	"SSRO",
874 	"Morph",
875 	"Legacy",
876 	"RAID4",
877 	"RAID10",
878 	"RAID00",
879 	"V-MIRRORS",
880 	"PSEUDO R4",
881 	"RAID50",
882 	"RAID5D",
883 	"RAID5D0",
884 	"RAID1E",
885 	"RAID6",
886 	"RAID60",
887 	"Unknown"
888 };
889 
890 char * get_container_type(unsigned tindex)
891 {
892 	if (tindex >= ARRAY_SIZE(container_types))
893 		tindex = ARRAY_SIZE(container_types) - 1;
894 	return container_types[tindex];
895 }
896 
897 /* Function: setinqstr
898  *
899  * Arguments: [1] pointer to void [1] int
900  *
901  * Purpose: Sets SCSI inquiry data strings for vendor, product
902  * and revision level. Allows strings to be set in platform dependent
903  * files instead of in OS dependent driver source.
904  */
905 
906 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
907 {
908 	struct scsi_inq *str;
909 	struct aac_supplement_adapter_info *sup_adap_info;
910 
911 	sup_adap_info = &dev->supplement_adapter_info;
912 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
913 	memset(str, ' ', sizeof(*str));
914 
915 	if (sup_adap_info->adapter_type_text[0]) {
916 		char *cp = sup_adap_info->adapter_type_text;
917 		int c;
918 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
919 			inqstrcpy("SMC", str->vid);
920 		else {
921 			c = sizeof(str->vid);
922 			while (*cp && *cp != ' ' && --c)
923 				++cp;
924 			c = *cp;
925 			*cp = '\0';
926 			inqstrcpy(sup_adap_info->adapter_type_text, str->vid);
927 			*cp = c;
928 			while (*cp && *cp != ' ')
929 				++cp;
930 		}
931 		while (*cp == ' ')
932 			++cp;
933 		/* last six chars reserved for vol type */
934 		c = 0;
935 		if (strlen(cp) > sizeof(str->pid)) {
936 			c = cp[sizeof(str->pid)];
937 			cp[sizeof(str->pid)] = '\0';
938 		}
939 		inqstrcpy (cp, str->pid);
940 		if (c)
941 			cp[sizeof(str->pid)] = c;
942 	} else {
943 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
944 
945 		inqstrcpy (mp->vname, str->vid);
946 		/* last six chars reserved for vol type */
947 		inqstrcpy (mp->model, str->pid);
948 	}
949 
950 	if (tindex < ARRAY_SIZE(container_types)){
951 		char *findit = str->pid;
952 
953 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
954 		/* RAID is superfluous in the context of a RAID device */
955 		if (memcmp(findit-4, "RAID", 4) == 0)
956 			*(findit -= 4) = ' ';
957 		if (((findit - str->pid) + strlen(container_types[tindex]))
958 		 < (sizeof(str->pid) + sizeof(str->prl)))
959 			inqstrcpy (container_types[tindex], findit + 1);
960 	}
961 	inqstrcpy ("V1.0", str->prl);
962 }
963 
964 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
965 		struct aac_dev *dev, struct scsi_cmnd *scsicmd)
966 {
967 	int container;
968 
969 	vpdpage83data->type3.codeset = 1;
970 	vpdpage83data->type3.identifiertype = 3;
971 	vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
972 			- 4;
973 
974 	for (container = 0; container < dev->maximum_num_containers;
975 			container++) {
976 
977 		if (scmd_id(scsicmd) == container) {
978 			memcpy(vpdpage83data->type3.Identifier,
979 					dev->fsa_dev[container].identifier,
980 					16);
981 			break;
982 		}
983 	}
984 }
985 
986 static void get_container_serial_callback(void *context, struct fib * fibptr)
987 {
988 	struct aac_get_serial_resp * get_serial_reply;
989 	struct scsi_cmnd * scsicmd;
990 
991 	BUG_ON(fibptr == NULL);
992 
993 	scsicmd = (struct scsi_cmnd *) context;
994 	if (!aac_valid_context(scsicmd, fibptr))
995 		return;
996 
997 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
998 	/* Failure is irrelevant, using default value instead */
999 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1000 		/*Check to see if it's for VPD 0x83 or 0x80 */
1001 		if (scsicmd->cmnd[2] == 0x83) {
1002 			/* vpd page 0x83 - Device Identification Page */
1003 			struct aac_dev *dev;
1004 			int i;
1005 			struct tvpd_page83 vpdpage83data;
1006 
1007 			dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1008 
1009 			memset(((u8 *)&vpdpage83data), 0,
1010 			       sizeof(vpdpage83data));
1011 
1012 			/* DIRECT_ACCESS_DEVIC */
1013 			vpdpage83data.DeviceType = 0;
1014 			/* DEVICE_CONNECTED */
1015 			vpdpage83data.DeviceTypeQualifier = 0;
1016 			/* VPD_DEVICE_IDENTIFIERS */
1017 			vpdpage83data.PageCode = 0x83;
1018 			vpdpage83data.reserved = 0;
1019 			vpdpage83data.PageLength =
1020 				sizeof(vpdpage83data.type1) +
1021 				sizeof(vpdpage83data.type2);
1022 
1023 			/* VPD 83 Type 3 is not supported for ARC */
1024 			if (dev->sa_firmware)
1025 				vpdpage83data.PageLength +=
1026 				sizeof(vpdpage83data.type3);
1027 
1028 			/* T10 Vendor Identifier Field Format */
1029 			/* VpdcodesetAscii */
1030 			vpdpage83data.type1.codeset = 2;
1031 			/* VpdIdentifierTypeVendorId */
1032 			vpdpage83data.type1.identifiertype = 1;
1033 			vpdpage83data.type1.identifierlength =
1034 				sizeof(vpdpage83data.type1) - 4;
1035 
1036 			/* "ADAPTEC " for adaptec */
1037 			memcpy(vpdpage83data.type1.venid,
1038 				"ADAPTEC ",
1039 				sizeof(vpdpage83data.type1.venid));
1040 			memcpy(vpdpage83data.type1.productid,
1041 				"ARRAY           ",
1042 				sizeof(
1043 				vpdpage83data.type1.productid));
1044 
1045 			/* Convert to ascii based serial number.
1046 			 * The LSB is the the end.
1047 			 */
1048 			for (i = 0; i < 8; i++) {
1049 				u8 temp =
1050 					(u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1051 				if (temp  > 0x9) {
1052 					vpdpage83data.type1.serialnumber[i] =
1053 							'A' + (temp - 0xA);
1054 				} else {
1055 					vpdpage83data.type1.serialnumber[i] =
1056 							'0' + temp;
1057 				}
1058 			}
1059 
1060 			/* VpdCodeSetBinary */
1061 			vpdpage83data.type2.codeset = 1;
1062 			/* VpdidentifiertypeEUI64 */
1063 			vpdpage83data.type2.identifiertype = 2;
1064 			vpdpage83data.type2.identifierlength =
1065 				sizeof(vpdpage83data.type2) - 4;
1066 
1067 			vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1068 			vpdpage83data.type2.eu64id.venid[1] = 0;
1069 			vpdpage83data.type2.eu64id.venid[2] = 0;
1070 
1071 			vpdpage83data.type2.eu64id.Serial =
1072 							get_serial_reply->uid;
1073 			vpdpage83data.type2.eu64id.reserved = 0;
1074 
1075 			/*
1076 			 * VpdIdentifierTypeFCPHName
1077 			 * VPD 0x83 Type 3 not supported for ARC
1078 			 */
1079 			if (dev->sa_firmware) {
1080 				build_vpd83_type3(&vpdpage83data,
1081 						dev, scsicmd);
1082 			}
1083 
1084 			/* Move the inquiry data to the response buffer. */
1085 			scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1086 						 sizeof(vpdpage83data));
1087 		} else {
1088 			/* It must be for VPD 0x80 */
1089 			char sp[13];
1090 			/* EVPD bit set */
1091 			sp[0] = INQD_PDT_DA;
1092 			sp[1] = scsicmd->cmnd[2];
1093 			sp[2] = 0;
1094 			sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1095 				le32_to_cpu(get_serial_reply->uid));
1096 			scsi_sg_copy_from_buffer(scsicmd, sp,
1097 						 sizeof(sp));
1098 		}
1099 	}
1100 
1101 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1102 
1103 	aac_fib_complete(fibptr);
1104 	scsicmd->scsi_done(scsicmd);
1105 }
1106 
1107 /**
1108  *	aac_get_container_serial - get container serial, none blocking.
1109  */
1110 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1111 {
1112 	int status;
1113 	struct aac_get_serial *dinfo;
1114 	struct fib * cmd_fibcontext;
1115 	struct aac_dev * dev;
1116 
1117 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1118 
1119 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1120 
1121 	aac_fib_init(cmd_fibcontext);
1122 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1123 
1124 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
1125 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1126 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1127 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1128 
1129 	status = aac_fib_send(ContainerCommand,
1130 		  cmd_fibcontext,
1131 		  sizeof(struct aac_get_serial_resp),
1132 		  FsaNormal,
1133 		  0, 1,
1134 		  (fib_callback) get_container_serial_callback,
1135 		  (void *) scsicmd);
1136 
1137 	/*
1138 	 *	Check that the command queued to the controller
1139 	 */
1140 	if (status == -EINPROGRESS)
1141 		return 0;
1142 
1143 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1144 	aac_fib_complete(cmd_fibcontext);
1145 	return -1;
1146 }
1147 
1148 /* Function: setinqserial
1149  *
1150  * Arguments: [1] pointer to void [1] int
1151  *
1152  * Purpose: Sets SCSI Unit Serial number.
1153  *          This is a fake. We should read a proper
1154  *          serial number from the container. <SuSE>But
1155  *          without docs it's quite hard to do it :-)
1156  *          So this will have to do in the meantime.</SuSE>
1157  */
1158 
1159 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1160 {
1161 	/*
1162 	 *	This breaks array migration.
1163 	 */
1164 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1165 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
1166 }
1167 
1168 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1169 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1170 {
1171 	u8 *sense_buf = (u8 *)sense_data;
1172 	/* Sense data valid, err code 70h */
1173 	sense_buf[0] = 0x70; /* No info field */
1174 	sense_buf[1] = 0;	/* Segment number, always zero */
1175 
1176 	sense_buf[2] = sense_key;	/* Sense key */
1177 
1178 	sense_buf[12] = sense_code;	/* Additional sense code */
1179 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
1180 
1181 	if (sense_key == ILLEGAL_REQUEST) {
1182 		sense_buf[7] = 10;	/* Additional sense length */
1183 
1184 		sense_buf[15] = bit_pointer;
1185 		/* Illegal parameter is in the parameter block */
1186 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
1187 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
1188 		/* Illegal parameter is in the CDB block */
1189 		sense_buf[16] = field_pointer >> 8;	/* MSB */
1190 		sense_buf[17] = field_pointer;		/* LSB */
1191 	} else
1192 		sense_buf[7] = 6;	/* Additional sense length */
1193 }
1194 
1195 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1196 {
1197 	if (lba & 0xffffffff00000000LL) {
1198 		int cid = scmd_id(cmd);
1199 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1200 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1201 			SAM_STAT_CHECK_CONDITION;
1202 		set_sense(&dev->fsa_dev[cid].sense_data,
1203 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1204 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1205 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1206 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1207 			     SCSI_SENSE_BUFFERSIZE));
1208 		cmd->scsi_done(cmd);
1209 		return 1;
1210 	}
1211 	return 0;
1212 }
1213 
1214 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1215 {
1216 	return 0;
1217 }
1218 
1219 static void io_callback(void *context, struct fib * fibptr);
1220 
1221 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1222 {
1223 	struct aac_dev *dev = fib->dev;
1224 	u16 fibsize, command;
1225 	long ret;
1226 
1227 	aac_fib_init(fib);
1228 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1229 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1230 		!dev->sync_mode) {
1231 		struct aac_raw_io2 *readcmd2;
1232 		readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1233 		memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1234 		readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1235 		readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1236 		readcmd2->byteCount = cpu_to_le32(count *
1237 			dev->fsa_dev[scmd_id(cmd)].block_size);
1238 		readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1239 		readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1240 		ret = aac_build_sgraw2(cmd, readcmd2,
1241 				dev->scsi_host_ptr->sg_tablesize);
1242 		if (ret < 0)
1243 			return ret;
1244 		command = ContainerRawIo2;
1245 		fibsize = sizeof(struct aac_raw_io2) +
1246 			((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1247 	} else {
1248 		struct aac_raw_io *readcmd;
1249 		readcmd = (struct aac_raw_io *) fib_data(fib);
1250 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1251 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1252 		readcmd->count = cpu_to_le32(count *
1253 			dev->fsa_dev[scmd_id(cmd)].block_size);
1254 		readcmd->cid = cpu_to_le16(scmd_id(cmd));
1255 		readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1256 		readcmd->bpTotal = 0;
1257 		readcmd->bpComplete = 0;
1258 		ret = aac_build_sgraw(cmd, &readcmd->sg);
1259 		if (ret < 0)
1260 			return ret;
1261 		command = ContainerRawIo;
1262 		fibsize = sizeof(struct aac_raw_io) +
1263 			((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1264 	}
1265 
1266 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1267 	/*
1268 	 *	Now send the Fib to the adapter
1269 	 */
1270 	return aac_fib_send(command,
1271 			  fib,
1272 			  fibsize,
1273 			  FsaNormal,
1274 			  0, 1,
1275 			  (fib_callback) io_callback,
1276 			  (void *) cmd);
1277 }
1278 
1279 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1280 {
1281 	u16 fibsize;
1282 	struct aac_read64 *readcmd;
1283 	long ret;
1284 
1285 	aac_fib_init(fib);
1286 	readcmd = (struct aac_read64 *) fib_data(fib);
1287 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1288 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1289 	readcmd->sector_count = cpu_to_le16(count);
1290 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1291 	readcmd->pad   = 0;
1292 	readcmd->flags = 0;
1293 
1294 	ret = aac_build_sg64(cmd, &readcmd->sg);
1295 	if (ret < 0)
1296 		return ret;
1297 	fibsize = sizeof(struct aac_read64) +
1298 		((le32_to_cpu(readcmd->sg.count) - 1) *
1299 		 sizeof (struct sgentry64));
1300 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1301 				sizeof(struct aac_fibhdr)));
1302 	/*
1303 	 *	Now send the Fib to the adapter
1304 	 */
1305 	return aac_fib_send(ContainerCommand64,
1306 			  fib,
1307 			  fibsize,
1308 			  FsaNormal,
1309 			  0, 1,
1310 			  (fib_callback) io_callback,
1311 			  (void *) cmd);
1312 }
1313 
1314 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1315 {
1316 	u16 fibsize;
1317 	struct aac_read *readcmd;
1318 	struct aac_dev *dev = fib->dev;
1319 	long ret;
1320 
1321 	aac_fib_init(fib);
1322 	readcmd = (struct aac_read *) fib_data(fib);
1323 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1324 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1325 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1326 	readcmd->count = cpu_to_le32(count *
1327 		dev->fsa_dev[scmd_id(cmd)].block_size);
1328 
1329 	ret = aac_build_sg(cmd, &readcmd->sg);
1330 	if (ret < 0)
1331 		return ret;
1332 	fibsize = sizeof(struct aac_read) +
1333 			((le32_to_cpu(readcmd->sg.count) - 1) *
1334 			 sizeof (struct sgentry));
1335 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1336 				sizeof(struct aac_fibhdr)));
1337 	/*
1338 	 *	Now send the Fib to the adapter
1339 	 */
1340 	return aac_fib_send(ContainerCommand,
1341 			  fib,
1342 			  fibsize,
1343 			  FsaNormal,
1344 			  0, 1,
1345 			  (fib_callback) io_callback,
1346 			  (void *) cmd);
1347 }
1348 
1349 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1350 {
1351 	struct aac_dev *dev = fib->dev;
1352 	u16 fibsize, command;
1353 	long ret;
1354 
1355 	aac_fib_init(fib);
1356 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1357 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1358 		!dev->sync_mode) {
1359 		struct aac_raw_io2 *writecmd2;
1360 		writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1361 		memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1362 		writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1363 		writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1364 		writecmd2->byteCount = cpu_to_le32(count *
1365 			dev->fsa_dev[scmd_id(cmd)].block_size);
1366 		writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1367 		writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1368 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1369 			cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1370 			cpu_to_le16(RIO2_IO_TYPE_WRITE);
1371 		ret = aac_build_sgraw2(cmd, writecmd2,
1372 				dev->scsi_host_ptr->sg_tablesize);
1373 		if (ret < 0)
1374 			return ret;
1375 		command = ContainerRawIo2;
1376 		fibsize = sizeof(struct aac_raw_io2) +
1377 			((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1378 	} else {
1379 		struct aac_raw_io *writecmd;
1380 		writecmd = (struct aac_raw_io *) fib_data(fib);
1381 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1382 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1383 		writecmd->count = cpu_to_le32(count *
1384 			dev->fsa_dev[scmd_id(cmd)].block_size);
1385 		writecmd->cid = cpu_to_le16(scmd_id(cmd));
1386 		writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1387 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1388 			cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1389 			cpu_to_le16(RIO_TYPE_WRITE);
1390 		writecmd->bpTotal = 0;
1391 		writecmd->bpComplete = 0;
1392 		ret = aac_build_sgraw(cmd, &writecmd->sg);
1393 		if (ret < 0)
1394 			return ret;
1395 		command = ContainerRawIo;
1396 		fibsize = sizeof(struct aac_raw_io) +
1397 			((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1398 	}
1399 
1400 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1401 	/*
1402 	 *	Now send the Fib to the adapter
1403 	 */
1404 	return aac_fib_send(command,
1405 			  fib,
1406 			  fibsize,
1407 			  FsaNormal,
1408 			  0, 1,
1409 			  (fib_callback) io_callback,
1410 			  (void *) cmd);
1411 }
1412 
1413 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1414 {
1415 	u16 fibsize;
1416 	struct aac_write64 *writecmd;
1417 	long ret;
1418 
1419 	aac_fib_init(fib);
1420 	writecmd = (struct aac_write64 *) fib_data(fib);
1421 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1422 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1423 	writecmd->sector_count = cpu_to_le16(count);
1424 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1425 	writecmd->pad	= 0;
1426 	writecmd->flags	= 0;
1427 
1428 	ret = aac_build_sg64(cmd, &writecmd->sg);
1429 	if (ret < 0)
1430 		return ret;
1431 	fibsize = sizeof(struct aac_write64) +
1432 		((le32_to_cpu(writecmd->sg.count) - 1) *
1433 		 sizeof (struct sgentry64));
1434 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1435 				sizeof(struct aac_fibhdr)));
1436 	/*
1437 	 *	Now send the Fib to the adapter
1438 	 */
1439 	return aac_fib_send(ContainerCommand64,
1440 			  fib,
1441 			  fibsize,
1442 			  FsaNormal,
1443 			  0, 1,
1444 			  (fib_callback) io_callback,
1445 			  (void *) cmd);
1446 }
1447 
1448 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1449 {
1450 	u16 fibsize;
1451 	struct aac_write *writecmd;
1452 	struct aac_dev *dev = fib->dev;
1453 	long ret;
1454 
1455 	aac_fib_init(fib);
1456 	writecmd = (struct aac_write *) fib_data(fib);
1457 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1458 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1459 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1460 	writecmd->count = cpu_to_le32(count *
1461 		dev->fsa_dev[scmd_id(cmd)].block_size);
1462 	writecmd->sg.count = cpu_to_le32(1);
1463 	/* ->stable is not used - it did mean which type of write */
1464 
1465 	ret = aac_build_sg(cmd, &writecmd->sg);
1466 	if (ret < 0)
1467 		return ret;
1468 	fibsize = sizeof(struct aac_write) +
1469 		((le32_to_cpu(writecmd->sg.count) - 1) *
1470 		 sizeof (struct sgentry));
1471 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1472 				sizeof(struct aac_fibhdr)));
1473 	/*
1474 	 *	Now send the Fib to the adapter
1475 	 */
1476 	return aac_fib_send(ContainerCommand,
1477 			  fib,
1478 			  fibsize,
1479 			  FsaNormal,
1480 			  0, 1,
1481 			  (fib_callback) io_callback,
1482 			  (void *) cmd);
1483 }
1484 
1485 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1486 {
1487 	struct aac_srb * srbcmd;
1488 	u32 flag;
1489 	u32 timeout;
1490 
1491 	aac_fib_init(fib);
1492 	switch(cmd->sc_data_direction){
1493 	case DMA_TO_DEVICE:
1494 		flag = SRB_DataOut;
1495 		break;
1496 	case DMA_BIDIRECTIONAL:
1497 		flag = SRB_DataIn | SRB_DataOut;
1498 		break;
1499 	case DMA_FROM_DEVICE:
1500 		flag = SRB_DataIn;
1501 		break;
1502 	case DMA_NONE:
1503 	default:	/* shuts up some versions of gcc */
1504 		flag = SRB_NoDataXfer;
1505 		break;
1506 	}
1507 
1508 	srbcmd = (struct aac_srb*) fib_data(fib);
1509 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1510 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1511 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1512 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1513 	srbcmd->flags    = cpu_to_le32(flag);
1514 	timeout = cmd->request->timeout/HZ;
1515 	if (timeout == 0)
1516 		timeout = 1;
1517 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1518 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1519 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1520 	return srbcmd;
1521 }
1522 
1523 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1524 							struct scsi_cmnd *cmd)
1525 {
1526 	struct aac_hba_cmd_req *hbacmd;
1527 	struct aac_dev *dev;
1528 	int bus, target;
1529 	u64 address;
1530 
1531 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1532 
1533 	hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1534 	memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
1535 	/* iu_type is a parameter of aac_hba_send */
1536 	switch (cmd->sc_data_direction) {
1537 	case DMA_TO_DEVICE:
1538 		hbacmd->byte1 = 2;
1539 		break;
1540 	case DMA_FROM_DEVICE:
1541 	case DMA_BIDIRECTIONAL:
1542 		hbacmd->byte1 = 1;
1543 		break;
1544 	case DMA_NONE:
1545 	default:
1546 		break;
1547 	}
1548 	hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1549 
1550 	bus = aac_logical_to_phys(scmd_channel(cmd));
1551 	target = scmd_id(cmd);
1552 	hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1553 
1554 	/* we fill in reply_qid later in aac_src_deliver_message */
1555 	/* we fill in iu_type, request_id later in aac_hba_send */
1556 	/* we fill in emb_data_desc_count later in aac_build_sghba */
1557 
1558 	memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1559 	hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1560 
1561 	address = (u64)fib->hw_error_pa;
1562 	hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1563 	hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1564 	hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1565 
1566 	return hbacmd;
1567 }
1568 
1569 static void aac_srb_callback(void *context, struct fib * fibptr);
1570 
1571 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1572 {
1573 	u16 fibsize;
1574 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1575 	long ret;
1576 
1577 	ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1578 	if (ret < 0)
1579 		return ret;
1580 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1581 
1582 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1583 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1584 	/*
1585 	 *	Build Scatter/Gather list
1586 	 */
1587 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1588 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1589 		 sizeof (struct sgentry64));
1590 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1591 				sizeof(struct aac_fibhdr)));
1592 
1593 	/*
1594 	 *	Now send the Fib to the adapter
1595 	 */
1596 	return aac_fib_send(ScsiPortCommand64, fib,
1597 				fibsize, FsaNormal, 0, 1,
1598 				  (fib_callback) aac_srb_callback,
1599 				  (void *) cmd);
1600 }
1601 
1602 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1603 {
1604 	u16 fibsize;
1605 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1606 	long ret;
1607 
1608 	ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1609 	if (ret < 0)
1610 		return ret;
1611 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1612 
1613 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1614 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1615 	/*
1616 	 *	Build Scatter/Gather list
1617 	 */
1618 	fibsize = sizeof (struct aac_srb) +
1619 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1620 		 sizeof (struct sgentry));
1621 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1622 				sizeof(struct aac_fibhdr)));
1623 
1624 	/*
1625 	 *	Now send the Fib to the adapter
1626 	 */
1627 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1628 				  (fib_callback) aac_srb_callback, (void *) cmd);
1629 }
1630 
1631 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1632 {
1633 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1634 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1635 		return FAILED;
1636 	return aac_scsi_32(fib, cmd);
1637 }
1638 
1639 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1640 {
1641 	struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1642 	struct aac_dev *dev;
1643 	long ret;
1644 
1645 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1646 
1647 	ret = aac_build_sghba(cmd, hbacmd,
1648 		dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1649 	if (ret < 0)
1650 		return ret;
1651 
1652 	/*
1653 	 *	Now send the HBA command to the adapter
1654 	 */
1655 	fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1656 		sizeof(struct aac_hba_sgl);
1657 
1658 	return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1659 				  (fib_callback) aac_hba_callback,
1660 				  (void *) cmd);
1661 }
1662 
1663 int aac_issue_bmic_identify(struct aac_dev *dev, u32 bus, u32 target)
1664 {
1665 	struct fib *fibptr;
1666 	struct aac_srb *srbcmd;
1667 	struct sgmap64 *sg64;
1668 	struct aac_ciss_identify_pd *identify_resp;
1669 	dma_addr_t addr;
1670 	u32 vbus, vid;
1671 	u16 fibsize, datasize;
1672 	int rcode = -ENOMEM;
1673 
1674 
1675 	fibptr = aac_fib_alloc(dev);
1676 	if (!fibptr)
1677 		goto out;
1678 
1679 	fibsize = sizeof(struct aac_srb) -
1680 			sizeof(struct sgentry) + sizeof(struct sgentry64);
1681 	datasize = sizeof(struct aac_ciss_identify_pd);
1682 
1683 	identify_resp = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
1684 					   GFP_KERNEL);
1685 	if (!identify_resp)
1686 		goto fib_free_ptr;
1687 
1688 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
1689 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
1690 
1691 	aac_fib_init(fibptr);
1692 
1693 	srbcmd = (struct aac_srb *) fib_data(fibptr);
1694 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1695 	srbcmd->channel  = cpu_to_le32(vbus);
1696 	srbcmd->id       = cpu_to_le32(vid);
1697 	srbcmd->lun      = 0;
1698 	srbcmd->flags    = cpu_to_le32(SRB_DataIn);
1699 	srbcmd->timeout  = cpu_to_le32(10);
1700 	srbcmd->retry_limit = 0;
1701 	srbcmd->cdb_size = cpu_to_le32(12);
1702 	srbcmd->count = cpu_to_le32(datasize);
1703 
1704 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1705 	srbcmd->cdb[0] = 0x26;
1706 	srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1707 	srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1708 
1709 	sg64 = (struct sgmap64 *)&srbcmd->sg;
1710 	sg64->count = cpu_to_le32(1);
1711 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
1712 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
1713 	sg64->sg[0].count = cpu_to_le32(datasize);
1714 
1715 	rcode = aac_fib_send(ScsiPortCommand64,
1716 		fibptr, fibsize, FsaNormal, 1, 1, NULL, NULL);
1717 
1718 	if (identify_resp->current_queue_depth_limit <= 0 ||
1719 		identify_resp->current_queue_depth_limit > 32)
1720 		dev->hba_map[bus][target].qd_limit = 32;
1721 	else
1722 		dev->hba_map[bus][target].qd_limit =
1723 			identify_resp->current_queue_depth_limit;
1724 
1725 	dma_free_coherent(&dev->pdev->dev, datasize, identify_resp, addr);
1726 
1727 	aac_fib_complete(fibptr);
1728 
1729 fib_free_ptr:
1730 	aac_fib_free(fibptr);
1731 out:
1732 	return rcode;
1733 }
1734 
1735 /**
1736  *	aac_update hba_map()-	update current hba map with data from FW
1737  *	@dev:	aac_dev structure
1738  *	@phys_luns: FW information from report phys luns
1739  *
1740  *	Update our hba map with the information gathered from the FW
1741  */
1742 void aac_update_hba_map(struct aac_dev *dev,
1743 		struct aac_ciss_phys_luns_resp *phys_luns, int rescan)
1744 {
1745 	/* ok and extended reporting */
1746 	u32 lun_count, nexus;
1747 	u32 i, bus, target;
1748 	u8 expose_flag, attribs;
1749 	u8 devtype;
1750 
1751 	lun_count = ((phys_luns->list_length[0] << 24)
1752 			+ (phys_luns->list_length[1] << 16)
1753 			+ (phys_luns->list_length[2] << 8)
1754 			+ (phys_luns->list_length[3])) / 24;
1755 
1756 	for (i = 0; i < lun_count; ++i) {
1757 
1758 		bus = phys_luns->lun[i].level2[1] & 0x3f;
1759 		target = phys_luns->lun[i].level2[0];
1760 		expose_flag = phys_luns->lun[i].bus >> 6;
1761 		attribs = phys_luns->lun[i].node_ident[9];
1762 		nexus = *((u32 *) &phys_luns->lun[i].node_ident[12]);
1763 
1764 		if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1765 			continue;
1766 
1767 		dev->hba_map[bus][target].expose = expose_flag;
1768 
1769 		if (expose_flag != 0) {
1770 			devtype = AAC_DEVTYPE_RAID_MEMBER;
1771 			goto update_devtype;
1772 		}
1773 
1774 		if (nexus != 0 && (attribs & 8)) {
1775 			devtype = AAC_DEVTYPE_NATIVE_RAW;
1776 			dev->hba_map[bus][target].rmw_nexus =
1777 					nexus;
1778 		} else
1779 			devtype = AAC_DEVTYPE_ARC_RAW;
1780 
1781 		if (devtype != AAC_DEVTYPE_NATIVE_RAW)
1782 			goto update_devtype;
1783 
1784 		if (aac_issue_bmic_identify(dev, bus, target) < 0)
1785 			dev->hba_map[bus][target].qd_limit = 32;
1786 
1787 update_devtype:
1788 		if (rescan == AAC_INIT)
1789 			dev->hba_map[bus][target].devtype = devtype;
1790 		else
1791 			dev->hba_map[bus][target].new_devtype = devtype;
1792 	}
1793 }
1794 
1795 /**
1796  *	aac_report_phys_luns()	Process topology change
1797  *	@dev:		aac_dev structure
1798  *	@fibptr:	fib pointer
1799  *
1800  *	Execute a CISS REPORT PHYS LUNS and process the results into
1801  *	the current hba_map.
1802  */
1803 int aac_report_phys_luns(struct aac_dev *dev, struct fib *fibptr, int rescan)
1804 {
1805 	int fibsize, datasize;
1806 	struct aac_ciss_phys_luns_resp *phys_luns;
1807 	struct aac_srb *srbcmd;
1808 	struct sgmap64 *sg64;
1809 	dma_addr_t addr;
1810 	u32 vbus, vid;
1811 	int rcode = 0;
1812 
1813 	/* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1814 	fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry)
1815 			+ sizeof(struct sgentry64);
1816 	datasize = sizeof(struct aac_ciss_phys_luns_resp)
1817 			+ (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1818 
1819 	phys_luns = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
1820 				       GFP_KERNEL);
1821 	if (phys_luns == NULL) {
1822 		rcode = -ENOMEM;
1823 		goto err_out;
1824 	}
1825 
1826 	vbus = (u32) le16_to_cpu(
1827 			dev->supplement_adapter_info.virt_device_bus);
1828 	vid = (u32) le16_to_cpu(
1829 			dev->supplement_adapter_info.virt_device_target);
1830 
1831 	aac_fib_init(fibptr);
1832 
1833 	srbcmd = (struct aac_srb *) fib_data(fibptr);
1834 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1835 	srbcmd->channel = cpu_to_le32(vbus);
1836 	srbcmd->id = cpu_to_le32(vid);
1837 	srbcmd->lun = 0;
1838 	srbcmd->flags = cpu_to_le32(SRB_DataIn);
1839 	srbcmd->timeout = cpu_to_le32(10);
1840 	srbcmd->retry_limit = 0;
1841 	srbcmd->cdb_size = cpu_to_le32(12);
1842 	srbcmd->count = cpu_to_le32(datasize);
1843 
1844 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1845 	srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1846 	srbcmd->cdb[1] = 2; /* extended reporting */
1847 	srbcmd->cdb[8] = (u8)(datasize >> 8);
1848 	srbcmd->cdb[9] = (u8)(datasize);
1849 
1850 	sg64 = (struct sgmap64 *) &srbcmd->sg;
1851 	sg64->count = cpu_to_le32(1);
1852 	sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1853 	sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1854 	sg64->sg[0].count = cpu_to_le32(datasize);
1855 
1856 	rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize,
1857 			FsaNormal, 1, 1, NULL, NULL);
1858 
1859 	/* analyse data */
1860 	if (rcode >= 0 && phys_luns->resp_flag == 2) {
1861 		/* ok and extended reporting */
1862 		aac_update_hba_map(dev, phys_luns, rescan);
1863 	}
1864 
1865 	dma_free_coherent(&dev->pdev->dev, datasize, phys_luns, addr);
1866 err_out:
1867 	return rcode;
1868 }
1869 
1870 int aac_get_adapter_info(struct aac_dev* dev)
1871 {
1872 	struct fib* fibptr;
1873 	int rcode;
1874 	u32 tmp, bus, target;
1875 	struct aac_adapter_info *info;
1876 	struct aac_bus_info *command;
1877 	struct aac_bus_info_response *bus_info;
1878 
1879 	if (!(fibptr = aac_fib_alloc(dev)))
1880 		return -ENOMEM;
1881 
1882 	aac_fib_init(fibptr);
1883 	info = (struct aac_adapter_info *) fib_data(fibptr);
1884 	memset(info,0,sizeof(*info));
1885 
1886 	rcode = aac_fib_send(RequestAdapterInfo,
1887 			 fibptr,
1888 			 sizeof(*info),
1889 			 FsaNormal,
1890 			 -1, 1, /* First `interrupt' command uses special wait */
1891 			 NULL,
1892 			 NULL);
1893 
1894 	if (rcode < 0) {
1895 		/* FIB should be freed only after
1896 		 * getting the response from the F/W */
1897 		if (rcode != -ERESTARTSYS) {
1898 			aac_fib_complete(fibptr);
1899 			aac_fib_free(fibptr);
1900 		}
1901 		return rcode;
1902 	}
1903 	memcpy(&dev->adapter_info, info, sizeof(*info));
1904 
1905 	dev->supplement_adapter_info.virt_device_bus = 0xffff;
1906 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1907 		struct aac_supplement_adapter_info * sinfo;
1908 
1909 		aac_fib_init(fibptr);
1910 
1911 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1912 
1913 		memset(sinfo,0,sizeof(*sinfo));
1914 
1915 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1916 				 fibptr,
1917 				 sizeof(*sinfo),
1918 				 FsaNormal,
1919 				 1, 1,
1920 				 NULL,
1921 				 NULL);
1922 
1923 		if (rcode >= 0)
1924 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1925 		if (rcode == -ERESTARTSYS) {
1926 			fibptr = aac_fib_alloc(dev);
1927 			if (!fibptr)
1928 				return -ENOMEM;
1929 		}
1930 
1931 	}
1932 
1933 	/* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
1934 	for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1935 		for (target = 0; target < AAC_MAX_TARGETS; target++) {
1936 			dev->hba_map[bus][target].devtype = 0;
1937 			dev->hba_map[bus][target].qd_limit = 0;
1938 		}
1939 	}
1940 
1941 	/*
1942 	 * GetBusInfo
1943 	 */
1944 
1945 	aac_fib_init(fibptr);
1946 
1947 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1948 
1949 	memset(bus_info, 0, sizeof(*bus_info));
1950 
1951 	command = (struct aac_bus_info *)bus_info;
1952 
1953 	command->Command = cpu_to_le32(VM_Ioctl);
1954 	command->ObjType = cpu_to_le32(FT_DRIVE);
1955 	command->MethodId = cpu_to_le32(1);
1956 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1957 
1958 	rcode = aac_fib_send(ContainerCommand,
1959 			 fibptr,
1960 			 sizeof (*bus_info),
1961 			 FsaNormal,
1962 			 1, 1,
1963 			 NULL, NULL);
1964 
1965 	/* reasoned default */
1966 	dev->maximum_num_physicals = 16;
1967 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1968 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1969 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1970 	}
1971 
1972 	if (!dev->sync_mode && dev->sa_firmware &&
1973 		dev->supplement_adapter_info.virt_device_bus != 0xffff) {
1974 		/* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */
1975 		rcode = aac_report_phys_luns(dev, fibptr, AAC_INIT);
1976 	}
1977 
1978 	if (!dev->in_reset) {
1979 		char buffer[16];
1980 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1981 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1982 			dev->name,
1983 			dev->id,
1984 			tmp>>24,
1985 			(tmp>>16)&0xff,
1986 			tmp&0xff,
1987 			le32_to_cpu(dev->adapter_info.kernelbuild),
1988 			(int)sizeof(dev->supplement_adapter_info.build_date),
1989 			dev->supplement_adapter_info.build_date);
1990 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1991 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1992 			dev->name, dev->id,
1993 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1994 			le32_to_cpu(dev->adapter_info.monitorbuild));
1995 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1996 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1997 			dev->name, dev->id,
1998 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1999 			le32_to_cpu(dev->adapter_info.biosbuild));
2000 		buffer[0] = '\0';
2001 		if (aac_get_serial_number(
2002 		  shost_to_class(dev->scsi_host_ptr), buffer))
2003 			printk(KERN_INFO "%s%d: serial %s",
2004 			  dev->name, dev->id, buffer);
2005 		if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2006 			printk(KERN_INFO "%s%d: TSID %.*s\n",
2007 			  dev->name, dev->id,
2008 			  (int)sizeof(dev->supplement_adapter_info
2009 							.vpd_info.tsid),
2010 				dev->supplement_adapter_info.vpd_info.tsid);
2011 		}
2012 		if (!aac_check_reset || ((aac_check_reset == 1) &&
2013 		  (dev->supplement_adapter_info.supported_options2 &
2014 		  AAC_OPTION_IGNORE_RESET))) {
2015 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2016 			  dev->name, dev->id);
2017 		}
2018 	}
2019 
2020 	dev->cache_protected = 0;
2021 	dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2022 		AAC_FEATURE_JBOD) != 0);
2023 	dev->nondasd_support = 0;
2024 	dev->raid_scsi_mode = 0;
2025 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
2026 		dev->nondasd_support = 1;
2027 
2028 	/*
2029 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2030 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2031 	 * force nondasd support on. If we decide to allow the non-dasd flag
2032 	 * additional changes changes will have to be made to support
2033 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
2034 	 * changed to support the new dev->raid_scsi_mode flag instead of
2035 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2036 	 * function aac_detect will have to be modified where it sets up the
2037 	 * max number of channels based on the aac->nondasd_support flag only.
2038 	 */
2039 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2040 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2041 		dev->nondasd_support = 1;
2042 		dev->raid_scsi_mode = 1;
2043 	}
2044 	if (dev->raid_scsi_mode != 0)
2045 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2046 				dev->name, dev->id);
2047 
2048 	if (nondasd != -1)
2049 		dev->nondasd_support = (nondasd!=0);
2050 	if (dev->nondasd_support && !dev->in_reset)
2051 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2052 
2053 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2054 		dev->needs_dac = 1;
2055 	dev->dac_support = 0;
2056 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2057 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2058 		if (!dev->in_reset)
2059 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2060 				dev->name, dev->id);
2061 		dev->dac_support = 1;
2062 	}
2063 
2064 	if(dacmode != -1) {
2065 		dev->dac_support = (dacmode!=0);
2066 	}
2067 
2068 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2069 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
2070 		& AAC_QUIRK_SCSI_32)) {
2071 		dev->nondasd_support = 0;
2072 		dev->jbod = 0;
2073 		expose_physicals = 0;
2074 	}
2075 
2076 	if (dev->dac_support) {
2077 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2078 			if (!dev->in_reset)
2079 				dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2080 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2081 			dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2082 			dev->dac_support = 0;
2083 		} else {
2084 			dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2085 			rcode = -ENOMEM;
2086 		}
2087 	}
2088 	/*
2089 	 * Deal with configuring for the individualized limits of each packet
2090 	 * interface.
2091 	 */
2092 	dev->a_ops.adapter_scsi = (dev->dac_support)
2093 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2094 				? aac_scsi_32_64
2095 				: aac_scsi_64)
2096 				: aac_scsi_32;
2097 	if (dev->raw_io_interface) {
2098 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
2099 					? aac_bounds_64
2100 					: aac_bounds_32;
2101 		dev->a_ops.adapter_read = aac_read_raw_io;
2102 		dev->a_ops.adapter_write = aac_write_raw_io;
2103 	} else {
2104 		dev->a_ops.adapter_bounds = aac_bounds_32;
2105 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2106 			sizeof(struct aac_fibhdr) -
2107 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
2108 				sizeof(struct sgentry);
2109 		if (dev->dac_support) {
2110 			dev->a_ops.adapter_read = aac_read_block64;
2111 			dev->a_ops.adapter_write = aac_write_block64;
2112 			/*
2113 			 * 38 scatter gather elements
2114 			 */
2115 			dev->scsi_host_ptr->sg_tablesize =
2116 				(dev->max_fib_size -
2117 				sizeof(struct aac_fibhdr) -
2118 				sizeof(struct aac_write64) +
2119 				sizeof(struct sgentry64)) /
2120 					sizeof(struct sgentry64);
2121 		} else {
2122 			dev->a_ops.adapter_read = aac_read_block;
2123 			dev->a_ops.adapter_write = aac_write_block;
2124 		}
2125 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2126 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2127 			/*
2128 			 * Worst case size that could cause sg overflow when
2129 			 * we break up SG elements that are larger than 64KB.
2130 			 * Would be nice if we could tell the SCSI layer what
2131 			 * the maximum SG element size can be. Worst case is
2132 			 * (sg_tablesize-1) 4KB elements with one 64KB
2133 			 * element.
2134 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
2135 			 */
2136 			dev->scsi_host_ptr->max_sectors =
2137 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2138 		}
2139 	}
2140 	if (!dev->sync_mode && dev->sa_firmware &&
2141 		dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2142 		dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2143 			HBA_MAX_SG_SEPARATE;
2144 
2145 	/* FIB should be freed only after getting the response from the F/W */
2146 	if (rcode != -ERESTARTSYS) {
2147 		aac_fib_complete(fibptr);
2148 		aac_fib_free(fibptr);
2149 	}
2150 
2151 	return rcode;
2152 }
2153 
2154 
2155 static void io_callback(void *context, struct fib * fibptr)
2156 {
2157 	struct aac_dev *dev;
2158 	struct aac_read_reply *readreply;
2159 	struct scsi_cmnd *scsicmd;
2160 	u32 cid;
2161 
2162 	scsicmd = (struct scsi_cmnd *) context;
2163 
2164 	if (!aac_valid_context(scsicmd, fibptr))
2165 		return;
2166 
2167 	dev = fibptr->dev;
2168 	cid = scmd_id(scsicmd);
2169 
2170 	if (nblank(dprintk(x))) {
2171 		u64 lba;
2172 		switch (scsicmd->cmnd[0]) {
2173 		case WRITE_6:
2174 		case READ_6:
2175 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2176 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2177 			break;
2178 		case WRITE_16:
2179 		case READ_16:
2180 			lba = ((u64)scsicmd->cmnd[2] << 56) |
2181 			      ((u64)scsicmd->cmnd[3] << 48) |
2182 			      ((u64)scsicmd->cmnd[4] << 40) |
2183 			      ((u64)scsicmd->cmnd[5] << 32) |
2184 			      ((u64)scsicmd->cmnd[6] << 24) |
2185 			      (scsicmd->cmnd[7] << 16) |
2186 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2187 			break;
2188 		case WRITE_12:
2189 		case READ_12:
2190 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2191 			      (scsicmd->cmnd[3] << 16) |
2192 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2193 			break;
2194 		default:
2195 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2196 			       (scsicmd->cmnd[3] << 16) |
2197 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2198 			break;
2199 		}
2200 		printk(KERN_DEBUG
2201 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2202 		  smp_processor_id(), (unsigned long long)lba, jiffies);
2203 	}
2204 
2205 	BUG_ON(fibptr == NULL);
2206 
2207 	scsi_dma_unmap(scsicmd);
2208 
2209 	readreply = (struct aac_read_reply *)fib_data(fibptr);
2210 	switch (le32_to_cpu(readreply->status)) {
2211 	case ST_OK:
2212 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2213 			SAM_STAT_GOOD;
2214 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2215 		break;
2216 	case ST_NOT_READY:
2217 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2218 			SAM_STAT_CHECK_CONDITION;
2219 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2220 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2221 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2222 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2223 			     SCSI_SENSE_BUFFERSIZE));
2224 		break;
2225 	case ST_MEDERR:
2226 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2227 			SAM_STAT_CHECK_CONDITION;
2228 		set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2229 		  SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2230 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2231 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2232 			     SCSI_SENSE_BUFFERSIZE));
2233 		break;
2234 	default:
2235 #ifdef AAC_DETAILED_STATUS_INFO
2236 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2237 		  le32_to_cpu(readreply->status));
2238 #endif
2239 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2240 			SAM_STAT_CHECK_CONDITION;
2241 		set_sense(&dev->fsa_dev[cid].sense_data,
2242 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2243 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2244 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2245 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2246 			     SCSI_SENSE_BUFFERSIZE));
2247 		break;
2248 	}
2249 	aac_fib_complete(fibptr);
2250 
2251 	scsicmd->scsi_done(scsicmd);
2252 }
2253 
2254 static int aac_read(struct scsi_cmnd * scsicmd)
2255 {
2256 	u64 lba;
2257 	u32 count;
2258 	int status;
2259 	struct aac_dev *dev;
2260 	struct fib * cmd_fibcontext;
2261 	int cid;
2262 
2263 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2264 	/*
2265 	 *	Get block address and transfer length
2266 	 */
2267 	switch (scsicmd->cmnd[0]) {
2268 	case READ_6:
2269 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2270 
2271 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2272 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2273 		count = scsicmd->cmnd[4];
2274 
2275 		if (count == 0)
2276 			count = 256;
2277 		break;
2278 	case READ_16:
2279 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2280 
2281 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2282 			((u64)scsicmd->cmnd[3] << 48) |
2283 			((u64)scsicmd->cmnd[4] << 40) |
2284 			((u64)scsicmd->cmnd[5] << 32) |
2285 			((u64)scsicmd->cmnd[6] << 24) |
2286 			(scsicmd->cmnd[7] << 16) |
2287 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2288 		count = (scsicmd->cmnd[10] << 24) |
2289 			(scsicmd->cmnd[11] << 16) |
2290 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2291 		break;
2292 	case READ_12:
2293 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2294 
2295 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2296 			(scsicmd->cmnd[3] << 16) |
2297 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2298 		count = (scsicmd->cmnd[6] << 24) |
2299 			(scsicmd->cmnd[7] << 16) |
2300 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2301 		break;
2302 	default:
2303 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2304 
2305 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2306 			(scsicmd->cmnd[3] << 16) |
2307 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2308 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2309 		break;
2310 	}
2311 
2312 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2313 		cid = scmd_id(scsicmd);
2314 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2315 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2316 			SAM_STAT_CHECK_CONDITION;
2317 		set_sense(&dev->fsa_dev[cid].sense_data,
2318 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2319 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2320 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2321 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2322 			     SCSI_SENSE_BUFFERSIZE));
2323 		scsicmd->scsi_done(scsicmd);
2324 		return 1;
2325 	}
2326 
2327 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2328 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2329 	if (aac_adapter_bounds(dev,scsicmd,lba))
2330 		return 0;
2331 	/*
2332 	 *	Alocate and initialize a Fib
2333 	 */
2334 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2335 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2336 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2337 
2338 	/*
2339 	 *	Check that the command queued to the controller
2340 	 */
2341 	if (status == -EINPROGRESS)
2342 		return 0;
2343 
2344 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2345 	/*
2346 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2347 	 */
2348 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2349 	scsicmd->scsi_done(scsicmd);
2350 	aac_fib_complete(cmd_fibcontext);
2351 	aac_fib_free(cmd_fibcontext);
2352 	return 0;
2353 }
2354 
2355 static int aac_write(struct scsi_cmnd * scsicmd)
2356 {
2357 	u64 lba;
2358 	u32 count;
2359 	int fua;
2360 	int status;
2361 	struct aac_dev *dev;
2362 	struct fib * cmd_fibcontext;
2363 	int cid;
2364 
2365 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2366 	/*
2367 	 *	Get block address and transfer length
2368 	 */
2369 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
2370 	{
2371 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2372 		count = scsicmd->cmnd[4];
2373 		if (count == 0)
2374 			count = 256;
2375 		fua = 0;
2376 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2377 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2378 
2379 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2380 			((u64)scsicmd->cmnd[3] << 48) |
2381 			((u64)scsicmd->cmnd[4] << 40) |
2382 			((u64)scsicmd->cmnd[5] << 32) |
2383 			((u64)scsicmd->cmnd[6] << 24) |
2384 			(scsicmd->cmnd[7] << 16) |
2385 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2386 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2387 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2388 		fua = scsicmd->cmnd[1] & 0x8;
2389 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2390 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2391 
2392 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2393 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2394 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2395 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2396 		fua = scsicmd->cmnd[1] & 0x8;
2397 	} else {
2398 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2399 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2400 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2401 		fua = scsicmd->cmnd[1] & 0x8;
2402 	}
2403 
2404 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2405 		cid = scmd_id(scsicmd);
2406 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2407 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2408 			SAM_STAT_CHECK_CONDITION;
2409 		set_sense(&dev->fsa_dev[cid].sense_data,
2410 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2411 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2412 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2413 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2414 			     SCSI_SENSE_BUFFERSIZE));
2415 		scsicmd->scsi_done(scsicmd);
2416 		return 1;
2417 	}
2418 
2419 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2420 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2421 	if (aac_adapter_bounds(dev,scsicmd,lba))
2422 		return 0;
2423 	/*
2424 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2425 	 */
2426 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2427 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2428 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2429 
2430 	/*
2431 	 *	Check that the command queued to the controller
2432 	 */
2433 	if (status == -EINPROGRESS)
2434 		return 0;
2435 
2436 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2437 	/*
2438 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2439 	 */
2440 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2441 	scsicmd->scsi_done(scsicmd);
2442 
2443 	aac_fib_complete(cmd_fibcontext);
2444 	aac_fib_free(cmd_fibcontext);
2445 	return 0;
2446 }
2447 
2448 static void synchronize_callback(void *context, struct fib *fibptr)
2449 {
2450 	struct aac_synchronize_reply *synchronizereply;
2451 	struct scsi_cmnd *cmd;
2452 
2453 	cmd = context;
2454 
2455 	if (!aac_valid_context(cmd, fibptr))
2456 		return;
2457 
2458 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2459 				smp_processor_id(), jiffies));
2460 	BUG_ON(fibptr == NULL);
2461 
2462 
2463 	synchronizereply = fib_data(fibptr);
2464 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
2465 		cmd->result = DID_OK << 16 |
2466 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2467 	else {
2468 		struct scsi_device *sdev = cmd->device;
2469 		struct aac_dev *dev = fibptr->dev;
2470 		u32 cid = sdev_id(sdev);
2471 		printk(KERN_WARNING
2472 		     "synchronize_callback: synchronize failed, status = %d\n",
2473 		     le32_to_cpu(synchronizereply->status));
2474 		cmd->result = DID_OK << 16 |
2475 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2476 		set_sense(&dev->fsa_dev[cid].sense_data,
2477 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2478 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2479 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2480 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2481 			     SCSI_SENSE_BUFFERSIZE));
2482 	}
2483 
2484 	aac_fib_complete(fibptr);
2485 	aac_fib_free(fibptr);
2486 	cmd->scsi_done(cmd);
2487 }
2488 
2489 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2490 {
2491 	int status;
2492 	struct fib *cmd_fibcontext;
2493 	struct aac_synchronize *synchronizecmd;
2494 	struct scsi_cmnd *cmd;
2495 	struct scsi_device *sdev = scsicmd->device;
2496 	int active = 0;
2497 	struct aac_dev *aac;
2498 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2499 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2500 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2501 	unsigned long flags;
2502 
2503 	/*
2504 	 * Wait for all outstanding queued commands to complete to this
2505 	 * specific target (block).
2506 	 */
2507 	spin_lock_irqsave(&sdev->list_lock, flags);
2508 	list_for_each_entry(cmd, &sdev->cmd_list, list)
2509 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2510 			u64 cmnd_lba;
2511 			u32 cmnd_count;
2512 
2513 			if (cmd->cmnd[0] == WRITE_6) {
2514 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2515 					(cmd->cmnd[2] << 8) |
2516 					cmd->cmnd[3];
2517 				cmnd_count = cmd->cmnd[4];
2518 				if (cmnd_count == 0)
2519 					cmnd_count = 256;
2520 			} else if (cmd->cmnd[0] == WRITE_16) {
2521 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2522 					((u64)cmd->cmnd[3] << 48) |
2523 					((u64)cmd->cmnd[4] << 40) |
2524 					((u64)cmd->cmnd[5] << 32) |
2525 					((u64)cmd->cmnd[6] << 24) |
2526 					(cmd->cmnd[7] << 16) |
2527 					(cmd->cmnd[8] << 8) |
2528 					cmd->cmnd[9];
2529 				cmnd_count = (cmd->cmnd[10] << 24) |
2530 					(cmd->cmnd[11] << 16) |
2531 					(cmd->cmnd[12] << 8) |
2532 					cmd->cmnd[13];
2533 			} else if (cmd->cmnd[0] == WRITE_12) {
2534 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2535 					(cmd->cmnd[3] << 16) |
2536 					(cmd->cmnd[4] << 8) |
2537 					cmd->cmnd[5];
2538 				cmnd_count = (cmd->cmnd[6] << 24) |
2539 					(cmd->cmnd[7] << 16) |
2540 					(cmd->cmnd[8] << 8) |
2541 					cmd->cmnd[9];
2542 			} else if (cmd->cmnd[0] == WRITE_10) {
2543 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2544 					(cmd->cmnd[3] << 16) |
2545 					(cmd->cmnd[4] << 8) |
2546 					cmd->cmnd[5];
2547 				cmnd_count = (cmd->cmnd[7] << 8) |
2548 					cmd->cmnd[8];
2549 			} else
2550 				continue;
2551 			if (((cmnd_lba + cmnd_count) < lba) ||
2552 			  (count && ((lba + count) < cmnd_lba)))
2553 				continue;
2554 			++active;
2555 			break;
2556 		}
2557 
2558 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2559 
2560 	/*
2561 	 *	Yield the processor (requeue for later)
2562 	 */
2563 	if (active)
2564 		return SCSI_MLQUEUE_DEVICE_BUSY;
2565 
2566 	aac = (struct aac_dev *)sdev->host->hostdata;
2567 	if (aac->in_reset)
2568 		return SCSI_MLQUEUE_HOST_BUSY;
2569 
2570 	/*
2571 	 *	Allocate and initialize a Fib
2572 	 */
2573 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2574 		return SCSI_MLQUEUE_HOST_BUSY;
2575 
2576 	aac_fib_init(cmd_fibcontext);
2577 
2578 	synchronizecmd = fib_data(cmd_fibcontext);
2579 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2580 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2581 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2582 	synchronizecmd->count =
2583 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2584 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2585 
2586 	/*
2587 	 *	Now send the Fib to the adapter
2588 	 */
2589 	status = aac_fib_send(ContainerCommand,
2590 		  cmd_fibcontext,
2591 		  sizeof(struct aac_synchronize),
2592 		  FsaNormal,
2593 		  0, 1,
2594 		  (fib_callback)synchronize_callback,
2595 		  (void *)scsicmd);
2596 
2597 	/*
2598 	 *	Check that the command queued to the controller
2599 	 */
2600 	if (status == -EINPROGRESS)
2601 		return 0;
2602 
2603 	printk(KERN_WARNING
2604 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2605 	aac_fib_complete(cmd_fibcontext);
2606 	aac_fib_free(cmd_fibcontext);
2607 	return SCSI_MLQUEUE_HOST_BUSY;
2608 }
2609 
2610 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2611 {
2612 	struct scsi_cmnd *scsicmd = context;
2613 
2614 	if (!aac_valid_context(scsicmd, fibptr))
2615 		return;
2616 
2617 	BUG_ON(fibptr == NULL);
2618 
2619 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2620 
2621 	aac_fib_complete(fibptr);
2622 	aac_fib_free(fibptr);
2623 	scsicmd->scsi_done(scsicmd);
2624 }
2625 
2626 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2627 {
2628 	int status;
2629 	struct fib *cmd_fibcontext;
2630 	struct aac_power_management *pmcmd;
2631 	struct scsi_device *sdev = scsicmd->device;
2632 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2633 
2634 	if (!(aac->supplement_adapter_info.supported_options2 &
2635 	      AAC_OPTION_POWER_MANAGEMENT)) {
2636 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2637 				  SAM_STAT_GOOD;
2638 		scsicmd->scsi_done(scsicmd);
2639 		return 0;
2640 	}
2641 
2642 	if (aac->in_reset)
2643 		return SCSI_MLQUEUE_HOST_BUSY;
2644 
2645 	/*
2646 	 *	Allocate and initialize a Fib
2647 	 */
2648 	cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2649 
2650 	aac_fib_init(cmd_fibcontext);
2651 
2652 	pmcmd = fib_data(cmd_fibcontext);
2653 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2654 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2655 	/* Eject bit ignored, not relevant */
2656 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2657 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2658 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2659 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2660 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2661 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2662 
2663 	/*
2664 	 *	Now send the Fib to the adapter
2665 	 */
2666 	status = aac_fib_send(ContainerCommand,
2667 		  cmd_fibcontext,
2668 		  sizeof(struct aac_power_management),
2669 		  FsaNormal,
2670 		  0, 1,
2671 		  (fib_callback)aac_start_stop_callback,
2672 		  (void *)scsicmd);
2673 
2674 	/*
2675 	 *	Check that the command queued to the controller
2676 	 */
2677 	if (status == -EINPROGRESS)
2678 		return 0;
2679 
2680 	aac_fib_complete(cmd_fibcontext);
2681 	aac_fib_free(cmd_fibcontext);
2682 	return SCSI_MLQUEUE_HOST_BUSY;
2683 }
2684 
2685 /**
2686  *	aac_scsi_cmd()		-	Process SCSI command
2687  *	@scsicmd:		SCSI command block
2688  *
2689  *	Emulate a SCSI command and queue the required request for the
2690  *	aacraid firmware.
2691  */
2692 
2693 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2694 {
2695 	u32 cid, bus;
2696 	struct Scsi_Host *host = scsicmd->device->host;
2697 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2698 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2699 
2700 	if (fsa_dev_ptr == NULL)
2701 		return -1;
2702 	/*
2703 	 *	If the bus, id or lun is out of range, return fail
2704 	 *	Test does not apply to ID 16, the pseudo id for the controller
2705 	 *	itself.
2706 	 */
2707 	cid = scmd_id(scsicmd);
2708 	if (cid != host->this_id) {
2709 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2710 			if((cid >= dev->maximum_num_containers) ||
2711 					(scsicmd->device->lun != 0)) {
2712 				scsicmd->result = DID_NO_CONNECT << 16;
2713 				goto scsi_done_ret;
2714 			}
2715 
2716 			/*
2717 			 *	If the target container doesn't exist, it may have
2718 			 *	been newly created
2719 			 */
2720 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2721 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2722 			   NOT_READY)) {
2723 				switch (scsicmd->cmnd[0]) {
2724 				case SERVICE_ACTION_IN_16:
2725 					if (!(dev->raw_io_interface) ||
2726 					    !(dev->raw_io_64) ||
2727 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2728 						break;
2729 				case INQUIRY:
2730 				case READ_CAPACITY:
2731 				case TEST_UNIT_READY:
2732 					if (dev->in_reset)
2733 						return -1;
2734 					return _aac_probe_container(scsicmd,
2735 							aac_probe_container_callback2);
2736 				default:
2737 					break;
2738 				}
2739 			}
2740 		} else {  /* check for physical non-dasd devices */
2741 			bus = aac_logical_to_phys(scmd_channel(scsicmd));
2742 			if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2743 				(dev->hba_map[bus][cid].expose
2744 						== AAC_HIDE_DISK)){
2745 				if (scsicmd->cmnd[0] == INQUIRY) {
2746 					scsicmd->result = DID_NO_CONNECT << 16;
2747 					goto scsi_done_ret;
2748 				}
2749 			}
2750 
2751 			if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2752 				dev->hba_map[bus][cid].devtype
2753 					== AAC_DEVTYPE_NATIVE_RAW) {
2754 				if (dev->in_reset)
2755 					return -1;
2756 				return aac_send_hba_fib(scsicmd);
2757 			} else if (dev->nondasd_support || expose_physicals ||
2758 				dev->jbod) {
2759 				if (dev->in_reset)
2760 					return -1;
2761 				return aac_send_srb_fib(scsicmd);
2762 			} else {
2763 				scsicmd->result = DID_NO_CONNECT << 16;
2764 				goto scsi_done_ret;
2765 			}
2766 		}
2767 	}
2768 	/*
2769 	 * else Command for the controller itself
2770 	 */
2771 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2772 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2773 	{
2774 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2775 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2776 		set_sense(&dev->fsa_dev[cid].sense_data,
2777 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2778 		  ASENCODE_INVALID_COMMAND, 0, 0);
2779 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2780 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2781 			     SCSI_SENSE_BUFFERSIZE));
2782 		goto scsi_done_ret;
2783 	}
2784 
2785 	switch (scsicmd->cmnd[0]) {
2786 	case READ_6:
2787 	case READ_10:
2788 	case READ_12:
2789 	case READ_16:
2790 		if (dev->in_reset)
2791 			return -1;
2792 		return aac_read(scsicmd);
2793 
2794 	case WRITE_6:
2795 	case WRITE_10:
2796 	case WRITE_12:
2797 	case WRITE_16:
2798 		if (dev->in_reset)
2799 			return -1;
2800 		return aac_write(scsicmd);
2801 
2802 	case SYNCHRONIZE_CACHE:
2803 		if (((aac_cache & 6) == 6) && dev->cache_protected) {
2804 			scsicmd->result = AAC_STAT_GOOD;
2805 			break;
2806 		}
2807 		/* Issue FIB to tell Firmware to flush it's cache */
2808 		if ((aac_cache & 6) != 2)
2809 			return aac_synchronize(scsicmd);
2810 	case INQUIRY:
2811 	{
2812 		struct inquiry_data inq_data;
2813 
2814 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2815 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2816 
2817 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2818 			char *arr = (char *)&inq_data;
2819 
2820 			/* EVPD bit set */
2821 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2822 			  INQD_PDT_PROC : INQD_PDT_DA;
2823 			if (scsicmd->cmnd[2] == 0) {
2824 				/* supported vital product data pages */
2825 				arr[3] = 3;
2826 				arr[4] = 0x0;
2827 				arr[5] = 0x80;
2828 				arr[6] = 0x83;
2829 				arr[1] = scsicmd->cmnd[2];
2830 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2831 							 sizeof(inq_data));
2832 				scsicmd->result = AAC_STAT_GOOD;
2833 			} else if (scsicmd->cmnd[2] == 0x80) {
2834 				/* unit serial number page */
2835 				arr[3] = setinqserial(dev, &arr[4],
2836 				  scmd_id(scsicmd));
2837 				arr[1] = scsicmd->cmnd[2];
2838 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2839 							 sizeof(inq_data));
2840 				if (aac_wwn != 2)
2841 					return aac_get_container_serial(
2842 						scsicmd);
2843 				scsicmd->result = AAC_STAT_GOOD;
2844 			} else if (scsicmd->cmnd[2] == 0x83) {
2845 				/* vpd page 0x83 - Device Identification Page */
2846 				char *sno = (char *)&inq_data;
2847 				sno[3] = setinqserial(dev, &sno[4],
2848 						      scmd_id(scsicmd));
2849 				if (aac_wwn != 2)
2850 					return aac_get_container_serial(
2851 						scsicmd);
2852 				scsicmd->result = AAC_STAT_GOOD;
2853 			} else {
2854 				/* vpd page not implemented */
2855 				scsicmd->result = DID_OK << 16 |
2856 				  COMMAND_COMPLETE << 8 |
2857 				  SAM_STAT_CHECK_CONDITION;
2858 				set_sense(&dev->fsa_dev[cid].sense_data,
2859 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2860 				  ASENCODE_NO_SENSE, 7, 2);
2861 				memcpy(scsicmd->sense_buffer,
2862 				  &dev->fsa_dev[cid].sense_data,
2863 				  min_t(size_t,
2864 					sizeof(dev->fsa_dev[cid].sense_data),
2865 					SCSI_SENSE_BUFFERSIZE));
2866 			}
2867 			break;
2868 		}
2869 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2870 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2871 		inq_data.inqd_len = 31;
2872 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2873 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2874 		/*
2875 		 *	Set the Vendor, Product, and Revision Level
2876 		 *	see: <vendor>.c i.e. aac.c
2877 		 */
2878 		if (cid == host->this_id) {
2879 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2880 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2881 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2882 						 sizeof(inq_data));
2883 			scsicmd->result = AAC_STAT_GOOD;
2884 			break;
2885 		}
2886 		if (dev->in_reset)
2887 			return -1;
2888 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2889 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2890 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2891 		return aac_get_container_name(scsicmd);
2892 	}
2893 	case SERVICE_ACTION_IN_16:
2894 		if (!(dev->raw_io_interface) ||
2895 		    !(dev->raw_io_64) ||
2896 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2897 			break;
2898 	{
2899 		u64 capacity;
2900 		char cp[13];
2901 		unsigned int alloc_len;
2902 
2903 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2904 		capacity = fsa_dev_ptr[cid].size - 1;
2905 		cp[0] = (capacity >> 56) & 0xff;
2906 		cp[1] = (capacity >> 48) & 0xff;
2907 		cp[2] = (capacity >> 40) & 0xff;
2908 		cp[3] = (capacity >> 32) & 0xff;
2909 		cp[4] = (capacity >> 24) & 0xff;
2910 		cp[5] = (capacity >> 16) & 0xff;
2911 		cp[6] = (capacity >> 8) & 0xff;
2912 		cp[7] = (capacity >> 0) & 0xff;
2913 		cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2914 		cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2915 		cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2916 		cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2917 		cp[12] = 0;
2918 
2919 		alloc_len = ((scsicmd->cmnd[10] << 24)
2920 			     + (scsicmd->cmnd[11] << 16)
2921 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2922 
2923 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2924 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2925 		if (alloc_len < scsi_bufflen(scsicmd))
2926 			scsi_set_resid(scsicmd,
2927 				       scsi_bufflen(scsicmd) - alloc_len);
2928 
2929 		/* Do not cache partition table for arrays */
2930 		scsicmd->device->removable = 1;
2931 
2932 		scsicmd->result = AAC_STAT_GOOD;
2933 		break;
2934 	}
2935 
2936 	case READ_CAPACITY:
2937 	{
2938 		u32 capacity;
2939 		char cp[8];
2940 
2941 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2942 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2943 			capacity = fsa_dev_ptr[cid].size - 1;
2944 		else
2945 			capacity = (u32)-1;
2946 
2947 		cp[0] = (capacity >> 24) & 0xff;
2948 		cp[1] = (capacity >> 16) & 0xff;
2949 		cp[2] = (capacity >> 8) & 0xff;
2950 		cp[3] = (capacity >> 0) & 0xff;
2951 		cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2952 		cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2953 		cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2954 		cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
2955 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2956 		/* Do not cache partition table for arrays */
2957 		scsicmd->device->removable = 1;
2958 		scsicmd->result = AAC_STAT_GOOD;
2959 		break;
2960 	}
2961 
2962 	case MODE_SENSE:
2963 	{
2964 		int mode_buf_length = 4;
2965 		u32 capacity;
2966 		aac_modep_data mpd;
2967 
2968 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2969 			capacity = fsa_dev_ptr[cid].size - 1;
2970 		else
2971 			capacity = (u32)-1;
2972 
2973 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2974 		memset((char *)&mpd, 0, sizeof(aac_modep_data));
2975 
2976 		/* Mode data length */
2977 		mpd.hd.data_length = sizeof(mpd.hd) - 1;
2978 		/* Medium type - default */
2979 		mpd.hd.med_type = 0;
2980 		/* Device-specific param,
2981 		   bit 8: 0/1 = write enabled/protected
2982 		   bit 4: 0/1 = FUA enabled */
2983 		mpd.hd.dev_par = 0;
2984 
2985 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2986 			mpd.hd.dev_par = 0x10;
2987 		if (scsicmd->cmnd[1] & 0x8)
2988 			mpd.hd.bd_length = 0;	/* Block descriptor length */
2989 		else {
2990 			mpd.hd.bd_length = sizeof(mpd.bd);
2991 			mpd.hd.data_length += mpd.hd.bd_length;
2992 			mpd.bd.block_length[0] =
2993 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2994 			mpd.bd.block_length[1] =
2995 				(fsa_dev_ptr[cid].block_size >> 8) &  0xff;
2996 			mpd.bd.block_length[2] =
2997 				fsa_dev_ptr[cid].block_size  & 0xff;
2998 
2999 			mpd.mpc_buf[0] = scsicmd->cmnd[2];
3000 			if (scsicmd->cmnd[2] == 0x1C) {
3001 				/* page length */
3002 				mpd.mpc_buf[1] = 0xa;
3003 				/* Mode data length */
3004 				mpd.hd.data_length = 23;
3005 			} else {
3006 				/* Mode data length */
3007 				mpd.hd.data_length = 15;
3008 			}
3009 
3010 			if (capacity > 0xffffff) {
3011 				mpd.bd.block_count[0] = 0xff;
3012 				mpd.bd.block_count[1] = 0xff;
3013 				mpd.bd.block_count[2] = 0xff;
3014 			} else {
3015 				mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3016 				mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3017 				mpd.bd.block_count[2] = capacity  & 0xff;
3018 			}
3019 		}
3020 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3021 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3022 			mpd.hd.data_length += 3;
3023 			mpd.mpc_buf[0] = 8;
3024 			mpd.mpc_buf[1] = 1;
3025 			mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3026 				? 0 : 0x04; /* WCE */
3027 			mode_buf_length = sizeof(mpd);
3028 		}
3029 
3030 		if (mode_buf_length > scsicmd->cmnd[4])
3031 			mode_buf_length = scsicmd->cmnd[4];
3032 		else
3033 			mode_buf_length = sizeof(mpd);
3034 		scsi_sg_copy_from_buffer(scsicmd,
3035 					 (char *)&mpd,
3036 					 mode_buf_length);
3037 		scsicmd->result = AAC_STAT_GOOD;
3038 		break;
3039 	}
3040 	case MODE_SENSE_10:
3041 	{
3042 		u32 capacity;
3043 		int mode_buf_length = 8;
3044 		aac_modep10_data mpd10;
3045 
3046 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3047 			capacity = fsa_dev_ptr[cid].size - 1;
3048 		else
3049 			capacity = (u32)-1;
3050 
3051 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3052 		memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3053 		/* Mode data length (MSB) */
3054 		mpd10.hd.data_length[0] = 0;
3055 		/* Mode data length (LSB) */
3056 		mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3057 		/* Medium type - default */
3058 		mpd10.hd.med_type = 0;
3059 		/* Device-specific param,
3060 		   bit 8: 0/1 = write enabled/protected
3061 		   bit 4: 0/1 = FUA enabled */
3062 		mpd10.hd.dev_par = 0;
3063 
3064 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3065 			mpd10.hd.dev_par = 0x10;
3066 		mpd10.hd.rsrvd[0] = 0;	/* reserved */
3067 		mpd10.hd.rsrvd[1] = 0;	/* reserved */
3068 		if (scsicmd->cmnd[1] & 0x8) {
3069 			/* Block descriptor length (MSB) */
3070 			mpd10.hd.bd_length[0] = 0;
3071 			/* Block descriptor length (LSB) */
3072 			mpd10.hd.bd_length[1] = 0;
3073 		} else {
3074 			mpd10.hd.bd_length[0] = 0;
3075 			mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3076 
3077 			mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3078 
3079 			mpd10.bd.block_length[0] =
3080 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3081 			mpd10.bd.block_length[1] =
3082 				(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3083 			mpd10.bd.block_length[2] =
3084 				fsa_dev_ptr[cid].block_size  & 0xff;
3085 
3086 			if (capacity > 0xffffff) {
3087 				mpd10.bd.block_count[0] = 0xff;
3088 				mpd10.bd.block_count[1] = 0xff;
3089 				mpd10.bd.block_count[2] = 0xff;
3090 			} else {
3091 				mpd10.bd.block_count[0] =
3092 					(capacity >> 16) & 0xff;
3093 				mpd10.bd.block_count[1] =
3094 					(capacity >> 8) & 0xff;
3095 				mpd10.bd.block_count[2] =
3096 					capacity  & 0xff;
3097 			}
3098 		}
3099 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3100 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3101 			mpd10.hd.data_length[1] += 3;
3102 			mpd10.mpc_buf[0] = 8;
3103 			mpd10.mpc_buf[1] = 1;
3104 			mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3105 				? 0 : 0x04; /* WCE */
3106 			mode_buf_length = sizeof(mpd10);
3107 			if (mode_buf_length > scsicmd->cmnd[8])
3108 				mode_buf_length = scsicmd->cmnd[8];
3109 		}
3110 		scsi_sg_copy_from_buffer(scsicmd,
3111 					 (char *)&mpd10,
3112 					 mode_buf_length);
3113 
3114 		scsicmd->result = AAC_STAT_GOOD;
3115 		break;
3116 	}
3117 	case REQUEST_SENSE:
3118 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3119 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3120 				sizeof(struct sense_data));
3121 		memset(&dev->fsa_dev[cid].sense_data, 0,
3122 				sizeof(struct sense_data));
3123 		scsicmd->result = AAC_STAT_GOOD;
3124 		break;
3125 
3126 	case ALLOW_MEDIUM_REMOVAL:
3127 		dprintk((KERN_DEBUG "LOCK command.\n"));
3128 		if (scsicmd->cmnd[4])
3129 			fsa_dev_ptr[cid].locked = 1;
3130 		else
3131 			fsa_dev_ptr[cid].locked = 0;
3132 
3133 		scsicmd->result = AAC_STAT_GOOD;
3134 		break;
3135 	/*
3136 	 *	These commands are all No-Ops
3137 	 */
3138 	case TEST_UNIT_READY:
3139 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3140 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3141 				SAM_STAT_CHECK_CONDITION;
3142 			set_sense(&dev->fsa_dev[cid].sense_data,
3143 				  NOT_READY, SENCODE_BECOMING_READY,
3144 				  ASENCODE_BECOMING_READY, 0, 0);
3145 			memcpy(scsicmd->sense_buffer,
3146 			       &dev->fsa_dev[cid].sense_data,
3147 			       min_t(size_t,
3148 				     sizeof(dev->fsa_dev[cid].sense_data),
3149 				     SCSI_SENSE_BUFFERSIZE));
3150 		break;
3151 		}
3152 	case RESERVE:
3153 	case RELEASE:
3154 	case REZERO_UNIT:
3155 	case REASSIGN_BLOCKS:
3156 	case SEEK_10:
3157 		scsicmd->result = AAC_STAT_GOOD;
3158 		break;
3159 
3160 	case START_STOP:
3161 		return aac_start_stop(scsicmd);
3162 
3163 	/* FALLTHRU */
3164 	default:
3165 	/*
3166 	 *	Unhandled commands
3167 	 */
3168 		dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3169 				scsicmd->cmnd[0]));
3170 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3171 				SAM_STAT_CHECK_CONDITION;
3172 		set_sense(&dev->fsa_dev[cid].sense_data,
3173 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3174 			  ASENCODE_INVALID_COMMAND, 0, 0);
3175 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3176 				min_t(size_t,
3177 				      sizeof(dev->fsa_dev[cid].sense_data),
3178 				      SCSI_SENSE_BUFFERSIZE));
3179 	}
3180 
3181 scsi_done_ret:
3182 
3183 	scsicmd->scsi_done(scsicmd);
3184 	return 0;
3185 }
3186 
3187 static int query_disk(struct aac_dev *dev, void __user *arg)
3188 {
3189 	struct aac_query_disk qd;
3190 	struct fsa_dev_info *fsa_dev_ptr;
3191 
3192 	fsa_dev_ptr = dev->fsa_dev;
3193 	if (!fsa_dev_ptr)
3194 		return -EBUSY;
3195 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3196 		return -EFAULT;
3197 	if (qd.cnum == -1) {
3198 		if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3199 			return -EINVAL;
3200 		qd.cnum = qd.id;
3201 	} else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3202 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3203 			return -EINVAL;
3204 		qd.instance = dev->scsi_host_ptr->host_no;
3205 		qd.bus = 0;
3206 		qd.id = CONTAINER_TO_ID(qd.cnum);
3207 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
3208 	}
3209 	else return -EINVAL;
3210 
3211 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3212 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
3213 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3214 
3215 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3216 		qd.unmapped = 1;
3217 	else
3218 		qd.unmapped = 0;
3219 
3220 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3221 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3222 
3223 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3224 		return -EFAULT;
3225 	return 0;
3226 }
3227 
3228 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3229 {
3230 	struct aac_delete_disk dd;
3231 	struct fsa_dev_info *fsa_dev_ptr;
3232 
3233 	fsa_dev_ptr = dev->fsa_dev;
3234 	if (!fsa_dev_ptr)
3235 		return -EBUSY;
3236 
3237 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3238 		return -EFAULT;
3239 
3240 	if (dd.cnum >= dev->maximum_num_containers)
3241 		return -EINVAL;
3242 	/*
3243 	 *	Mark this container as being deleted.
3244 	 */
3245 	fsa_dev_ptr[dd.cnum].deleted = 1;
3246 	/*
3247 	 *	Mark the container as no longer valid
3248 	 */
3249 	fsa_dev_ptr[dd.cnum].valid = 0;
3250 	return 0;
3251 }
3252 
3253 static int delete_disk(struct aac_dev *dev, void __user *arg)
3254 {
3255 	struct aac_delete_disk dd;
3256 	struct fsa_dev_info *fsa_dev_ptr;
3257 
3258 	fsa_dev_ptr = dev->fsa_dev;
3259 	if (!fsa_dev_ptr)
3260 		return -EBUSY;
3261 
3262 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3263 		return -EFAULT;
3264 
3265 	if (dd.cnum >= dev->maximum_num_containers)
3266 		return -EINVAL;
3267 	/*
3268 	 *	If the container is locked, it can not be deleted by the API.
3269 	 */
3270 	if (fsa_dev_ptr[dd.cnum].locked)
3271 		return -EBUSY;
3272 	else {
3273 		/*
3274 		 *	Mark the container as no longer being valid.
3275 		 */
3276 		fsa_dev_ptr[dd.cnum].valid = 0;
3277 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3278 		return 0;
3279 	}
3280 }
3281 
3282 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3283 {
3284 	switch (cmd) {
3285 	case FSACTL_QUERY_DISK:
3286 		return query_disk(dev, arg);
3287 	case FSACTL_DELETE_DISK:
3288 		return delete_disk(dev, arg);
3289 	case FSACTL_FORCE_DELETE_DISK:
3290 		return force_delete_disk(dev, arg);
3291 	case FSACTL_GET_CONTAINERS:
3292 		return aac_get_containers(dev);
3293 	default:
3294 		return -ENOTTY;
3295 	}
3296 }
3297 
3298 /**
3299  *
3300  * aac_srb_callback
3301  * @context: the context set in the fib - here it is scsi cmd
3302  * @fibptr: pointer to the fib
3303  *
3304  * Handles the completion of a scsi command to a non dasd device
3305  *
3306  */
3307 
3308 static void aac_srb_callback(void *context, struct fib * fibptr)
3309 {
3310 	struct aac_dev *dev;
3311 	struct aac_srb_reply *srbreply;
3312 	struct scsi_cmnd *scsicmd;
3313 
3314 	scsicmd = (struct scsi_cmnd *) context;
3315 
3316 	if (!aac_valid_context(scsicmd, fibptr))
3317 		return;
3318 
3319 	BUG_ON(fibptr == NULL);
3320 
3321 	dev = fibptr->dev;
3322 
3323 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3324 
3325 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
3326 
3327 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3328 		/* fast response */
3329 		srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3330 		srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3331 	} else {
3332 		/*
3333 		 *	Calculate resid for sg
3334 		 */
3335 		scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3336 				   - le32_to_cpu(srbreply->data_xfer_length));
3337 	}
3338 
3339 
3340 	scsi_dma_unmap(scsicmd);
3341 
3342 	/* expose physical device if expose_physicald flag is on */
3343 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3344 	  && expose_physicals > 0)
3345 		aac_expose_phy_device(scsicmd);
3346 
3347 	/*
3348 	 * First check the fib status
3349 	 */
3350 
3351 	if (le32_to_cpu(srbreply->status) != ST_OK) {
3352 		int len;
3353 
3354 		pr_warn("aac_srb_callback: srb failed, status = %d\n",
3355 				le32_to_cpu(srbreply->status));
3356 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3357 			    SCSI_SENSE_BUFFERSIZE);
3358 		scsicmd->result = DID_ERROR << 16
3359 				| COMMAND_COMPLETE << 8
3360 				| SAM_STAT_CHECK_CONDITION;
3361 		memcpy(scsicmd->sense_buffer,
3362 				srbreply->sense_data, len);
3363 	}
3364 
3365 	/*
3366 	 * Next check the srb status
3367 	 */
3368 	switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3369 	case SRB_STATUS_ERROR_RECOVERY:
3370 	case SRB_STATUS_PENDING:
3371 	case SRB_STATUS_SUCCESS:
3372 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3373 		break;
3374 	case SRB_STATUS_DATA_OVERRUN:
3375 		switch (scsicmd->cmnd[0]) {
3376 		case  READ_6:
3377 		case  WRITE_6:
3378 		case  READ_10:
3379 		case  WRITE_10:
3380 		case  READ_12:
3381 		case  WRITE_12:
3382 		case  READ_16:
3383 		case  WRITE_16:
3384 			if (le32_to_cpu(srbreply->data_xfer_length)
3385 						< scsicmd->underflow)
3386 				pr_warn("aacraid: SCSI CMD underflow\n");
3387 			else
3388 				pr_warn("aacraid: SCSI CMD Data Overrun\n");
3389 			scsicmd->result = DID_ERROR << 16
3390 					| COMMAND_COMPLETE << 8;
3391 			break;
3392 		case INQUIRY:
3393 			scsicmd->result = DID_OK << 16
3394 					| COMMAND_COMPLETE << 8;
3395 			break;
3396 		default:
3397 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3398 			break;
3399 		}
3400 		break;
3401 	case SRB_STATUS_ABORTED:
3402 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3403 		break;
3404 	case SRB_STATUS_ABORT_FAILED:
3405 		/*
3406 		 * Not sure about this one - but assuming the
3407 		 * hba was trying to abort for some reason
3408 		 */
3409 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3410 		break;
3411 	case SRB_STATUS_PARITY_ERROR:
3412 		scsicmd->result = DID_PARITY << 16
3413 				| MSG_PARITY_ERROR << 8;
3414 		break;
3415 	case SRB_STATUS_NO_DEVICE:
3416 	case SRB_STATUS_INVALID_PATH_ID:
3417 	case SRB_STATUS_INVALID_TARGET_ID:
3418 	case SRB_STATUS_INVALID_LUN:
3419 	case SRB_STATUS_SELECTION_TIMEOUT:
3420 		scsicmd->result = DID_NO_CONNECT << 16
3421 				| COMMAND_COMPLETE << 8;
3422 		break;
3423 
3424 	case SRB_STATUS_COMMAND_TIMEOUT:
3425 	case SRB_STATUS_TIMEOUT:
3426 		scsicmd->result = DID_TIME_OUT << 16
3427 				| COMMAND_COMPLETE << 8;
3428 		break;
3429 
3430 	case SRB_STATUS_BUSY:
3431 		scsicmd->result = DID_BUS_BUSY << 16
3432 				| COMMAND_COMPLETE << 8;
3433 		break;
3434 
3435 	case SRB_STATUS_BUS_RESET:
3436 		scsicmd->result = DID_RESET << 16
3437 				| COMMAND_COMPLETE << 8;
3438 		break;
3439 
3440 	case SRB_STATUS_MESSAGE_REJECTED:
3441 		scsicmd->result = DID_ERROR << 16
3442 				| MESSAGE_REJECT << 8;
3443 		break;
3444 	case SRB_STATUS_REQUEST_FLUSHED:
3445 	case SRB_STATUS_ERROR:
3446 	case SRB_STATUS_INVALID_REQUEST:
3447 	case SRB_STATUS_REQUEST_SENSE_FAILED:
3448 	case SRB_STATUS_NO_HBA:
3449 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
3450 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3451 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3452 	case SRB_STATUS_DELAYED_RETRY:
3453 	case SRB_STATUS_BAD_FUNCTION:
3454 	case SRB_STATUS_NOT_STARTED:
3455 	case SRB_STATUS_NOT_IN_USE:
3456 	case SRB_STATUS_FORCE_ABORT:
3457 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3458 	default:
3459 #ifdef AAC_DETAILED_STATUS_INFO
3460 		pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3461 			le32_to_cpu(srbreply->srb_status) & 0x3F,
3462 			aac_get_status_string(
3463 				le32_to_cpu(srbreply->srb_status) & 0x3F),
3464 			scsicmd->cmnd[0],
3465 			le32_to_cpu(srbreply->scsi_status));
3466 #endif
3467 		/*
3468 		 * When the CC bit is SET by the host in ATA pass thru CDB,
3469 		 *  driver is supposed to return DID_OK
3470 		 *
3471 		 * When the CC bit is RESET by the host, driver should
3472 		 *  return DID_ERROR
3473 		 */
3474 		if ((scsicmd->cmnd[0] == ATA_12)
3475 			|| (scsicmd->cmnd[0] == ATA_16)) {
3476 
3477 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
3478 				scsicmd->result = DID_OK << 16
3479 					| COMMAND_COMPLETE << 8;
3480 			break;
3481 			} else {
3482 				scsicmd->result = DID_ERROR << 16
3483 					| COMMAND_COMPLETE << 8;
3484 			break;
3485 			}
3486 		} else {
3487 			scsicmd->result = DID_ERROR << 16
3488 				| COMMAND_COMPLETE << 8;
3489 			break;
3490 		}
3491 	}
3492 	if (le32_to_cpu(srbreply->scsi_status)
3493 			== SAM_STAT_CHECK_CONDITION) {
3494 		int len;
3495 
3496 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3497 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3498 			    SCSI_SENSE_BUFFERSIZE);
3499 #ifdef AAC_DETAILED_STATUS_INFO
3500 		pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3501 					le32_to_cpu(srbreply->status), len);
3502 #endif
3503 		memcpy(scsicmd->sense_buffer,
3504 				srbreply->sense_data, len);
3505 	}
3506 
3507 	/*
3508 	 * OR in the scsi status (already shifted up a bit)
3509 	 */
3510 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3511 
3512 	aac_fib_complete(fibptr);
3513 	scsicmd->scsi_done(scsicmd);
3514 }
3515 
3516 static void hba_resp_task_complete(struct aac_dev *dev,
3517 					struct scsi_cmnd *scsicmd,
3518 					struct aac_hba_resp *err) {
3519 
3520 	scsicmd->result = err->status;
3521 	/* set residual count */
3522 	scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3523 
3524 	switch (err->status) {
3525 	case SAM_STAT_GOOD:
3526 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3527 		break;
3528 	case SAM_STAT_CHECK_CONDITION:
3529 	{
3530 		int len;
3531 
3532 		len = min_t(u8, err->sense_response_data_len,
3533 			SCSI_SENSE_BUFFERSIZE);
3534 		if (len)
3535 			memcpy(scsicmd->sense_buffer,
3536 				err->sense_response_buf, len);
3537 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3538 		break;
3539 	}
3540 	case SAM_STAT_BUSY:
3541 		scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3542 		break;
3543 	case SAM_STAT_TASK_ABORTED:
3544 		scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3545 		break;
3546 	case SAM_STAT_RESERVATION_CONFLICT:
3547 	case SAM_STAT_TASK_SET_FULL:
3548 	default:
3549 		scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3550 		break;
3551 	}
3552 }
3553 
3554 static void hba_resp_task_failure(struct aac_dev *dev,
3555 					struct scsi_cmnd *scsicmd,
3556 					struct aac_hba_resp *err)
3557 {
3558 	switch (err->status) {
3559 	case HBA_RESP_STAT_HBAMODE_DISABLED:
3560 	{
3561 		u32 bus, cid;
3562 
3563 		bus = aac_logical_to_phys(scmd_channel(scsicmd));
3564 		cid = scmd_id(scsicmd);
3565 		if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3566 			dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3567 			dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3568 		}
3569 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3570 		break;
3571 	}
3572 	case HBA_RESP_STAT_IO_ERROR:
3573 	case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3574 		scsicmd->result = DID_OK << 16 |
3575 			COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3576 		break;
3577 	case HBA_RESP_STAT_IO_ABORTED:
3578 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3579 		break;
3580 	case HBA_RESP_STAT_INVALID_DEVICE:
3581 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3582 		break;
3583 	case HBA_RESP_STAT_UNDERRUN:
3584 		/* UNDERRUN is OK */
3585 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3586 		break;
3587 	case HBA_RESP_STAT_OVERRUN:
3588 	default:
3589 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3590 		break;
3591 	}
3592 }
3593 
3594 /**
3595  *
3596  * aac_hba_callback
3597  * @context: the context set in the fib - here it is scsi cmd
3598  * @fibptr: pointer to the fib
3599  *
3600  * Handles the completion of a native HBA scsi command
3601  *
3602  */
3603 void aac_hba_callback(void *context, struct fib *fibptr)
3604 {
3605 	struct aac_dev *dev;
3606 	struct scsi_cmnd *scsicmd;
3607 
3608 	struct aac_hba_resp *err =
3609 			&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3610 
3611 	scsicmd = (struct scsi_cmnd *) context;
3612 
3613 	if (!aac_valid_context(scsicmd, fibptr))
3614 		return;
3615 
3616 	WARN_ON(fibptr == NULL);
3617 	dev = fibptr->dev;
3618 
3619 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3620 		scsi_dma_unmap(scsicmd);
3621 
3622 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3623 		/* fast response */
3624 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3625 		goto out;
3626 	}
3627 
3628 	switch (err->service_response) {
3629 	case HBA_RESP_SVCRES_TASK_COMPLETE:
3630 		hba_resp_task_complete(dev, scsicmd, err);
3631 		break;
3632 	case HBA_RESP_SVCRES_FAILURE:
3633 		hba_resp_task_failure(dev, scsicmd, err);
3634 		break;
3635 	case HBA_RESP_SVCRES_TMF_REJECTED:
3636 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3637 		break;
3638 	case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3639 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3640 		break;
3641 	case HBA_RESP_SVCRES_TMF_COMPLETE:
3642 	case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3643 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3644 		break;
3645 	default:
3646 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3647 		break;
3648 	}
3649 
3650 out:
3651 	aac_fib_complete(fibptr);
3652 
3653 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3654 		scsicmd->SCp.sent_command = 1;
3655 	else
3656 		scsicmd->scsi_done(scsicmd);
3657 }
3658 
3659 /**
3660  *
3661  * aac_send_srb_fib
3662  * @scsicmd: the scsi command block
3663  *
3664  * This routine will form a FIB and fill in the aac_srb from the
3665  * scsicmd passed in.
3666  */
3667 
3668 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3669 {
3670 	struct fib* cmd_fibcontext;
3671 	struct aac_dev* dev;
3672 	int status;
3673 
3674 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3675 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3676 			scsicmd->device->lun > 7) {
3677 		scsicmd->result = DID_NO_CONNECT << 16;
3678 		scsicmd->scsi_done(scsicmd);
3679 		return 0;
3680 	}
3681 
3682 	/*
3683 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3684 	 */
3685 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3686 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3687 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3688 
3689 	/*
3690 	 *	Check that the command queued to the controller
3691 	 */
3692 	if (status == -EINPROGRESS)
3693 		return 0;
3694 
3695 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3696 	aac_fib_complete(cmd_fibcontext);
3697 	aac_fib_free(cmd_fibcontext);
3698 
3699 	return -1;
3700 }
3701 
3702 /**
3703  *
3704  * aac_send_hba_fib
3705  * @scsicmd: the scsi command block
3706  *
3707  * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3708  * scsicmd passed in.
3709  */
3710 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3711 {
3712 	struct fib *cmd_fibcontext;
3713 	struct aac_dev *dev;
3714 	int status;
3715 
3716 	dev = shost_priv(scsicmd->device->host);
3717 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3718 			scsicmd->device->lun > AAC_MAX_LUN - 1) {
3719 		scsicmd->result = DID_NO_CONNECT << 16;
3720 		scsicmd->scsi_done(scsicmd);
3721 		return 0;
3722 	}
3723 
3724 	/*
3725 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3726 	 */
3727 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3728 	if (!cmd_fibcontext)
3729 		return -1;
3730 
3731 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3732 	status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3733 
3734 	/*
3735 	 *	Check that the command queued to the controller
3736 	 */
3737 	if (status == -EINPROGRESS)
3738 		return 0;
3739 
3740 	pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3741 		status);
3742 	aac_fib_complete(cmd_fibcontext);
3743 	aac_fib_free(cmd_fibcontext);
3744 
3745 	return -1;
3746 }
3747 
3748 
3749 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3750 {
3751 	struct aac_dev *dev;
3752 	unsigned long byte_count = 0;
3753 	int nseg;
3754 	struct scatterlist *sg;
3755 	int i;
3756 
3757 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3758 	// Get rid of old data
3759 	psg->count = 0;
3760 	psg->sg[0].addr = 0;
3761 	psg->sg[0].count = 0;
3762 
3763 	nseg = scsi_dma_map(scsicmd);
3764 	if (nseg <= 0)
3765 		return nseg;
3766 
3767 	psg->count = cpu_to_le32(nseg);
3768 
3769 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3770 		psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3771 		psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3772 		byte_count += sg_dma_len(sg);
3773 	}
3774 	/* hba wants the size to be exact */
3775 	if (byte_count > scsi_bufflen(scsicmd)) {
3776 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3777 			(byte_count - scsi_bufflen(scsicmd));
3778 		psg->sg[i-1].count = cpu_to_le32(temp);
3779 		byte_count = scsi_bufflen(scsicmd);
3780 	}
3781 	/* Check for command underflow */
3782 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3783 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3784 		       byte_count, scsicmd->underflow);
3785 	}
3786 
3787 	return byte_count;
3788 }
3789 
3790 
3791 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3792 {
3793 	struct aac_dev *dev;
3794 	unsigned long byte_count = 0;
3795 	u64 addr;
3796 	int nseg;
3797 	struct scatterlist *sg;
3798 	int i;
3799 
3800 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3801 	// Get rid of old data
3802 	psg->count = 0;
3803 	psg->sg[0].addr[0] = 0;
3804 	psg->sg[0].addr[1] = 0;
3805 	psg->sg[0].count = 0;
3806 
3807 	nseg = scsi_dma_map(scsicmd);
3808 	if (nseg <= 0)
3809 		return nseg;
3810 
3811 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3812 		int count = sg_dma_len(sg);
3813 		addr = sg_dma_address(sg);
3814 		psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3815 		psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3816 		psg->sg[i].count = cpu_to_le32(count);
3817 		byte_count += count;
3818 	}
3819 	psg->count = cpu_to_le32(nseg);
3820 	/* hba wants the size to be exact */
3821 	if (byte_count > scsi_bufflen(scsicmd)) {
3822 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3823 			(byte_count - scsi_bufflen(scsicmd));
3824 		psg->sg[i-1].count = cpu_to_le32(temp);
3825 		byte_count = scsi_bufflen(scsicmd);
3826 	}
3827 	/* Check for command underflow */
3828 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3829 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3830 		       byte_count, scsicmd->underflow);
3831 	}
3832 
3833 	return byte_count;
3834 }
3835 
3836 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3837 {
3838 	unsigned long byte_count = 0;
3839 	int nseg;
3840 	struct scatterlist *sg;
3841 	int i;
3842 
3843 	// Get rid of old data
3844 	psg->count = 0;
3845 	psg->sg[0].next = 0;
3846 	psg->sg[0].prev = 0;
3847 	psg->sg[0].addr[0] = 0;
3848 	psg->sg[0].addr[1] = 0;
3849 	psg->sg[0].count = 0;
3850 	psg->sg[0].flags = 0;
3851 
3852 	nseg = scsi_dma_map(scsicmd);
3853 	if (nseg <= 0)
3854 		return nseg;
3855 
3856 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3857 		int count = sg_dma_len(sg);
3858 		u64 addr = sg_dma_address(sg);
3859 		psg->sg[i].next = 0;
3860 		psg->sg[i].prev = 0;
3861 		psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3862 		psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3863 		psg->sg[i].count = cpu_to_le32(count);
3864 		psg->sg[i].flags = 0;
3865 		byte_count += count;
3866 	}
3867 	psg->count = cpu_to_le32(nseg);
3868 	/* hba wants the size to be exact */
3869 	if (byte_count > scsi_bufflen(scsicmd)) {
3870 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3871 			(byte_count - scsi_bufflen(scsicmd));
3872 		psg->sg[i-1].count = cpu_to_le32(temp);
3873 		byte_count = scsi_bufflen(scsicmd);
3874 	}
3875 	/* Check for command underflow */
3876 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3877 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3878 		       byte_count, scsicmd->underflow);
3879 	}
3880 
3881 	return byte_count;
3882 }
3883 
3884 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3885 				struct aac_raw_io2 *rio2, int sg_max)
3886 {
3887 	unsigned long byte_count = 0;
3888 	int nseg;
3889 	struct scatterlist *sg;
3890 	int i, conformable = 0;
3891 	u32 min_size = PAGE_SIZE, cur_size;
3892 
3893 	nseg = scsi_dma_map(scsicmd);
3894 	if (nseg <= 0)
3895 		return nseg;
3896 
3897 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3898 		int count = sg_dma_len(sg);
3899 		u64 addr = sg_dma_address(sg);
3900 
3901 		BUG_ON(i >= sg_max);
3902 		rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3903 		rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3904 		cur_size = cpu_to_le32(count);
3905 		rio2->sge[i].length = cur_size;
3906 		rio2->sge[i].flags = 0;
3907 		if (i == 0) {
3908 			conformable = 1;
3909 			rio2->sgeFirstSize = cur_size;
3910 		} else if (i == 1) {
3911 			rio2->sgeNominalSize = cur_size;
3912 			min_size = cur_size;
3913 		} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3914 			conformable = 0;
3915 			if (cur_size < min_size)
3916 				min_size = cur_size;
3917 		}
3918 		byte_count += count;
3919 	}
3920 
3921 	/* hba wants the size to be exact */
3922 	if (byte_count > scsi_bufflen(scsicmd)) {
3923 		u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3924 			(byte_count - scsi_bufflen(scsicmd));
3925 		rio2->sge[i-1].length = cpu_to_le32(temp);
3926 		byte_count = scsi_bufflen(scsicmd);
3927 	}
3928 
3929 	rio2->sgeCnt = cpu_to_le32(nseg);
3930 	rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3931 	/* not conformable: evaluate required sg elements */
3932 	if (!conformable) {
3933 		int j, nseg_new = nseg, err_found;
3934 		for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3935 			err_found = 0;
3936 			nseg_new = 2;
3937 			for (j = 1; j < nseg - 1; ++j) {
3938 				if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3939 					err_found = 1;
3940 					break;
3941 				}
3942 				nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3943 			}
3944 			if (!err_found)
3945 				break;
3946 		}
3947 		if (i > 0 && nseg_new <= sg_max) {
3948 			int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3949 
3950 			if (ret < 0)
3951 				return ret;
3952 		}
3953 	} else
3954 		rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3955 
3956 	/* Check for command underflow */
3957 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3958 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3959 		       byte_count, scsicmd->underflow);
3960 	}
3961 
3962 	return byte_count;
3963 }
3964 
3965 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3966 {
3967 	struct sge_ieee1212 *sge;
3968 	int i, j, pos;
3969 	u32 addr_low;
3970 
3971 	if (aac_convert_sgl == 0)
3972 		return 0;
3973 
3974 	sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3975 	if (sge == NULL)
3976 		return -ENOMEM;
3977 
3978 	for (i = 1, pos = 1; i < nseg-1; ++i) {
3979 		for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3980 			addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3981 			sge[pos].addrLow = addr_low;
3982 			sge[pos].addrHigh = rio2->sge[i].addrHigh;
3983 			if (addr_low < rio2->sge[i].addrLow)
3984 				sge[pos].addrHigh++;
3985 			sge[pos].length = pages * PAGE_SIZE;
3986 			sge[pos].flags = 0;
3987 			pos++;
3988 		}
3989 	}
3990 	sge[pos] = rio2->sge[nseg-1];
3991 	memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3992 
3993 	kfree(sge);
3994 	rio2->sgeCnt = cpu_to_le32(nseg_new);
3995 	rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3996 	rio2->sgeNominalSize = pages * PAGE_SIZE;
3997 	return 0;
3998 }
3999 
4000 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4001 			struct aac_hba_cmd_req *hbacmd,
4002 			int sg_max,
4003 			u64 sg_address)
4004 {
4005 	unsigned long byte_count = 0;
4006 	int nseg;
4007 	struct scatterlist *sg;
4008 	int i;
4009 	u32 cur_size;
4010 	struct aac_hba_sgl *sge;
4011 
4012 	nseg = scsi_dma_map(scsicmd);
4013 	if (nseg <= 0) {
4014 		byte_count = nseg;
4015 		goto out;
4016 	}
4017 
4018 	if (nseg > HBA_MAX_SG_EMBEDDED)
4019 		sge = &hbacmd->sge[2];
4020 	else
4021 		sge = &hbacmd->sge[0];
4022 
4023 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4024 		int count = sg_dma_len(sg);
4025 		u64 addr = sg_dma_address(sg);
4026 
4027 		WARN_ON(i >= sg_max);
4028 		sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4029 		sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4030 		cur_size = cpu_to_le32(count);
4031 		sge->len = cur_size;
4032 		sge->flags = 0;
4033 		byte_count += count;
4034 		sge++;
4035 	}
4036 
4037 	sge--;
4038 	/* hba wants the size to be exact */
4039 	if (byte_count > scsi_bufflen(scsicmd)) {
4040 		u32 temp;
4041 
4042 		temp = le32_to_cpu(sge->len) - byte_count
4043 						- scsi_bufflen(scsicmd);
4044 		sge->len = cpu_to_le32(temp);
4045 		byte_count = scsi_bufflen(scsicmd);
4046 	}
4047 
4048 	if (nseg <= HBA_MAX_SG_EMBEDDED) {
4049 		hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4050 		sge->flags = cpu_to_le32(0x40000000);
4051 	} else {
4052 		/* not embedded */
4053 		hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4054 		hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4055 		hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4056 		hbacmd->sge[0].addr_lo =
4057 			cpu_to_le32((u32)(sg_address & 0xffffffff));
4058 	}
4059 
4060 	/* Check for command underflow */
4061 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4062 		pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4063 				byte_count, scsicmd->underflow);
4064 	}
4065 out:
4066 	return byte_count;
4067 }
4068 
4069 #ifdef AAC_DETAILED_STATUS_INFO
4070 
4071 struct aac_srb_status_info {
4072 	u32	status;
4073 	char	*str;
4074 };
4075 
4076 
4077 static struct aac_srb_status_info srb_status_info[] = {
4078 	{ SRB_STATUS_PENDING,		"Pending Status"},
4079 	{ SRB_STATUS_SUCCESS,		"Success"},
4080 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
4081 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
4082 	{ SRB_STATUS_ERROR,		"Error Event"},
4083 	{ SRB_STATUS_BUSY,		"Device Busy"},
4084 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
4085 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
4086 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
4087 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
4088 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
4089 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
4090 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
4091 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
4092 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
4093 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4094 	{ SRB_STATUS_NO_HBA,		"No HBA"},
4095 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
4096 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4097 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4098 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4099 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
4100 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
4101 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
4102 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
4103 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
4104 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
4105 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
4106 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
4107 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
4108 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4109 	{ 0xff,				"Unknown Error"}
4110 };
4111 
4112 char *aac_get_status_string(u32 status)
4113 {
4114 	int i;
4115 
4116 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4117 		if (srb_status_info[i].status == status)
4118 			return srb_status_info[i].str;
4119 
4120 	return "Bad Status Code";
4121 }
4122 
4123 #endif
4124