xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision c835e372)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141 
142 /*
143  *	Non dasd selection is handled entirely in aachba now
144  */
145 
146 static int nondasd = -1;
147 static int dacmode = -1;
148 
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152 
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
155 module_param(dacmode, int, S_IRUGO|S_IWUSR);
156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
157 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
163 
164 int numacb = -1;
165 module_param(numacb, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
167 
168 int acbsize = -1;
169 module_param(acbsize, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
171 
172 int update_interval = 30 * 60;
173 module_param(update_interval, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync updates issued to adapter.");
175 
176 int check_interval = 24 * 60 * 60;
177 module_param(check_interval, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health checks.");
179 
180 int check_reset = 1;
181 module_param(check_reset, int, S_IRUGO|S_IWUSR);
182 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the adapter.");
183 
184 int expose_physicals = -1;
185 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
186 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
187 
188 int aac_reset_devices = 0;
189 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
190 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
191 
192 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
193 		struct fib *fibptr) {
194 	struct scsi_device *device;
195 
196 	if (unlikely(!scsicmd || !scsicmd->scsi_done )) {
197 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
198                 aac_fib_complete(fibptr);
199                 aac_fib_free(fibptr);
200                 return 0;
201         }
202 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
203 	device = scsicmd->device;
204 	if (unlikely(!device || !scsi_device_online(device))) {
205 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
206 		aac_fib_complete(fibptr);
207 		aac_fib_free(fibptr);
208 		return 0;
209 	}
210 	return 1;
211 }
212 
213 /**
214  *	aac_get_config_status	-	check the adapter configuration
215  *	@common: adapter to query
216  *
217  *	Query config status, and commit the configuration if needed.
218  */
219 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
220 {
221 	int status = 0;
222 	struct fib * fibptr;
223 
224 	if (!(fibptr = aac_fib_alloc(dev)))
225 		return -ENOMEM;
226 
227 	aac_fib_init(fibptr);
228 	{
229 		struct aac_get_config_status *dinfo;
230 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
231 
232 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
233 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
234 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
235 	}
236 
237 	status = aac_fib_send(ContainerCommand,
238 			    fibptr,
239 			    sizeof (struct aac_get_config_status),
240 			    FsaNormal,
241 			    1, 1,
242 			    NULL, NULL);
243 	if (status < 0 ) {
244 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
245 	} else {
246 		struct aac_get_config_status_resp *reply
247 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
248 		dprintk((KERN_WARNING
249 		  "aac_get_config_status: response=%d status=%d action=%d\n",
250 		  le32_to_cpu(reply->response),
251 		  le32_to_cpu(reply->status),
252 		  le32_to_cpu(reply->data.action)));
253 		if ((le32_to_cpu(reply->response) != ST_OK) ||
254 		     (le32_to_cpu(reply->status) != CT_OK) ||
255 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
256 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
257 			status = -EINVAL;
258 		}
259 	}
260 	aac_fib_complete(fibptr);
261 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
262 	if (status >= 0) {
263 		if ((aac_commit == 1) || commit_flag) {
264 			struct aac_commit_config * dinfo;
265 			aac_fib_init(fibptr);
266 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
267 
268 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
269 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
270 
271 			status = aac_fib_send(ContainerCommand,
272 				    fibptr,
273 				    sizeof (struct aac_commit_config),
274 				    FsaNormal,
275 				    1, 1,
276 				    NULL, NULL);
277 			aac_fib_complete(fibptr);
278 		} else if (aac_commit == 0) {
279 			printk(KERN_WARNING
280 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
281 		}
282 	}
283 	aac_fib_free(fibptr);
284 	return status;
285 }
286 
287 /**
288  *	aac_get_containers	-	list containers
289  *	@common: adapter to probe
290  *
291  *	Make a list of all containers on this controller
292  */
293 int aac_get_containers(struct aac_dev *dev)
294 {
295 	struct fsa_dev_info *fsa_dev_ptr;
296 	u32 index;
297 	int status = 0;
298 	struct fib * fibptr;
299 	struct aac_get_container_count *dinfo;
300 	struct aac_get_container_count_resp *dresp;
301 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
302 
303 	if (!(fibptr = aac_fib_alloc(dev)))
304 		return -ENOMEM;
305 
306 	aac_fib_init(fibptr);
307 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
308 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
309 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
310 
311 	status = aac_fib_send(ContainerCommand,
312 		    fibptr,
313 		    sizeof (struct aac_get_container_count),
314 		    FsaNormal,
315 		    1, 1,
316 		    NULL, NULL);
317 	if (status >= 0) {
318 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
319 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
320 		aac_fib_complete(fibptr);
321 	}
322 	aac_fib_free(fibptr);
323 
324 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
325 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
326 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
327 			GFP_KERNEL);
328 	if (!fsa_dev_ptr)
329 		return -ENOMEM;
330 
331 	dev->fsa_dev = fsa_dev_ptr;
332 	dev->maximum_num_containers = maximum_num_containers;
333 
334 	for (index = 0; index < dev->maximum_num_containers; ) {
335 		fsa_dev_ptr[index].devname[0] = '\0';
336 
337 		status = aac_probe_container(dev, index);
338 
339 		if (status < 0) {
340 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
341 			break;
342 		}
343 
344 		/*
345 		 *	If there are no more containers, then stop asking.
346 		 */
347 		if (++index >= status)
348 			break;
349 	}
350 	return status;
351 }
352 
353 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
354 {
355 	void *buf;
356 	int transfer_len;
357 	struct scatterlist *sg = scsi_sglist(scsicmd);
358 
359 	buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
360 	transfer_len = min(sg->length, len + offset);
361 
362 	transfer_len -= offset;
363 	if (buf && transfer_len > 0)
364 		memcpy(buf + offset, data, transfer_len);
365 
366 	kunmap_atomic(buf - sg->offset, KM_IRQ0);
367 
368 }
369 
370 static void get_container_name_callback(void *context, struct fib * fibptr)
371 {
372 	struct aac_get_name_resp * get_name_reply;
373 	struct scsi_cmnd * scsicmd;
374 
375 	scsicmd = (struct scsi_cmnd *) context;
376 
377 	if (!aac_valid_context(scsicmd, fibptr))
378 		return;
379 
380 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
381 	BUG_ON(fibptr == NULL);
382 
383 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
384 	/* Failure is irrelevant, using default value instead */
385 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
386 	 && (get_name_reply->data[0] != '\0')) {
387 		char *sp = get_name_reply->data;
388 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
389 		while (*sp == ' ')
390 			++sp;
391 		if (*sp) {
392 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
393 			int count = sizeof(d);
394 			char *dp = d;
395 			do {
396 				*dp++ = (*sp) ? *sp++ : ' ';
397 			} while (--count > 0);
398 			aac_internal_transfer(scsicmd, d,
399 			  offsetof(struct inquiry_data, inqd_pid), sizeof(d));
400 		}
401 	}
402 
403 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
404 
405 	aac_fib_complete(fibptr);
406 	aac_fib_free(fibptr);
407 	scsicmd->scsi_done(scsicmd);
408 }
409 
410 /**
411  *	aac_get_container_name	-	get container name, none blocking.
412  */
413 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
414 {
415 	int status;
416 	struct aac_get_name *dinfo;
417 	struct fib * cmd_fibcontext;
418 	struct aac_dev * dev;
419 
420 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
421 
422 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
423 		return -ENOMEM;
424 
425 	aac_fib_init(cmd_fibcontext);
426 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
427 
428 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
429 	dinfo->type = cpu_to_le32(CT_READ_NAME);
430 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
431 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
432 
433 	status = aac_fib_send(ContainerCommand,
434 		  cmd_fibcontext,
435 		  sizeof (struct aac_get_name),
436 		  FsaNormal,
437 		  0, 1,
438 		  (fib_callback) get_container_name_callback,
439 		  (void *) scsicmd);
440 
441 	/*
442 	 *	Check that the command queued to the controller
443 	 */
444 	if (status == -EINPROGRESS) {
445 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
446 		return 0;
447 	}
448 
449 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
450 	aac_fib_complete(cmd_fibcontext);
451 	aac_fib_free(cmd_fibcontext);
452 	return -1;
453 }
454 
455 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
456 {
457 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
458 
459 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
460 		return aac_scsi_cmd(scsicmd);
461 
462 	scsicmd->result = DID_NO_CONNECT << 16;
463 	scsicmd->scsi_done(scsicmd);
464 	return 0;
465 }
466 
467 static void _aac_probe_container2(void * context, struct fib * fibptr)
468 {
469 	struct fsa_dev_info *fsa_dev_ptr;
470 	int (*callback)(struct scsi_cmnd *);
471 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
472 
473 
474 	if (!aac_valid_context(scsicmd, fibptr))
475 		return;
476 
477 	scsicmd->SCp.Status = 0;
478 	fsa_dev_ptr = fibptr->dev->fsa_dev;
479 	if (fsa_dev_ptr) {
480 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
481 		fsa_dev_ptr += scmd_id(scsicmd);
482 
483 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
484 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
485 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
486 			fsa_dev_ptr->valid = 1;
487 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
488 			fsa_dev_ptr->size
489 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
490 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
491 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
492 		}
493 		if ((fsa_dev_ptr->valid & 1) == 0)
494 			fsa_dev_ptr->valid = 0;
495 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
496 	}
497 	aac_fib_complete(fibptr);
498 	aac_fib_free(fibptr);
499 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
500 	scsicmd->SCp.ptr = NULL;
501 	(*callback)(scsicmd);
502 	return;
503 }
504 
505 static void _aac_probe_container1(void * context, struct fib * fibptr)
506 {
507 	struct scsi_cmnd * scsicmd;
508 	struct aac_mount * dresp;
509 	struct aac_query_mount *dinfo;
510 	int status;
511 
512 	dresp = (struct aac_mount *) fib_data(fibptr);
513 	dresp->mnt[0].capacityhigh = 0;
514 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
515 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
516 		_aac_probe_container2(context, fibptr);
517 		return;
518 	}
519 	scsicmd = (struct scsi_cmnd *) context;
520 
521 	if (!aac_valid_context(scsicmd, fibptr))
522 		return;
523 
524 	aac_fib_init(fibptr);
525 
526 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
527 
528 	dinfo->command = cpu_to_le32(VM_NameServe64);
529 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
530 	dinfo->type = cpu_to_le32(FT_FILESYS);
531 
532 	status = aac_fib_send(ContainerCommand,
533 			  fibptr,
534 			  sizeof(struct aac_query_mount),
535 			  FsaNormal,
536 			  0, 1,
537 			  _aac_probe_container2,
538 			  (void *) scsicmd);
539 	/*
540 	 *	Check that the command queued to the controller
541 	 */
542 	if (status == -EINPROGRESS)
543 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
544 	else if (status < 0) {
545 		/* Inherit results from VM_NameServe, if any */
546 		dresp->status = cpu_to_le32(ST_OK);
547 		_aac_probe_container2(context, fibptr);
548 	}
549 }
550 
551 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
552 {
553 	struct fib * fibptr;
554 	int status = -ENOMEM;
555 
556 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
557 		struct aac_query_mount *dinfo;
558 
559 		aac_fib_init(fibptr);
560 
561 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
562 
563 		dinfo->command = cpu_to_le32(VM_NameServe);
564 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
565 		dinfo->type = cpu_to_le32(FT_FILESYS);
566 		scsicmd->SCp.ptr = (char *)callback;
567 
568 		status = aac_fib_send(ContainerCommand,
569 			  fibptr,
570 			  sizeof(struct aac_query_mount),
571 			  FsaNormal,
572 			  0, 1,
573 			  _aac_probe_container1,
574 			  (void *) scsicmd);
575 		/*
576 		 *	Check that the command queued to the controller
577 		 */
578 		if (status == -EINPROGRESS) {
579 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
580 			return 0;
581 		}
582 		if (status < 0) {
583 			scsicmd->SCp.ptr = NULL;
584 			aac_fib_complete(fibptr);
585 			aac_fib_free(fibptr);
586 		}
587 	}
588 	if (status < 0) {
589 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
590 		if (fsa_dev_ptr) {
591 			fsa_dev_ptr += scmd_id(scsicmd);
592 			if ((fsa_dev_ptr->valid & 1) == 0) {
593 				fsa_dev_ptr->valid = 0;
594 				return (*callback)(scsicmd);
595 			}
596 		}
597 	}
598 	return status;
599 }
600 
601 /**
602  *	aac_probe_container		-	query a logical volume
603  *	@dev: device to query
604  *	@cid: container identifier
605  *
606  *	Queries the controller about the given volume. The volume information
607  *	is updated in the struct fsa_dev_info structure rather than returned.
608  */
609 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
610 {
611 	scsicmd->device = NULL;
612 	return 0;
613 }
614 
615 int aac_probe_container(struct aac_dev *dev, int cid)
616 {
617 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
618 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
619 	int status;
620 
621 	if (!scsicmd || !scsidev) {
622 		kfree(scsicmd);
623 		kfree(scsidev);
624 		return -ENOMEM;
625 	}
626 	scsicmd->list.next = NULL;
627 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
628 
629 	scsicmd->device = scsidev;
630 	scsidev->sdev_state = 0;
631 	scsidev->id = cid;
632 	scsidev->host = dev->scsi_host_ptr;
633 
634 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
635 		while (scsicmd->device == scsidev)
636 			schedule();
637 	kfree(scsidev);
638 	status = scsicmd->SCp.Status;
639 	kfree(scsicmd);
640 	return status;
641 }
642 
643 /* Local Structure to set SCSI inquiry data strings */
644 struct scsi_inq {
645 	char vid[8];         /* Vendor ID */
646 	char pid[16];        /* Product ID */
647 	char prl[4];         /* Product Revision Level */
648 };
649 
650 /**
651  *	InqStrCopy	-	string merge
652  *	@a:	string to copy from
653  *	@b:	string to copy to
654  *
655  * 	Copy a String from one location to another
656  *	without copying \0
657  */
658 
659 static void inqstrcpy(char *a, char *b)
660 {
661 
662 	while(*a != (char)0)
663 		*b++ = *a++;
664 }
665 
666 static char *container_types[] = {
667         "None",
668         "Volume",
669         "Mirror",
670         "Stripe",
671         "RAID5",
672         "SSRW",
673         "SSRO",
674         "Morph",
675         "Legacy",
676         "RAID4",
677         "RAID10",
678         "RAID00",
679         "V-MIRRORS",
680         "PSEUDO R4",
681 	"RAID50",
682 	"RAID5D",
683 	"RAID5D0",
684 	"RAID1E",
685 	"RAID6",
686 	"RAID60",
687         "Unknown"
688 };
689 
690 
691 
692 /* Function: setinqstr
693  *
694  * Arguments: [1] pointer to void [1] int
695  *
696  * Purpose: Sets SCSI inquiry data strings for vendor, product
697  * and revision level. Allows strings to be set in platform dependant
698  * files instead of in OS dependant driver source.
699  */
700 
701 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
702 {
703 	struct scsi_inq *str;
704 
705 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
706 	memset(str, ' ', sizeof(*str));
707 
708 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
709 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
710 		int c = sizeof(str->vid);
711 		while (*cp && *cp != ' ' && --c)
712 			++cp;
713 		c = *cp;
714 		*cp = '\0';
715 		inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
716 		  str->vid);
717 		*cp = c;
718 		while (*cp && *cp != ' ')
719 			++cp;
720 		while (*cp == ' ')
721 			++cp;
722 		/* last six chars reserved for vol type */
723 		c = 0;
724 		if (strlen(cp) > sizeof(str->pid)) {
725 			c = cp[sizeof(str->pid)];
726 			cp[sizeof(str->pid)] = '\0';
727 		}
728 		inqstrcpy (cp, str->pid);
729 		if (c)
730 			cp[sizeof(str->pid)] = c;
731 	} else {
732 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
733 
734 		inqstrcpy (mp->vname, str->vid);
735 		/* last six chars reserved for vol type */
736 		inqstrcpy (mp->model, str->pid);
737 	}
738 
739 	if (tindex < ARRAY_SIZE(container_types)){
740 		char *findit = str->pid;
741 
742 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
743 		/* RAID is superfluous in the context of a RAID device */
744 		if (memcmp(findit-4, "RAID", 4) == 0)
745 			*(findit -= 4) = ' ';
746 		if (((findit - str->pid) + strlen(container_types[tindex]))
747 		 < (sizeof(str->pid) + sizeof(str->prl)))
748 			inqstrcpy (container_types[tindex], findit + 1);
749 	}
750 	inqstrcpy ("V1.0", str->prl);
751 }
752 
753 static void get_container_serial_callback(void *context, struct fib * fibptr)
754 {
755 	struct aac_get_serial_resp * get_serial_reply;
756 	struct scsi_cmnd * scsicmd;
757 
758 	BUG_ON(fibptr == NULL);
759 
760 	scsicmd = (struct scsi_cmnd *) context;
761 	if (!aac_valid_context(scsicmd, fibptr))
762 		return;
763 
764 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
765 	/* Failure is irrelevant, using default value instead */
766 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
767 		char sp[13];
768 		/* EVPD bit set */
769 		sp[0] = INQD_PDT_DA;
770 		sp[1] = scsicmd->cmnd[2];
771 		sp[2] = 0;
772 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
773 		  le32_to_cpu(get_serial_reply->uid));
774 		aac_internal_transfer(scsicmd, sp, 0, sizeof(sp));
775 	}
776 
777 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
778 
779 	aac_fib_complete(fibptr);
780 	aac_fib_free(fibptr);
781 	scsicmd->scsi_done(scsicmd);
782 }
783 
784 /**
785  *	aac_get_container_serial - get container serial, none blocking.
786  */
787 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
788 {
789 	int status;
790 	struct aac_get_serial *dinfo;
791 	struct fib * cmd_fibcontext;
792 	struct aac_dev * dev;
793 
794 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
795 
796 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
797 		return -ENOMEM;
798 
799 	aac_fib_init(cmd_fibcontext);
800 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
801 
802 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
803 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
804 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
805 
806 	status = aac_fib_send(ContainerCommand,
807 		  cmd_fibcontext,
808 		  sizeof (struct aac_get_serial),
809 		  FsaNormal,
810 		  0, 1,
811 		  (fib_callback) get_container_serial_callback,
812 		  (void *) scsicmd);
813 
814 	/*
815 	 *	Check that the command queued to the controller
816 	 */
817 	if (status == -EINPROGRESS) {
818 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
819 		return 0;
820 	}
821 
822 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
823 	aac_fib_complete(cmd_fibcontext);
824 	aac_fib_free(cmd_fibcontext);
825 	return -1;
826 }
827 
828 /* Function: setinqserial
829  *
830  * Arguments: [1] pointer to void [1] int
831  *
832  * Purpose: Sets SCSI Unit Serial number.
833  *          This is a fake. We should read a proper
834  *          serial number from the container. <SuSE>But
835  *          without docs it's quite hard to do it :-)
836  *          So this will have to do in the meantime.</SuSE>
837  */
838 
839 static int setinqserial(struct aac_dev *dev, void *data, int cid)
840 {
841 	/*
842 	 *	This breaks array migration.
843 	 */
844 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
845 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
846 }
847 
848 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
849 		      u8 a_sense_code, u8 incorrect_length,
850 		      u8 bit_pointer, u16 field_pointer,
851 		      u32 residue)
852 {
853 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
854 	sense_buf[1] = 0;	/* Segment number, always zero */
855 
856 	if (incorrect_length) {
857 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
858 		sense_buf[3] = BYTE3(residue);
859 		sense_buf[4] = BYTE2(residue);
860 		sense_buf[5] = BYTE1(residue);
861 		sense_buf[6] = BYTE0(residue);
862 	} else
863 		sense_buf[2] = sense_key;	/* Sense key */
864 
865 	if (sense_key == ILLEGAL_REQUEST)
866 		sense_buf[7] = 10;	/* Additional sense length */
867 	else
868 		sense_buf[7] = 6;	/* Additional sense length */
869 
870 	sense_buf[12] = sense_code;	/* Additional sense code */
871 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
872 	if (sense_key == ILLEGAL_REQUEST) {
873 		sense_buf[15] = 0;
874 
875 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
876 			sense_buf[15] = 0x80;/* Std sense key specific field */
877 		/* Illegal parameter is in the parameter block */
878 
879 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
880 			sense_buf[15] = 0xc0;/* Std sense key specific field */
881 		/* Illegal parameter is in the CDB block */
882 		sense_buf[15] |= bit_pointer;
883 		sense_buf[16] = field_pointer >> 8;	/* MSB */
884 		sense_buf[17] = field_pointer;		/* LSB */
885 	}
886 }
887 
888 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
889 {
890 	if (lba & 0xffffffff00000000LL) {
891 		int cid = scmd_id(cmd);
892 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
893 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
894 			SAM_STAT_CHECK_CONDITION;
895 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
896 			    HARDWARE_ERROR,
897 			    SENCODE_INTERNAL_TARGET_FAILURE,
898 			    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
899 			    0, 0);
900 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
901 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
902 		    ? sizeof(cmd->sense_buffer)
903 		    : sizeof(dev->fsa_dev[cid].sense_data));
904 		cmd->scsi_done(cmd);
905 		return 1;
906 	}
907 	return 0;
908 }
909 
910 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
911 {
912 	return 0;
913 }
914 
915 static void io_callback(void *context, struct fib * fibptr);
916 
917 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
918 {
919 	u16 fibsize;
920 	struct aac_raw_io *readcmd;
921 	aac_fib_init(fib);
922 	readcmd = (struct aac_raw_io *) fib_data(fib);
923 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
924 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
925 	readcmd->count = cpu_to_le32(count<<9);
926 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
927 	readcmd->flags = cpu_to_le16(IO_TYPE_READ);
928 	readcmd->bpTotal = 0;
929 	readcmd->bpComplete = 0;
930 
931 	aac_build_sgraw(cmd, &readcmd->sg);
932 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
933 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
934 	/*
935 	 *	Now send the Fib to the adapter
936 	 */
937 	return aac_fib_send(ContainerRawIo,
938 			  fib,
939 			  fibsize,
940 			  FsaNormal,
941 			  0, 1,
942 			  (fib_callback) io_callback,
943 			  (void *) cmd);
944 }
945 
946 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
947 {
948 	u16 fibsize;
949 	struct aac_read64 *readcmd;
950 	aac_fib_init(fib);
951 	readcmd = (struct aac_read64 *) fib_data(fib);
952 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
953 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
954 	readcmd->sector_count = cpu_to_le16(count);
955 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
956 	readcmd->pad   = 0;
957 	readcmd->flags = 0;
958 
959 	aac_build_sg64(cmd, &readcmd->sg);
960 	fibsize = sizeof(struct aac_read64) +
961 		((le32_to_cpu(readcmd->sg.count) - 1) *
962 		 sizeof (struct sgentry64));
963 	BUG_ON (fibsize > (fib->dev->max_fib_size -
964 				sizeof(struct aac_fibhdr)));
965 	/*
966 	 *	Now send the Fib to the adapter
967 	 */
968 	return aac_fib_send(ContainerCommand64,
969 			  fib,
970 			  fibsize,
971 			  FsaNormal,
972 			  0, 1,
973 			  (fib_callback) io_callback,
974 			  (void *) cmd);
975 }
976 
977 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
978 {
979 	u16 fibsize;
980 	struct aac_read *readcmd;
981 	aac_fib_init(fib);
982 	readcmd = (struct aac_read *) fib_data(fib);
983 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
984 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
985 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
986 	readcmd->count = cpu_to_le32(count * 512);
987 
988 	aac_build_sg(cmd, &readcmd->sg);
989 	fibsize = sizeof(struct aac_read) +
990 			((le32_to_cpu(readcmd->sg.count) - 1) *
991 			 sizeof (struct sgentry));
992 	BUG_ON (fibsize > (fib->dev->max_fib_size -
993 				sizeof(struct aac_fibhdr)));
994 	/*
995 	 *	Now send the Fib to the adapter
996 	 */
997 	return aac_fib_send(ContainerCommand,
998 			  fib,
999 			  fibsize,
1000 			  FsaNormal,
1001 			  0, 1,
1002 			  (fib_callback) io_callback,
1003 			  (void *) cmd);
1004 }
1005 
1006 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1007 {
1008 	u16 fibsize;
1009 	struct aac_raw_io *writecmd;
1010 	aac_fib_init(fib);
1011 	writecmd = (struct aac_raw_io *) fib_data(fib);
1012 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1013 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1014 	writecmd->count = cpu_to_le32(count<<9);
1015 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1016 	writecmd->flags = fua ?
1017 		cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1018 		cpu_to_le16(IO_TYPE_WRITE);
1019 	writecmd->bpTotal = 0;
1020 	writecmd->bpComplete = 0;
1021 
1022 	aac_build_sgraw(cmd, &writecmd->sg);
1023 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1024 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1025 	/*
1026 	 *	Now send the Fib to the adapter
1027 	 */
1028 	return aac_fib_send(ContainerRawIo,
1029 			  fib,
1030 			  fibsize,
1031 			  FsaNormal,
1032 			  0, 1,
1033 			  (fib_callback) io_callback,
1034 			  (void *) cmd);
1035 }
1036 
1037 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1038 {
1039 	u16 fibsize;
1040 	struct aac_write64 *writecmd;
1041 	aac_fib_init(fib);
1042 	writecmd = (struct aac_write64 *) fib_data(fib);
1043 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1044 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1045 	writecmd->sector_count = cpu_to_le16(count);
1046 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1047 	writecmd->pad	= 0;
1048 	writecmd->flags	= 0;
1049 
1050 	aac_build_sg64(cmd, &writecmd->sg);
1051 	fibsize = sizeof(struct aac_write64) +
1052 		((le32_to_cpu(writecmd->sg.count) - 1) *
1053 		 sizeof (struct sgentry64));
1054 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1055 				sizeof(struct aac_fibhdr)));
1056 	/*
1057 	 *	Now send the Fib to the adapter
1058 	 */
1059 	return aac_fib_send(ContainerCommand64,
1060 			  fib,
1061 			  fibsize,
1062 			  FsaNormal,
1063 			  0, 1,
1064 			  (fib_callback) io_callback,
1065 			  (void *) cmd);
1066 }
1067 
1068 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1069 {
1070 	u16 fibsize;
1071 	struct aac_write *writecmd;
1072 	aac_fib_init(fib);
1073 	writecmd = (struct aac_write *) fib_data(fib);
1074 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1075 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1076 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1077 	writecmd->count = cpu_to_le32(count * 512);
1078 	writecmd->sg.count = cpu_to_le32(1);
1079 	/* ->stable is not used - it did mean which type of write */
1080 
1081 	aac_build_sg(cmd, &writecmd->sg);
1082 	fibsize = sizeof(struct aac_write) +
1083 		((le32_to_cpu(writecmd->sg.count) - 1) *
1084 		 sizeof (struct sgentry));
1085 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1086 				sizeof(struct aac_fibhdr)));
1087 	/*
1088 	 *	Now send the Fib to the adapter
1089 	 */
1090 	return aac_fib_send(ContainerCommand,
1091 			  fib,
1092 			  fibsize,
1093 			  FsaNormal,
1094 			  0, 1,
1095 			  (fib_callback) io_callback,
1096 			  (void *) cmd);
1097 }
1098 
1099 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1100 {
1101 	struct aac_srb * srbcmd;
1102 	u32 flag;
1103 	u32 timeout;
1104 
1105 	aac_fib_init(fib);
1106 	switch(cmd->sc_data_direction){
1107 	case DMA_TO_DEVICE:
1108 		flag = SRB_DataOut;
1109 		break;
1110 	case DMA_BIDIRECTIONAL:
1111 		flag = SRB_DataIn | SRB_DataOut;
1112 		break;
1113 	case DMA_FROM_DEVICE:
1114 		flag = SRB_DataIn;
1115 		break;
1116 	case DMA_NONE:
1117 	default:	/* shuts up some versions of gcc */
1118 		flag = SRB_NoDataXfer;
1119 		break;
1120 	}
1121 
1122 	srbcmd = (struct aac_srb*) fib_data(fib);
1123 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1124 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1125 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1126 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1127 	srbcmd->flags    = cpu_to_le32(flag);
1128 	timeout = cmd->timeout_per_command/HZ;
1129 	if (timeout == 0)
1130 		timeout = 1;
1131 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1132 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1133 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1134 	return srbcmd;
1135 }
1136 
1137 static void aac_srb_callback(void *context, struct fib * fibptr);
1138 
1139 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1140 {
1141 	u16 fibsize;
1142 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1143 
1144 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1145 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1146 
1147 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1148 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1149 	/*
1150 	 *	Build Scatter/Gather list
1151 	 */
1152 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1153 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1154 		 sizeof (struct sgentry64));
1155 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1156 				sizeof(struct aac_fibhdr)));
1157 
1158 	/*
1159 	 *	Now send the Fib to the adapter
1160 	 */
1161 	return aac_fib_send(ScsiPortCommand64, fib,
1162 				fibsize, FsaNormal, 0, 1,
1163 				  (fib_callback) aac_srb_callback,
1164 				  (void *) cmd);
1165 }
1166 
1167 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1168 {
1169 	u16 fibsize;
1170 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1171 
1172 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1173 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1174 
1175 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1176 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1177 	/*
1178 	 *	Build Scatter/Gather list
1179 	 */
1180 	fibsize = sizeof (struct aac_srb) +
1181 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1182 		 sizeof (struct sgentry));
1183 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1184 				sizeof(struct aac_fibhdr)));
1185 
1186 	/*
1187 	 *	Now send the Fib to the adapter
1188 	 */
1189 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1190 				  (fib_callback) aac_srb_callback, (void *) cmd);
1191 }
1192 
1193 int aac_get_adapter_info(struct aac_dev* dev)
1194 {
1195 	struct fib* fibptr;
1196 	int rcode;
1197 	u32 tmp;
1198 	struct aac_adapter_info *info;
1199 	struct aac_bus_info *command;
1200 	struct aac_bus_info_response *bus_info;
1201 
1202 	if (!(fibptr = aac_fib_alloc(dev)))
1203 		return -ENOMEM;
1204 
1205 	aac_fib_init(fibptr);
1206 	info = (struct aac_adapter_info *) fib_data(fibptr);
1207 	memset(info,0,sizeof(*info));
1208 
1209 	rcode = aac_fib_send(RequestAdapterInfo,
1210 			 fibptr,
1211 			 sizeof(*info),
1212 			 FsaNormal,
1213 			 -1, 1, /* First `interrupt' command uses special wait */
1214 			 NULL,
1215 			 NULL);
1216 
1217 	if (rcode < 0) {
1218 		aac_fib_complete(fibptr);
1219 		aac_fib_free(fibptr);
1220 		return rcode;
1221 	}
1222 	memcpy(&dev->adapter_info, info, sizeof(*info));
1223 
1224 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1225 		struct aac_supplement_adapter_info * info;
1226 
1227 		aac_fib_init(fibptr);
1228 
1229 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1230 
1231 		memset(info,0,sizeof(*info));
1232 
1233 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1234 				 fibptr,
1235 				 sizeof(*info),
1236 				 FsaNormal,
1237 				 1, 1,
1238 				 NULL,
1239 				 NULL);
1240 
1241 		if (rcode >= 0)
1242 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1243 	}
1244 
1245 
1246 	/*
1247 	 * GetBusInfo
1248 	 */
1249 
1250 	aac_fib_init(fibptr);
1251 
1252 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1253 
1254 	memset(bus_info, 0, sizeof(*bus_info));
1255 
1256 	command = (struct aac_bus_info *)bus_info;
1257 
1258 	command->Command = cpu_to_le32(VM_Ioctl);
1259 	command->ObjType = cpu_to_le32(FT_DRIVE);
1260 	command->MethodId = cpu_to_le32(1);
1261 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1262 
1263 	rcode = aac_fib_send(ContainerCommand,
1264 			 fibptr,
1265 			 sizeof (*bus_info),
1266 			 FsaNormal,
1267 			 1, 1,
1268 			 NULL, NULL);
1269 
1270 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1271 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1272 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1273 	}
1274 
1275 	if (!dev->in_reset) {
1276 		char buffer[16];
1277 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1278 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1279 			dev->name,
1280 			dev->id,
1281 			tmp>>24,
1282 			(tmp>>16)&0xff,
1283 			tmp&0xff,
1284 			le32_to_cpu(dev->adapter_info.kernelbuild),
1285 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1286 			dev->supplement_adapter_info.BuildDate);
1287 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1288 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1289 			dev->name, dev->id,
1290 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1291 			le32_to_cpu(dev->adapter_info.monitorbuild));
1292 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1293 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1294 			dev->name, dev->id,
1295 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1296 			le32_to_cpu(dev->adapter_info.biosbuild));
1297 		buffer[0] = '\0';
1298 		if (aac_show_serial_number(
1299 		  shost_to_class(dev->scsi_host_ptr), buffer))
1300 			printk(KERN_INFO "%s%d: serial %s",
1301 			  dev->name, dev->id, buffer);
1302 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1303 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1304 			  dev->name, dev->id,
1305 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1306 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1307 		}
1308 		if (!check_reset ||
1309 		  (dev->supplement_adapter_info.SupportedOptions2 &
1310 		  le32_to_cpu(AAC_OPTION_IGNORE_RESET))) {
1311 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1312 			  dev->name, dev->id);
1313 		}
1314 	}
1315 
1316 	dev->nondasd_support = 0;
1317 	dev->raid_scsi_mode = 0;
1318 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
1319 		dev->nondasd_support = 1;
1320 	}
1321 
1322 	/*
1323 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1324 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1325 	 * force nondasd support on. If we decide to allow the non-dasd flag
1326 	 * additional changes changes will have to be made to support
1327 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1328 	 * changed to support the new dev->raid_scsi_mode flag instead of
1329 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1330 	 * function aac_detect will have to be modified where it sets up the
1331 	 * max number of channels based on the aac->nondasd_support flag only.
1332 	 */
1333 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1334 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1335 		dev->nondasd_support = 1;
1336 		dev->raid_scsi_mode = 1;
1337 	}
1338 	if (dev->raid_scsi_mode != 0)
1339 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1340 				dev->name, dev->id);
1341 
1342 	if(nondasd != -1) {
1343 		dev->nondasd_support = (nondasd!=0);
1344 	}
1345 	if(dev->nondasd_support != 0){
1346 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1347 	}
1348 
1349 	dev->dac_support = 0;
1350 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1351 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1352 		dev->dac_support = 1;
1353 	}
1354 
1355 	if(dacmode != -1) {
1356 		dev->dac_support = (dacmode!=0);
1357 	}
1358 	if(dev->dac_support != 0) {
1359 		if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1360 			!pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1361 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1362 				dev->name, dev->id);
1363 		} else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1364 			!pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1365 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1366 				dev->name, dev->id);
1367 			dev->dac_support = 0;
1368 		} else {
1369 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1370 				dev->name, dev->id);
1371 			rcode = -ENOMEM;
1372 		}
1373 	}
1374 	/*
1375 	 * Deal with configuring for the individualized limits of each packet
1376 	 * interface.
1377 	 */
1378 	dev->a_ops.adapter_scsi = (dev->dac_support)
1379 				? aac_scsi_64
1380 				: aac_scsi_32;
1381 	if (dev->raw_io_interface) {
1382 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1383 					? aac_bounds_64
1384 					: aac_bounds_32;
1385 		dev->a_ops.adapter_read = aac_read_raw_io;
1386 		dev->a_ops.adapter_write = aac_write_raw_io;
1387 	} else {
1388 		dev->a_ops.adapter_bounds = aac_bounds_32;
1389 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1390 			sizeof(struct aac_fibhdr) -
1391 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1392 				sizeof(struct sgentry);
1393 		if (dev->dac_support) {
1394 			dev->a_ops.adapter_read = aac_read_block64;
1395 			dev->a_ops.adapter_write = aac_write_block64;
1396 			/*
1397 			 * 38 scatter gather elements
1398 			 */
1399 			dev->scsi_host_ptr->sg_tablesize =
1400 				(dev->max_fib_size -
1401 				sizeof(struct aac_fibhdr) -
1402 				sizeof(struct aac_write64) +
1403 				sizeof(struct sgentry64)) /
1404 					sizeof(struct sgentry64);
1405 		} else {
1406 			dev->a_ops.adapter_read = aac_read_block;
1407 			dev->a_ops.adapter_write = aac_write_block;
1408 		}
1409 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1410 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1411 			/*
1412 			 * Worst case size that could cause sg overflow when
1413 			 * we break up SG elements that are larger than 64KB.
1414 			 * Would be nice if we could tell the SCSI layer what
1415 			 * the maximum SG element size can be. Worst case is
1416 			 * (sg_tablesize-1) 4KB elements with one 64KB
1417 			 * element.
1418 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1419 			 */
1420 			dev->scsi_host_ptr->max_sectors =
1421 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1422 		}
1423 	}
1424 
1425 	aac_fib_complete(fibptr);
1426 	aac_fib_free(fibptr);
1427 
1428 	return rcode;
1429 }
1430 
1431 
1432 static void io_callback(void *context, struct fib * fibptr)
1433 {
1434 	struct aac_dev *dev;
1435 	struct aac_read_reply *readreply;
1436 	struct scsi_cmnd *scsicmd;
1437 	u32 cid;
1438 
1439 	scsicmd = (struct scsi_cmnd *) context;
1440 
1441 	if (!aac_valid_context(scsicmd, fibptr))
1442 		return;
1443 
1444 	dev = fibptr->dev;
1445 	cid = scmd_id(scsicmd);
1446 
1447 	if (nblank(dprintk(x))) {
1448 		u64 lba;
1449 		switch (scsicmd->cmnd[0]) {
1450 		case WRITE_6:
1451 		case READ_6:
1452 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1453 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1454 			break;
1455 		case WRITE_16:
1456 		case READ_16:
1457 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1458 			      ((u64)scsicmd->cmnd[3] << 48) |
1459 			      ((u64)scsicmd->cmnd[4] << 40) |
1460 			      ((u64)scsicmd->cmnd[5] << 32) |
1461 			      ((u64)scsicmd->cmnd[6] << 24) |
1462 			      (scsicmd->cmnd[7] << 16) |
1463 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1464 			break;
1465 		case WRITE_12:
1466 		case READ_12:
1467 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1468 			      (scsicmd->cmnd[3] << 16) |
1469 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1470 			break;
1471 		default:
1472 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1473 			       (scsicmd->cmnd[3] << 16) |
1474 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1475 			break;
1476 		}
1477 		printk(KERN_DEBUG
1478 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1479 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1480 	}
1481 
1482 	BUG_ON(fibptr == NULL);
1483 
1484 	scsi_dma_unmap(scsicmd);
1485 
1486 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1487 	if (le32_to_cpu(readreply->status) == ST_OK)
1488 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1489 	else {
1490 #ifdef AAC_DETAILED_STATUS_INFO
1491 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1492 		  le32_to_cpu(readreply->status));
1493 #endif
1494 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1495 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1496 				    HARDWARE_ERROR,
1497 				    SENCODE_INTERNAL_TARGET_FAILURE,
1498 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1499 				    0, 0);
1500 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1501 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1502 		    ? sizeof(scsicmd->sense_buffer)
1503 		    : sizeof(dev->fsa_dev[cid].sense_data));
1504 	}
1505 	aac_fib_complete(fibptr);
1506 	aac_fib_free(fibptr);
1507 
1508 	scsicmd->scsi_done(scsicmd);
1509 }
1510 
1511 static int aac_read(struct scsi_cmnd * scsicmd)
1512 {
1513 	u64 lba;
1514 	u32 count;
1515 	int status;
1516 	struct aac_dev *dev;
1517 	struct fib * cmd_fibcontext;
1518 
1519 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1520 	/*
1521 	 *	Get block address and transfer length
1522 	 */
1523 	switch (scsicmd->cmnd[0]) {
1524 	case READ_6:
1525 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1526 
1527 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1528 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1529 		count = scsicmd->cmnd[4];
1530 
1531 		if (count == 0)
1532 			count = 256;
1533 		break;
1534 	case READ_16:
1535 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1536 
1537 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1538 		 	((u64)scsicmd->cmnd[3] << 48) |
1539 			((u64)scsicmd->cmnd[4] << 40) |
1540 			((u64)scsicmd->cmnd[5] << 32) |
1541 			((u64)scsicmd->cmnd[6] << 24) |
1542 			(scsicmd->cmnd[7] << 16) |
1543 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1544 		count = (scsicmd->cmnd[10] << 24) |
1545 			(scsicmd->cmnd[11] << 16) |
1546 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1547 		break;
1548 	case READ_12:
1549 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1550 
1551 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1552 			(scsicmd->cmnd[3] << 16) |
1553 		    	(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1554 		count = (scsicmd->cmnd[6] << 24) |
1555 			(scsicmd->cmnd[7] << 16) |
1556 		      	(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1557 		break;
1558 	default:
1559 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1560 
1561 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1562 			(scsicmd->cmnd[3] << 16) |
1563 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1564 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1565 		break;
1566 	}
1567 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1568 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1569 	if (aac_adapter_bounds(dev,scsicmd,lba))
1570 		return 0;
1571 	/*
1572 	 *	Alocate and initialize a Fib
1573 	 */
1574 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1575 		return -1;
1576 	}
1577 
1578 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1579 
1580 	/*
1581 	 *	Check that the command queued to the controller
1582 	 */
1583 	if (status == -EINPROGRESS) {
1584 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1585 		return 0;
1586 	}
1587 
1588 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1589 	/*
1590 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1591 	 */
1592 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1593 	scsicmd->scsi_done(scsicmd);
1594 	aac_fib_complete(cmd_fibcontext);
1595 	aac_fib_free(cmd_fibcontext);
1596 	return 0;
1597 }
1598 
1599 static int aac_write(struct scsi_cmnd * scsicmd)
1600 {
1601 	u64 lba;
1602 	u32 count;
1603 	int fua;
1604 	int status;
1605 	struct aac_dev *dev;
1606 	struct fib * cmd_fibcontext;
1607 
1608 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1609 	/*
1610 	 *	Get block address and transfer length
1611 	 */
1612 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1613 	{
1614 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1615 		count = scsicmd->cmnd[4];
1616 		if (count == 0)
1617 			count = 256;
1618 		fua = 0;
1619 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1620 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1621 
1622 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1623 			((u64)scsicmd->cmnd[3] << 48) |
1624 			((u64)scsicmd->cmnd[4] << 40) |
1625 			((u64)scsicmd->cmnd[5] << 32) |
1626 			((u64)scsicmd->cmnd[6] << 24) |
1627 			(scsicmd->cmnd[7] << 16) |
1628 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1629 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1630 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1631 		fua = scsicmd->cmnd[1] & 0x8;
1632 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1633 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1634 
1635 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1636 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1637 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1638 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1639 		fua = scsicmd->cmnd[1] & 0x8;
1640 	} else {
1641 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1642 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1643 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1644 		fua = scsicmd->cmnd[1] & 0x8;
1645 	}
1646 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1647 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1648 	if (aac_adapter_bounds(dev,scsicmd,lba))
1649 		return 0;
1650 	/*
1651 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1652 	 */
1653 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1654 		scsicmd->result = DID_ERROR << 16;
1655 		scsicmd->scsi_done(scsicmd);
1656 		return 0;
1657 	}
1658 
1659 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1660 
1661 	/*
1662 	 *	Check that the command queued to the controller
1663 	 */
1664 	if (status == -EINPROGRESS) {
1665 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1666 		return 0;
1667 	}
1668 
1669 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1670 	/*
1671 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1672 	 */
1673 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1674 	scsicmd->scsi_done(scsicmd);
1675 
1676 	aac_fib_complete(cmd_fibcontext);
1677 	aac_fib_free(cmd_fibcontext);
1678 	return 0;
1679 }
1680 
1681 static void synchronize_callback(void *context, struct fib *fibptr)
1682 {
1683 	struct aac_synchronize_reply *synchronizereply;
1684 	struct scsi_cmnd *cmd;
1685 
1686 	cmd = context;
1687 
1688 	if (!aac_valid_context(cmd, fibptr))
1689 		return;
1690 
1691 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1692 				smp_processor_id(), jiffies));
1693 	BUG_ON(fibptr == NULL);
1694 
1695 
1696 	synchronizereply = fib_data(fibptr);
1697 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1698 		cmd->result = DID_OK << 16 |
1699 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1700 	else {
1701 		struct scsi_device *sdev = cmd->device;
1702 		struct aac_dev *dev = fibptr->dev;
1703 		u32 cid = sdev_id(sdev);
1704 		printk(KERN_WARNING
1705 		     "synchronize_callback: synchronize failed, status = %d\n",
1706 		     le32_to_cpu(synchronizereply->status));
1707 		cmd->result = DID_OK << 16 |
1708 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1709 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1710 				    HARDWARE_ERROR,
1711 				    SENCODE_INTERNAL_TARGET_FAILURE,
1712 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1713 				    0, 0);
1714 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1715 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1716 			  sizeof(cmd->sense_buffer)));
1717 	}
1718 
1719 	aac_fib_complete(fibptr);
1720 	aac_fib_free(fibptr);
1721 	cmd->scsi_done(cmd);
1722 }
1723 
1724 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1725 {
1726 	int status;
1727 	struct fib *cmd_fibcontext;
1728 	struct aac_synchronize *synchronizecmd;
1729 	struct scsi_cmnd *cmd;
1730 	struct scsi_device *sdev = scsicmd->device;
1731 	int active = 0;
1732 	struct aac_dev *aac;
1733 	unsigned long flags;
1734 
1735 	/*
1736 	 * Wait for all outstanding queued commands to complete to this
1737 	 * specific target (block).
1738 	 */
1739 	spin_lock_irqsave(&sdev->list_lock, flags);
1740 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1741 		if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1742 			++active;
1743 			break;
1744 		}
1745 
1746 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1747 
1748 	/*
1749 	 *	Yield the processor (requeue for later)
1750 	 */
1751 	if (active)
1752 		return SCSI_MLQUEUE_DEVICE_BUSY;
1753 
1754 	aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1755 	if (aac->in_reset)
1756 		return SCSI_MLQUEUE_HOST_BUSY;
1757 
1758 	/*
1759 	 *	Allocate and initialize a Fib
1760 	 */
1761 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1762 		return SCSI_MLQUEUE_HOST_BUSY;
1763 
1764 	aac_fib_init(cmd_fibcontext);
1765 
1766 	synchronizecmd = fib_data(cmd_fibcontext);
1767 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1768 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1769 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1770 	synchronizecmd->count =
1771 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1772 
1773 	/*
1774 	 *	Now send the Fib to the adapter
1775 	 */
1776 	status = aac_fib_send(ContainerCommand,
1777 		  cmd_fibcontext,
1778 		  sizeof(struct aac_synchronize),
1779 		  FsaNormal,
1780 		  0, 1,
1781 		  (fib_callback)synchronize_callback,
1782 		  (void *)scsicmd);
1783 
1784 	/*
1785 	 *	Check that the command queued to the controller
1786 	 */
1787 	if (status == -EINPROGRESS) {
1788 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1789 		return 0;
1790 	}
1791 
1792 	printk(KERN_WARNING
1793 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1794 	aac_fib_complete(cmd_fibcontext);
1795 	aac_fib_free(cmd_fibcontext);
1796 	return SCSI_MLQUEUE_HOST_BUSY;
1797 }
1798 
1799 /**
1800  *	aac_scsi_cmd()		-	Process SCSI command
1801  *	@scsicmd:		SCSI command block
1802  *
1803  *	Emulate a SCSI command and queue the required request for the
1804  *	aacraid firmware.
1805  */
1806 
1807 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1808 {
1809 	u32 cid;
1810 	struct Scsi_Host *host = scsicmd->device->host;
1811 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1812 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1813 
1814 	if (fsa_dev_ptr == NULL)
1815 		return -1;
1816 	/*
1817 	 *	If the bus, id or lun is out of range, return fail
1818 	 *	Test does not apply to ID 16, the pseudo id for the controller
1819 	 *	itself.
1820 	 */
1821 	cid = scmd_id(scsicmd);
1822 	if (cid != host->this_id) {
1823 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
1824 			if((cid >= dev->maximum_num_containers) ||
1825 					(scsicmd->device->lun != 0)) {
1826 				scsicmd->result = DID_NO_CONNECT << 16;
1827 				scsicmd->scsi_done(scsicmd);
1828 				return 0;
1829 			}
1830 
1831 			/*
1832 			 *	If the target container doesn't exist, it may have
1833 			 *	been newly created
1834 			 */
1835 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1836 				switch (scsicmd->cmnd[0]) {
1837 				case SERVICE_ACTION_IN:
1838 					if (!(dev->raw_io_interface) ||
1839 					    !(dev->raw_io_64) ||
1840 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1841 						break;
1842 				case INQUIRY:
1843 				case READ_CAPACITY:
1844 				case TEST_UNIT_READY:
1845 					if (dev->in_reset)
1846 						return -1;
1847 					return _aac_probe_container(scsicmd,
1848 							aac_probe_container_callback2);
1849 				default:
1850 					break;
1851 				}
1852 			}
1853 		} else {  /* check for physical non-dasd devices */
1854 			if ((dev->nondasd_support == 1) || expose_physicals) {
1855 				if (dev->in_reset)
1856 					return -1;
1857 				return aac_send_srb_fib(scsicmd);
1858 			} else {
1859 				scsicmd->result = DID_NO_CONNECT << 16;
1860 				scsicmd->scsi_done(scsicmd);
1861 				return 0;
1862 			}
1863 		}
1864 	}
1865 	/*
1866 	 * else Command for the controller itself
1867 	 */
1868 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1869 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1870 	{
1871 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1872 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1873 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1874 			    ILLEGAL_REQUEST,
1875 			    SENCODE_INVALID_COMMAND,
1876 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1877 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1878 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1879 		    ? sizeof(scsicmd->sense_buffer)
1880 		    : sizeof(dev->fsa_dev[cid].sense_data));
1881 		scsicmd->scsi_done(scsicmd);
1882 		return 0;
1883 	}
1884 
1885 
1886 	/* Handle commands here that don't really require going out to the adapter */
1887 	switch (scsicmd->cmnd[0]) {
1888 	case INQUIRY:
1889 	{
1890 		struct inquiry_data inq_data;
1891 
1892 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
1893 		memset(&inq_data, 0, sizeof (struct inquiry_data));
1894 
1895 		if (scsicmd->cmnd[1] & 0x1 ) {
1896 			char *arr = (char *)&inq_data;
1897 
1898 			/* EVPD bit set */
1899 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
1900 			  INQD_PDT_PROC : INQD_PDT_DA;
1901 			if (scsicmd->cmnd[2] == 0) {
1902 				/* supported vital product data pages */
1903 				arr[3] = 2;
1904 				arr[4] = 0x0;
1905 				arr[5] = 0x80;
1906 				arr[1] = scsicmd->cmnd[2];
1907 				aac_internal_transfer(scsicmd, &inq_data, 0,
1908 				  sizeof(inq_data));
1909 				scsicmd->result = DID_OK << 16 |
1910 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1911 			} else if (scsicmd->cmnd[2] == 0x80) {
1912 				/* unit serial number page */
1913 				arr[3] = setinqserial(dev, &arr[4],
1914 				  scmd_id(scsicmd));
1915 				arr[1] = scsicmd->cmnd[2];
1916 				aac_internal_transfer(scsicmd, &inq_data, 0,
1917 				  sizeof(inq_data));
1918 				return aac_get_container_serial(scsicmd);
1919 			} else {
1920 				/* vpd page not implemented */
1921 				scsicmd->result = DID_OK << 16 |
1922 				  COMMAND_COMPLETE << 8 |
1923 				  SAM_STAT_CHECK_CONDITION;
1924 				set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1925 				  ILLEGAL_REQUEST,
1926 				  SENCODE_INVALID_CDB_FIELD,
1927 				  ASENCODE_NO_SENSE, 0, 7, 2, 0);
1928 				memcpy(scsicmd->sense_buffer,
1929 				  &dev->fsa_dev[cid].sense_data,
1930 				  (sizeof(dev->fsa_dev[cid].sense_data) >
1931 				    sizeof(scsicmd->sense_buffer))
1932 				       ? sizeof(scsicmd->sense_buffer)
1933 				       : sizeof(dev->fsa_dev[cid].sense_data));
1934 			}
1935 			scsicmd->scsi_done(scsicmd);
1936 			return 0;
1937 		}
1938 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
1939 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1940 		inq_data.inqd_len = 31;
1941 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1942 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1943 		/*
1944 		 *	Set the Vendor, Product, and Revision Level
1945 		 *	see: <vendor>.c i.e. aac.c
1946 		 */
1947 		if (cid == host->this_id) {
1948 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1949 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1950 			aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1951 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1952 			scsicmd->scsi_done(scsicmd);
1953 			return 0;
1954 		}
1955 		if (dev->in_reset)
1956 			return -1;
1957 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1958 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1959 		aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1960 		return aac_get_container_name(scsicmd);
1961 	}
1962 	case SERVICE_ACTION_IN:
1963 		if (!(dev->raw_io_interface) ||
1964 		    !(dev->raw_io_64) ||
1965 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1966 			break;
1967 	{
1968 		u64 capacity;
1969 		char cp[13];
1970 
1971 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1972 		capacity = fsa_dev_ptr[cid].size - 1;
1973 		cp[0] = (capacity >> 56) & 0xff;
1974 		cp[1] = (capacity >> 48) & 0xff;
1975 		cp[2] = (capacity >> 40) & 0xff;
1976 		cp[3] = (capacity >> 32) & 0xff;
1977 		cp[4] = (capacity >> 24) & 0xff;
1978 		cp[5] = (capacity >> 16) & 0xff;
1979 		cp[6] = (capacity >> 8) & 0xff;
1980 		cp[7] = (capacity >> 0) & 0xff;
1981 		cp[8] = 0;
1982 		cp[9] = 0;
1983 		cp[10] = 2;
1984 		cp[11] = 0;
1985 		cp[12] = 0;
1986 		aac_internal_transfer(scsicmd, cp, 0,
1987 		  min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1988 		if (sizeof(cp) < scsicmd->cmnd[13]) {
1989 			unsigned int len, offset = sizeof(cp);
1990 
1991 			memset(cp, 0, offset);
1992 			do {
1993 				len = min_t(size_t, scsicmd->cmnd[13] - offset,
1994 						sizeof(cp));
1995 				aac_internal_transfer(scsicmd, cp, offset, len);
1996 			} while ((offset += len) < scsicmd->cmnd[13]);
1997 		}
1998 
1999 		/* Do not cache partition table for arrays */
2000 		scsicmd->device->removable = 1;
2001 
2002 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2003 		scsicmd->scsi_done(scsicmd);
2004 
2005 		return 0;
2006 	}
2007 
2008 	case READ_CAPACITY:
2009 	{
2010 		u32 capacity;
2011 		char cp[8];
2012 
2013 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2014 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2015 			capacity = fsa_dev_ptr[cid].size - 1;
2016 		else
2017 			capacity = (u32)-1;
2018 
2019 		cp[0] = (capacity >> 24) & 0xff;
2020 		cp[1] = (capacity >> 16) & 0xff;
2021 		cp[2] = (capacity >> 8) & 0xff;
2022 		cp[3] = (capacity >> 0) & 0xff;
2023 		cp[4] = 0;
2024 		cp[5] = 0;
2025 		cp[6] = 2;
2026 		cp[7] = 0;
2027 		aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
2028 		/* Do not cache partition table for arrays */
2029 		scsicmd->device->removable = 1;
2030 
2031 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2032 		scsicmd->scsi_done(scsicmd);
2033 
2034 		return 0;
2035 	}
2036 
2037 	case MODE_SENSE:
2038 	{
2039 		char mode_buf[7];
2040 		int mode_buf_length = 4;
2041 
2042 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2043 		mode_buf[0] = 3;	/* Mode data length */
2044 		mode_buf[1] = 0;	/* Medium type - default */
2045 		mode_buf[2] = 0;	/* Device-specific param,
2046 					   bit 8: 0/1 = write enabled/protected
2047 					   bit 4: 0/1 = FUA enabled */
2048 		if (dev->raw_io_interface)
2049 			mode_buf[2] = 0x10;
2050 		mode_buf[3] = 0;	/* Block descriptor length */
2051 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2052 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2053 			mode_buf[0] = 6;
2054 			mode_buf[4] = 8;
2055 			mode_buf[5] = 1;
2056 			mode_buf[6] = 0x04; /* WCE */
2057 			mode_buf_length = 7;
2058 			if (mode_buf_length > scsicmd->cmnd[4])
2059 				mode_buf_length = scsicmd->cmnd[4];
2060 		}
2061 		aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
2062 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2063 		scsicmd->scsi_done(scsicmd);
2064 
2065 		return 0;
2066 	}
2067 	case MODE_SENSE_10:
2068 	{
2069 		char mode_buf[11];
2070 		int mode_buf_length = 8;
2071 
2072 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2073 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2074 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2075 		mode_buf[2] = 0;	/* Medium type - default */
2076 		mode_buf[3] = 0;	/* Device-specific param,
2077 					   bit 8: 0/1 = write enabled/protected
2078 					   bit 4: 0/1 = FUA enabled */
2079 		if (dev->raw_io_interface)
2080 			mode_buf[3] = 0x10;
2081 		mode_buf[4] = 0;	/* reserved */
2082 		mode_buf[5] = 0;	/* reserved */
2083 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2084 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2085 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2086 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2087 			mode_buf[1] = 9;
2088 			mode_buf[8] = 8;
2089 			mode_buf[9] = 1;
2090 			mode_buf[10] = 0x04; /* WCE */
2091 			mode_buf_length = 11;
2092 			if (mode_buf_length > scsicmd->cmnd[8])
2093 				mode_buf_length = scsicmd->cmnd[8];
2094 		}
2095 		aac_internal_transfer(scsicmd, mode_buf, 0, mode_buf_length);
2096 
2097 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2098 		scsicmd->scsi_done(scsicmd);
2099 
2100 		return 0;
2101 	}
2102 	case REQUEST_SENSE:
2103 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2104 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2105 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2106 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2107 		scsicmd->scsi_done(scsicmd);
2108 		return 0;
2109 
2110 	case ALLOW_MEDIUM_REMOVAL:
2111 		dprintk((KERN_DEBUG "LOCK command.\n"));
2112 		if (scsicmd->cmnd[4])
2113 			fsa_dev_ptr[cid].locked = 1;
2114 		else
2115 			fsa_dev_ptr[cid].locked = 0;
2116 
2117 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2118 		scsicmd->scsi_done(scsicmd);
2119 		return 0;
2120 	/*
2121 	 *	These commands are all No-Ops
2122 	 */
2123 	case TEST_UNIT_READY:
2124 	case RESERVE:
2125 	case RELEASE:
2126 	case REZERO_UNIT:
2127 	case REASSIGN_BLOCKS:
2128 	case SEEK_10:
2129 	case START_STOP:
2130 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2131 		scsicmd->scsi_done(scsicmd);
2132 		return 0;
2133 	}
2134 
2135 	switch (scsicmd->cmnd[0])
2136 	{
2137 		case READ_6:
2138 		case READ_10:
2139 		case READ_12:
2140 		case READ_16:
2141 			if (dev->in_reset)
2142 				return -1;
2143 			/*
2144 			 *	Hack to keep track of ordinal number of the device that
2145 			 *	corresponds to a container. Needed to convert
2146 			 *	containers to /dev/sd device names
2147 			 */
2148 
2149 			if (scsicmd->request->rq_disk)
2150 				strlcpy(fsa_dev_ptr[cid].devname,
2151 				scsicmd->request->rq_disk->disk_name,
2152 			  	min(sizeof(fsa_dev_ptr[cid].devname),
2153 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2154 
2155 			return aac_read(scsicmd);
2156 
2157 		case WRITE_6:
2158 		case WRITE_10:
2159 		case WRITE_12:
2160 		case WRITE_16:
2161 			if (dev->in_reset)
2162 				return -1;
2163 			return aac_write(scsicmd);
2164 
2165 		case SYNCHRONIZE_CACHE:
2166 			/* Issue FIB to tell Firmware to flush it's cache */
2167 			return aac_synchronize(scsicmd);
2168 
2169 		default:
2170 			/*
2171 			 *	Unhandled commands
2172 			 */
2173 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2174 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2175 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
2176 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2177 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
2178 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2179 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
2180 			    ? sizeof(scsicmd->sense_buffer)
2181 			    : sizeof(dev->fsa_dev[cid].sense_data));
2182 			scsicmd->scsi_done(scsicmd);
2183 			return 0;
2184 	}
2185 }
2186 
2187 static int query_disk(struct aac_dev *dev, void __user *arg)
2188 {
2189 	struct aac_query_disk qd;
2190 	struct fsa_dev_info *fsa_dev_ptr;
2191 
2192 	fsa_dev_ptr = dev->fsa_dev;
2193 	if (!fsa_dev_ptr)
2194 		return -EBUSY;
2195 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2196 		return -EFAULT;
2197 	if (qd.cnum == -1)
2198 		qd.cnum = qd.id;
2199 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2200 	{
2201 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2202 			return -EINVAL;
2203 		qd.instance = dev->scsi_host_ptr->host_no;
2204 		qd.bus = 0;
2205 		qd.id = CONTAINER_TO_ID(qd.cnum);
2206 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2207 	}
2208 	else return -EINVAL;
2209 
2210 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2211 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2212 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2213 
2214 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2215 		qd.unmapped = 1;
2216 	else
2217 		qd.unmapped = 0;
2218 
2219 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2220 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2221 
2222 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2223 		return -EFAULT;
2224 	return 0;
2225 }
2226 
2227 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2228 {
2229 	struct aac_delete_disk dd;
2230 	struct fsa_dev_info *fsa_dev_ptr;
2231 
2232 	fsa_dev_ptr = dev->fsa_dev;
2233 	if (!fsa_dev_ptr)
2234 		return -EBUSY;
2235 
2236 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2237 		return -EFAULT;
2238 
2239 	if (dd.cnum >= dev->maximum_num_containers)
2240 		return -EINVAL;
2241 	/*
2242 	 *	Mark this container as being deleted.
2243 	 */
2244 	fsa_dev_ptr[dd.cnum].deleted = 1;
2245 	/*
2246 	 *	Mark the container as no longer valid
2247 	 */
2248 	fsa_dev_ptr[dd.cnum].valid = 0;
2249 	return 0;
2250 }
2251 
2252 static int delete_disk(struct aac_dev *dev, void __user *arg)
2253 {
2254 	struct aac_delete_disk dd;
2255 	struct fsa_dev_info *fsa_dev_ptr;
2256 
2257 	fsa_dev_ptr = dev->fsa_dev;
2258 	if (!fsa_dev_ptr)
2259 		return -EBUSY;
2260 
2261 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2262 		return -EFAULT;
2263 
2264 	if (dd.cnum >= dev->maximum_num_containers)
2265 		return -EINVAL;
2266 	/*
2267 	 *	If the container is locked, it can not be deleted by the API.
2268 	 */
2269 	if (fsa_dev_ptr[dd.cnum].locked)
2270 		return -EBUSY;
2271 	else {
2272 		/*
2273 		 *	Mark the container as no longer being valid.
2274 		 */
2275 		fsa_dev_ptr[dd.cnum].valid = 0;
2276 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2277 		return 0;
2278 	}
2279 }
2280 
2281 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2282 {
2283 	switch (cmd) {
2284 	case FSACTL_QUERY_DISK:
2285 		return query_disk(dev, arg);
2286 	case FSACTL_DELETE_DISK:
2287 		return delete_disk(dev, arg);
2288 	case FSACTL_FORCE_DELETE_DISK:
2289 		return force_delete_disk(dev, arg);
2290 	case FSACTL_GET_CONTAINERS:
2291 		return aac_get_containers(dev);
2292 	default:
2293 		return -ENOTTY;
2294 	}
2295 }
2296 
2297 /**
2298  *
2299  * aac_srb_callback
2300  * @context: the context set in the fib - here it is scsi cmd
2301  * @fibptr: pointer to the fib
2302  *
2303  * Handles the completion of a scsi command to a non dasd device
2304  *
2305  */
2306 
2307 static void aac_srb_callback(void *context, struct fib * fibptr)
2308 {
2309 	struct aac_dev *dev;
2310 	struct aac_srb_reply *srbreply;
2311 	struct scsi_cmnd *scsicmd;
2312 
2313 	scsicmd = (struct scsi_cmnd *) context;
2314 
2315 	if (!aac_valid_context(scsicmd, fibptr))
2316 		return;
2317 
2318 	BUG_ON(fibptr == NULL);
2319 
2320 	dev = fibptr->dev;
2321 
2322 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2323 
2324 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2325 	/*
2326 	 *	Calculate resid for sg
2327 	 */
2328 
2329 	scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2330 		       - le32_to_cpu(srbreply->data_xfer_length));
2331 
2332 	scsi_dma_unmap(scsicmd);
2333 
2334 	/*
2335 	 * First check the fib status
2336 	 */
2337 
2338 	if (le32_to_cpu(srbreply->status) != ST_OK){
2339 		int len;
2340 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2341 		len = (le32_to_cpu(srbreply->sense_data_size) >
2342 				sizeof(scsicmd->sense_buffer)) ?
2343 				sizeof(scsicmd->sense_buffer) :
2344 				le32_to_cpu(srbreply->sense_data_size);
2345 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2346 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2347 	}
2348 
2349 	/*
2350 	 * Next check the srb status
2351 	 */
2352 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2353 	case SRB_STATUS_ERROR_RECOVERY:
2354 	case SRB_STATUS_PENDING:
2355 	case SRB_STATUS_SUCCESS:
2356 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2357 		break;
2358 	case SRB_STATUS_DATA_OVERRUN:
2359 		switch(scsicmd->cmnd[0]){
2360 		case  READ_6:
2361 		case  WRITE_6:
2362 		case  READ_10:
2363 		case  WRITE_10:
2364 		case  READ_12:
2365 		case  WRITE_12:
2366 		case  READ_16:
2367 		case  WRITE_16:
2368 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2369 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2370 			} else {
2371 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2372 			}
2373 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2374 			break;
2375 		case INQUIRY: {
2376 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2377 			break;
2378 		}
2379 		default:
2380 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2381 			break;
2382 		}
2383 		break;
2384 	case SRB_STATUS_ABORTED:
2385 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2386 		break;
2387 	case SRB_STATUS_ABORT_FAILED:
2388 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2389 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2390 		break;
2391 	case SRB_STATUS_PARITY_ERROR:
2392 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2393 		break;
2394 	case SRB_STATUS_NO_DEVICE:
2395 	case SRB_STATUS_INVALID_PATH_ID:
2396 	case SRB_STATUS_INVALID_TARGET_ID:
2397 	case SRB_STATUS_INVALID_LUN:
2398 	case SRB_STATUS_SELECTION_TIMEOUT:
2399 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2400 		break;
2401 
2402 	case SRB_STATUS_COMMAND_TIMEOUT:
2403 	case SRB_STATUS_TIMEOUT:
2404 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2405 		break;
2406 
2407 	case SRB_STATUS_BUSY:
2408 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2409 		break;
2410 
2411 	case SRB_STATUS_BUS_RESET:
2412 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2413 		break;
2414 
2415 	case SRB_STATUS_MESSAGE_REJECTED:
2416 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2417 		break;
2418 	case SRB_STATUS_REQUEST_FLUSHED:
2419 	case SRB_STATUS_ERROR:
2420 	case SRB_STATUS_INVALID_REQUEST:
2421 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2422 	case SRB_STATUS_NO_HBA:
2423 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2424 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2425 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2426 	case SRB_STATUS_DELAYED_RETRY:
2427 	case SRB_STATUS_BAD_FUNCTION:
2428 	case SRB_STATUS_NOT_STARTED:
2429 	case SRB_STATUS_NOT_IN_USE:
2430 	case SRB_STATUS_FORCE_ABORT:
2431 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2432 	default:
2433 #ifdef AAC_DETAILED_STATUS_INFO
2434 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2435 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2436 			aac_get_status_string(
2437 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2438 			scsicmd->cmnd[0],
2439 			le32_to_cpu(srbreply->scsi_status));
2440 #endif
2441 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2442 		break;
2443 	}
2444 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
2445 		int len;
2446 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2447 		len = (le32_to_cpu(srbreply->sense_data_size) >
2448 				sizeof(scsicmd->sense_buffer)) ?
2449 				sizeof(scsicmd->sense_buffer) :
2450 				le32_to_cpu(srbreply->sense_data_size);
2451 #ifdef AAC_DETAILED_STATUS_INFO
2452 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2453 					le32_to_cpu(srbreply->status), len);
2454 #endif
2455 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2456 
2457 	}
2458 	/*
2459 	 * OR in the scsi status (already shifted up a bit)
2460 	 */
2461 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2462 
2463 	aac_fib_complete(fibptr);
2464 	aac_fib_free(fibptr);
2465 	scsicmd->scsi_done(scsicmd);
2466 }
2467 
2468 /**
2469  *
2470  * aac_send_scb_fib
2471  * @scsicmd: the scsi command block
2472  *
2473  * This routine will form a FIB and fill in the aac_srb from the
2474  * scsicmd passed in.
2475  */
2476 
2477 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2478 {
2479 	struct fib* cmd_fibcontext;
2480 	struct aac_dev* dev;
2481 	int status;
2482 
2483 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2484 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2485 			scsicmd->device->lun > 7) {
2486 		scsicmd->result = DID_NO_CONNECT << 16;
2487 		scsicmd->scsi_done(scsicmd);
2488 		return 0;
2489 	}
2490 
2491 	/*
2492 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2493 	 */
2494 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2495 		return -1;
2496 	}
2497 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2498 
2499 	/*
2500 	 *	Check that the command queued to the controller
2501 	 */
2502 	if (status == -EINPROGRESS) {
2503 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2504 		return 0;
2505 	}
2506 
2507 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2508 	aac_fib_complete(cmd_fibcontext);
2509 	aac_fib_free(cmd_fibcontext);
2510 
2511 	return -1;
2512 }
2513 
2514 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2515 {
2516 	struct aac_dev *dev;
2517 	unsigned long byte_count = 0;
2518 	int nseg;
2519 
2520 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2521 	// Get rid of old data
2522 	psg->count = 0;
2523 	psg->sg[0].addr = 0;
2524 	psg->sg[0].count = 0;
2525 
2526 	nseg = scsi_dma_map(scsicmd);
2527 	BUG_ON(nseg < 0);
2528 	if (nseg) {
2529 		struct scatterlist *sg;
2530 		int i;
2531 
2532 		psg->count = cpu_to_le32(nseg);
2533 
2534 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2535 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2536 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2537 			byte_count += sg_dma_len(sg);
2538 		}
2539 		/* hba wants the size to be exact */
2540 		if (byte_count > scsi_bufflen(scsicmd)) {
2541 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2542 				(byte_count - scsi_bufflen(scsicmd));
2543 			psg->sg[i-1].count = cpu_to_le32(temp);
2544 			byte_count = scsi_bufflen(scsicmd);
2545 		}
2546 		/* Check for command underflow */
2547 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2548 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2549 					byte_count, scsicmd->underflow);
2550 		}
2551 	}
2552 	return byte_count;
2553 }
2554 
2555 
2556 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2557 {
2558 	struct aac_dev *dev;
2559 	unsigned long byte_count = 0;
2560 	u64 addr;
2561 	int nseg;
2562 
2563 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2564 	// Get rid of old data
2565 	psg->count = 0;
2566 	psg->sg[0].addr[0] = 0;
2567 	psg->sg[0].addr[1] = 0;
2568 	psg->sg[0].count = 0;
2569 
2570 	nseg = scsi_dma_map(scsicmd);
2571 	BUG_ON(nseg < 0);
2572 	if (nseg) {
2573 		struct scatterlist *sg;
2574 		int i;
2575 
2576 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2577 			int count = sg_dma_len(sg);
2578 			addr = sg_dma_address(sg);
2579 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2580 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2581 			psg->sg[i].count = cpu_to_le32(count);
2582 			byte_count += count;
2583 		}
2584 		psg->count = cpu_to_le32(nseg);
2585 		/* hba wants the size to be exact */
2586 		if (byte_count > scsi_bufflen(scsicmd)) {
2587 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2588 				(byte_count - scsi_bufflen(scsicmd));
2589 			psg->sg[i-1].count = cpu_to_le32(temp);
2590 			byte_count = scsi_bufflen(scsicmd);
2591 		}
2592 		/* Check for command underflow */
2593 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2594 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2595 					byte_count, scsicmd->underflow);
2596 		}
2597 	}
2598 	return byte_count;
2599 }
2600 
2601 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2602 {
2603 	unsigned long byte_count = 0;
2604 	int nseg;
2605 
2606 	// Get rid of old data
2607 	psg->count = 0;
2608 	psg->sg[0].next = 0;
2609 	psg->sg[0].prev = 0;
2610 	psg->sg[0].addr[0] = 0;
2611 	psg->sg[0].addr[1] = 0;
2612 	psg->sg[0].count = 0;
2613 	psg->sg[0].flags = 0;
2614 
2615 	nseg = scsi_dma_map(scsicmd);
2616 	BUG_ON(nseg < 0);
2617 	if (nseg) {
2618 		struct scatterlist *sg;
2619 		int i;
2620 
2621 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2622 			int count = sg_dma_len(sg);
2623 			u64 addr = sg_dma_address(sg);
2624 			psg->sg[i].next = 0;
2625 			psg->sg[i].prev = 0;
2626 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2627 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2628 			psg->sg[i].count = cpu_to_le32(count);
2629 			psg->sg[i].flags = 0;
2630 			byte_count += count;
2631 		}
2632 		psg->count = cpu_to_le32(nseg);
2633 		/* hba wants the size to be exact */
2634 		if (byte_count > scsi_bufflen(scsicmd)) {
2635 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2636 				(byte_count - scsi_bufflen(scsicmd));
2637 			psg->sg[i-1].count = cpu_to_le32(temp);
2638 			byte_count = scsi_bufflen(scsicmd);
2639 		}
2640 		/* Check for command underflow */
2641 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2642 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2643 					byte_count, scsicmd->underflow);
2644 		}
2645 	}
2646 	return byte_count;
2647 }
2648 
2649 #ifdef AAC_DETAILED_STATUS_INFO
2650 
2651 struct aac_srb_status_info {
2652 	u32	status;
2653 	char	*str;
2654 };
2655 
2656 
2657 static struct aac_srb_status_info srb_status_info[] = {
2658 	{ SRB_STATUS_PENDING,		"Pending Status"},
2659 	{ SRB_STATUS_SUCCESS,		"Success"},
2660 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2661 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2662 	{ SRB_STATUS_ERROR,		"Error Event"},
2663 	{ SRB_STATUS_BUSY,		"Device Busy"},
2664 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2665 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2666 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2667 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2668 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2669 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2670 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2671 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2672 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2673 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2674 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2675 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2676 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2677 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2678 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2679 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2680 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2681 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2682 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2683 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2684 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2685 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2686 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2687     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2688 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2689 	{ 0xff,				"Unknown Error"}
2690 };
2691 
2692 char *aac_get_status_string(u32 status)
2693 {
2694 	int i;
2695 
2696 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2697 		if (srb_status_info[i].status == status)
2698 			return srb_status_info[i].str;
2699 
2700 	return "Bad Status Code";
2701 }
2702 
2703 #endif
2704