1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 29 #include <linux/module.h> 30 31 #include <asm/unaligned.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 38 #include "aacraid.h" 39 40 /* values for inqd_pdt: Peripheral device type in plain English */ 41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 42 #define INQD_PDT_PROC 0x03 /* Processor device */ 43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 47 48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 50 51 /* 52 * Sense codes 53 */ 54 55 #define SENCODE_NO_SENSE 0x00 56 #define SENCODE_END_OF_DATA 0x00 57 #define SENCODE_BECOMING_READY 0x04 58 #define SENCODE_INIT_CMD_REQUIRED 0x04 59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 61 #define SENCODE_INVALID_COMMAND 0x20 62 #define SENCODE_LBA_OUT_OF_RANGE 0x21 63 #define SENCODE_INVALID_CDB_FIELD 0x24 64 #define SENCODE_LUN_NOT_SUPPORTED 0x25 65 #define SENCODE_INVALID_PARAM_FIELD 0x26 66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 67 #define SENCODE_PARAM_VALUE_INVALID 0x26 68 #define SENCODE_RESET_OCCURRED 0x29 69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 76 #define SENCODE_OVERLAPPED_COMMAND 0x4E 77 78 /* 79 * Additional sense codes 80 */ 81 82 #define ASENCODE_NO_SENSE 0x00 83 #define ASENCODE_END_OF_DATA 0x05 84 #define ASENCODE_BECOMING_READY 0x01 85 #define ASENCODE_INIT_CMD_REQUIRED 0x02 86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 87 #define ASENCODE_INVALID_COMMAND 0x00 88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 89 #define ASENCODE_INVALID_CDB_FIELD 0x00 90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 91 #define ASENCODE_INVALID_PARAM_FIELD 0x00 92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 93 #define ASENCODE_PARAM_VALUE_INVALID 0x02 94 #define ASENCODE_RESET_OCCURRED 0x00 95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 102 #define ASENCODE_OVERLAPPED_COMMAND 0x00 103 104 #define BYTE0(x) (unsigned char)(x) 105 #define BYTE1(x) (unsigned char)((x) >> 8) 106 #define BYTE2(x) (unsigned char)((x) >> 16) 107 #define BYTE3(x) (unsigned char)((x) >> 24) 108 109 /* MODE_SENSE data format */ 110 typedef struct { 111 struct { 112 u8 data_length; 113 u8 med_type; 114 u8 dev_par; 115 u8 bd_length; 116 } __attribute__((packed)) hd; 117 struct { 118 u8 dens_code; 119 u8 block_count[3]; 120 u8 reserved; 121 u8 block_length[3]; 122 } __attribute__((packed)) bd; 123 u8 mpc_buf[3]; 124 } __attribute__((packed)) aac_modep_data; 125 126 /* MODE_SENSE_10 data format */ 127 typedef struct { 128 struct { 129 u8 data_length[2]; 130 u8 med_type; 131 u8 dev_par; 132 u8 rsrvd[2]; 133 u8 bd_length[2]; 134 } __attribute__((packed)) hd; 135 struct { 136 u8 dens_code; 137 u8 block_count[3]; 138 u8 reserved; 139 u8 block_length[3]; 140 } __attribute__((packed)) bd; 141 u8 mpc_buf[3]; 142 } __attribute__((packed)) aac_modep10_data; 143 144 /*------------------------------------------------------------------------------ 145 * S T R U C T S / T Y P E D E F S 146 *----------------------------------------------------------------------------*/ 147 /* SCSI inquiry data */ 148 struct inquiry_data { 149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 150 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 153 u8 inqd_len; /* Additional length (n-4) */ 154 u8 inqd_pad1[2];/* Reserved - must be zero */ 155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 156 u8 inqd_vid[8]; /* Vendor ID */ 157 u8 inqd_pid[16];/* Product ID */ 158 u8 inqd_prl[4]; /* Product Revision Level */ 159 }; 160 161 /* Added for VPD 0x83 */ 162 struct tvpd_id_descriptor_type_1 { 163 u8 codeset:4; /* VPD_CODE_SET */ 164 u8 reserved:4; 165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 166 u8 reserved2:4; 167 u8 reserved3; 168 u8 identifierlength; 169 u8 venid[8]; 170 u8 productid[16]; 171 u8 serialnumber[8]; /* SN in ASCII */ 172 173 }; 174 175 struct tvpd_id_descriptor_type_2 { 176 u8 codeset:4; /* VPD_CODE_SET */ 177 u8 reserved:4; 178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 179 u8 reserved2:4; 180 u8 reserved3; 181 u8 identifierlength; 182 struct teu64id { 183 u32 Serial; 184 /* The serial number supposed to be 40 bits, 185 * bit we only support 32, so make the last byte zero. */ 186 u8 reserved; 187 u8 venid[3]; 188 } eu64id; 189 190 }; 191 192 struct tvpd_id_descriptor_type_3 { 193 u8 codeset : 4; /* VPD_CODE_SET */ 194 u8 reserved : 4; 195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 196 u8 reserved2 : 4; 197 u8 reserved3; 198 u8 identifierlength; 199 u8 Identifier[16]; 200 }; 201 202 struct tvpd_page83 { 203 u8 DeviceType:5; 204 u8 DeviceTypeQualifier:3; 205 u8 PageCode; 206 u8 reserved; 207 u8 PageLength; 208 struct tvpd_id_descriptor_type_1 type1; 209 struct tvpd_id_descriptor_type_2 type2; 210 struct tvpd_id_descriptor_type_3 type3; 211 }; 212 213 /* 214 * M O D U L E G L O B A L S 215 */ 216 217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 221 struct aac_raw_io2 *rio2, int sg_max); 222 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 223 struct aac_hba_cmd_req *hbacmd, 224 int sg_max, u64 sg_address); 225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 226 int pages, int nseg, int nseg_new); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @common: adapter to query 354 * 355 * Query config status, and commit the configuration if needed. 356 */ 357 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 358 { 359 int status = 0; 360 struct fib * fibptr; 361 362 if (!(fibptr = aac_fib_alloc(dev))) 363 return -ENOMEM; 364 365 aac_fib_init(fibptr); 366 { 367 struct aac_get_config_status *dinfo; 368 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 369 370 dinfo->command = cpu_to_le32(VM_ContainerConfig); 371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 373 } 374 375 status = aac_fib_send(ContainerCommand, 376 fibptr, 377 sizeof (struct aac_get_config_status), 378 FsaNormal, 379 1, 1, 380 NULL, NULL); 381 if (status < 0) { 382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 383 } else { 384 struct aac_get_config_status_resp *reply 385 = (struct aac_get_config_status_resp *) fib_data(fibptr); 386 dprintk((KERN_WARNING 387 "aac_get_config_status: response=%d status=%d action=%d\n", 388 le32_to_cpu(reply->response), 389 le32_to_cpu(reply->status), 390 le32_to_cpu(reply->data.action))); 391 if ((le32_to_cpu(reply->response) != ST_OK) || 392 (le32_to_cpu(reply->status) != CT_OK) || 393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 395 status = -EINVAL; 396 } 397 } 398 /* Do not set XferState to zero unless receives a response from F/W */ 399 if (status >= 0) 400 aac_fib_complete(fibptr); 401 402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 403 if (status >= 0) { 404 if ((aac_commit == 1) || commit_flag) { 405 struct aac_commit_config * dinfo; 406 aac_fib_init(fibptr); 407 dinfo = (struct aac_commit_config *) fib_data(fibptr); 408 409 dinfo->command = cpu_to_le32(VM_ContainerConfig); 410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 411 412 status = aac_fib_send(ContainerCommand, 413 fibptr, 414 sizeof (struct aac_commit_config), 415 FsaNormal, 416 1, 1, 417 NULL, NULL); 418 /* Do not set XferState to zero unless 419 * receives a response from F/W */ 420 if (status >= 0) 421 aac_fib_complete(fibptr); 422 } else if (aac_commit == 0) { 423 printk(KERN_WARNING 424 "aac_get_config_status: Foreign device configurations are being ignored\n"); 425 } 426 } 427 /* FIB should be freed only after getting the response from the F/W */ 428 if (status != -ERESTARTSYS) 429 aac_fib_free(fibptr); 430 return status; 431 } 432 433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 434 { 435 char inq_data; 436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 438 inq_data &= 0xdf; 439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 440 } 441 } 442 443 /** 444 * aac_get_containers - list containers 445 * @common: adapter to probe 446 * 447 * Make a list of all containers on this controller 448 */ 449 int aac_get_containers(struct aac_dev *dev) 450 { 451 struct fsa_dev_info *fsa_dev_ptr; 452 u32 index; 453 int status = 0; 454 struct fib * fibptr; 455 struct aac_get_container_count *dinfo; 456 struct aac_get_container_count_resp *dresp; 457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 458 459 if (!(fibptr = aac_fib_alloc(dev))) 460 return -ENOMEM; 461 462 aac_fib_init(fibptr); 463 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 464 dinfo->command = cpu_to_le32(VM_ContainerConfig); 465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 466 467 status = aac_fib_send(ContainerCommand, 468 fibptr, 469 sizeof (struct aac_get_container_count), 470 FsaNormal, 471 1, 1, 472 NULL, NULL); 473 if (status >= 0) { 474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 476 if (fibptr->dev->supplement_adapter_info.supported_options2 & 477 AAC_OPTION_SUPPORTED_240_VOLUMES) { 478 maximum_num_containers = 479 le32_to_cpu(dresp->MaxSimpleVolumes); 480 } 481 aac_fib_complete(fibptr); 482 } 483 /* FIB should be freed only after getting the response from the F/W */ 484 if (status != -ERESTARTSYS) 485 aac_fib_free(fibptr); 486 487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 489 if (dev->fsa_dev == NULL || 490 dev->maximum_num_containers != maximum_num_containers) { 491 492 fsa_dev_ptr = dev->fsa_dev; 493 494 dev->fsa_dev = kcalloc(maximum_num_containers, 495 sizeof(*fsa_dev_ptr), GFP_KERNEL); 496 497 kfree(fsa_dev_ptr); 498 fsa_dev_ptr = NULL; 499 500 501 if (!dev->fsa_dev) 502 return -ENOMEM; 503 504 dev->maximum_num_containers = maximum_num_containers; 505 } 506 for (index = 0; index < dev->maximum_num_containers; index++) { 507 dev->fsa_dev[index].devname[0] = '\0'; 508 dev->fsa_dev[index].valid = 0; 509 510 status = aac_probe_container(dev, index); 511 512 if (status < 0) { 513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 514 break; 515 } 516 } 517 return status; 518 } 519 520 static void get_container_name_callback(void *context, struct fib * fibptr) 521 { 522 struct aac_get_name_resp * get_name_reply; 523 struct scsi_cmnd * scsicmd; 524 525 scsicmd = (struct scsi_cmnd *) context; 526 527 if (!aac_valid_context(scsicmd, fibptr)) 528 return; 529 530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 531 BUG_ON(fibptr == NULL); 532 533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 534 /* Failure is irrelevant, using default value instead */ 535 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 536 && (get_name_reply->data[0] != '\0')) { 537 char *sp = get_name_reply->data; 538 int data_size = sizeof_field(struct aac_get_name_resp, data); 539 540 sp[data_size - 1] = '\0'; 541 while (*sp == ' ') 542 ++sp; 543 if (*sp) { 544 struct inquiry_data inq; 545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 546 int count = sizeof(d); 547 char *dp = d; 548 do { 549 *dp++ = (*sp) ? *sp++ : ' '; 550 } while (--count > 0); 551 552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 553 memcpy(inq.inqd_pid, d, sizeof(d)); 554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 555 } 556 } 557 558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 559 560 aac_fib_complete(fibptr); 561 scsicmd->scsi_done(scsicmd); 562 } 563 564 /** 565 * aac_get_container_name - get container name, none blocking. 566 */ 567 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 568 { 569 int status; 570 int data_size; 571 struct aac_get_name *dinfo; 572 struct fib * cmd_fibcontext; 573 struct aac_dev * dev; 574 575 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 576 577 data_size = sizeof_field(struct aac_get_name_resp, data); 578 579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 580 581 aac_fib_init(cmd_fibcontext); 582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 584 585 dinfo->command = cpu_to_le32(VM_ContainerConfig); 586 dinfo->type = cpu_to_le32(CT_READ_NAME); 587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 588 dinfo->count = cpu_to_le32(data_size - 1); 589 590 status = aac_fib_send(ContainerCommand, 591 cmd_fibcontext, 592 sizeof(struct aac_get_name_resp), 593 FsaNormal, 594 0, 1, 595 (fib_callback)get_container_name_callback, 596 (void *) scsicmd); 597 598 /* 599 * Check that the command queued to the controller 600 */ 601 if (status == -EINPROGRESS) 602 return 0; 603 604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 605 aac_fib_complete(cmd_fibcontext); 606 return -1; 607 } 608 609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 610 { 611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 612 613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 614 return aac_scsi_cmd(scsicmd); 615 616 scsicmd->result = DID_NO_CONNECT << 16; 617 scsicmd->scsi_done(scsicmd); 618 return 0; 619 } 620 621 static void _aac_probe_container2(void * context, struct fib * fibptr) 622 { 623 struct fsa_dev_info *fsa_dev_ptr; 624 int (*callback)(struct scsi_cmnd *); 625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 626 int i; 627 628 629 if (!aac_valid_context(scsicmd, fibptr)) 630 return; 631 632 scsicmd->SCp.Status = 0; 633 fsa_dev_ptr = fibptr->dev->fsa_dev; 634 if (fsa_dev_ptr) { 635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 636 __le32 sup_options2; 637 638 fsa_dev_ptr += scmd_id(scsicmd); 639 sup_options2 = 640 fibptr->dev->supplement_adapter_info.supported_options2; 641 642 if ((le32_to_cpu(dresp->status) == ST_OK) && 643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 647 fsa_dev_ptr->block_size = 0x200; 648 } else { 649 fsa_dev_ptr->block_size = 650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 651 } 652 for (i = 0; i < 16; i++) 653 fsa_dev_ptr->identifier[i] = 654 dresp->mnt[0].fileinfo.bdevinfo 655 .identifier[i]; 656 fsa_dev_ptr->valid = 1; 657 /* sense_key holds the current state of the spin-up */ 658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 659 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 663 fsa_dev_ptr->size 664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 667 } 668 if ((fsa_dev_ptr->valid & 1) == 0) 669 fsa_dev_ptr->valid = 0; 670 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 671 } 672 aac_fib_complete(fibptr); 673 aac_fib_free(fibptr); 674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 675 scsicmd->SCp.ptr = NULL; 676 (*callback)(scsicmd); 677 return; 678 } 679 680 static void _aac_probe_container1(void * context, struct fib * fibptr) 681 { 682 struct scsi_cmnd * scsicmd; 683 struct aac_mount * dresp; 684 struct aac_query_mount *dinfo; 685 int status; 686 687 dresp = (struct aac_mount *) fib_data(fibptr); 688 if (!aac_supports_2T(fibptr->dev)) { 689 dresp->mnt[0].capacityhigh = 0; 690 if ((le32_to_cpu(dresp->status) == ST_OK) && 691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 692 _aac_probe_container2(context, fibptr); 693 return; 694 } 695 } 696 scsicmd = (struct scsi_cmnd *) context; 697 698 if (!aac_valid_context(scsicmd, fibptr)) 699 return; 700 701 aac_fib_init(fibptr); 702 703 dinfo = (struct aac_query_mount *)fib_data(fibptr); 704 705 if (fibptr->dev->supplement_adapter_info.supported_options2 & 706 AAC_OPTION_VARIABLE_BLOCK_SIZE) 707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 708 else 709 dinfo->command = cpu_to_le32(VM_NameServe64); 710 711 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 712 dinfo->type = cpu_to_le32(FT_FILESYS); 713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 714 715 status = aac_fib_send(ContainerCommand, 716 fibptr, 717 sizeof(struct aac_query_mount), 718 FsaNormal, 719 0, 1, 720 _aac_probe_container2, 721 (void *) scsicmd); 722 /* 723 * Check that the command queued to the controller 724 */ 725 if (status < 0 && status != -EINPROGRESS) { 726 /* Inherit results from VM_NameServe, if any */ 727 dresp->status = cpu_to_le32(ST_OK); 728 _aac_probe_container2(context, fibptr); 729 } 730 } 731 732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 733 { 734 struct fib * fibptr; 735 int status = -ENOMEM; 736 737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 738 struct aac_query_mount *dinfo; 739 740 aac_fib_init(fibptr); 741 742 dinfo = (struct aac_query_mount *)fib_data(fibptr); 743 744 if (fibptr->dev->supplement_adapter_info.supported_options2 & 745 AAC_OPTION_VARIABLE_BLOCK_SIZE) 746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 747 else 748 dinfo->command = cpu_to_le32(VM_NameServe); 749 750 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 751 dinfo->type = cpu_to_le32(FT_FILESYS); 752 scsicmd->SCp.ptr = (char *)callback; 753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 754 755 status = aac_fib_send(ContainerCommand, 756 fibptr, 757 sizeof(struct aac_query_mount), 758 FsaNormal, 759 0, 1, 760 _aac_probe_container1, 761 (void *) scsicmd); 762 /* 763 * Check that the command queued to the controller 764 */ 765 if (status == -EINPROGRESS) 766 return 0; 767 768 if (status < 0) { 769 scsicmd->SCp.ptr = NULL; 770 aac_fib_complete(fibptr); 771 aac_fib_free(fibptr); 772 } 773 } 774 if (status < 0) { 775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 776 if (fsa_dev_ptr) { 777 fsa_dev_ptr += scmd_id(scsicmd); 778 if ((fsa_dev_ptr->valid & 1) == 0) { 779 fsa_dev_ptr->valid = 0; 780 return (*callback)(scsicmd); 781 } 782 } 783 } 784 return status; 785 } 786 787 /** 788 * aac_probe_container - query a logical volume 789 * @dev: device to query 790 * @cid: container identifier 791 * 792 * Queries the controller about the given volume. The volume information 793 * is updated in the struct fsa_dev_info structure rather than returned. 794 */ 795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 796 { 797 scsicmd->device = NULL; 798 return 0; 799 } 800 801 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 802 { 803 aac_probe_container_callback1(scsi_cmnd); 804 } 805 806 int aac_probe_container(struct aac_dev *dev, int cid) 807 { 808 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 809 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 810 int status; 811 812 if (!scsicmd || !scsidev) { 813 kfree(scsicmd); 814 kfree(scsidev); 815 return -ENOMEM; 816 } 817 scsicmd->list.next = NULL; 818 scsicmd->scsi_done = aac_probe_container_scsi_done; 819 820 scsicmd->device = scsidev; 821 scsidev->sdev_state = 0; 822 scsidev->id = cid; 823 scsidev->host = dev->scsi_host_ptr; 824 825 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 826 while (scsicmd->device == scsidev) 827 schedule(); 828 kfree(scsidev); 829 status = scsicmd->SCp.Status; 830 kfree(scsicmd); 831 return status; 832 } 833 834 /* Local Structure to set SCSI inquiry data strings */ 835 struct scsi_inq { 836 char vid[8]; /* Vendor ID */ 837 char pid[16]; /* Product ID */ 838 char prl[4]; /* Product Revision Level */ 839 }; 840 841 /** 842 * InqStrCopy - string merge 843 * @a: string to copy from 844 * @b: string to copy to 845 * 846 * Copy a String from one location to another 847 * without copying \0 848 */ 849 850 static void inqstrcpy(char *a, char *b) 851 { 852 853 while (*a != (char)0) 854 *b++ = *a++; 855 } 856 857 static char *container_types[] = { 858 "None", 859 "Volume", 860 "Mirror", 861 "Stripe", 862 "RAID5", 863 "SSRW", 864 "SSRO", 865 "Morph", 866 "Legacy", 867 "RAID4", 868 "RAID10", 869 "RAID00", 870 "V-MIRRORS", 871 "PSEUDO R4", 872 "RAID50", 873 "RAID5D", 874 "RAID5D0", 875 "RAID1E", 876 "RAID6", 877 "RAID60", 878 "Unknown" 879 }; 880 881 char * get_container_type(unsigned tindex) 882 { 883 if (tindex >= ARRAY_SIZE(container_types)) 884 tindex = ARRAY_SIZE(container_types) - 1; 885 return container_types[tindex]; 886 } 887 888 /* Function: setinqstr 889 * 890 * Arguments: [1] pointer to void [1] int 891 * 892 * Purpose: Sets SCSI inquiry data strings for vendor, product 893 * and revision level. Allows strings to be set in platform dependent 894 * files instead of in OS dependent driver source. 895 */ 896 897 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 898 { 899 struct scsi_inq *str; 900 struct aac_supplement_adapter_info *sup_adap_info; 901 902 sup_adap_info = &dev->supplement_adapter_info; 903 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 904 memset(str, ' ', sizeof(*str)); 905 906 if (sup_adap_info->adapter_type_text[0]) { 907 int c; 908 char *cp; 909 char *cname = kmemdup(sup_adap_info->adapter_type_text, 910 sizeof(sup_adap_info->adapter_type_text), 911 GFP_ATOMIC); 912 if (!cname) 913 return; 914 915 cp = cname; 916 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 917 inqstrcpy("SMC", str->vid); 918 else { 919 c = sizeof(str->vid); 920 while (*cp && *cp != ' ' && --c) 921 ++cp; 922 c = *cp; 923 *cp = '\0'; 924 inqstrcpy(cname, str->vid); 925 *cp = c; 926 while (*cp && *cp != ' ') 927 ++cp; 928 } 929 while (*cp == ' ') 930 ++cp; 931 /* last six chars reserved for vol type */ 932 if (strlen(cp) > sizeof(str->pid)) 933 cp[sizeof(str->pid)] = '\0'; 934 inqstrcpy (cp, str->pid); 935 936 kfree(cname); 937 } else { 938 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 939 940 inqstrcpy (mp->vname, str->vid); 941 /* last six chars reserved for vol type */ 942 inqstrcpy (mp->model, str->pid); 943 } 944 945 if (tindex < ARRAY_SIZE(container_types)){ 946 char *findit = str->pid; 947 948 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 949 /* RAID is superfluous in the context of a RAID device */ 950 if (memcmp(findit-4, "RAID", 4) == 0) 951 *(findit -= 4) = ' '; 952 if (((findit - str->pid) + strlen(container_types[tindex])) 953 < (sizeof(str->pid) + sizeof(str->prl))) 954 inqstrcpy (container_types[tindex], findit + 1); 955 } 956 inqstrcpy ("V1.0", str->prl); 957 } 958 959 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 960 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 961 { 962 int container; 963 964 vpdpage83data->type3.codeset = 1; 965 vpdpage83data->type3.identifiertype = 3; 966 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 967 - 4; 968 969 for (container = 0; container < dev->maximum_num_containers; 970 container++) { 971 972 if (scmd_id(scsicmd) == container) { 973 memcpy(vpdpage83data->type3.Identifier, 974 dev->fsa_dev[container].identifier, 975 16); 976 break; 977 } 978 } 979 } 980 981 static void get_container_serial_callback(void *context, struct fib * fibptr) 982 { 983 struct aac_get_serial_resp * get_serial_reply; 984 struct scsi_cmnd * scsicmd; 985 986 BUG_ON(fibptr == NULL); 987 988 scsicmd = (struct scsi_cmnd *) context; 989 if (!aac_valid_context(scsicmd, fibptr)) 990 return; 991 992 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 993 /* Failure is irrelevant, using default value instead */ 994 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 995 /*Check to see if it's for VPD 0x83 or 0x80 */ 996 if (scsicmd->cmnd[2] == 0x83) { 997 /* vpd page 0x83 - Device Identification Page */ 998 struct aac_dev *dev; 999 int i; 1000 struct tvpd_page83 vpdpage83data; 1001 1002 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1003 1004 memset(((u8 *)&vpdpage83data), 0, 1005 sizeof(vpdpage83data)); 1006 1007 /* DIRECT_ACCESS_DEVIC */ 1008 vpdpage83data.DeviceType = 0; 1009 /* DEVICE_CONNECTED */ 1010 vpdpage83data.DeviceTypeQualifier = 0; 1011 /* VPD_DEVICE_IDENTIFIERS */ 1012 vpdpage83data.PageCode = 0x83; 1013 vpdpage83data.reserved = 0; 1014 vpdpage83data.PageLength = 1015 sizeof(vpdpage83data.type1) + 1016 sizeof(vpdpage83data.type2); 1017 1018 /* VPD 83 Type 3 is not supported for ARC */ 1019 if (dev->sa_firmware) 1020 vpdpage83data.PageLength += 1021 sizeof(vpdpage83data.type3); 1022 1023 /* T10 Vendor Identifier Field Format */ 1024 /* VpdcodesetAscii */ 1025 vpdpage83data.type1.codeset = 2; 1026 /* VpdIdentifierTypeVendorId */ 1027 vpdpage83data.type1.identifiertype = 1; 1028 vpdpage83data.type1.identifierlength = 1029 sizeof(vpdpage83data.type1) - 4; 1030 1031 /* "ADAPTEC " for adaptec */ 1032 memcpy(vpdpage83data.type1.venid, 1033 "ADAPTEC ", 1034 sizeof(vpdpage83data.type1.venid)); 1035 memcpy(vpdpage83data.type1.productid, 1036 "ARRAY ", 1037 sizeof( 1038 vpdpage83data.type1.productid)); 1039 1040 /* Convert to ascii based serial number. 1041 * The LSB is the the end. 1042 */ 1043 for (i = 0; i < 8; i++) { 1044 u8 temp = 1045 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1046 if (temp > 0x9) { 1047 vpdpage83data.type1.serialnumber[i] = 1048 'A' + (temp - 0xA); 1049 } else { 1050 vpdpage83data.type1.serialnumber[i] = 1051 '0' + temp; 1052 } 1053 } 1054 1055 /* VpdCodeSetBinary */ 1056 vpdpage83data.type2.codeset = 1; 1057 /* VpdidentifiertypeEUI64 */ 1058 vpdpage83data.type2.identifiertype = 2; 1059 vpdpage83data.type2.identifierlength = 1060 sizeof(vpdpage83data.type2) - 4; 1061 1062 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1063 vpdpage83data.type2.eu64id.venid[1] = 0; 1064 vpdpage83data.type2.eu64id.venid[2] = 0; 1065 1066 vpdpage83data.type2.eu64id.Serial = 1067 get_serial_reply->uid; 1068 vpdpage83data.type2.eu64id.reserved = 0; 1069 1070 /* 1071 * VpdIdentifierTypeFCPHName 1072 * VPD 0x83 Type 3 not supported for ARC 1073 */ 1074 if (dev->sa_firmware) { 1075 build_vpd83_type3(&vpdpage83data, 1076 dev, scsicmd); 1077 } 1078 1079 /* Move the inquiry data to the response buffer. */ 1080 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1081 sizeof(vpdpage83data)); 1082 } else { 1083 /* It must be for VPD 0x80 */ 1084 char sp[13]; 1085 /* EVPD bit set */ 1086 sp[0] = INQD_PDT_DA; 1087 sp[1] = scsicmd->cmnd[2]; 1088 sp[2] = 0; 1089 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1090 le32_to_cpu(get_serial_reply->uid)); 1091 scsi_sg_copy_from_buffer(scsicmd, sp, 1092 sizeof(sp)); 1093 } 1094 } 1095 1096 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1097 1098 aac_fib_complete(fibptr); 1099 scsicmd->scsi_done(scsicmd); 1100 } 1101 1102 /** 1103 * aac_get_container_serial - get container serial, none blocking. 1104 */ 1105 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1106 { 1107 int status; 1108 struct aac_get_serial *dinfo; 1109 struct fib * cmd_fibcontext; 1110 struct aac_dev * dev; 1111 1112 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1113 1114 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1115 1116 aac_fib_init(cmd_fibcontext); 1117 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1118 1119 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1120 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1121 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1122 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1123 1124 status = aac_fib_send(ContainerCommand, 1125 cmd_fibcontext, 1126 sizeof(struct aac_get_serial_resp), 1127 FsaNormal, 1128 0, 1, 1129 (fib_callback) get_container_serial_callback, 1130 (void *) scsicmd); 1131 1132 /* 1133 * Check that the command queued to the controller 1134 */ 1135 if (status == -EINPROGRESS) 1136 return 0; 1137 1138 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1139 aac_fib_complete(cmd_fibcontext); 1140 return -1; 1141 } 1142 1143 /* Function: setinqserial 1144 * 1145 * Arguments: [1] pointer to void [1] int 1146 * 1147 * Purpose: Sets SCSI Unit Serial number. 1148 * This is a fake. We should read a proper 1149 * serial number from the container. <SuSE>But 1150 * without docs it's quite hard to do it :-) 1151 * So this will have to do in the meantime.</SuSE> 1152 */ 1153 1154 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1155 { 1156 /* 1157 * This breaks array migration. 1158 */ 1159 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1160 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1161 } 1162 1163 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1164 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1165 { 1166 u8 *sense_buf = (u8 *)sense_data; 1167 /* Sense data valid, err code 70h */ 1168 sense_buf[0] = 0x70; /* No info field */ 1169 sense_buf[1] = 0; /* Segment number, always zero */ 1170 1171 sense_buf[2] = sense_key; /* Sense key */ 1172 1173 sense_buf[12] = sense_code; /* Additional sense code */ 1174 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1175 1176 if (sense_key == ILLEGAL_REQUEST) { 1177 sense_buf[7] = 10; /* Additional sense length */ 1178 1179 sense_buf[15] = bit_pointer; 1180 /* Illegal parameter is in the parameter block */ 1181 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1182 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1183 /* Illegal parameter is in the CDB block */ 1184 sense_buf[16] = field_pointer >> 8; /* MSB */ 1185 sense_buf[17] = field_pointer; /* LSB */ 1186 } else 1187 sense_buf[7] = 6; /* Additional sense length */ 1188 } 1189 1190 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1191 { 1192 if (lba & 0xffffffff00000000LL) { 1193 int cid = scmd_id(cmd); 1194 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1195 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1196 SAM_STAT_CHECK_CONDITION; 1197 set_sense(&dev->fsa_dev[cid].sense_data, 1198 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1199 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1200 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1201 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1202 SCSI_SENSE_BUFFERSIZE)); 1203 cmd->scsi_done(cmd); 1204 return 1; 1205 } 1206 return 0; 1207 } 1208 1209 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1210 { 1211 return 0; 1212 } 1213 1214 static void io_callback(void *context, struct fib * fibptr); 1215 1216 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1217 { 1218 struct aac_dev *dev = fib->dev; 1219 u16 fibsize, command; 1220 long ret; 1221 1222 aac_fib_init(fib); 1223 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1224 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1225 !dev->sync_mode) { 1226 struct aac_raw_io2 *readcmd2; 1227 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1228 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1229 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1230 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1231 readcmd2->byteCount = cpu_to_le32(count * 1232 dev->fsa_dev[scmd_id(cmd)].block_size); 1233 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1234 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1235 ret = aac_build_sgraw2(cmd, readcmd2, 1236 dev->scsi_host_ptr->sg_tablesize); 1237 if (ret < 0) 1238 return ret; 1239 command = ContainerRawIo2; 1240 fibsize = sizeof(struct aac_raw_io2) + 1241 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1242 } else { 1243 struct aac_raw_io *readcmd; 1244 readcmd = (struct aac_raw_io *) fib_data(fib); 1245 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1246 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1247 readcmd->count = cpu_to_le32(count * 1248 dev->fsa_dev[scmd_id(cmd)].block_size); 1249 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1250 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1251 readcmd->bpTotal = 0; 1252 readcmd->bpComplete = 0; 1253 ret = aac_build_sgraw(cmd, &readcmd->sg); 1254 if (ret < 0) 1255 return ret; 1256 command = ContainerRawIo; 1257 fibsize = sizeof(struct aac_raw_io) + 1258 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1259 } 1260 1261 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1262 /* 1263 * Now send the Fib to the adapter 1264 */ 1265 return aac_fib_send(command, 1266 fib, 1267 fibsize, 1268 FsaNormal, 1269 0, 1, 1270 (fib_callback) io_callback, 1271 (void *) cmd); 1272 } 1273 1274 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1275 { 1276 u16 fibsize; 1277 struct aac_read64 *readcmd; 1278 long ret; 1279 1280 aac_fib_init(fib); 1281 readcmd = (struct aac_read64 *) fib_data(fib); 1282 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1283 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1284 readcmd->sector_count = cpu_to_le16(count); 1285 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1286 readcmd->pad = 0; 1287 readcmd->flags = 0; 1288 1289 ret = aac_build_sg64(cmd, &readcmd->sg); 1290 if (ret < 0) 1291 return ret; 1292 fibsize = sizeof(struct aac_read64) + 1293 ((le32_to_cpu(readcmd->sg.count) - 1) * 1294 sizeof (struct sgentry64)); 1295 BUG_ON (fibsize > (fib->dev->max_fib_size - 1296 sizeof(struct aac_fibhdr))); 1297 /* 1298 * Now send the Fib to the adapter 1299 */ 1300 return aac_fib_send(ContainerCommand64, 1301 fib, 1302 fibsize, 1303 FsaNormal, 1304 0, 1, 1305 (fib_callback) io_callback, 1306 (void *) cmd); 1307 } 1308 1309 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1310 { 1311 u16 fibsize; 1312 struct aac_read *readcmd; 1313 struct aac_dev *dev = fib->dev; 1314 long ret; 1315 1316 aac_fib_init(fib); 1317 readcmd = (struct aac_read *) fib_data(fib); 1318 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1319 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1320 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1321 readcmd->count = cpu_to_le32(count * 1322 dev->fsa_dev[scmd_id(cmd)].block_size); 1323 1324 ret = aac_build_sg(cmd, &readcmd->sg); 1325 if (ret < 0) 1326 return ret; 1327 fibsize = sizeof(struct aac_read) + 1328 ((le32_to_cpu(readcmd->sg.count) - 1) * 1329 sizeof (struct sgentry)); 1330 BUG_ON (fibsize > (fib->dev->max_fib_size - 1331 sizeof(struct aac_fibhdr))); 1332 /* 1333 * Now send the Fib to the adapter 1334 */ 1335 return aac_fib_send(ContainerCommand, 1336 fib, 1337 fibsize, 1338 FsaNormal, 1339 0, 1, 1340 (fib_callback) io_callback, 1341 (void *) cmd); 1342 } 1343 1344 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1345 { 1346 struct aac_dev *dev = fib->dev; 1347 u16 fibsize, command; 1348 long ret; 1349 1350 aac_fib_init(fib); 1351 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1352 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1353 !dev->sync_mode) { 1354 struct aac_raw_io2 *writecmd2; 1355 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1356 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1357 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1358 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1359 writecmd2->byteCount = cpu_to_le32(count * 1360 dev->fsa_dev[scmd_id(cmd)].block_size); 1361 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1362 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1363 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1364 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1365 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1366 ret = aac_build_sgraw2(cmd, writecmd2, 1367 dev->scsi_host_ptr->sg_tablesize); 1368 if (ret < 0) 1369 return ret; 1370 command = ContainerRawIo2; 1371 fibsize = sizeof(struct aac_raw_io2) + 1372 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1373 } else { 1374 struct aac_raw_io *writecmd; 1375 writecmd = (struct aac_raw_io *) fib_data(fib); 1376 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1377 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1378 writecmd->count = cpu_to_le32(count * 1379 dev->fsa_dev[scmd_id(cmd)].block_size); 1380 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1381 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1382 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1383 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1384 cpu_to_le16(RIO_TYPE_WRITE); 1385 writecmd->bpTotal = 0; 1386 writecmd->bpComplete = 0; 1387 ret = aac_build_sgraw(cmd, &writecmd->sg); 1388 if (ret < 0) 1389 return ret; 1390 command = ContainerRawIo; 1391 fibsize = sizeof(struct aac_raw_io) + 1392 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1393 } 1394 1395 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1396 /* 1397 * Now send the Fib to the adapter 1398 */ 1399 return aac_fib_send(command, 1400 fib, 1401 fibsize, 1402 FsaNormal, 1403 0, 1, 1404 (fib_callback) io_callback, 1405 (void *) cmd); 1406 } 1407 1408 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1409 { 1410 u16 fibsize; 1411 struct aac_write64 *writecmd; 1412 long ret; 1413 1414 aac_fib_init(fib); 1415 writecmd = (struct aac_write64 *) fib_data(fib); 1416 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1417 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1418 writecmd->sector_count = cpu_to_le16(count); 1419 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1420 writecmd->pad = 0; 1421 writecmd->flags = 0; 1422 1423 ret = aac_build_sg64(cmd, &writecmd->sg); 1424 if (ret < 0) 1425 return ret; 1426 fibsize = sizeof(struct aac_write64) + 1427 ((le32_to_cpu(writecmd->sg.count) - 1) * 1428 sizeof (struct sgentry64)); 1429 BUG_ON (fibsize > (fib->dev->max_fib_size - 1430 sizeof(struct aac_fibhdr))); 1431 /* 1432 * Now send the Fib to the adapter 1433 */ 1434 return aac_fib_send(ContainerCommand64, 1435 fib, 1436 fibsize, 1437 FsaNormal, 1438 0, 1, 1439 (fib_callback) io_callback, 1440 (void *) cmd); 1441 } 1442 1443 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1444 { 1445 u16 fibsize; 1446 struct aac_write *writecmd; 1447 struct aac_dev *dev = fib->dev; 1448 long ret; 1449 1450 aac_fib_init(fib); 1451 writecmd = (struct aac_write *) fib_data(fib); 1452 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1453 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1454 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1455 writecmd->count = cpu_to_le32(count * 1456 dev->fsa_dev[scmd_id(cmd)].block_size); 1457 writecmd->sg.count = cpu_to_le32(1); 1458 /* ->stable is not used - it did mean which type of write */ 1459 1460 ret = aac_build_sg(cmd, &writecmd->sg); 1461 if (ret < 0) 1462 return ret; 1463 fibsize = sizeof(struct aac_write) + 1464 ((le32_to_cpu(writecmd->sg.count) - 1) * 1465 sizeof (struct sgentry)); 1466 BUG_ON (fibsize > (fib->dev->max_fib_size - 1467 sizeof(struct aac_fibhdr))); 1468 /* 1469 * Now send the Fib to the adapter 1470 */ 1471 return aac_fib_send(ContainerCommand, 1472 fib, 1473 fibsize, 1474 FsaNormal, 1475 0, 1, 1476 (fib_callback) io_callback, 1477 (void *) cmd); 1478 } 1479 1480 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1481 { 1482 struct aac_srb * srbcmd; 1483 u32 flag; 1484 u32 timeout; 1485 struct aac_dev *dev = fib->dev; 1486 1487 aac_fib_init(fib); 1488 switch(cmd->sc_data_direction){ 1489 case DMA_TO_DEVICE: 1490 flag = SRB_DataOut; 1491 break; 1492 case DMA_BIDIRECTIONAL: 1493 flag = SRB_DataIn | SRB_DataOut; 1494 break; 1495 case DMA_FROM_DEVICE: 1496 flag = SRB_DataIn; 1497 break; 1498 case DMA_NONE: 1499 default: /* shuts up some versions of gcc */ 1500 flag = SRB_NoDataXfer; 1501 break; 1502 } 1503 1504 srbcmd = (struct aac_srb*) fib_data(fib); 1505 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1506 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1507 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1508 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1509 srbcmd->flags = cpu_to_le32(flag); 1510 timeout = cmd->request->timeout/HZ; 1511 if (timeout == 0) 1512 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1513 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1514 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1515 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1516 return srbcmd; 1517 } 1518 1519 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1520 struct scsi_cmnd *cmd) 1521 { 1522 struct aac_hba_cmd_req *hbacmd; 1523 struct aac_dev *dev; 1524 int bus, target; 1525 u64 address; 1526 1527 dev = (struct aac_dev *)cmd->device->host->hostdata; 1528 1529 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1530 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1531 /* iu_type is a parameter of aac_hba_send */ 1532 switch (cmd->sc_data_direction) { 1533 case DMA_TO_DEVICE: 1534 hbacmd->byte1 = 2; 1535 break; 1536 case DMA_FROM_DEVICE: 1537 case DMA_BIDIRECTIONAL: 1538 hbacmd->byte1 = 1; 1539 break; 1540 case DMA_NONE: 1541 default: 1542 break; 1543 } 1544 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1545 1546 bus = aac_logical_to_phys(scmd_channel(cmd)); 1547 target = scmd_id(cmd); 1548 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1549 1550 /* we fill in reply_qid later in aac_src_deliver_message */ 1551 /* we fill in iu_type, request_id later in aac_hba_send */ 1552 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1553 1554 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1555 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1556 1557 address = (u64)fib->hw_error_pa; 1558 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1559 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1560 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1561 1562 return hbacmd; 1563 } 1564 1565 static void aac_srb_callback(void *context, struct fib * fibptr); 1566 1567 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1568 { 1569 u16 fibsize; 1570 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1571 long ret; 1572 1573 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1574 if (ret < 0) 1575 return ret; 1576 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1577 1578 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1579 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1580 /* 1581 * Build Scatter/Gather list 1582 */ 1583 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1584 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1585 sizeof (struct sgentry64)); 1586 BUG_ON (fibsize > (fib->dev->max_fib_size - 1587 sizeof(struct aac_fibhdr))); 1588 1589 /* 1590 * Now send the Fib to the adapter 1591 */ 1592 return aac_fib_send(ScsiPortCommand64, fib, 1593 fibsize, FsaNormal, 0, 1, 1594 (fib_callback) aac_srb_callback, 1595 (void *) cmd); 1596 } 1597 1598 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1599 { 1600 u16 fibsize; 1601 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1602 long ret; 1603 1604 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1605 if (ret < 0) 1606 return ret; 1607 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1608 1609 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1610 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1611 /* 1612 * Build Scatter/Gather list 1613 */ 1614 fibsize = sizeof (struct aac_srb) + 1615 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1616 sizeof (struct sgentry)); 1617 BUG_ON (fibsize > (fib->dev->max_fib_size - 1618 sizeof(struct aac_fibhdr))); 1619 1620 /* 1621 * Now send the Fib to the adapter 1622 */ 1623 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1624 (fib_callback) aac_srb_callback, (void *) cmd); 1625 } 1626 1627 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1628 { 1629 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1630 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1631 return FAILED; 1632 return aac_scsi_32(fib, cmd); 1633 } 1634 1635 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1636 { 1637 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1638 struct aac_dev *dev; 1639 long ret; 1640 1641 dev = (struct aac_dev *)cmd->device->host->hostdata; 1642 1643 ret = aac_build_sghba(cmd, hbacmd, 1644 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1645 if (ret < 0) 1646 return ret; 1647 1648 /* 1649 * Now send the HBA command to the adapter 1650 */ 1651 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1652 sizeof(struct aac_hba_sgl); 1653 1654 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1655 (fib_callback) aac_hba_callback, 1656 (void *) cmd); 1657 } 1658 1659 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1660 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1661 { 1662 struct fib *fibptr; 1663 dma_addr_t addr; 1664 int rcode; 1665 int fibsize; 1666 struct aac_srb *srb; 1667 struct aac_srb_reply *srb_reply; 1668 struct sgmap64 *sg64; 1669 u32 vbus; 1670 u32 vid; 1671 1672 if (!dev->sa_firmware) 1673 return 0; 1674 1675 /* allocate FIB */ 1676 fibptr = aac_fib_alloc(dev); 1677 if (!fibptr) 1678 return -ENOMEM; 1679 1680 aac_fib_init(fibptr); 1681 fibptr->hw_fib_va->header.XferState &= 1682 ~cpu_to_le32(FastResponseCapable); 1683 1684 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1685 sizeof(struct sgentry64); 1686 1687 /* allocate DMA buffer for response */ 1688 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1689 DMA_BIDIRECTIONAL); 1690 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1691 rcode = -ENOMEM; 1692 goto fib_error; 1693 } 1694 1695 srb = fib_data(fibptr); 1696 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1697 1698 vbus = (u32)le16_to_cpu( 1699 dev->supplement_adapter_info.virt_device_bus); 1700 vid = (u32)le16_to_cpu( 1701 dev->supplement_adapter_info.virt_device_target); 1702 1703 /* set the common request fields */ 1704 srb->channel = cpu_to_le32(vbus); 1705 srb->id = cpu_to_le32(vid); 1706 srb->lun = 0; 1707 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1708 srb->timeout = 0; 1709 srb->retry_limit = 0; 1710 srb->cdb_size = cpu_to_le32(16); 1711 srb->count = cpu_to_le32(xfer_len); 1712 1713 sg64 = (struct sgmap64 *)&srb->sg; 1714 sg64->count = cpu_to_le32(1); 1715 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1716 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1717 sg64->sg[0].count = cpu_to_le32(xfer_len); 1718 1719 /* 1720 * Copy the updated data for other dumping or other usage if needed 1721 */ 1722 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1723 1724 /* issue request to the controller */ 1725 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1726 1, 1, NULL, NULL); 1727 1728 if (rcode == -ERESTARTSYS) 1729 rcode = -ERESTART; 1730 1731 if (unlikely(rcode < 0)) 1732 goto bmic_error; 1733 1734 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1735 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1736 1737 bmic_error: 1738 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1739 fib_error: 1740 aac_fib_complete(fibptr); 1741 aac_fib_free(fibptr); 1742 return rcode; 1743 } 1744 1745 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1746 { 1747 1748 struct aac_ciss_identify_pd *identify_resp; 1749 1750 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1751 return; 1752 1753 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1754 if (identify_resp == NULL) { 1755 dev->hba_map[bus][target].qd_limit = 32; 1756 return; 1757 } 1758 1759 if (identify_resp->current_queue_depth_limit <= 0 || 1760 identify_resp->current_queue_depth_limit > 255) 1761 dev->hba_map[bus][target].qd_limit = 32; 1762 else 1763 dev->hba_map[bus][target].qd_limit = 1764 identify_resp->current_queue_depth_limit; 1765 } 1766 1767 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1768 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1769 { 1770 int rcode = -ENOMEM; 1771 int datasize; 1772 struct aac_srb_unit srbu; 1773 struct aac_srb *srbcmd; 1774 struct aac_ciss_identify_pd *identify_reply; 1775 1776 datasize = sizeof(struct aac_ciss_identify_pd); 1777 identify_reply = kmalloc(datasize, GFP_KERNEL); 1778 if (!identify_reply) 1779 goto out; 1780 1781 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1782 1783 srbcmd = &srbu.srb; 1784 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1785 srbcmd->cdb[0] = 0x26; 1786 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1787 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1788 1789 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1790 if (unlikely(rcode < 0)) 1791 goto mem_free_all; 1792 1793 *identify_resp = identify_reply; 1794 1795 out: 1796 return rcode; 1797 mem_free_all: 1798 kfree(identify_reply); 1799 goto out; 1800 } 1801 1802 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1803 { 1804 kfree(dev->safw_phys_luns); 1805 dev->safw_phys_luns = NULL; 1806 } 1807 1808 /** 1809 * aac_get_safw_ciss_luns() Process topology change 1810 * @dev: aac_dev structure 1811 * 1812 * Execute a CISS REPORT PHYS LUNS and process the results into 1813 * the current hba_map. 1814 */ 1815 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1816 { 1817 int rcode = -ENOMEM; 1818 int datasize; 1819 struct aac_srb *srbcmd; 1820 struct aac_srb_unit srbu; 1821 struct aac_ciss_phys_luns_resp *phys_luns; 1822 1823 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1824 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1825 phys_luns = kmalloc(datasize, GFP_KERNEL); 1826 if (phys_luns == NULL) 1827 goto out; 1828 1829 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1830 1831 srbcmd = &srbu.srb; 1832 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1833 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1834 srbcmd->cdb[1] = 2; /* extended reporting */ 1835 srbcmd->cdb[8] = (u8)(datasize >> 8); 1836 srbcmd->cdb[9] = (u8)(datasize); 1837 1838 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1839 if (unlikely(rcode < 0)) 1840 goto mem_free_all; 1841 1842 if (phys_luns->resp_flag != 2) { 1843 rcode = -ENOMSG; 1844 goto mem_free_all; 1845 } 1846 1847 dev->safw_phys_luns = phys_luns; 1848 1849 out: 1850 return rcode; 1851 mem_free_all: 1852 kfree(phys_luns); 1853 goto out; 1854 } 1855 1856 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1857 { 1858 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1859 } 1860 1861 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1862 { 1863 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1864 } 1865 1866 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1867 { 1868 return dev->safw_phys_luns->lun[lun].level2[0]; 1869 } 1870 1871 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1872 { 1873 return dev->safw_phys_luns->lun[lun].bus >> 6; 1874 } 1875 1876 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1877 { 1878 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1879 } 1880 1881 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1882 { 1883 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1884 } 1885 1886 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1887 { 1888 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1889 } 1890 1891 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1892 int bus, int target) 1893 { 1894 kfree(dev->hba_map[bus][target].safw_identify_resp); 1895 dev->hba_map[bus][target].safw_identify_resp = NULL; 1896 } 1897 1898 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1899 int lun_count) 1900 { 1901 int luns; 1902 int i; 1903 u32 bus; 1904 u32 target; 1905 1906 luns = aac_get_safw_phys_lun_count(dev); 1907 1908 if (luns < lun_count) 1909 lun_count = luns; 1910 else if (lun_count < 0) 1911 lun_count = luns; 1912 1913 for (i = 0; i < lun_count; i++) { 1914 bus = aac_get_safw_phys_bus(dev, i); 1915 target = aac_get_safw_phys_target(dev, i); 1916 1917 aac_free_safw_identify_resp(dev, bus, target); 1918 } 1919 } 1920 1921 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1922 { 1923 int i; 1924 int rcode = 0; 1925 u32 lun_count; 1926 u32 bus; 1927 u32 target; 1928 struct aac_ciss_identify_pd *identify_resp = NULL; 1929 1930 lun_count = aac_get_safw_phys_lun_count(dev); 1931 1932 for (i = 0; i < lun_count; ++i) { 1933 1934 bus = aac_get_safw_phys_bus(dev, i); 1935 target = aac_get_safw_phys_target(dev, i); 1936 1937 rcode = aac_issue_safw_bmic_identify(dev, 1938 &identify_resp, bus, target); 1939 1940 if (unlikely(rcode < 0)) 1941 goto free_identify_resp; 1942 1943 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1944 } 1945 1946 out: 1947 return rcode; 1948 free_identify_resp: 1949 aac_free_safw_all_identify_resp(dev, i); 1950 goto out; 1951 } 1952 1953 /** 1954 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1955 * @dev: aac_dev structure 1956 * @phys_luns: FW information from report phys luns 1957 * @rescan: Indicates scan type 1958 * 1959 * Update our hba map with the information gathered from the FW 1960 */ 1961 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1962 { 1963 /* ok and extended reporting */ 1964 u32 lun_count, nexus; 1965 u32 i, bus, target; 1966 u8 expose_flag, attribs; 1967 1968 lun_count = aac_get_safw_phys_lun_count(dev); 1969 1970 dev->scan_counter++; 1971 1972 for (i = 0; i < lun_count; ++i) { 1973 1974 bus = aac_get_safw_phys_bus(dev, i); 1975 target = aac_get_safw_phys_target(dev, i); 1976 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1977 attribs = aac_get_safw_phys_attribs(dev, i); 1978 nexus = aac_get_safw_phys_nexus(dev, i); 1979 1980 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1981 continue; 1982 1983 if (expose_flag != 0) { 1984 dev->hba_map[bus][target].devtype = 1985 AAC_DEVTYPE_RAID_MEMBER; 1986 continue; 1987 } 1988 1989 if (nexus != 0 && (attribs & 8)) { 1990 dev->hba_map[bus][target].devtype = 1991 AAC_DEVTYPE_NATIVE_RAW; 1992 dev->hba_map[bus][target].rmw_nexus = 1993 nexus; 1994 } else 1995 dev->hba_map[bus][target].devtype = 1996 AAC_DEVTYPE_ARC_RAW; 1997 1998 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1999 2000 aac_set_safw_target_qd(dev, bus, target); 2001 } 2002 } 2003 2004 static int aac_setup_safw_targets(struct aac_dev *dev) 2005 { 2006 int rcode = 0; 2007 2008 rcode = aac_get_containers(dev); 2009 if (unlikely(rcode < 0)) 2010 goto out; 2011 2012 rcode = aac_get_safw_ciss_luns(dev); 2013 if (unlikely(rcode < 0)) 2014 goto out; 2015 2016 rcode = aac_get_safw_attr_all_targets(dev); 2017 if (unlikely(rcode < 0)) 2018 goto free_ciss_luns; 2019 2020 aac_set_safw_attr_all_targets(dev); 2021 2022 aac_free_safw_all_identify_resp(dev, -1); 2023 free_ciss_luns: 2024 aac_free_safw_ciss_luns(dev); 2025 out: 2026 return rcode; 2027 } 2028 2029 int aac_setup_safw_adapter(struct aac_dev *dev) 2030 { 2031 return aac_setup_safw_targets(dev); 2032 } 2033 2034 int aac_get_adapter_info(struct aac_dev* dev) 2035 { 2036 struct fib* fibptr; 2037 int rcode; 2038 u32 tmp, bus, target; 2039 struct aac_adapter_info *info; 2040 struct aac_bus_info *command; 2041 struct aac_bus_info_response *bus_info; 2042 2043 if (!(fibptr = aac_fib_alloc(dev))) 2044 return -ENOMEM; 2045 2046 aac_fib_init(fibptr); 2047 info = (struct aac_adapter_info *) fib_data(fibptr); 2048 memset(info,0,sizeof(*info)); 2049 2050 rcode = aac_fib_send(RequestAdapterInfo, 2051 fibptr, 2052 sizeof(*info), 2053 FsaNormal, 2054 -1, 1, /* First `interrupt' command uses special wait */ 2055 NULL, 2056 NULL); 2057 2058 if (rcode < 0) { 2059 /* FIB should be freed only after 2060 * getting the response from the F/W */ 2061 if (rcode != -ERESTARTSYS) { 2062 aac_fib_complete(fibptr); 2063 aac_fib_free(fibptr); 2064 } 2065 return rcode; 2066 } 2067 memcpy(&dev->adapter_info, info, sizeof(*info)); 2068 2069 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2070 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2071 struct aac_supplement_adapter_info * sinfo; 2072 2073 aac_fib_init(fibptr); 2074 2075 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2076 2077 memset(sinfo,0,sizeof(*sinfo)); 2078 2079 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2080 fibptr, 2081 sizeof(*sinfo), 2082 FsaNormal, 2083 1, 1, 2084 NULL, 2085 NULL); 2086 2087 if (rcode >= 0) 2088 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2089 if (rcode == -ERESTARTSYS) { 2090 fibptr = aac_fib_alloc(dev); 2091 if (!fibptr) 2092 return -ENOMEM; 2093 } 2094 2095 } 2096 2097 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2098 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2099 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2100 dev->hba_map[bus][target].devtype = 0; 2101 dev->hba_map[bus][target].qd_limit = 0; 2102 } 2103 } 2104 2105 /* 2106 * GetBusInfo 2107 */ 2108 2109 aac_fib_init(fibptr); 2110 2111 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2112 2113 memset(bus_info, 0, sizeof(*bus_info)); 2114 2115 command = (struct aac_bus_info *)bus_info; 2116 2117 command->Command = cpu_to_le32(VM_Ioctl); 2118 command->ObjType = cpu_to_le32(FT_DRIVE); 2119 command->MethodId = cpu_to_le32(1); 2120 command->CtlCmd = cpu_to_le32(GetBusInfo); 2121 2122 rcode = aac_fib_send(ContainerCommand, 2123 fibptr, 2124 sizeof (*bus_info), 2125 FsaNormal, 2126 1, 1, 2127 NULL, NULL); 2128 2129 /* reasoned default */ 2130 dev->maximum_num_physicals = 16; 2131 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2132 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2133 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2134 } 2135 2136 if (!dev->in_reset) { 2137 char buffer[16]; 2138 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2139 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2140 dev->name, 2141 dev->id, 2142 tmp>>24, 2143 (tmp>>16)&0xff, 2144 tmp&0xff, 2145 le32_to_cpu(dev->adapter_info.kernelbuild), 2146 (int)sizeof(dev->supplement_adapter_info.build_date), 2147 dev->supplement_adapter_info.build_date); 2148 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2149 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2150 dev->name, dev->id, 2151 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2152 le32_to_cpu(dev->adapter_info.monitorbuild)); 2153 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2154 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2155 dev->name, dev->id, 2156 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2157 le32_to_cpu(dev->adapter_info.biosbuild)); 2158 buffer[0] = '\0'; 2159 if (aac_get_serial_number( 2160 shost_to_class(dev->scsi_host_ptr), buffer)) 2161 printk(KERN_INFO "%s%d: serial %s", 2162 dev->name, dev->id, buffer); 2163 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2164 printk(KERN_INFO "%s%d: TSID %.*s\n", 2165 dev->name, dev->id, 2166 (int)sizeof(dev->supplement_adapter_info 2167 .vpd_info.tsid), 2168 dev->supplement_adapter_info.vpd_info.tsid); 2169 } 2170 if (!aac_check_reset || ((aac_check_reset == 1) && 2171 (dev->supplement_adapter_info.supported_options2 & 2172 AAC_OPTION_IGNORE_RESET))) { 2173 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2174 dev->name, dev->id); 2175 } 2176 } 2177 2178 dev->cache_protected = 0; 2179 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2180 AAC_FEATURE_JBOD) != 0); 2181 dev->nondasd_support = 0; 2182 dev->raid_scsi_mode = 0; 2183 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2184 dev->nondasd_support = 1; 2185 2186 /* 2187 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2188 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2189 * force nondasd support on. If we decide to allow the non-dasd flag 2190 * additional changes changes will have to be made to support 2191 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2192 * changed to support the new dev->raid_scsi_mode flag instead of 2193 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2194 * function aac_detect will have to be modified where it sets up the 2195 * max number of channels based on the aac->nondasd_support flag only. 2196 */ 2197 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2198 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2199 dev->nondasd_support = 1; 2200 dev->raid_scsi_mode = 1; 2201 } 2202 if (dev->raid_scsi_mode != 0) 2203 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2204 dev->name, dev->id); 2205 2206 if (nondasd != -1) 2207 dev->nondasd_support = (nondasd!=0); 2208 if (dev->nondasd_support && !dev->in_reset) 2209 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2210 2211 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2212 dev->needs_dac = 1; 2213 dev->dac_support = 0; 2214 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2215 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2216 if (!dev->in_reset) 2217 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2218 dev->name, dev->id); 2219 dev->dac_support = 1; 2220 } 2221 2222 if(dacmode != -1) { 2223 dev->dac_support = (dacmode!=0); 2224 } 2225 2226 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2227 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2228 & AAC_QUIRK_SCSI_32)) { 2229 dev->nondasd_support = 0; 2230 dev->jbod = 0; 2231 expose_physicals = 0; 2232 } 2233 2234 if (dev->dac_support) { 2235 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2236 if (!dev->in_reset) 2237 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2238 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2239 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2240 dev->dac_support = 0; 2241 } else { 2242 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2243 rcode = -ENOMEM; 2244 } 2245 } 2246 /* 2247 * Deal with configuring for the individualized limits of each packet 2248 * interface. 2249 */ 2250 dev->a_ops.adapter_scsi = (dev->dac_support) 2251 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2252 ? aac_scsi_32_64 2253 : aac_scsi_64) 2254 : aac_scsi_32; 2255 if (dev->raw_io_interface) { 2256 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2257 ? aac_bounds_64 2258 : aac_bounds_32; 2259 dev->a_ops.adapter_read = aac_read_raw_io; 2260 dev->a_ops.adapter_write = aac_write_raw_io; 2261 } else { 2262 dev->a_ops.adapter_bounds = aac_bounds_32; 2263 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2264 sizeof(struct aac_fibhdr) - 2265 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2266 sizeof(struct sgentry); 2267 if (dev->dac_support) { 2268 dev->a_ops.adapter_read = aac_read_block64; 2269 dev->a_ops.adapter_write = aac_write_block64; 2270 /* 2271 * 38 scatter gather elements 2272 */ 2273 dev->scsi_host_ptr->sg_tablesize = 2274 (dev->max_fib_size - 2275 sizeof(struct aac_fibhdr) - 2276 sizeof(struct aac_write64) + 2277 sizeof(struct sgentry64)) / 2278 sizeof(struct sgentry64); 2279 } else { 2280 dev->a_ops.adapter_read = aac_read_block; 2281 dev->a_ops.adapter_write = aac_write_block; 2282 } 2283 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2284 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2285 /* 2286 * Worst case size that could cause sg overflow when 2287 * we break up SG elements that are larger than 64KB. 2288 * Would be nice if we could tell the SCSI layer what 2289 * the maximum SG element size can be. Worst case is 2290 * (sg_tablesize-1) 4KB elements with one 64KB 2291 * element. 2292 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2293 */ 2294 dev->scsi_host_ptr->max_sectors = 2295 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2296 } 2297 } 2298 if (!dev->sync_mode && dev->sa_firmware && 2299 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2300 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2301 HBA_MAX_SG_SEPARATE; 2302 2303 /* FIB should be freed only after getting the response from the F/W */ 2304 if (rcode != -ERESTARTSYS) { 2305 aac_fib_complete(fibptr); 2306 aac_fib_free(fibptr); 2307 } 2308 2309 return rcode; 2310 } 2311 2312 2313 static void io_callback(void *context, struct fib * fibptr) 2314 { 2315 struct aac_dev *dev; 2316 struct aac_read_reply *readreply; 2317 struct scsi_cmnd *scsicmd; 2318 u32 cid; 2319 2320 scsicmd = (struct scsi_cmnd *) context; 2321 2322 if (!aac_valid_context(scsicmd, fibptr)) 2323 return; 2324 2325 dev = fibptr->dev; 2326 cid = scmd_id(scsicmd); 2327 2328 if (nblank(dprintk(x))) { 2329 u64 lba; 2330 switch (scsicmd->cmnd[0]) { 2331 case WRITE_6: 2332 case READ_6: 2333 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2334 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2335 break; 2336 case WRITE_16: 2337 case READ_16: 2338 lba = ((u64)scsicmd->cmnd[2] << 56) | 2339 ((u64)scsicmd->cmnd[3] << 48) | 2340 ((u64)scsicmd->cmnd[4] << 40) | 2341 ((u64)scsicmd->cmnd[5] << 32) | 2342 ((u64)scsicmd->cmnd[6] << 24) | 2343 (scsicmd->cmnd[7] << 16) | 2344 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2345 break; 2346 case WRITE_12: 2347 case READ_12: 2348 lba = ((u64)scsicmd->cmnd[2] << 24) | 2349 (scsicmd->cmnd[3] << 16) | 2350 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2351 break; 2352 default: 2353 lba = ((u64)scsicmd->cmnd[2] << 24) | 2354 (scsicmd->cmnd[3] << 16) | 2355 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2356 break; 2357 } 2358 printk(KERN_DEBUG 2359 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2360 smp_processor_id(), (unsigned long long)lba, jiffies); 2361 } 2362 2363 BUG_ON(fibptr == NULL); 2364 2365 scsi_dma_unmap(scsicmd); 2366 2367 readreply = (struct aac_read_reply *)fib_data(fibptr); 2368 switch (le32_to_cpu(readreply->status)) { 2369 case ST_OK: 2370 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2371 SAM_STAT_GOOD; 2372 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2373 break; 2374 case ST_NOT_READY: 2375 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2376 SAM_STAT_CHECK_CONDITION; 2377 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2378 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2379 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2380 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2381 SCSI_SENSE_BUFFERSIZE)); 2382 break; 2383 case ST_MEDERR: 2384 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2385 SAM_STAT_CHECK_CONDITION; 2386 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2387 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2388 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2389 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2390 SCSI_SENSE_BUFFERSIZE)); 2391 break; 2392 default: 2393 #ifdef AAC_DETAILED_STATUS_INFO 2394 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2395 le32_to_cpu(readreply->status)); 2396 #endif 2397 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2398 SAM_STAT_CHECK_CONDITION; 2399 set_sense(&dev->fsa_dev[cid].sense_data, 2400 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2401 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2402 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2403 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2404 SCSI_SENSE_BUFFERSIZE)); 2405 break; 2406 } 2407 aac_fib_complete(fibptr); 2408 2409 scsicmd->scsi_done(scsicmd); 2410 } 2411 2412 static int aac_read(struct scsi_cmnd * scsicmd) 2413 { 2414 u64 lba; 2415 u32 count; 2416 int status; 2417 struct aac_dev *dev; 2418 struct fib * cmd_fibcontext; 2419 int cid; 2420 2421 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2422 /* 2423 * Get block address and transfer length 2424 */ 2425 switch (scsicmd->cmnd[0]) { 2426 case READ_6: 2427 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2428 2429 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2430 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2431 count = scsicmd->cmnd[4]; 2432 2433 if (count == 0) 2434 count = 256; 2435 break; 2436 case READ_16: 2437 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2438 2439 lba = ((u64)scsicmd->cmnd[2] << 56) | 2440 ((u64)scsicmd->cmnd[3] << 48) | 2441 ((u64)scsicmd->cmnd[4] << 40) | 2442 ((u64)scsicmd->cmnd[5] << 32) | 2443 ((u64)scsicmd->cmnd[6] << 24) | 2444 (scsicmd->cmnd[7] << 16) | 2445 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2446 count = (scsicmd->cmnd[10] << 24) | 2447 (scsicmd->cmnd[11] << 16) | 2448 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2449 break; 2450 case READ_12: 2451 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2452 2453 lba = ((u64)scsicmd->cmnd[2] << 24) | 2454 (scsicmd->cmnd[3] << 16) | 2455 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2456 count = (scsicmd->cmnd[6] << 24) | 2457 (scsicmd->cmnd[7] << 16) | 2458 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2459 break; 2460 default: 2461 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2462 2463 lba = ((u64)scsicmd->cmnd[2] << 24) | 2464 (scsicmd->cmnd[3] << 16) | 2465 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2466 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2467 break; 2468 } 2469 2470 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2471 cid = scmd_id(scsicmd); 2472 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2473 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2474 SAM_STAT_CHECK_CONDITION; 2475 set_sense(&dev->fsa_dev[cid].sense_data, 2476 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2477 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2478 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2479 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2480 SCSI_SENSE_BUFFERSIZE)); 2481 scsicmd->scsi_done(scsicmd); 2482 return 0; 2483 } 2484 2485 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2486 smp_processor_id(), (unsigned long long)lba, jiffies)); 2487 if (aac_adapter_bounds(dev,scsicmd,lba)) 2488 return 0; 2489 /* 2490 * Alocate and initialize a Fib 2491 */ 2492 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2493 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2494 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2495 2496 /* 2497 * Check that the command queued to the controller 2498 */ 2499 if (status == -EINPROGRESS) 2500 return 0; 2501 2502 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2503 /* 2504 * For some reason, the Fib didn't queue, return QUEUE_FULL 2505 */ 2506 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2507 scsicmd->scsi_done(scsicmd); 2508 aac_fib_complete(cmd_fibcontext); 2509 aac_fib_free(cmd_fibcontext); 2510 return 0; 2511 } 2512 2513 static int aac_write(struct scsi_cmnd * scsicmd) 2514 { 2515 u64 lba; 2516 u32 count; 2517 int fua; 2518 int status; 2519 struct aac_dev *dev; 2520 struct fib * cmd_fibcontext; 2521 int cid; 2522 2523 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2524 /* 2525 * Get block address and transfer length 2526 */ 2527 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2528 { 2529 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2530 count = scsicmd->cmnd[4]; 2531 if (count == 0) 2532 count = 256; 2533 fua = 0; 2534 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2535 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2536 2537 lba = ((u64)scsicmd->cmnd[2] << 56) | 2538 ((u64)scsicmd->cmnd[3] << 48) | 2539 ((u64)scsicmd->cmnd[4] << 40) | 2540 ((u64)scsicmd->cmnd[5] << 32) | 2541 ((u64)scsicmd->cmnd[6] << 24) | 2542 (scsicmd->cmnd[7] << 16) | 2543 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2544 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2545 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2546 fua = scsicmd->cmnd[1] & 0x8; 2547 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2548 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2549 2550 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2551 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2552 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2553 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2554 fua = scsicmd->cmnd[1] & 0x8; 2555 } else { 2556 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2557 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2558 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2559 fua = scsicmd->cmnd[1] & 0x8; 2560 } 2561 2562 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2563 cid = scmd_id(scsicmd); 2564 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2565 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2566 SAM_STAT_CHECK_CONDITION; 2567 set_sense(&dev->fsa_dev[cid].sense_data, 2568 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2569 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2570 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2571 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2572 SCSI_SENSE_BUFFERSIZE)); 2573 scsicmd->scsi_done(scsicmd); 2574 return 0; 2575 } 2576 2577 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2578 smp_processor_id(), (unsigned long long)lba, jiffies)); 2579 if (aac_adapter_bounds(dev,scsicmd,lba)) 2580 return 0; 2581 /* 2582 * Allocate and initialize a Fib then setup a BlockWrite command 2583 */ 2584 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2585 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2586 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2587 2588 /* 2589 * Check that the command queued to the controller 2590 */ 2591 if (status == -EINPROGRESS) 2592 return 0; 2593 2594 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2595 /* 2596 * For some reason, the Fib didn't queue, return QUEUE_FULL 2597 */ 2598 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2599 scsicmd->scsi_done(scsicmd); 2600 2601 aac_fib_complete(cmd_fibcontext); 2602 aac_fib_free(cmd_fibcontext); 2603 return 0; 2604 } 2605 2606 static void synchronize_callback(void *context, struct fib *fibptr) 2607 { 2608 struct aac_synchronize_reply *synchronizereply; 2609 struct scsi_cmnd *cmd = context; 2610 2611 if (!aac_valid_context(cmd, fibptr)) 2612 return; 2613 2614 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2615 smp_processor_id(), jiffies)); 2616 BUG_ON(fibptr == NULL); 2617 2618 2619 synchronizereply = fib_data(fibptr); 2620 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2621 cmd->result = DID_OK << 16 | 2622 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2623 else { 2624 struct scsi_device *sdev = cmd->device; 2625 struct aac_dev *dev = fibptr->dev; 2626 u32 cid = sdev_id(sdev); 2627 printk(KERN_WARNING 2628 "synchronize_callback: synchronize failed, status = %d\n", 2629 le32_to_cpu(synchronizereply->status)); 2630 cmd->result = DID_OK << 16 | 2631 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2632 set_sense(&dev->fsa_dev[cid].sense_data, 2633 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2634 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2635 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2636 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2637 SCSI_SENSE_BUFFERSIZE)); 2638 } 2639 2640 aac_fib_complete(fibptr); 2641 aac_fib_free(fibptr); 2642 cmd->scsi_done(cmd); 2643 } 2644 2645 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2646 { 2647 int status; 2648 struct fib *cmd_fibcontext; 2649 struct aac_synchronize *synchronizecmd; 2650 struct scsi_device *sdev = scsicmd->device; 2651 struct aac_dev *aac; 2652 2653 aac = (struct aac_dev *)sdev->host->hostdata; 2654 if (aac->in_reset) 2655 return SCSI_MLQUEUE_HOST_BUSY; 2656 2657 /* 2658 * Allocate and initialize a Fib 2659 */ 2660 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2661 2662 aac_fib_init(cmd_fibcontext); 2663 2664 synchronizecmd = fib_data(cmd_fibcontext); 2665 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2666 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2667 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2668 synchronizecmd->count = 2669 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2670 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2671 2672 /* 2673 * Now send the Fib to the adapter 2674 */ 2675 status = aac_fib_send(ContainerCommand, 2676 cmd_fibcontext, 2677 sizeof(struct aac_synchronize), 2678 FsaNormal, 2679 0, 1, 2680 (fib_callback)synchronize_callback, 2681 (void *)scsicmd); 2682 2683 /* 2684 * Check that the command queued to the controller 2685 */ 2686 if (status == -EINPROGRESS) 2687 return 0; 2688 2689 printk(KERN_WARNING 2690 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2691 aac_fib_complete(cmd_fibcontext); 2692 aac_fib_free(cmd_fibcontext); 2693 return SCSI_MLQUEUE_HOST_BUSY; 2694 } 2695 2696 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2697 { 2698 struct scsi_cmnd *scsicmd = context; 2699 2700 if (!aac_valid_context(scsicmd, fibptr)) 2701 return; 2702 2703 BUG_ON(fibptr == NULL); 2704 2705 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2706 2707 aac_fib_complete(fibptr); 2708 aac_fib_free(fibptr); 2709 scsicmd->scsi_done(scsicmd); 2710 } 2711 2712 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2713 { 2714 int status; 2715 struct fib *cmd_fibcontext; 2716 struct aac_power_management *pmcmd; 2717 struct scsi_device *sdev = scsicmd->device; 2718 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2719 2720 if (!(aac->supplement_adapter_info.supported_options2 & 2721 AAC_OPTION_POWER_MANAGEMENT)) { 2722 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2723 SAM_STAT_GOOD; 2724 scsicmd->scsi_done(scsicmd); 2725 return 0; 2726 } 2727 2728 if (aac->in_reset) 2729 return SCSI_MLQUEUE_HOST_BUSY; 2730 2731 /* 2732 * Allocate and initialize a Fib 2733 */ 2734 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2735 2736 aac_fib_init(cmd_fibcontext); 2737 2738 pmcmd = fib_data(cmd_fibcontext); 2739 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2740 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2741 /* Eject bit ignored, not relevant */ 2742 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2743 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2744 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2745 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2746 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2747 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2748 2749 /* 2750 * Now send the Fib to the adapter 2751 */ 2752 status = aac_fib_send(ContainerCommand, 2753 cmd_fibcontext, 2754 sizeof(struct aac_power_management), 2755 FsaNormal, 2756 0, 1, 2757 (fib_callback)aac_start_stop_callback, 2758 (void *)scsicmd); 2759 2760 /* 2761 * Check that the command queued to the controller 2762 */ 2763 if (status == -EINPROGRESS) 2764 return 0; 2765 2766 aac_fib_complete(cmd_fibcontext); 2767 aac_fib_free(cmd_fibcontext); 2768 return SCSI_MLQUEUE_HOST_BUSY; 2769 } 2770 2771 /** 2772 * aac_scsi_cmd() - Process SCSI command 2773 * @scsicmd: SCSI command block 2774 * 2775 * Emulate a SCSI command and queue the required request for the 2776 * aacraid firmware. 2777 */ 2778 2779 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2780 { 2781 u32 cid, bus; 2782 struct Scsi_Host *host = scsicmd->device->host; 2783 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2784 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2785 2786 if (fsa_dev_ptr == NULL) 2787 return -1; 2788 /* 2789 * If the bus, id or lun is out of range, return fail 2790 * Test does not apply to ID 16, the pseudo id for the controller 2791 * itself. 2792 */ 2793 cid = scmd_id(scsicmd); 2794 if (cid != host->this_id) { 2795 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2796 if((cid >= dev->maximum_num_containers) || 2797 (scsicmd->device->lun != 0)) { 2798 scsicmd->result = DID_NO_CONNECT << 16; 2799 goto scsi_done_ret; 2800 } 2801 2802 /* 2803 * If the target container doesn't exist, it may have 2804 * been newly created 2805 */ 2806 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2807 (fsa_dev_ptr[cid].sense_data.sense_key == 2808 NOT_READY)) { 2809 switch (scsicmd->cmnd[0]) { 2810 case SERVICE_ACTION_IN_16: 2811 if (!(dev->raw_io_interface) || 2812 !(dev->raw_io_64) || 2813 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2814 break; 2815 /* fall through */ 2816 case INQUIRY: 2817 case READ_CAPACITY: 2818 case TEST_UNIT_READY: 2819 if (dev->in_reset) 2820 return -1; 2821 return _aac_probe_container(scsicmd, 2822 aac_probe_container_callback2); 2823 default: 2824 break; 2825 } 2826 } 2827 } else { /* check for physical non-dasd devices */ 2828 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2829 2830 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2831 dev->hba_map[bus][cid].devtype 2832 == AAC_DEVTYPE_NATIVE_RAW) { 2833 if (dev->in_reset) 2834 return -1; 2835 return aac_send_hba_fib(scsicmd); 2836 } else if (dev->nondasd_support || expose_physicals || 2837 dev->jbod) { 2838 if (dev->in_reset) 2839 return -1; 2840 return aac_send_srb_fib(scsicmd); 2841 } else { 2842 scsicmd->result = DID_NO_CONNECT << 16; 2843 goto scsi_done_ret; 2844 } 2845 } 2846 } 2847 /* 2848 * else Command for the controller itself 2849 */ 2850 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2851 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2852 { 2853 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2854 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2855 set_sense(&dev->fsa_dev[cid].sense_data, 2856 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2857 ASENCODE_INVALID_COMMAND, 0, 0); 2858 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2859 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2860 SCSI_SENSE_BUFFERSIZE)); 2861 goto scsi_done_ret; 2862 } 2863 2864 switch (scsicmd->cmnd[0]) { 2865 case READ_6: 2866 case READ_10: 2867 case READ_12: 2868 case READ_16: 2869 if (dev->in_reset) 2870 return -1; 2871 return aac_read(scsicmd); 2872 2873 case WRITE_6: 2874 case WRITE_10: 2875 case WRITE_12: 2876 case WRITE_16: 2877 if (dev->in_reset) 2878 return -1; 2879 return aac_write(scsicmd); 2880 2881 case SYNCHRONIZE_CACHE: 2882 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2883 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2884 SAM_STAT_GOOD; 2885 break; 2886 } 2887 /* Issue FIB to tell Firmware to flush it's cache */ 2888 if ((aac_cache & 6) != 2) 2889 return aac_synchronize(scsicmd); 2890 /* fall through */ 2891 case INQUIRY: 2892 { 2893 struct inquiry_data inq_data; 2894 2895 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2896 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2897 2898 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2899 char *arr = (char *)&inq_data; 2900 2901 /* EVPD bit set */ 2902 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2903 INQD_PDT_PROC : INQD_PDT_DA; 2904 if (scsicmd->cmnd[2] == 0) { 2905 /* supported vital product data pages */ 2906 arr[3] = 3; 2907 arr[4] = 0x0; 2908 arr[5] = 0x80; 2909 arr[6] = 0x83; 2910 arr[1] = scsicmd->cmnd[2]; 2911 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2912 sizeof(inq_data)); 2913 scsicmd->result = DID_OK << 16 | 2914 COMMAND_COMPLETE << 8 | 2915 SAM_STAT_GOOD; 2916 } else if (scsicmd->cmnd[2] == 0x80) { 2917 /* unit serial number page */ 2918 arr[3] = setinqserial(dev, &arr[4], 2919 scmd_id(scsicmd)); 2920 arr[1] = scsicmd->cmnd[2]; 2921 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2922 sizeof(inq_data)); 2923 if (aac_wwn != 2) 2924 return aac_get_container_serial( 2925 scsicmd); 2926 scsicmd->result = DID_OK << 16 | 2927 COMMAND_COMPLETE << 8 | 2928 SAM_STAT_GOOD; 2929 } else if (scsicmd->cmnd[2] == 0x83) { 2930 /* vpd page 0x83 - Device Identification Page */ 2931 char *sno = (char *)&inq_data; 2932 sno[3] = setinqserial(dev, &sno[4], 2933 scmd_id(scsicmd)); 2934 if (aac_wwn != 2) 2935 return aac_get_container_serial( 2936 scsicmd); 2937 scsicmd->result = DID_OK << 16 | 2938 COMMAND_COMPLETE << 8 | 2939 SAM_STAT_GOOD; 2940 } else { 2941 /* vpd page not implemented */ 2942 scsicmd->result = DID_OK << 16 | 2943 COMMAND_COMPLETE << 8 | 2944 SAM_STAT_CHECK_CONDITION; 2945 set_sense(&dev->fsa_dev[cid].sense_data, 2946 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2947 ASENCODE_NO_SENSE, 7, 2); 2948 memcpy(scsicmd->sense_buffer, 2949 &dev->fsa_dev[cid].sense_data, 2950 min_t(size_t, 2951 sizeof(dev->fsa_dev[cid].sense_data), 2952 SCSI_SENSE_BUFFERSIZE)); 2953 } 2954 break; 2955 } 2956 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2957 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2958 inq_data.inqd_len = 31; 2959 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2960 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2961 /* 2962 * Set the Vendor, Product, and Revision Level 2963 * see: <vendor>.c i.e. aac.c 2964 */ 2965 if (cid == host->this_id) { 2966 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2967 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2968 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2969 sizeof(inq_data)); 2970 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2971 SAM_STAT_GOOD; 2972 break; 2973 } 2974 if (dev->in_reset) 2975 return -1; 2976 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2977 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2978 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2979 return aac_get_container_name(scsicmd); 2980 } 2981 case SERVICE_ACTION_IN_16: 2982 if (!(dev->raw_io_interface) || 2983 !(dev->raw_io_64) || 2984 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2985 break; 2986 { 2987 u64 capacity; 2988 char cp[13]; 2989 unsigned int alloc_len; 2990 2991 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2992 capacity = fsa_dev_ptr[cid].size - 1; 2993 cp[0] = (capacity >> 56) & 0xff; 2994 cp[1] = (capacity >> 48) & 0xff; 2995 cp[2] = (capacity >> 40) & 0xff; 2996 cp[3] = (capacity >> 32) & 0xff; 2997 cp[4] = (capacity >> 24) & 0xff; 2998 cp[5] = (capacity >> 16) & 0xff; 2999 cp[6] = (capacity >> 8) & 0xff; 3000 cp[7] = (capacity >> 0) & 0xff; 3001 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3002 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3003 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3004 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3005 cp[12] = 0; 3006 3007 alloc_len = ((scsicmd->cmnd[10] << 24) 3008 + (scsicmd->cmnd[11] << 16) 3009 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3010 3011 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3012 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3013 if (alloc_len < scsi_bufflen(scsicmd)) 3014 scsi_set_resid(scsicmd, 3015 scsi_bufflen(scsicmd) - alloc_len); 3016 3017 /* Do not cache partition table for arrays */ 3018 scsicmd->device->removable = 1; 3019 3020 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3021 SAM_STAT_GOOD; 3022 break; 3023 } 3024 3025 case READ_CAPACITY: 3026 { 3027 u32 capacity; 3028 char cp[8]; 3029 3030 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3031 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3032 capacity = fsa_dev_ptr[cid].size - 1; 3033 else 3034 capacity = (u32)-1; 3035 3036 cp[0] = (capacity >> 24) & 0xff; 3037 cp[1] = (capacity >> 16) & 0xff; 3038 cp[2] = (capacity >> 8) & 0xff; 3039 cp[3] = (capacity >> 0) & 0xff; 3040 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3041 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3042 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3043 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3044 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3045 /* Do not cache partition table for arrays */ 3046 scsicmd->device->removable = 1; 3047 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3048 SAM_STAT_GOOD; 3049 break; 3050 } 3051 3052 case MODE_SENSE: 3053 { 3054 int mode_buf_length = 4; 3055 u32 capacity; 3056 aac_modep_data mpd; 3057 3058 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3059 capacity = fsa_dev_ptr[cid].size - 1; 3060 else 3061 capacity = (u32)-1; 3062 3063 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3064 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3065 3066 /* Mode data length */ 3067 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3068 /* Medium type - default */ 3069 mpd.hd.med_type = 0; 3070 /* Device-specific param, 3071 bit 8: 0/1 = write enabled/protected 3072 bit 4: 0/1 = FUA enabled */ 3073 mpd.hd.dev_par = 0; 3074 3075 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3076 mpd.hd.dev_par = 0x10; 3077 if (scsicmd->cmnd[1] & 0x8) 3078 mpd.hd.bd_length = 0; /* Block descriptor length */ 3079 else { 3080 mpd.hd.bd_length = sizeof(mpd.bd); 3081 mpd.hd.data_length += mpd.hd.bd_length; 3082 mpd.bd.block_length[0] = 3083 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3084 mpd.bd.block_length[1] = 3085 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3086 mpd.bd.block_length[2] = 3087 fsa_dev_ptr[cid].block_size & 0xff; 3088 3089 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3090 if (scsicmd->cmnd[2] == 0x1C) { 3091 /* page length */ 3092 mpd.mpc_buf[1] = 0xa; 3093 /* Mode data length */ 3094 mpd.hd.data_length = 23; 3095 } else { 3096 /* Mode data length */ 3097 mpd.hd.data_length = 15; 3098 } 3099 3100 if (capacity > 0xffffff) { 3101 mpd.bd.block_count[0] = 0xff; 3102 mpd.bd.block_count[1] = 0xff; 3103 mpd.bd.block_count[2] = 0xff; 3104 } else { 3105 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3106 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3107 mpd.bd.block_count[2] = capacity & 0xff; 3108 } 3109 } 3110 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3111 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3112 mpd.hd.data_length += 3; 3113 mpd.mpc_buf[0] = 8; 3114 mpd.mpc_buf[1] = 1; 3115 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3116 ? 0 : 0x04; /* WCE */ 3117 mode_buf_length = sizeof(mpd); 3118 } 3119 3120 if (mode_buf_length > scsicmd->cmnd[4]) 3121 mode_buf_length = scsicmd->cmnd[4]; 3122 else 3123 mode_buf_length = sizeof(mpd); 3124 scsi_sg_copy_from_buffer(scsicmd, 3125 (char *)&mpd, 3126 mode_buf_length); 3127 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3128 SAM_STAT_GOOD; 3129 break; 3130 } 3131 case MODE_SENSE_10: 3132 { 3133 u32 capacity; 3134 int mode_buf_length = 8; 3135 aac_modep10_data mpd10; 3136 3137 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3138 capacity = fsa_dev_ptr[cid].size - 1; 3139 else 3140 capacity = (u32)-1; 3141 3142 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3143 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3144 /* Mode data length (MSB) */ 3145 mpd10.hd.data_length[0] = 0; 3146 /* Mode data length (LSB) */ 3147 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3148 /* Medium type - default */ 3149 mpd10.hd.med_type = 0; 3150 /* Device-specific param, 3151 bit 8: 0/1 = write enabled/protected 3152 bit 4: 0/1 = FUA enabled */ 3153 mpd10.hd.dev_par = 0; 3154 3155 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3156 mpd10.hd.dev_par = 0x10; 3157 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3158 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3159 if (scsicmd->cmnd[1] & 0x8) { 3160 /* Block descriptor length (MSB) */ 3161 mpd10.hd.bd_length[0] = 0; 3162 /* Block descriptor length (LSB) */ 3163 mpd10.hd.bd_length[1] = 0; 3164 } else { 3165 mpd10.hd.bd_length[0] = 0; 3166 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3167 3168 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3169 3170 mpd10.bd.block_length[0] = 3171 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3172 mpd10.bd.block_length[1] = 3173 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3174 mpd10.bd.block_length[2] = 3175 fsa_dev_ptr[cid].block_size & 0xff; 3176 3177 if (capacity > 0xffffff) { 3178 mpd10.bd.block_count[0] = 0xff; 3179 mpd10.bd.block_count[1] = 0xff; 3180 mpd10.bd.block_count[2] = 0xff; 3181 } else { 3182 mpd10.bd.block_count[0] = 3183 (capacity >> 16) & 0xff; 3184 mpd10.bd.block_count[1] = 3185 (capacity >> 8) & 0xff; 3186 mpd10.bd.block_count[2] = 3187 capacity & 0xff; 3188 } 3189 } 3190 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3191 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3192 mpd10.hd.data_length[1] += 3; 3193 mpd10.mpc_buf[0] = 8; 3194 mpd10.mpc_buf[1] = 1; 3195 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3196 ? 0 : 0x04; /* WCE */ 3197 mode_buf_length = sizeof(mpd10); 3198 if (mode_buf_length > scsicmd->cmnd[8]) 3199 mode_buf_length = scsicmd->cmnd[8]; 3200 } 3201 scsi_sg_copy_from_buffer(scsicmd, 3202 (char *)&mpd10, 3203 mode_buf_length); 3204 3205 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3206 SAM_STAT_GOOD; 3207 break; 3208 } 3209 case REQUEST_SENSE: 3210 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3211 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3212 sizeof(struct sense_data)); 3213 memset(&dev->fsa_dev[cid].sense_data, 0, 3214 sizeof(struct sense_data)); 3215 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3216 SAM_STAT_GOOD; 3217 break; 3218 3219 case ALLOW_MEDIUM_REMOVAL: 3220 dprintk((KERN_DEBUG "LOCK command.\n")); 3221 if (scsicmd->cmnd[4]) 3222 fsa_dev_ptr[cid].locked = 1; 3223 else 3224 fsa_dev_ptr[cid].locked = 0; 3225 3226 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3227 SAM_STAT_GOOD; 3228 break; 3229 /* 3230 * These commands are all No-Ops 3231 */ 3232 case TEST_UNIT_READY: 3233 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3234 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3235 SAM_STAT_CHECK_CONDITION; 3236 set_sense(&dev->fsa_dev[cid].sense_data, 3237 NOT_READY, SENCODE_BECOMING_READY, 3238 ASENCODE_BECOMING_READY, 0, 0); 3239 memcpy(scsicmd->sense_buffer, 3240 &dev->fsa_dev[cid].sense_data, 3241 min_t(size_t, 3242 sizeof(dev->fsa_dev[cid].sense_data), 3243 SCSI_SENSE_BUFFERSIZE)); 3244 break; 3245 } 3246 /* fall through */ 3247 case RESERVE: 3248 case RELEASE: 3249 case REZERO_UNIT: 3250 case REASSIGN_BLOCKS: 3251 case SEEK_10: 3252 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3253 SAM_STAT_GOOD; 3254 break; 3255 3256 case START_STOP: 3257 return aac_start_stop(scsicmd); 3258 3259 /* FALLTHRU */ 3260 default: 3261 /* 3262 * Unhandled commands 3263 */ 3264 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3265 scsicmd->cmnd[0])); 3266 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3267 SAM_STAT_CHECK_CONDITION; 3268 set_sense(&dev->fsa_dev[cid].sense_data, 3269 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3270 ASENCODE_INVALID_COMMAND, 0, 0); 3271 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3272 min_t(size_t, 3273 sizeof(dev->fsa_dev[cid].sense_data), 3274 SCSI_SENSE_BUFFERSIZE)); 3275 } 3276 3277 scsi_done_ret: 3278 3279 scsicmd->scsi_done(scsicmd); 3280 return 0; 3281 } 3282 3283 static int query_disk(struct aac_dev *dev, void __user *arg) 3284 { 3285 struct aac_query_disk qd; 3286 struct fsa_dev_info *fsa_dev_ptr; 3287 3288 fsa_dev_ptr = dev->fsa_dev; 3289 if (!fsa_dev_ptr) 3290 return -EBUSY; 3291 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3292 return -EFAULT; 3293 if (qd.cnum == -1) { 3294 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3295 return -EINVAL; 3296 qd.cnum = qd.id; 3297 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3298 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3299 return -EINVAL; 3300 qd.instance = dev->scsi_host_ptr->host_no; 3301 qd.bus = 0; 3302 qd.id = CONTAINER_TO_ID(qd.cnum); 3303 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3304 } 3305 else return -EINVAL; 3306 3307 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3308 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3309 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3310 3311 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3312 qd.unmapped = 1; 3313 else 3314 qd.unmapped = 0; 3315 3316 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3317 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3318 3319 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3320 return -EFAULT; 3321 return 0; 3322 } 3323 3324 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3325 { 3326 struct aac_delete_disk dd; 3327 struct fsa_dev_info *fsa_dev_ptr; 3328 3329 fsa_dev_ptr = dev->fsa_dev; 3330 if (!fsa_dev_ptr) 3331 return -EBUSY; 3332 3333 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3334 return -EFAULT; 3335 3336 if (dd.cnum >= dev->maximum_num_containers) 3337 return -EINVAL; 3338 /* 3339 * Mark this container as being deleted. 3340 */ 3341 fsa_dev_ptr[dd.cnum].deleted = 1; 3342 /* 3343 * Mark the container as no longer valid 3344 */ 3345 fsa_dev_ptr[dd.cnum].valid = 0; 3346 return 0; 3347 } 3348 3349 static int delete_disk(struct aac_dev *dev, void __user *arg) 3350 { 3351 struct aac_delete_disk dd; 3352 struct fsa_dev_info *fsa_dev_ptr; 3353 3354 fsa_dev_ptr = dev->fsa_dev; 3355 if (!fsa_dev_ptr) 3356 return -EBUSY; 3357 3358 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3359 return -EFAULT; 3360 3361 if (dd.cnum >= dev->maximum_num_containers) 3362 return -EINVAL; 3363 /* 3364 * If the container is locked, it can not be deleted by the API. 3365 */ 3366 if (fsa_dev_ptr[dd.cnum].locked) 3367 return -EBUSY; 3368 else { 3369 /* 3370 * Mark the container as no longer being valid. 3371 */ 3372 fsa_dev_ptr[dd.cnum].valid = 0; 3373 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3374 return 0; 3375 } 3376 } 3377 3378 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3379 { 3380 switch (cmd) { 3381 case FSACTL_QUERY_DISK: 3382 return query_disk(dev, arg); 3383 case FSACTL_DELETE_DISK: 3384 return delete_disk(dev, arg); 3385 case FSACTL_FORCE_DELETE_DISK: 3386 return force_delete_disk(dev, arg); 3387 case FSACTL_GET_CONTAINERS: 3388 return aac_get_containers(dev); 3389 default: 3390 return -ENOTTY; 3391 } 3392 } 3393 3394 /** 3395 * 3396 * aac_srb_callback 3397 * @context: the context set in the fib - here it is scsi cmd 3398 * @fibptr: pointer to the fib 3399 * 3400 * Handles the completion of a scsi command to a non dasd device 3401 * 3402 */ 3403 3404 static void aac_srb_callback(void *context, struct fib * fibptr) 3405 { 3406 struct aac_srb_reply *srbreply; 3407 struct scsi_cmnd *scsicmd; 3408 3409 scsicmd = (struct scsi_cmnd *) context; 3410 3411 if (!aac_valid_context(scsicmd, fibptr)) 3412 return; 3413 3414 BUG_ON(fibptr == NULL); 3415 3416 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3417 3418 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3419 3420 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3421 /* fast response */ 3422 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3423 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3424 } else { 3425 /* 3426 * Calculate resid for sg 3427 */ 3428 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3429 - le32_to_cpu(srbreply->data_xfer_length)); 3430 } 3431 3432 3433 scsi_dma_unmap(scsicmd); 3434 3435 /* expose physical device if expose_physicald flag is on */ 3436 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3437 && expose_physicals > 0) 3438 aac_expose_phy_device(scsicmd); 3439 3440 /* 3441 * First check the fib status 3442 */ 3443 3444 if (le32_to_cpu(srbreply->status) != ST_OK) { 3445 int len; 3446 3447 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3448 le32_to_cpu(srbreply->status)); 3449 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3450 SCSI_SENSE_BUFFERSIZE); 3451 scsicmd->result = DID_ERROR << 16 3452 | COMMAND_COMPLETE << 8 3453 | SAM_STAT_CHECK_CONDITION; 3454 memcpy(scsicmd->sense_buffer, 3455 srbreply->sense_data, len); 3456 } 3457 3458 /* 3459 * Next check the srb status 3460 */ 3461 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3462 case SRB_STATUS_ERROR_RECOVERY: 3463 case SRB_STATUS_PENDING: 3464 case SRB_STATUS_SUCCESS: 3465 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3466 break; 3467 case SRB_STATUS_DATA_OVERRUN: 3468 switch (scsicmd->cmnd[0]) { 3469 case READ_6: 3470 case WRITE_6: 3471 case READ_10: 3472 case WRITE_10: 3473 case READ_12: 3474 case WRITE_12: 3475 case READ_16: 3476 case WRITE_16: 3477 if (le32_to_cpu(srbreply->data_xfer_length) 3478 < scsicmd->underflow) 3479 pr_warn("aacraid: SCSI CMD underflow\n"); 3480 else 3481 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3482 scsicmd->result = DID_ERROR << 16 3483 | COMMAND_COMPLETE << 8; 3484 break; 3485 case INQUIRY: 3486 scsicmd->result = DID_OK << 16 3487 | COMMAND_COMPLETE << 8; 3488 break; 3489 default: 3490 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3491 break; 3492 } 3493 break; 3494 case SRB_STATUS_ABORTED: 3495 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3496 break; 3497 case SRB_STATUS_ABORT_FAILED: 3498 /* 3499 * Not sure about this one - but assuming the 3500 * hba was trying to abort for some reason 3501 */ 3502 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3503 break; 3504 case SRB_STATUS_PARITY_ERROR: 3505 scsicmd->result = DID_PARITY << 16 3506 | MSG_PARITY_ERROR << 8; 3507 break; 3508 case SRB_STATUS_NO_DEVICE: 3509 case SRB_STATUS_INVALID_PATH_ID: 3510 case SRB_STATUS_INVALID_TARGET_ID: 3511 case SRB_STATUS_INVALID_LUN: 3512 case SRB_STATUS_SELECTION_TIMEOUT: 3513 scsicmd->result = DID_NO_CONNECT << 16 3514 | COMMAND_COMPLETE << 8; 3515 break; 3516 3517 case SRB_STATUS_COMMAND_TIMEOUT: 3518 case SRB_STATUS_TIMEOUT: 3519 scsicmd->result = DID_TIME_OUT << 16 3520 | COMMAND_COMPLETE << 8; 3521 break; 3522 3523 case SRB_STATUS_BUSY: 3524 scsicmd->result = DID_BUS_BUSY << 16 3525 | COMMAND_COMPLETE << 8; 3526 break; 3527 3528 case SRB_STATUS_BUS_RESET: 3529 scsicmd->result = DID_RESET << 16 3530 | COMMAND_COMPLETE << 8; 3531 break; 3532 3533 case SRB_STATUS_MESSAGE_REJECTED: 3534 scsicmd->result = DID_ERROR << 16 3535 | MESSAGE_REJECT << 8; 3536 break; 3537 case SRB_STATUS_REQUEST_FLUSHED: 3538 case SRB_STATUS_ERROR: 3539 case SRB_STATUS_INVALID_REQUEST: 3540 case SRB_STATUS_REQUEST_SENSE_FAILED: 3541 case SRB_STATUS_NO_HBA: 3542 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3543 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3544 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3545 case SRB_STATUS_DELAYED_RETRY: 3546 case SRB_STATUS_BAD_FUNCTION: 3547 case SRB_STATUS_NOT_STARTED: 3548 case SRB_STATUS_NOT_IN_USE: 3549 case SRB_STATUS_FORCE_ABORT: 3550 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3551 default: 3552 #ifdef AAC_DETAILED_STATUS_INFO 3553 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3554 le32_to_cpu(srbreply->srb_status) & 0x3F, 3555 aac_get_status_string( 3556 le32_to_cpu(srbreply->srb_status) & 0x3F), 3557 scsicmd->cmnd[0], 3558 le32_to_cpu(srbreply->scsi_status)); 3559 #endif 3560 /* 3561 * When the CC bit is SET by the host in ATA pass thru CDB, 3562 * driver is supposed to return DID_OK 3563 * 3564 * When the CC bit is RESET by the host, driver should 3565 * return DID_ERROR 3566 */ 3567 if ((scsicmd->cmnd[0] == ATA_12) 3568 || (scsicmd->cmnd[0] == ATA_16)) { 3569 3570 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3571 scsicmd->result = DID_OK << 16 3572 | COMMAND_COMPLETE << 8; 3573 break; 3574 } else { 3575 scsicmd->result = DID_ERROR << 16 3576 | COMMAND_COMPLETE << 8; 3577 break; 3578 } 3579 } else { 3580 scsicmd->result = DID_ERROR << 16 3581 | COMMAND_COMPLETE << 8; 3582 break; 3583 } 3584 } 3585 if (le32_to_cpu(srbreply->scsi_status) 3586 == SAM_STAT_CHECK_CONDITION) { 3587 int len; 3588 3589 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3590 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3591 SCSI_SENSE_BUFFERSIZE); 3592 #ifdef AAC_DETAILED_STATUS_INFO 3593 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3594 le32_to_cpu(srbreply->status), len); 3595 #endif 3596 memcpy(scsicmd->sense_buffer, 3597 srbreply->sense_data, len); 3598 } 3599 3600 /* 3601 * OR in the scsi status (already shifted up a bit) 3602 */ 3603 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3604 3605 aac_fib_complete(fibptr); 3606 scsicmd->scsi_done(scsicmd); 3607 } 3608 3609 static void hba_resp_task_complete(struct aac_dev *dev, 3610 struct scsi_cmnd *scsicmd, 3611 struct aac_hba_resp *err) { 3612 3613 scsicmd->result = err->status; 3614 /* set residual count */ 3615 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3616 3617 switch (err->status) { 3618 case SAM_STAT_GOOD: 3619 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3620 break; 3621 case SAM_STAT_CHECK_CONDITION: 3622 { 3623 int len; 3624 3625 len = min_t(u8, err->sense_response_data_len, 3626 SCSI_SENSE_BUFFERSIZE); 3627 if (len) 3628 memcpy(scsicmd->sense_buffer, 3629 err->sense_response_buf, len); 3630 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3631 break; 3632 } 3633 case SAM_STAT_BUSY: 3634 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3635 break; 3636 case SAM_STAT_TASK_ABORTED: 3637 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3638 break; 3639 case SAM_STAT_RESERVATION_CONFLICT: 3640 case SAM_STAT_TASK_SET_FULL: 3641 default: 3642 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3643 break; 3644 } 3645 } 3646 3647 static void hba_resp_task_failure(struct aac_dev *dev, 3648 struct scsi_cmnd *scsicmd, 3649 struct aac_hba_resp *err) 3650 { 3651 switch (err->status) { 3652 case HBA_RESP_STAT_HBAMODE_DISABLED: 3653 { 3654 u32 bus, cid; 3655 3656 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3657 cid = scmd_id(scsicmd); 3658 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3659 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3660 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3661 } 3662 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3663 break; 3664 } 3665 case HBA_RESP_STAT_IO_ERROR: 3666 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3667 scsicmd->result = DID_OK << 16 | 3668 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3669 break; 3670 case HBA_RESP_STAT_IO_ABORTED: 3671 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3672 break; 3673 case HBA_RESP_STAT_INVALID_DEVICE: 3674 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3675 break; 3676 case HBA_RESP_STAT_UNDERRUN: 3677 /* UNDERRUN is OK */ 3678 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3679 break; 3680 case HBA_RESP_STAT_OVERRUN: 3681 default: 3682 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3683 break; 3684 } 3685 } 3686 3687 /** 3688 * 3689 * aac_hba_callback 3690 * @context: the context set in the fib - here it is scsi cmd 3691 * @fibptr: pointer to the fib 3692 * 3693 * Handles the completion of a native HBA scsi command 3694 * 3695 */ 3696 void aac_hba_callback(void *context, struct fib *fibptr) 3697 { 3698 struct aac_dev *dev; 3699 struct scsi_cmnd *scsicmd; 3700 3701 struct aac_hba_resp *err = 3702 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3703 3704 scsicmd = (struct scsi_cmnd *) context; 3705 3706 if (!aac_valid_context(scsicmd, fibptr)) 3707 return; 3708 3709 WARN_ON(fibptr == NULL); 3710 dev = fibptr->dev; 3711 3712 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3713 scsi_dma_unmap(scsicmd); 3714 3715 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3716 /* fast response */ 3717 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3718 goto out; 3719 } 3720 3721 switch (err->service_response) { 3722 case HBA_RESP_SVCRES_TASK_COMPLETE: 3723 hba_resp_task_complete(dev, scsicmd, err); 3724 break; 3725 case HBA_RESP_SVCRES_FAILURE: 3726 hba_resp_task_failure(dev, scsicmd, err); 3727 break; 3728 case HBA_RESP_SVCRES_TMF_REJECTED: 3729 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3730 break; 3731 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3732 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3733 break; 3734 case HBA_RESP_SVCRES_TMF_COMPLETE: 3735 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3736 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3737 break; 3738 default: 3739 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3740 break; 3741 } 3742 3743 out: 3744 aac_fib_complete(fibptr); 3745 3746 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3747 scsicmd->SCp.sent_command = 1; 3748 else 3749 scsicmd->scsi_done(scsicmd); 3750 } 3751 3752 /** 3753 * 3754 * aac_send_srb_fib 3755 * @scsicmd: the scsi command block 3756 * 3757 * This routine will form a FIB and fill in the aac_srb from the 3758 * scsicmd passed in. 3759 */ 3760 3761 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3762 { 3763 struct fib* cmd_fibcontext; 3764 struct aac_dev* dev; 3765 int status; 3766 3767 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3768 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3769 scsicmd->device->lun > 7) { 3770 scsicmd->result = DID_NO_CONNECT << 16; 3771 scsicmd->scsi_done(scsicmd); 3772 return 0; 3773 } 3774 3775 /* 3776 * Allocate and initialize a Fib then setup a BlockWrite command 3777 */ 3778 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3779 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3780 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3781 3782 /* 3783 * Check that the command queued to the controller 3784 */ 3785 if (status == -EINPROGRESS) 3786 return 0; 3787 3788 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3789 aac_fib_complete(cmd_fibcontext); 3790 aac_fib_free(cmd_fibcontext); 3791 3792 return -1; 3793 } 3794 3795 /** 3796 * 3797 * aac_send_hba_fib 3798 * @scsicmd: the scsi command block 3799 * 3800 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3801 * scsicmd passed in. 3802 */ 3803 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3804 { 3805 struct fib *cmd_fibcontext; 3806 struct aac_dev *dev; 3807 int status; 3808 3809 dev = shost_priv(scsicmd->device->host); 3810 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3811 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3812 scsicmd->result = DID_NO_CONNECT << 16; 3813 scsicmd->scsi_done(scsicmd); 3814 return 0; 3815 } 3816 3817 /* 3818 * Allocate and initialize a Fib then setup a BlockWrite command 3819 */ 3820 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3821 if (!cmd_fibcontext) 3822 return -1; 3823 3824 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3825 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3826 3827 /* 3828 * Check that the command queued to the controller 3829 */ 3830 if (status == -EINPROGRESS) 3831 return 0; 3832 3833 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3834 status); 3835 aac_fib_complete(cmd_fibcontext); 3836 aac_fib_free(cmd_fibcontext); 3837 3838 return -1; 3839 } 3840 3841 3842 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3843 { 3844 unsigned long byte_count = 0; 3845 int nseg; 3846 struct scatterlist *sg; 3847 int i; 3848 3849 // Get rid of old data 3850 psg->count = 0; 3851 psg->sg[0].addr = 0; 3852 psg->sg[0].count = 0; 3853 3854 nseg = scsi_dma_map(scsicmd); 3855 if (nseg <= 0) 3856 return nseg; 3857 3858 psg->count = cpu_to_le32(nseg); 3859 3860 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3861 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3862 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3863 byte_count += sg_dma_len(sg); 3864 } 3865 /* hba wants the size to be exact */ 3866 if (byte_count > scsi_bufflen(scsicmd)) { 3867 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3868 (byte_count - scsi_bufflen(scsicmd)); 3869 psg->sg[i-1].count = cpu_to_le32(temp); 3870 byte_count = scsi_bufflen(scsicmd); 3871 } 3872 /* Check for command underflow */ 3873 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3874 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3875 byte_count, scsicmd->underflow); 3876 } 3877 3878 return byte_count; 3879 } 3880 3881 3882 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3883 { 3884 unsigned long byte_count = 0; 3885 u64 addr; 3886 int nseg; 3887 struct scatterlist *sg; 3888 int i; 3889 3890 // Get rid of old data 3891 psg->count = 0; 3892 psg->sg[0].addr[0] = 0; 3893 psg->sg[0].addr[1] = 0; 3894 psg->sg[0].count = 0; 3895 3896 nseg = scsi_dma_map(scsicmd); 3897 if (nseg <= 0) 3898 return nseg; 3899 3900 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3901 int count = sg_dma_len(sg); 3902 addr = sg_dma_address(sg); 3903 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3904 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3905 psg->sg[i].count = cpu_to_le32(count); 3906 byte_count += count; 3907 } 3908 psg->count = cpu_to_le32(nseg); 3909 /* hba wants the size to be exact */ 3910 if (byte_count > scsi_bufflen(scsicmd)) { 3911 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3912 (byte_count - scsi_bufflen(scsicmd)); 3913 psg->sg[i-1].count = cpu_to_le32(temp); 3914 byte_count = scsi_bufflen(scsicmd); 3915 } 3916 /* Check for command underflow */ 3917 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3918 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3919 byte_count, scsicmd->underflow); 3920 } 3921 3922 return byte_count; 3923 } 3924 3925 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3926 { 3927 unsigned long byte_count = 0; 3928 int nseg; 3929 struct scatterlist *sg; 3930 int i; 3931 3932 // Get rid of old data 3933 psg->count = 0; 3934 psg->sg[0].next = 0; 3935 psg->sg[0].prev = 0; 3936 psg->sg[0].addr[0] = 0; 3937 psg->sg[0].addr[1] = 0; 3938 psg->sg[0].count = 0; 3939 psg->sg[0].flags = 0; 3940 3941 nseg = scsi_dma_map(scsicmd); 3942 if (nseg <= 0) 3943 return nseg; 3944 3945 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3946 int count = sg_dma_len(sg); 3947 u64 addr = sg_dma_address(sg); 3948 psg->sg[i].next = 0; 3949 psg->sg[i].prev = 0; 3950 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3951 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3952 psg->sg[i].count = cpu_to_le32(count); 3953 psg->sg[i].flags = 0; 3954 byte_count += count; 3955 } 3956 psg->count = cpu_to_le32(nseg); 3957 /* hba wants the size to be exact */ 3958 if (byte_count > scsi_bufflen(scsicmd)) { 3959 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3960 (byte_count - scsi_bufflen(scsicmd)); 3961 psg->sg[i-1].count = cpu_to_le32(temp); 3962 byte_count = scsi_bufflen(scsicmd); 3963 } 3964 /* Check for command underflow */ 3965 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3966 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3967 byte_count, scsicmd->underflow); 3968 } 3969 3970 return byte_count; 3971 } 3972 3973 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3974 struct aac_raw_io2 *rio2, int sg_max) 3975 { 3976 unsigned long byte_count = 0; 3977 int nseg; 3978 struct scatterlist *sg; 3979 int i, conformable = 0; 3980 u32 min_size = PAGE_SIZE, cur_size; 3981 3982 nseg = scsi_dma_map(scsicmd); 3983 if (nseg <= 0) 3984 return nseg; 3985 3986 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3987 int count = sg_dma_len(sg); 3988 u64 addr = sg_dma_address(sg); 3989 3990 BUG_ON(i >= sg_max); 3991 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3992 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3993 cur_size = cpu_to_le32(count); 3994 rio2->sge[i].length = cur_size; 3995 rio2->sge[i].flags = 0; 3996 if (i == 0) { 3997 conformable = 1; 3998 rio2->sgeFirstSize = cur_size; 3999 } else if (i == 1) { 4000 rio2->sgeNominalSize = cur_size; 4001 min_size = cur_size; 4002 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 4003 conformable = 0; 4004 if (cur_size < min_size) 4005 min_size = cur_size; 4006 } 4007 byte_count += count; 4008 } 4009 4010 /* hba wants the size to be exact */ 4011 if (byte_count > scsi_bufflen(scsicmd)) { 4012 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4013 (byte_count - scsi_bufflen(scsicmd)); 4014 rio2->sge[i-1].length = cpu_to_le32(temp); 4015 byte_count = scsi_bufflen(scsicmd); 4016 } 4017 4018 rio2->sgeCnt = cpu_to_le32(nseg); 4019 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4020 /* not conformable: evaluate required sg elements */ 4021 if (!conformable) { 4022 int j, nseg_new = nseg, err_found; 4023 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4024 err_found = 0; 4025 nseg_new = 2; 4026 for (j = 1; j < nseg - 1; ++j) { 4027 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4028 err_found = 1; 4029 break; 4030 } 4031 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4032 } 4033 if (!err_found) 4034 break; 4035 } 4036 if (i > 0 && nseg_new <= sg_max) { 4037 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4038 4039 if (ret < 0) 4040 return ret; 4041 } 4042 } else 4043 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4044 4045 /* Check for command underflow */ 4046 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4047 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4048 byte_count, scsicmd->underflow); 4049 } 4050 4051 return byte_count; 4052 } 4053 4054 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4055 { 4056 struct sge_ieee1212 *sge; 4057 int i, j, pos; 4058 u32 addr_low; 4059 4060 if (aac_convert_sgl == 0) 4061 return 0; 4062 4063 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4064 if (sge == NULL) 4065 return -ENOMEM; 4066 4067 for (i = 1, pos = 1; i < nseg-1; ++i) { 4068 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4069 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4070 sge[pos].addrLow = addr_low; 4071 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4072 if (addr_low < rio2->sge[i].addrLow) 4073 sge[pos].addrHigh++; 4074 sge[pos].length = pages * PAGE_SIZE; 4075 sge[pos].flags = 0; 4076 pos++; 4077 } 4078 } 4079 sge[pos] = rio2->sge[nseg-1]; 4080 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4081 4082 kfree(sge); 4083 rio2->sgeCnt = cpu_to_le32(nseg_new); 4084 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4085 rio2->sgeNominalSize = pages * PAGE_SIZE; 4086 return 0; 4087 } 4088 4089 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4090 struct aac_hba_cmd_req *hbacmd, 4091 int sg_max, 4092 u64 sg_address) 4093 { 4094 unsigned long byte_count = 0; 4095 int nseg; 4096 struct scatterlist *sg; 4097 int i; 4098 u32 cur_size; 4099 struct aac_hba_sgl *sge; 4100 4101 nseg = scsi_dma_map(scsicmd); 4102 if (nseg <= 0) { 4103 byte_count = nseg; 4104 goto out; 4105 } 4106 4107 if (nseg > HBA_MAX_SG_EMBEDDED) 4108 sge = &hbacmd->sge[2]; 4109 else 4110 sge = &hbacmd->sge[0]; 4111 4112 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4113 int count = sg_dma_len(sg); 4114 u64 addr = sg_dma_address(sg); 4115 4116 WARN_ON(i >= sg_max); 4117 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4118 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4119 cur_size = cpu_to_le32(count); 4120 sge->len = cur_size; 4121 sge->flags = 0; 4122 byte_count += count; 4123 sge++; 4124 } 4125 4126 sge--; 4127 /* hba wants the size to be exact */ 4128 if (byte_count > scsi_bufflen(scsicmd)) { 4129 u32 temp; 4130 4131 temp = le32_to_cpu(sge->len) - byte_count 4132 - scsi_bufflen(scsicmd); 4133 sge->len = cpu_to_le32(temp); 4134 byte_count = scsi_bufflen(scsicmd); 4135 } 4136 4137 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4138 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4139 sge->flags = cpu_to_le32(0x40000000); 4140 } else { 4141 /* not embedded */ 4142 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4143 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4144 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4145 hbacmd->sge[0].addr_lo = 4146 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4147 } 4148 4149 /* Check for command underflow */ 4150 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4151 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4152 byte_count, scsicmd->underflow); 4153 } 4154 out: 4155 return byte_count; 4156 } 4157 4158 #ifdef AAC_DETAILED_STATUS_INFO 4159 4160 struct aac_srb_status_info { 4161 u32 status; 4162 char *str; 4163 }; 4164 4165 4166 static struct aac_srb_status_info srb_status_info[] = { 4167 { SRB_STATUS_PENDING, "Pending Status"}, 4168 { SRB_STATUS_SUCCESS, "Success"}, 4169 { SRB_STATUS_ABORTED, "Aborted Command"}, 4170 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4171 { SRB_STATUS_ERROR, "Error Event"}, 4172 { SRB_STATUS_BUSY, "Device Busy"}, 4173 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4174 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4175 { SRB_STATUS_NO_DEVICE, "No Device"}, 4176 { SRB_STATUS_TIMEOUT, "Timeout"}, 4177 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4178 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4179 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4180 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4181 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4182 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4183 { SRB_STATUS_NO_HBA, "No HBA"}, 4184 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4185 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4186 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4187 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4188 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4189 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4190 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4191 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4192 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4193 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4194 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4195 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4196 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4197 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4198 { 0xff, "Unknown Error"} 4199 }; 4200 4201 char *aac_get_status_string(u32 status) 4202 { 4203 int i; 4204 4205 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4206 if (srb_status_info[i].status == status) 4207 return srb_status_info[i].str; 4208 4209 return "Bad Status Code"; 4210 } 4211 4212 #endif 4213