1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 29 #include <linux/module.h> 30 31 #include <asm/unaligned.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 38 #include "aacraid.h" 39 40 /* values for inqd_pdt: Peripheral device type in plain English */ 41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 42 #define INQD_PDT_PROC 0x03 /* Processor device */ 43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 47 48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 50 51 /* 52 * Sense codes 53 */ 54 55 #define SENCODE_NO_SENSE 0x00 56 #define SENCODE_END_OF_DATA 0x00 57 #define SENCODE_BECOMING_READY 0x04 58 #define SENCODE_INIT_CMD_REQUIRED 0x04 59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 61 #define SENCODE_INVALID_COMMAND 0x20 62 #define SENCODE_LBA_OUT_OF_RANGE 0x21 63 #define SENCODE_INVALID_CDB_FIELD 0x24 64 #define SENCODE_LUN_NOT_SUPPORTED 0x25 65 #define SENCODE_INVALID_PARAM_FIELD 0x26 66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 67 #define SENCODE_PARAM_VALUE_INVALID 0x26 68 #define SENCODE_RESET_OCCURRED 0x29 69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 76 #define SENCODE_OVERLAPPED_COMMAND 0x4E 77 78 /* 79 * Additional sense codes 80 */ 81 82 #define ASENCODE_NO_SENSE 0x00 83 #define ASENCODE_END_OF_DATA 0x05 84 #define ASENCODE_BECOMING_READY 0x01 85 #define ASENCODE_INIT_CMD_REQUIRED 0x02 86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 87 #define ASENCODE_INVALID_COMMAND 0x00 88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 89 #define ASENCODE_INVALID_CDB_FIELD 0x00 90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 91 #define ASENCODE_INVALID_PARAM_FIELD 0x00 92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 93 #define ASENCODE_PARAM_VALUE_INVALID 0x02 94 #define ASENCODE_RESET_OCCURRED 0x00 95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 102 #define ASENCODE_OVERLAPPED_COMMAND 0x00 103 104 #define BYTE0(x) (unsigned char)(x) 105 #define BYTE1(x) (unsigned char)((x) >> 8) 106 #define BYTE2(x) (unsigned char)((x) >> 16) 107 #define BYTE3(x) (unsigned char)((x) >> 24) 108 109 /* MODE_SENSE data format */ 110 typedef struct { 111 struct { 112 u8 data_length; 113 u8 med_type; 114 u8 dev_par; 115 u8 bd_length; 116 } __attribute__((packed)) hd; 117 struct { 118 u8 dens_code; 119 u8 block_count[3]; 120 u8 reserved; 121 u8 block_length[3]; 122 } __attribute__((packed)) bd; 123 u8 mpc_buf[3]; 124 } __attribute__((packed)) aac_modep_data; 125 126 /* MODE_SENSE_10 data format */ 127 typedef struct { 128 struct { 129 u8 data_length[2]; 130 u8 med_type; 131 u8 dev_par; 132 u8 rsrvd[2]; 133 u8 bd_length[2]; 134 } __attribute__((packed)) hd; 135 struct { 136 u8 dens_code; 137 u8 block_count[3]; 138 u8 reserved; 139 u8 block_length[3]; 140 } __attribute__((packed)) bd; 141 u8 mpc_buf[3]; 142 } __attribute__((packed)) aac_modep10_data; 143 144 /*------------------------------------------------------------------------------ 145 * S T R U C T S / T Y P E D E F S 146 *----------------------------------------------------------------------------*/ 147 /* SCSI inquiry data */ 148 struct inquiry_data { 149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 150 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 153 u8 inqd_len; /* Additional length (n-4) */ 154 u8 inqd_pad1[2];/* Reserved - must be zero */ 155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 156 u8 inqd_vid[8]; /* Vendor ID */ 157 u8 inqd_pid[16];/* Product ID */ 158 u8 inqd_prl[4]; /* Product Revision Level */ 159 }; 160 161 /* Added for VPD 0x83 */ 162 struct tvpd_id_descriptor_type_1 { 163 u8 codeset:4; /* VPD_CODE_SET */ 164 u8 reserved:4; 165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 166 u8 reserved2:4; 167 u8 reserved3; 168 u8 identifierlength; 169 u8 venid[8]; 170 u8 productid[16]; 171 u8 serialnumber[8]; /* SN in ASCII */ 172 173 }; 174 175 struct tvpd_id_descriptor_type_2 { 176 u8 codeset:4; /* VPD_CODE_SET */ 177 u8 reserved:4; 178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 179 u8 reserved2:4; 180 u8 reserved3; 181 u8 identifierlength; 182 struct teu64id { 183 u32 Serial; 184 /* The serial number supposed to be 40 bits, 185 * bit we only support 32, so make the last byte zero. */ 186 u8 reserved; 187 u8 venid[3]; 188 } eu64id; 189 190 }; 191 192 struct tvpd_id_descriptor_type_3 { 193 u8 codeset : 4; /* VPD_CODE_SET */ 194 u8 reserved : 4; 195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 196 u8 reserved2 : 4; 197 u8 reserved3; 198 u8 identifierlength; 199 u8 Identifier[16]; 200 }; 201 202 struct tvpd_page83 { 203 u8 DeviceType:5; 204 u8 DeviceTypeQualifier:3; 205 u8 PageCode; 206 u8 reserved; 207 u8 PageLength; 208 struct tvpd_id_descriptor_type_1 type1; 209 struct tvpd_id_descriptor_type_2 type2; 210 struct tvpd_id_descriptor_type_3 type3; 211 }; 212 213 /* 214 * M O D U L E G L O B A L S 215 */ 216 217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 221 struct aac_raw_io2 *rio2, int sg_max); 222 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 223 struct aac_hba_cmd_req *hbacmd, 224 int sg_max, u64 sg_address); 225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 226 int pages, int nseg, int nseg_new); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @common: adapter to query 354 * 355 * Query config status, and commit the configuration if needed. 356 */ 357 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 358 { 359 int status = 0; 360 struct fib * fibptr; 361 362 if (!(fibptr = aac_fib_alloc(dev))) 363 return -ENOMEM; 364 365 aac_fib_init(fibptr); 366 { 367 struct aac_get_config_status *dinfo; 368 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 369 370 dinfo->command = cpu_to_le32(VM_ContainerConfig); 371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 373 } 374 375 status = aac_fib_send(ContainerCommand, 376 fibptr, 377 sizeof (struct aac_get_config_status), 378 FsaNormal, 379 1, 1, 380 NULL, NULL); 381 if (status < 0) { 382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 383 } else { 384 struct aac_get_config_status_resp *reply 385 = (struct aac_get_config_status_resp *) fib_data(fibptr); 386 dprintk((KERN_WARNING 387 "aac_get_config_status: response=%d status=%d action=%d\n", 388 le32_to_cpu(reply->response), 389 le32_to_cpu(reply->status), 390 le32_to_cpu(reply->data.action))); 391 if ((le32_to_cpu(reply->response) != ST_OK) || 392 (le32_to_cpu(reply->status) != CT_OK) || 393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 395 status = -EINVAL; 396 } 397 } 398 /* Do not set XferState to zero unless receives a response from F/W */ 399 if (status >= 0) 400 aac_fib_complete(fibptr); 401 402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 403 if (status >= 0) { 404 if ((aac_commit == 1) || commit_flag) { 405 struct aac_commit_config * dinfo; 406 aac_fib_init(fibptr); 407 dinfo = (struct aac_commit_config *) fib_data(fibptr); 408 409 dinfo->command = cpu_to_le32(VM_ContainerConfig); 410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 411 412 status = aac_fib_send(ContainerCommand, 413 fibptr, 414 sizeof (struct aac_commit_config), 415 FsaNormal, 416 1, 1, 417 NULL, NULL); 418 /* Do not set XferState to zero unless 419 * receives a response from F/W */ 420 if (status >= 0) 421 aac_fib_complete(fibptr); 422 } else if (aac_commit == 0) { 423 printk(KERN_WARNING 424 "aac_get_config_status: Foreign device configurations are being ignored\n"); 425 } 426 } 427 /* FIB should be freed only after getting the response from the F/W */ 428 if (status != -ERESTARTSYS) 429 aac_fib_free(fibptr); 430 return status; 431 } 432 433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 434 { 435 char inq_data; 436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 438 inq_data &= 0xdf; 439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 440 } 441 } 442 443 /** 444 * aac_get_containers - list containers 445 * @common: adapter to probe 446 * 447 * Make a list of all containers on this controller 448 */ 449 int aac_get_containers(struct aac_dev *dev) 450 { 451 struct fsa_dev_info *fsa_dev_ptr; 452 u32 index; 453 int status = 0; 454 struct fib * fibptr; 455 struct aac_get_container_count *dinfo; 456 struct aac_get_container_count_resp *dresp; 457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 458 459 if (!(fibptr = aac_fib_alloc(dev))) 460 return -ENOMEM; 461 462 aac_fib_init(fibptr); 463 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 464 dinfo->command = cpu_to_le32(VM_ContainerConfig); 465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 466 467 status = aac_fib_send(ContainerCommand, 468 fibptr, 469 sizeof (struct aac_get_container_count), 470 FsaNormal, 471 1, 1, 472 NULL, NULL); 473 if (status >= 0) { 474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 476 if (fibptr->dev->supplement_adapter_info.supported_options2 & 477 AAC_OPTION_SUPPORTED_240_VOLUMES) { 478 maximum_num_containers = 479 le32_to_cpu(dresp->MaxSimpleVolumes); 480 } 481 aac_fib_complete(fibptr); 482 } 483 /* FIB should be freed only after getting the response from the F/W */ 484 if (status != -ERESTARTSYS) 485 aac_fib_free(fibptr); 486 487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 489 if (dev->fsa_dev == NULL || 490 dev->maximum_num_containers != maximum_num_containers) { 491 492 fsa_dev_ptr = dev->fsa_dev; 493 494 dev->fsa_dev = kcalloc(maximum_num_containers, 495 sizeof(*fsa_dev_ptr), GFP_KERNEL); 496 497 kfree(fsa_dev_ptr); 498 fsa_dev_ptr = NULL; 499 500 501 if (!dev->fsa_dev) 502 return -ENOMEM; 503 504 dev->maximum_num_containers = maximum_num_containers; 505 } 506 for (index = 0; index < dev->maximum_num_containers; index++) { 507 dev->fsa_dev[index].devname[0] = '\0'; 508 dev->fsa_dev[index].valid = 0; 509 510 status = aac_probe_container(dev, index); 511 512 if (status < 0) { 513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 514 break; 515 } 516 } 517 return status; 518 } 519 520 static void get_container_name_callback(void *context, struct fib * fibptr) 521 { 522 struct aac_get_name_resp * get_name_reply; 523 struct scsi_cmnd * scsicmd; 524 525 scsicmd = (struct scsi_cmnd *) context; 526 527 if (!aac_valid_context(scsicmd, fibptr)) 528 return; 529 530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 531 BUG_ON(fibptr == NULL); 532 533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 534 /* Failure is irrelevant, using default value instead */ 535 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 536 && (get_name_reply->data[0] != '\0')) { 537 char *sp = get_name_reply->data; 538 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data); 539 540 sp[data_size - 1] = '\0'; 541 while (*sp == ' ') 542 ++sp; 543 if (*sp) { 544 struct inquiry_data inq; 545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 546 int count = sizeof(d); 547 char *dp = d; 548 do { 549 *dp++ = (*sp) ? *sp++ : ' '; 550 } while (--count > 0); 551 552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 553 memcpy(inq.inqd_pid, d, sizeof(d)); 554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 555 } 556 } 557 558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 559 560 aac_fib_complete(fibptr); 561 scsicmd->scsi_done(scsicmd); 562 } 563 564 /** 565 * aac_get_container_name - get container name, none blocking. 566 */ 567 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 568 { 569 int status; 570 int data_size; 571 struct aac_get_name *dinfo; 572 struct fib * cmd_fibcontext; 573 struct aac_dev * dev; 574 575 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 576 577 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data); 578 579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 580 581 aac_fib_init(cmd_fibcontext); 582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 584 585 dinfo->command = cpu_to_le32(VM_ContainerConfig); 586 dinfo->type = cpu_to_le32(CT_READ_NAME); 587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 588 dinfo->count = cpu_to_le32(data_size - 1); 589 590 status = aac_fib_send(ContainerCommand, 591 cmd_fibcontext, 592 sizeof(struct aac_get_name_resp), 593 FsaNormal, 594 0, 1, 595 (fib_callback)get_container_name_callback, 596 (void *) scsicmd); 597 598 /* 599 * Check that the command queued to the controller 600 */ 601 if (status == -EINPROGRESS) 602 return 0; 603 604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 605 aac_fib_complete(cmd_fibcontext); 606 return -1; 607 } 608 609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 610 { 611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 612 613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 614 return aac_scsi_cmd(scsicmd); 615 616 scsicmd->result = DID_NO_CONNECT << 16; 617 scsicmd->scsi_done(scsicmd); 618 return 0; 619 } 620 621 static void _aac_probe_container2(void * context, struct fib * fibptr) 622 { 623 struct fsa_dev_info *fsa_dev_ptr; 624 int (*callback)(struct scsi_cmnd *); 625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 626 int i; 627 628 629 if (!aac_valid_context(scsicmd, fibptr)) 630 return; 631 632 scsicmd->SCp.Status = 0; 633 fsa_dev_ptr = fibptr->dev->fsa_dev; 634 if (fsa_dev_ptr) { 635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 636 __le32 sup_options2; 637 638 fsa_dev_ptr += scmd_id(scsicmd); 639 sup_options2 = 640 fibptr->dev->supplement_adapter_info.supported_options2; 641 642 if ((le32_to_cpu(dresp->status) == ST_OK) && 643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 647 fsa_dev_ptr->block_size = 0x200; 648 } else { 649 fsa_dev_ptr->block_size = 650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 651 } 652 for (i = 0; i < 16; i++) 653 fsa_dev_ptr->identifier[i] = 654 dresp->mnt[0].fileinfo.bdevinfo 655 .identifier[i]; 656 fsa_dev_ptr->valid = 1; 657 /* sense_key holds the current state of the spin-up */ 658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 659 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 663 fsa_dev_ptr->size 664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 667 } 668 if ((fsa_dev_ptr->valid & 1) == 0) 669 fsa_dev_ptr->valid = 0; 670 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 671 } 672 aac_fib_complete(fibptr); 673 aac_fib_free(fibptr); 674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 675 scsicmd->SCp.ptr = NULL; 676 (*callback)(scsicmd); 677 return; 678 } 679 680 static void _aac_probe_container1(void * context, struct fib * fibptr) 681 { 682 struct scsi_cmnd * scsicmd; 683 struct aac_mount * dresp; 684 struct aac_query_mount *dinfo; 685 int status; 686 687 dresp = (struct aac_mount *) fib_data(fibptr); 688 if (!aac_supports_2T(fibptr->dev)) { 689 dresp->mnt[0].capacityhigh = 0; 690 if ((le32_to_cpu(dresp->status) == ST_OK) && 691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 692 _aac_probe_container2(context, fibptr); 693 return; 694 } 695 } 696 scsicmd = (struct scsi_cmnd *) context; 697 698 if (!aac_valid_context(scsicmd, fibptr)) 699 return; 700 701 aac_fib_init(fibptr); 702 703 dinfo = (struct aac_query_mount *)fib_data(fibptr); 704 705 if (fibptr->dev->supplement_adapter_info.supported_options2 & 706 AAC_OPTION_VARIABLE_BLOCK_SIZE) 707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 708 else 709 dinfo->command = cpu_to_le32(VM_NameServe64); 710 711 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 712 dinfo->type = cpu_to_le32(FT_FILESYS); 713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 714 715 status = aac_fib_send(ContainerCommand, 716 fibptr, 717 sizeof(struct aac_query_mount), 718 FsaNormal, 719 0, 1, 720 _aac_probe_container2, 721 (void *) scsicmd); 722 /* 723 * Check that the command queued to the controller 724 */ 725 if (status < 0 && status != -EINPROGRESS) { 726 /* Inherit results from VM_NameServe, if any */ 727 dresp->status = cpu_to_le32(ST_OK); 728 _aac_probe_container2(context, fibptr); 729 } 730 } 731 732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 733 { 734 struct fib * fibptr; 735 int status = -ENOMEM; 736 737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 738 struct aac_query_mount *dinfo; 739 740 aac_fib_init(fibptr); 741 742 dinfo = (struct aac_query_mount *)fib_data(fibptr); 743 744 if (fibptr->dev->supplement_adapter_info.supported_options2 & 745 AAC_OPTION_VARIABLE_BLOCK_SIZE) 746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 747 else 748 dinfo->command = cpu_to_le32(VM_NameServe); 749 750 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 751 dinfo->type = cpu_to_le32(FT_FILESYS); 752 scsicmd->SCp.ptr = (char *)callback; 753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 754 755 status = aac_fib_send(ContainerCommand, 756 fibptr, 757 sizeof(struct aac_query_mount), 758 FsaNormal, 759 0, 1, 760 _aac_probe_container1, 761 (void *) scsicmd); 762 /* 763 * Check that the command queued to the controller 764 */ 765 if (status == -EINPROGRESS) 766 return 0; 767 768 if (status < 0) { 769 scsicmd->SCp.ptr = NULL; 770 aac_fib_complete(fibptr); 771 aac_fib_free(fibptr); 772 } 773 } 774 if (status < 0) { 775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 776 if (fsa_dev_ptr) { 777 fsa_dev_ptr += scmd_id(scsicmd); 778 if ((fsa_dev_ptr->valid & 1) == 0) { 779 fsa_dev_ptr->valid = 0; 780 return (*callback)(scsicmd); 781 } 782 } 783 } 784 return status; 785 } 786 787 /** 788 * aac_probe_container - query a logical volume 789 * @dev: device to query 790 * @cid: container identifier 791 * 792 * Queries the controller about the given volume. The volume information 793 * is updated in the struct fsa_dev_info structure rather than returned. 794 */ 795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 796 { 797 scsicmd->device = NULL; 798 return 0; 799 } 800 801 int aac_probe_container(struct aac_dev *dev, int cid) 802 { 803 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 804 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 805 int status; 806 807 if (!scsicmd || !scsidev) { 808 kfree(scsicmd); 809 kfree(scsidev); 810 return -ENOMEM; 811 } 812 scsicmd->list.next = NULL; 813 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; 814 815 scsicmd->device = scsidev; 816 scsidev->sdev_state = 0; 817 scsidev->id = cid; 818 scsidev->host = dev->scsi_host_ptr; 819 820 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 821 while (scsicmd->device == scsidev) 822 schedule(); 823 kfree(scsidev); 824 status = scsicmd->SCp.Status; 825 kfree(scsicmd); 826 return status; 827 } 828 829 /* Local Structure to set SCSI inquiry data strings */ 830 struct scsi_inq { 831 char vid[8]; /* Vendor ID */ 832 char pid[16]; /* Product ID */ 833 char prl[4]; /* Product Revision Level */ 834 }; 835 836 /** 837 * InqStrCopy - string merge 838 * @a: string to copy from 839 * @b: string to copy to 840 * 841 * Copy a String from one location to another 842 * without copying \0 843 */ 844 845 static void inqstrcpy(char *a, char *b) 846 { 847 848 while (*a != (char)0) 849 *b++ = *a++; 850 } 851 852 static char *container_types[] = { 853 "None", 854 "Volume", 855 "Mirror", 856 "Stripe", 857 "RAID5", 858 "SSRW", 859 "SSRO", 860 "Morph", 861 "Legacy", 862 "RAID4", 863 "RAID10", 864 "RAID00", 865 "V-MIRRORS", 866 "PSEUDO R4", 867 "RAID50", 868 "RAID5D", 869 "RAID5D0", 870 "RAID1E", 871 "RAID6", 872 "RAID60", 873 "Unknown" 874 }; 875 876 char * get_container_type(unsigned tindex) 877 { 878 if (tindex >= ARRAY_SIZE(container_types)) 879 tindex = ARRAY_SIZE(container_types) - 1; 880 return container_types[tindex]; 881 } 882 883 /* Function: setinqstr 884 * 885 * Arguments: [1] pointer to void [1] int 886 * 887 * Purpose: Sets SCSI inquiry data strings for vendor, product 888 * and revision level. Allows strings to be set in platform dependent 889 * files instead of in OS dependent driver source. 890 */ 891 892 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 893 { 894 struct scsi_inq *str; 895 struct aac_supplement_adapter_info *sup_adap_info; 896 897 sup_adap_info = &dev->supplement_adapter_info; 898 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 899 memset(str, ' ', sizeof(*str)); 900 901 if (sup_adap_info->adapter_type_text[0]) { 902 int c; 903 char *cp; 904 char *cname = kmemdup(sup_adap_info->adapter_type_text, 905 sizeof(sup_adap_info->adapter_type_text), 906 GFP_ATOMIC); 907 if (!cname) 908 return; 909 910 cp = cname; 911 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 912 inqstrcpy("SMC", str->vid); 913 else { 914 c = sizeof(str->vid); 915 while (*cp && *cp != ' ' && --c) 916 ++cp; 917 c = *cp; 918 *cp = '\0'; 919 inqstrcpy(cname, str->vid); 920 *cp = c; 921 while (*cp && *cp != ' ') 922 ++cp; 923 } 924 while (*cp == ' ') 925 ++cp; 926 /* last six chars reserved for vol type */ 927 if (strlen(cp) > sizeof(str->pid)) 928 cp[sizeof(str->pid)] = '\0'; 929 inqstrcpy (cp, str->pid); 930 931 kfree(cname); 932 } else { 933 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 934 935 inqstrcpy (mp->vname, str->vid); 936 /* last six chars reserved for vol type */ 937 inqstrcpy (mp->model, str->pid); 938 } 939 940 if (tindex < ARRAY_SIZE(container_types)){ 941 char *findit = str->pid; 942 943 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 944 /* RAID is superfluous in the context of a RAID device */ 945 if (memcmp(findit-4, "RAID", 4) == 0) 946 *(findit -= 4) = ' '; 947 if (((findit - str->pid) + strlen(container_types[tindex])) 948 < (sizeof(str->pid) + sizeof(str->prl))) 949 inqstrcpy (container_types[tindex], findit + 1); 950 } 951 inqstrcpy ("V1.0", str->prl); 952 } 953 954 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 955 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 956 { 957 int container; 958 959 vpdpage83data->type3.codeset = 1; 960 vpdpage83data->type3.identifiertype = 3; 961 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 962 - 4; 963 964 for (container = 0; container < dev->maximum_num_containers; 965 container++) { 966 967 if (scmd_id(scsicmd) == container) { 968 memcpy(vpdpage83data->type3.Identifier, 969 dev->fsa_dev[container].identifier, 970 16); 971 break; 972 } 973 } 974 } 975 976 static void get_container_serial_callback(void *context, struct fib * fibptr) 977 { 978 struct aac_get_serial_resp * get_serial_reply; 979 struct scsi_cmnd * scsicmd; 980 981 BUG_ON(fibptr == NULL); 982 983 scsicmd = (struct scsi_cmnd *) context; 984 if (!aac_valid_context(scsicmd, fibptr)) 985 return; 986 987 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 988 /* Failure is irrelevant, using default value instead */ 989 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 990 /*Check to see if it's for VPD 0x83 or 0x80 */ 991 if (scsicmd->cmnd[2] == 0x83) { 992 /* vpd page 0x83 - Device Identification Page */ 993 struct aac_dev *dev; 994 int i; 995 struct tvpd_page83 vpdpage83data; 996 997 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 998 999 memset(((u8 *)&vpdpage83data), 0, 1000 sizeof(vpdpage83data)); 1001 1002 /* DIRECT_ACCESS_DEVIC */ 1003 vpdpage83data.DeviceType = 0; 1004 /* DEVICE_CONNECTED */ 1005 vpdpage83data.DeviceTypeQualifier = 0; 1006 /* VPD_DEVICE_IDENTIFIERS */ 1007 vpdpage83data.PageCode = 0x83; 1008 vpdpage83data.reserved = 0; 1009 vpdpage83data.PageLength = 1010 sizeof(vpdpage83data.type1) + 1011 sizeof(vpdpage83data.type2); 1012 1013 /* VPD 83 Type 3 is not supported for ARC */ 1014 if (dev->sa_firmware) 1015 vpdpage83data.PageLength += 1016 sizeof(vpdpage83data.type3); 1017 1018 /* T10 Vendor Identifier Field Format */ 1019 /* VpdcodesetAscii */ 1020 vpdpage83data.type1.codeset = 2; 1021 /* VpdIdentifierTypeVendorId */ 1022 vpdpage83data.type1.identifiertype = 1; 1023 vpdpage83data.type1.identifierlength = 1024 sizeof(vpdpage83data.type1) - 4; 1025 1026 /* "ADAPTEC " for adaptec */ 1027 memcpy(vpdpage83data.type1.venid, 1028 "ADAPTEC ", 1029 sizeof(vpdpage83data.type1.venid)); 1030 memcpy(vpdpage83data.type1.productid, 1031 "ARRAY ", 1032 sizeof( 1033 vpdpage83data.type1.productid)); 1034 1035 /* Convert to ascii based serial number. 1036 * The LSB is the the end. 1037 */ 1038 for (i = 0; i < 8; i++) { 1039 u8 temp = 1040 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1041 if (temp > 0x9) { 1042 vpdpage83data.type1.serialnumber[i] = 1043 'A' + (temp - 0xA); 1044 } else { 1045 vpdpage83data.type1.serialnumber[i] = 1046 '0' + temp; 1047 } 1048 } 1049 1050 /* VpdCodeSetBinary */ 1051 vpdpage83data.type2.codeset = 1; 1052 /* VpdidentifiertypeEUI64 */ 1053 vpdpage83data.type2.identifiertype = 2; 1054 vpdpage83data.type2.identifierlength = 1055 sizeof(vpdpage83data.type2) - 4; 1056 1057 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1058 vpdpage83data.type2.eu64id.venid[1] = 0; 1059 vpdpage83data.type2.eu64id.venid[2] = 0; 1060 1061 vpdpage83data.type2.eu64id.Serial = 1062 get_serial_reply->uid; 1063 vpdpage83data.type2.eu64id.reserved = 0; 1064 1065 /* 1066 * VpdIdentifierTypeFCPHName 1067 * VPD 0x83 Type 3 not supported for ARC 1068 */ 1069 if (dev->sa_firmware) { 1070 build_vpd83_type3(&vpdpage83data, 1071 dev, scsicmd); 1072 } 1073 1074 /* Move the inquiry data to the response buffer. */ 1075 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1076 sizeof(vpdpage83data)); 1077 } else { 1078 /* It must be for VPD 0x80 */ 1079 char sp[13]; 1080 /* EVPD bit set */ 1081 sp[0] = INQD_PDT_DA; 1082 sp[1] = scsicmd->cmnd[2]; 1083 sp[2] = 0; 1084 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1085 le32_to_cpu(get_serial_reply->uid)); 1086 scsi_sg_copy_from_buffer(scsicmd, sp, 1087 sizeof(sp)); 1088 } 1089 } 1090 1091 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1092 1093 aac_fib_complete(fibptr); 1094 scsicmd->scsi_done(scsicmd); 1095 } 1096 1097 /** 1098 * aac_get_container_serial - get container serial, none blocking. 1099 */ 1100 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1101 { 1102 int status; 1103 struct aac_get_serial *dinfo; 1104 struct fib * cmd_fibcontext; 1105 struct aac_dev * dev; 1106 1107 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1108 1109 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1110 1111 aac_fib_init(cmd_fibcontext); 1112 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1113 1114 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1115 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1116 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1117 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1118 1119 status = aac_fib_send(ContainerCommand, 1120 cmd_fibcontext, 1121 sizeof(struct aac_get_serial_resp), 1122 FsaNormal, 1123 0, 1, 1124 (fib_callback) get_container_serial_callback, 1125 (void *) scsicmd); 1126 1127 /* 1128 * Check that the command queued to the controller 1129 */ 1130 if (status == -EINPROGRESS) 1131 return 0; 1132 1133 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1134 aac_fib_complete(cmd_fibcontext); 1135 return -1; 1136 } 1137 1138 /* Function: setinqserial 1139 * 1140 * Arguments: [1] pointer to void [1] int 1141 * 1142 * Purpose: Sets SCSI Unit Serial number. 1143 * This is a fake. We should read a proper 1144 * serial number from the container. <SuSE>But 1145 * without docs it's quite hard to do it :-) 1146 * So this will have to do in the meantime.</SuSE> 1147 */ 1148 1149 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1150 { 1151 /* 1152 * This breaks array migration. 1153 */ 1154 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1155 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1156 } 1157 1158 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1159 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1160 { 1161 u8 *sense_buf = (u8 *)sense_data; 1162 /* Sense data valid, err code 70h */ 1163 sense_buf[0] = 0x70; /* No info field */ 1164 sense_buf[1] = 0; /* Segment number, always zero */ 1165 1166 sense_buf[2] = sense_key; /* Sense key */ 1167 1168 sense_buf[12] = sense_code; /* Additional sense code */ 1169 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1170 1171 if (sense_key == ILLEGAL_REQUEST) { 1172 sense_buf[7] = 10; /* Additional sense length */ 1173 1174 sense_buf[15] = bit_pointer; 1175 /* Illegal parameter is in the parameter block */ 1176 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1177 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1178 /* Illegal parameter is in the CDB block */ 1179 sense_buf[16] = field_pointer >> 8; /* MSB */ 1180 sense_buf[17] = field_pointer; /* LSB */ 1181 } else 1182 sense_buf[7] = 6; /* Additional sense length */ 1183 } 1184 1185 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1186 { 1187 if (lba & 0xffffffff00000000LL) { 1188 int cid = scmd_id(cmd); 1189 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1190 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1191 SAM_STAT_CHECK_CONDITION; 1192 set_sense(&dev->fsa_dev[cid].sense_data, 1193 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1194 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1195 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1196 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1197 SCSI_SENSE_BUFFERSIZE)); 1198 cmd->scsi_done(cmd); 1199 return 1; 1200 } 1201 return 0; 1202 } 1203 1204 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1205 { 1206 return 0; 1207 } 1208 1209 static void io_callback(void *context, struct fib * fibptr); 1210 1211 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1212 { 1213 struct aac_dev *dev = fib->dev; 1214 u16 fibsize, command; 1215 long ret; 1216 1217 aac_fib_init(fib); 1218 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1219 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1220 !dev->sync_mode) { 1221 struct aac_raw_io2 *readcmd2; 1222 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1223 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1224 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1225 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1226 readcmd2->byteCount = cpu_to_le32(count * 1227 dev->fsa_dev[scmd_id(cmd)].block_size); 1228 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1229 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1230 ret = aac_build_sgraw2(cmd, readcmd2, 1231 dev->scsi_host_ptr->sg_tablesize); 1232 if (ret < 0) 1233 return ret; 1234 command = ContainerRawIo2; 1235 fibsize = sizeof(struct aac_raw_io2) + 1236 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1237 } else { 1238 struct aac_raw_io *readcmd; 1239 readcmd = (struct aac_raw_io *) fib_data(fib); 1240 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1241 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1242 readcmd->count = cpu_to_le32(count * 1243 dev->fsa_dev[scmd_id(cmd)].block_size); 1244 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1245 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1246 readcmd->bpTotal = 0; 1247 readcmd->bpComplete = 0; 1248 ret = aac_build_sgraw(cmd, &readcmd->sg); 1249 if (ret < 0) 1250 return ret; 1251 command = ContainerRawIo; 1252 fibsize = sizeof(struct aac_raw_io) + 1253 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1254 } 1255 1256 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1257 /* 1258 * Now send the Fib to the adapter 1259 */ 1260 return aac_fib_send(command, 1261 fib, 1262 fibsize, 1263 FsaNormal, 1264 0, 1, 1265 (fib_callback) io_callback, 1266 (void *) cmd); 1267 } 1268 1269 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1270 { 1271 u16 fibsize; 1272 struct aac_read64 *readcmd; 1273 long ret; 1274 1275 aac_fib_init(fib); 1276 readcmd = (struct aac_read64 *) fib_data(fib); 1277 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1278 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1279 readcmd->sector_count = cpu_to_le16(count); 1280 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1281 readcmd->pad = 0; 1282 readcmd->flags = 0; 1283 1284 ret = aac_build_sg64(cmd, &readcmd->sg); 1285 if (ret < 0) 1286 return ret; 1287 fibsize = sizeof(struct aac_read64) + 1288 ((le32_to_cpu(readcmd->sg.count) - 1) * 1289 sizeof (struct sgentry64)); 1290 BUG_ON (fibsize > (fib->dev->max_fib_size - 1291 sizeof(struct aac_fibhdr))); 1292 /* 1293 * Now send the Fib to the adapter 1294 */ 1295 return aac_fib_send(ContainerCommand64, 1296 fib, 1297 fibsize, 1298 FsaNormal, 1299 0, 1, 1300 (fib_callback) io_callback, 1301 (void *) cmd); 1302 } 1303 1304 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1305 { 1306 u16 fibsize; 1307 struct aac_read *readcmd; 1308 struct aac_dev *dev = fib->dev; 1309 long ret; 1310 1311 aac_fib_init(fib); 1312 readcmd = (struct aac_read *) fib_data(fib); 1313 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1314 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1315 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1316 readcmd->count = cpu_to_le32(count * 1317 dev->fsa_dev[scmd_id(cmd)].block_size); 1318 1319 ret = aac_build_sg(cmd, &readcmd->sg); 1320 if (ret < 0) 1321 return ret; 1322 fibsize = sizeof(struct aac_read) + 1323 ((le32_to_cpu(readcmd->sg.count) - 1) * 1324 sizeof (struct sgentry)); 1325 BUG_ON (fibsize > (fib->dev->max_fib_size - 1326 sizeof(struct aac_fibhdr))); 1327 /* 1328 * Now send the Fib to the adapter 1329 */ 1330 return aac_fib_send(ContainerCommand, 1331 fib, 1332 fibsize, 1333 FsaNormal, 1334 0, 1, 1335 (fib_callback) io_callback, 1336 (void *) cmd); 1337 } 1338 1339 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1340 { 1341 struct aac_dev *dev = fib->dev; 1342 u16 fibsize, command; 1343 long ret; 1344 1345 aac_fib_init(fib); 1346 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1347 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1348 !dev->sync_mode) { 1349 struct aac_raw_io2 *writecmd2; 1350 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1351 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1352 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1353 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1354 writecmd2->byteCount = cpu_to_le32(count * 1355 dev->fsa_dev[scmd_id(cmd)].block_size); 1356 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1357 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1358 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1359 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1360 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1361 ret = aac_build_sgraw2(cmd, writecmd2, 1362 dev->scsi_host_ptr->sg_tablesize); 1363 if (ret < 0) 1364 return ret; 1365 command = ContainerRawIo2; 1366 fibsize = sizeof(struct aac_raw_io2) + 1367 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1368 } else { 1369 struct aac_raw_io *writecmd; 1370 writecmd = (struct aac_raw_io *) fib_data(fib); 1371 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1372 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1373 writecmd->count = cpu_to_le32(count * 1374 dev->fsa_dev[scmd_id(cmd)].block_size); 1375 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1376 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1377 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1378 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1379 cpu_to_le16(RIO_TYPE_WRITE); 1380 writecmd->bpTotal = 0; 1381 writecmd->bpComplete = 0; 1382 ret = aac_build_sgraw(cmd, &writecmd->sg); 1383 if (ret < 0) 1384 return ret; 1385 command = ContainerRawIo; 1386 fibsize = sizeof(struct aac_raw_io) + 1387 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1388 } 1389 1390 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1391 /* 1392 * Now send the Fib to the adapter 1393 */ 1394 return aac_fib_send(command, 1395 fib, 1396 fibsize, 1397 FsaNormal, 1398 0, 1, 1399 (fib_callback) io_callback, 1400 (void *) cmd); 1401 } 1402 1403 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1404 { 1405 u16 fibsize; 1406 struct aac_write64 *writecmd; 1407 long ret; 1408 1409 aac_fib_init(fib); 1410 writecmd = (struct aac_write64 *) fib_data(fib); 1411 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1412 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1413 writecmd->sector_count = cpu_to_le16(count); 1414 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1415 writecmd->pad = 0; 1416 writecmd->flags = 0; 1417 1418 ret = aac_build_sg64(cmd, &writecmd->sg); 1419 if (ret < 0) 1420 return ret; 1421 fibsize = sizeof(struct aac_write64) + 1422 ((le32_to_cpu(writecmd->sg.count) - 1) * 1423 sizeof (struct sgentry64)); 1424 BUG_ON (fibsize > (fib->dev->max_fib_size - 1425 sizeof(struct aac_fibhdr))); 1426 /* 1427 * Now send the Fib to the adapter 1428 */ 1429 return aac_fib_send(ContainerCommand64, 1430 fib, 1431 fibsize, 1432 FsaNormal, 1433 0, 1, 1434 (fib_callback) io_callback, 1435 (void *) cmd); 1436 } 1437 1438 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1439 { 1440 u16 fibsize; 1441 struct aac_write *writecmd; 1442 struct aac_dev *dev = fib->dev; 1443 long ret; 1444 1445 aac_fib_init(fib); 1446 writecmd = (struct aac_write *) fib_data(fib); 1447 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1448 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1449 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1450 writecmd->count = cpu_to_le32(count * 1451 dev->fsa_dev[scmd_id(cmd)].block_size); 1452 writecmd->sg.count = cpu_to_le32(1); 1453 /* ->stable is not used - it did mean which type of write */ 1454 1455 ret = aac_build_sg(cmd, &writecmd->sg); 1456 if (ret < 0) 1457 return ret; 1458 fibsize = sizeof(struct aac_write) + 1459 ((le32_to_cpu(writecmd->sg.count) - 1) * 1460 sizeof (struct sgentry)); 1461 BUG_ON (fibsize > (fib->dev->max_fib_size - 1462 sizeof(struct aac_fibhdr))); 1463 /* 1464 * Now send the Fib to the adapter 1465 */ 1466 return aac_fib_send(ContainerCommand, 1467 fib, 1468 fibsize, 1469 FsaNormal, 1470 0, 1, 1471 (fib_callback) io_callback, 1472 (void *) cmd); 1473 } 1474 1475 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1476 { 1477 struct aac_srb * srbcmd; 1478 u32 flag; 1479 u32 timeout; 1480 1481 aac_fib_init(fib); 1482 switch(cmd->sc_data_direction){ 1483 case DMA_TO_DEVICE: 1484 flag = SRB_DataOut; 1485 break; 1486 case DMA_BIDIRECTIONAL: 1487 flag = SRB_DataIn | SRB_DataOut; 1488 break; 1489 case DMA_FROM_DEVICE: 1490 flag = SRB_DataIn; 1491 break; 1492 case DMA_NONE: 1493 default: /* shuts up some versions of gcc */ 1494 flag = SRB_NoDataXfer; 1495 break; 1496 } 1497 1498 srbcmd = (struct aac_srb*) fib_data(fib); 1499 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1500 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1501 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1502 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1503 srbcmd->flags = cpu_to_le32(flag); 1504 timeout = cmd->request->timeout/HZ; 1505 if (timeout == 0) 1506 timeout = 1; 1507 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1508 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1509 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1510 return srbcmd; 1511 } 1512 1513 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1514 struct scsi_cmnd *cmd) 1515 { 1516 struct aac_hba_cmd_req *hbacmd; 1517 struct aac_dev *dev; 1518 int bus, target; 1519 u64 address; 1520 1521 dev = (struct aac_dev *)cmd->device->host->hostdata; 1522 1523 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1524 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1525 /* iu_type is a parameter of aac_hba_send */ 1526 switch (cmd->sc_data_direction) { 1527 case DMA_TO_DEVICE: 1528 hbacmd->byte1 = 2; 1529 break; 1530 case DMA_FROM_DEVICE: 1531 case DMA_BIDIRECTIONAL: 1532 hbacmd->byte1 = 1; 1533 break; 1534 case DMA_NONE: 1535 default: 1536 break; 1537 } 1538 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1539 1540 bus = aac_logical_to_phys(scmd_channel(cmd)); 1541 target = scmd_id(cmd); 1542 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1543 1544 /* we fill in reply_qid later in aac_src_deliver_message */ 1545 /* we fill in iu_type, request_id later in aac_hba_send */ 1546 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1547 1548 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1549 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1550 1551 address = (u64)fib->hw_error_pa; 1552 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1553 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1554 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1555 1556 return hbacmd; 1557 } 1558 1559 static void aac_srb_callback(void *context, struct fib * fibptr); 1560 1561 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1562 { 1563 u16 fibsize; 1564 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1565 long ret; 1566 1567 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1568 if (ret < 0) 1569 return ret; 1570 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1571 1572 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1573 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1574 /* 1575 * Build Scatter/Gather list 1576 */ 1577 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1578 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1579 sizeof (struct sgentry64)); 1580 BUG_ON (fibsize > (fib->dev->max_fib_size - 1581 sizeof(struct aac_fibhdr))); 1582 1583 /* 1584 * Now send the Fib to the adapter 1585 */ 1586 return aac_fib_send(ScsiPortCommand64, fib, 1587 fibsize, FsaNormal, 0, 1, 1588 (fib_callback) aac_srb_callback, 1589 (void *) cmd); 1590 } 1591 1592 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1593 { 1594 u16 fibsize; 1595 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1596 long ret; 1597 1598 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1599 if (ret < 0) 1600 return ret; 1601 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1602 1603 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1604 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1605 /* 1606 * Build Scatter/Gather list 1607 */ 1608 fibsize = sizeof (struct aac_srb) + 1609 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1610 sizeof (struct sgentry)); 1611 BUG_ON (fibsize > (fib->dev->max_fib_size - 1612 sizeof(struct aac_fibhdr))); 1613 1614 /* 1615 * Now send the Fib to the adapter 1616 */ 1617 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1618 (fib_callback) aac_srb_callback, (void *) cmd); 1619 } 1620 1621 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1622 { 1623 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1624 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1625 return FAILED; 1626 return aac_scsi_32(fib, cmd); 1627 } 1628 1629 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1630 { 1631 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1632 struct aac_dev *dev; 1633 long ret; 1634 1635 dev = (struct aac_dev *)cmd->device->host->hostdata; 1636 1637 ret = aac_build_sghba(cmd, hbacmd, 1638 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1639 if (ret < 0) 1640 return ret; 1641 1642 /* 1643 * Now send the HBA command to the adapter 1644 */ 1645 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1646 sizeof(struct aac_hba_sgl); 1647 1648 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1649 (fib_callback) aac_hba_callback, 1650 (void *) cmd); 1651 } 1652 1653 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1654 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1655 { 1656 struct fib *fibptr; 1657 dma_addr_t addr; 1658 int rcode; 1659 int fibsize; 1660 struct aac_srb *srb; 1661 struct aac_srb_reply *srb_reply; 1662 struct sgmap64 *sg64; 1663 u32 vbus; 1664 u32 vid; 1665 1666 if (!dev->sa_firmware) 1667 return 0; 1668 1669 /* allocate FIB */ 1670 fibptr = aac_fib_alloc(dev); 1671 if (!fibptr) 1672 return -ENOMEM; 1673 1674 aac_fib_init(fibptr); 1675 fibptr->hw_fib_va->header.XferState &= 1676 ~cpu_to_le32(FastResponseCapable); 1677 1678 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1679 sizeof(struct sgentry64); 1680 1681 /* allocate DMA buffer for response */ 1682 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1683 DMA_BIDIRECTIONAL); 1684 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1685 rcode = -ENOMEM; 1686 goto fib_error; 1687 } 1688 1689 srb = fib_data(fibptr); 1690 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1691 1692 vbus = (u32)le16_to_cpu( 1693 dev->supplement_adapter_info.virt_device_bus); 1694 vid = (u32)le16_to_cpu( 1695 dev->supplement_adapter_info.virt_device_target); 1696 1697 /* set the common request fields */ 1698 srb->channel = cpu_to_le32(vbus); 1699 srb->id = cpu_to_le32(vid); 1700 srb->lun = 0; 1701 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1702 srb->timeout = 0; 1703 srb->retry_limit = 0; 1704 srb->cdb_size = cpu_to_le32(16); 1705 srb->count = cpu_to_le32(xfer_len); 1706 1707 sg64 = (struct sgmap64 *)&srb->sg; 1708 sg64->count = cpu_to_le32(1); 1709 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1710 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1711 sg64->sg[0].count = cpu_to_le32(xfer_len); 1712 1713 /* 1714 * Copy the updated data for other dumping or other usage if needed 1715 */ 1716 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1717 1718 /* issue request to the controller */ 1719 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1720 1, 1, NULL, NULL); 1721 1722 if (rcode == -ERESTARTSYS) 1723 rcode = -ERESTART; 1724 1725 if (unlikely(rcode < 0)) 1726 goto bmic_error; 1727 1728 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1729 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1730 1731 bmic_error: 1732 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1733 fib_error: 1734 aac_fib_complete(fibptr); 1735 aac_fib_free(fibptr); 1736 return rcode; 1737 } 1738 1739 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1740 { 1741 1742 struct aac_ciss_identify_pd *identify_resp; 1743 1744 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1745 return; 1746 1747 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1748 if (identify_resp == NULL) { 1749 dev->hba_map[bus][target].qd_limit = 32; 1750 return; 1751 } 1752 1753 if (identify_resp->current_queue_depth_limit <= 0 || 1754 identify_resp->current_queue_depth_limit > 255) 1755 dev->hba_map[bus][target].qd_limit = 32; 1756 else 1757 dev->hba_map[bus][target].qd_limit = 1758 identify_resp->current_queue_depth_limit; 1759 } 1760 1761 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1762 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1763 { 1764 int rcode = -ENOMEM; 1765 int datasize; 1766 struct aac_srb_unit srbu; 1767 struct aac_srb *srbcmd; 1768 struct aac_ciss_identify_pd *identify_reply; 1769 1770 datasize = sizeof(struct aac_ciss_identify_pd); 1771 identify_reply = kmalloc(datasize, GFP_KERNEL); 1772 if (!identify_reply) 1773 goto out; 1774 1775 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1776 1777 srbcmd = &srbu.srb; 1778 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1779 srbcmd->cdb[0] = 0x26; 1780 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1781 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1782 1783 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1784 if (unlikely(rcode < 0)) 1785 goto mem_free_all; 1786 1787 *identify_resp = identify_reply; 1788 1789 out: 1790 return rcode; 1791 mem_free_all: 1792 kfree(identify_reply); 1793 goto out; 1794 } 1795 1796 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1797 { 1798 kfree(dev->safw_phys_luns); 1799 dev->safw_phys_luns = NULL; 1800 } 1801 1802 /** 1803 * aac_get_safw_ciss_luns() Process topology change 1804 * @dev: aac_dev structure 1805 * 1806 * Execute a CISS REPORT PHYS LUNS and process the results into 1807 * the current hba_map. 1808 */ 1809 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1810 { 1811 int rcode = -ENOMEM; 1812 int datasize; 1813 struct aac_srb *srbcmd; 1814 struct aac_srb_unit srbu; 1815 struct aac_ciss_phys_luns_resp *phys_luns; 1816 1817 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1818 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1819 phys_luns = kmalloc(datasize, GFP_KERNEL); 1820 if (phys_luns == NULL) 1821 goto out; 1822 1823 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1824 1825 srbcmd = &srbu.srb; 1826 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1827 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1828 srbcmd->cdb[1] = 2; /* extended reporting */ 1829 srbcmd->cdb[8] = (u8)(datasize >> 8); 1830 srbcmd->cdb[9] = (u8)(datasize); 1831 1832 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1833 if (unlikely(rcode < 0)) 1834 goto mem_free_all; 1835 1836 if (phys_luns->resp_flag != 2) { 1837 rcode = -ENOMSG; 1838 goto mem_free_all; 1839 } 1840 1841 dev->safw_phys_luns = phys_luns; 1842 1843 out: 1844 return rcode; 1845 mem_free_all: 1846 kfree(phys_luns); 1847 goto out; 1848 } 1849 1850 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1851 { 1852 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1853 } 1854 1855 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1856 { 1857 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1858 } 1859 1860 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1861 { 1862 return dev->safw_phys_luns->lun[lun].level2[0]; 1863 } 1864 1865 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1866 { 1867 return dev->safw_phys_luns->lun[lun].bus >> 6; 1868 } 1869 1870 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1871 { 1872 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1873 } 1874 1875 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1876 { 1877 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1878 } 1879 1880 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1881 { 1882 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1883 } 1884 1885 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1886 int bus, int target) 1887 { 1888 kfree(dev->hba_map[bus][target].safw_identify_resp); 1889 dev->hba_map[bus][target].safw_identify_resp = NULL; 1890 } 1891 1892 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1893 int lun_count) 1894 { 1895 int luns; 1896 int i; 1897 u32 bus; 1898 u32 target; 1899 1900 luns = aac_get_safw_phys_lun_count(dev); 1901 1902 if (luns < lun_count) 1903 lun_count = luns; 1904 else if (lun_count < 0) 1905 lun_count = luns; 1906 1907 for (i = 0; i < lun_count; i++) { 1908 bus = aac_get_safw_phys_bus(dev, i); 1909 target = aac_get_safw_phys_target(dev, i); 1910 1911 aac_free_safw_identify_resp(dev, bus, target); 1912 } 1913 } 1914 1915 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1916 { 1917 int i; 1918 int rcode = 0; 1919 u32 lun_count; 1920 u32 bus; 1921 u32 target; 1922 struct aac_ciss_identify_pd *identify_resp = NULL; 1923 1924 lun_count = aac_get_safw_phys_lun_count(dev); 1925 1926 for (i = 0; i < lun_count; ++i) { 1927 1928 bus = aac_get_safw_phys_bus(dev, i); 1929 target = aac_get_safw_phys_target(dev, i); 1930 1931 rcode = aac_issue_safw_bmic_identify(dev, 1932 &identify_resp, bus, target); 1933 1934 if (unlikely(rcode < 0)) 1935 goto free_identify_resp; 1936 1937 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1938 } 1939 1940 out: 1941 return rcode; 1942 free_identify_resp: 1943 aac_free_safw_all_identify_resp(dev, i); 1944 goto out; 1945 } 1946 1947 /** 1948 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1949 * @dev: aac_dev structure 1950 * @phys_luns: FW information from report phys luns 1951 * @rescan: Indicates scan type 1952 * 1953 * Update our hba map with the information gathered from the FW 1954 */ 1955 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1956 { 1957 /* ok and extended reporting */ 1958 u32 lun_count, nexus; 1959 u32 i, bus, target; 1960 u8 expose_flag, attribs; 1961 1962 lun_count = aac_get_safw_phys_lun_count(dev); 1963 1964 dev->scan_counter++; 1965 1966 for (i = 0; i < lun_count; ++i) { 1967 1968 bus = aac_get_safw_phys_bus(dev, i); 1969 target = aac_get_safw_phys_target(dev, i); 1970 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1971 attribs = aac_get_safw_phys_attribs(dev, i); 1972 nexus = aac_get_safw_phys_nexus(dev, i); 1973 1974 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1975 continue; 1976 1977 if (expose_flag != 0) { 1978 dev->hba_map[bus][target].devtype = 1979 AAC_DEVTYPE_RAID_MEMBER; 1980 continue; 1981 } 1982 1983 if (nexus != 0 && (attribs & 8)) { 1984 dev->hba_map[bus][target].devtype = 1985 AAC_DEVTYPE_NATIVE_RAW; 1986 dev->hba_map[bus][target].rmw_nexus = 1987 nexus; 1988 } else 1989 dev->hba_map[bus][target].devtype = 1990 AAC_DEVTYPE_ARC_RAW; 1991 1992 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1993 1994 aac_set_safw_target_qd(dev, bus, target); 1995 } 1996 } 1997 1998 static int aac_setup_safw_targets(struct aac_dev *dev) 1999 { 2000 int rcode = 0; 2001 2002 rcode = aac_get_containers(dev); 2003 if (unlikely(rcode < 0)) 2004 goto out; 2005 2006 rcode = aac_get_safw_ciss_luns(dev); 2007 if (unlikely(rcode < 0)) 2008 goto out; 2009 2010 rcode = aac_get_safw_attr_all_targets(dev); 2011 if (unlikely(rcode < 0)) 2012 goto free_ciss_luns; 2013 2014 aac_set_safw_attr_all_targets(dev); 2015 2016 aac_free_safw_all_identify_resp(dev, -1); 2017 free_ciss_luns: 2018 aac_free_safw_ciss_luns(dev); 2019 out: 2020 return rcode; 2021 } 2022 2023 int aac_setup_safw_adapter(struct aac_dev *dev) 2024 { 2025 return aac_setup_safw_targets(dev); 2026 } 2027 2028 int aac_get_adapter_info(struct aac_dev* dev) 2029 { 2030 struct fib* fibptr; 2031 int rcode; 2032 u32 tmp, bus, target; 2033 struct aac_adapter_info *info; 2034 struct aac_bus_info *command; 2035 struct aac_bus_info_response *bus_info; 2036 2037 if (!(fibptr = aac_fib_alloc(dev))) 2038 return -ENOMEM; 2039 2040 aac_fib_init(fibptr); 2041 info = (struct aac_adapter_info *) fib_data(fibptr); 2042 memset(info,0,sizeof(*info)); 2043 2044 rcode = aac_fib_send(RequestAdapterInfo, 2045 fibptr, 2046 sizeof(*info), 2047 FsaNormal, 2048 -1, 1, /* First `interrupt' command uses special wait */ 2049 NULL, 2050 NULL); 2051 2052 if (rcode < 0) { 2053 /* FIB should be freed only after 2054 * getting the response from the F/W */ 2055 if (rcode != -ERESTARTSYS) { 2056 aac_fib_complete(fibptr); 2057 aac_fib_free(fibptr); 2058 } 2059 return rcode; 2060 } 2061 memcpy(&dev->adapter_info, info, sizeof(*info)); 2062 2063 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2064 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2065 struct aac_supplement_adapter_info * sinfo; 2066 2067 aac_fib_init(fibptr); 2068 2069 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2070 2071 memset(sinfo,0,sizeof(*sinfo)); 2072 2073 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2074 fibptr, 2075 sizeof(*sinfo), 2076 FsaNormal, 2077 1, 1, 2078 NULL, 2079 NULL); 2080 2081 if (rcode >= 0) 2082 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2083 if (rcode == -ERESTARTSYS) { 2084 fibptr = aac_fib_alloc(dev); 2085 if (!fibptr) 2086 return -ENOMEM; 2087 } 2088 2089 } 2090 2091 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2092 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2093 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2094 dev->hba_map[bus][target].devtype = 0; 2095 dev->hba_map[bus][target].qd_limit = 0; 2096 } 2097 } 2098 2099 /* 2100 * GetBusInfo 2101 */ 2102 2103 aac_fib_init(fibptr); 2104 2105 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2106 2107 memset(bus_info, 0, sizeof(*bus_info)); 2108 2109 command = (struct aac_bus_info *)bus_info; 2110 2111 command->Command = cpu_to_le32(VM_Ioctl); 2112 command->ObjType = cpu_to_le32(FT_DRIVE); 2113 command->MethodId = cpu_to_le32(1); 2114 command->CtlCmd = cpu_to_le32(GetBusInfo); 2115 2116 rcode = aac_fib_send(ContainerCommand, 2117 fibptr, 2118 sizeof (*bus_info), 2119 FsaNormal, 2120 1, 1, 2121 NULL, NULL); 2122 2123 /* reasoned default */ 2124 dev->maximum_num_physicals = 16; 2125 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2126 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2127 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2128 } 2129 2130 if (!dev->in_reset) { 2131 char buffer[16]; 2132 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2133 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2134 dev->name, 2135 dev->id, 2136 tmp>>24, 2137 (tmp>>16)&0xff, 2138 tmp&0xff, 2139 le32_to_cpu(dev->adapter_info.kernelbuild), 2140 (int)sizeof(dev->supplement_adapter_info.build_date), 2141 dev->supplement_adapter_info.build_date); 2142 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2143 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2144 dev->name, dev->id, 2145 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2146 le32_to_cpu(dev->adapter_info.monitorbuild)); 2147 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2148 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2149 dev->name, dev->id, 2150 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2151 le32_to_cpu(dev->adapter_info.biosbuild)); 2152 buffer[0] = '\0'; 2153 if (aac_get_serial_number( 2154 shost_to_class(dev->scsi_host_ptr), buffer)) 2155 printk(KERN_INFO "%s%d: serial %s", 2156 dev->name, dev->id, buffer); 2157 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2158 printk(KERN_INFO "%s%d: TSID %.*s\n", 2159 dev->name, dev->id, 2160 (int)sizeof(dev->supplement_adapter_info 2161 .vpd_info.tsid), 2162 dev->supplement_adapter_info.vpd_info.tsid); 2163 } 2164 if (!aac_check_reset || ((aac_check_reset == 1) && 2165 (dev->supplement_adapter_info.supported_options2 & 2166 AAC_OPTION_IGNORE_RESET))) { 2167 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2168 dev->name, dev->id); 2169 } 2170 } 2171 2172 dev->cache_protected = 0; 2173 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2174 AAC_FEATURE_JBOD) != 0); 2175 dev->nondasd_support = 0; 2176 dev->raid_scsi_mode = 0; 2177 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2178 dev->nondasd_support = 1; 2179 2180 /* 2181 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2182 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2183 * force nondasd support on. If we decide to allow the non-dasd flag 2184 * additional changes changes will have to be made to support 2185 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2186 * changed to support the new dev->raid_scsi_mode flag instead of 2187 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2188 * function aac_detect will have to be modified where it sets up the 2189 * max number of channels based on the aac->nondasd_support flag only. 2190 */ 2191 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2192 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2193 dev->nondasd_support = 1; 2194 dev->raid_scsi_mode = 1; 2195 } 2196 if (dev->raid_scsi_mode != 0) 2197 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2198 dev->name, dev->id); 2199 2200 if (nondasd != -1) 2201 dev->nondasd_support = (nondasd!=0); 2202 if (dev->nondasd_support && !dev->in_reset) 2203 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2204 2205 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2206 dev->needs_dac = 1; 2207 dev->dac_support = 0; 2208 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2209 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2210 if (!dev->in_reset) 2211 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2212 dev->name, dev->id); 2213 dev->dac_support = 1; 2214 } 2215 2216 if(dacmode != -1) { 2217 dev->dac_support = (dacmode!=0); 2218 } 2219 2220 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2221 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2222 & AAC_QUIRK_SCSI_32)) { 2223 dev->nondasd_support = 0; 2224 dev->jbod = 0; 2225 expose_physicals = 0; 2226 } 2227 2228 if (dev->dac_support) { 2229 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2230 if (!dev->in_reset) 2231 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2232 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2233 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2234 dev->dac_support = 0; 2235 } else { 2236 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2237 rcode = -ENOMEM; 2238 } 2239 } 2240 /* 2241 * Deal with configuring for the individualized limits of each packet 2242 * interface. 2243 */ 2244 dev->a_ops.adapter_scsi = (dev->dac_support) 2245 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2246 ? aac_scsi_32_64 2247 : aac_scsi_64) 2248 : aac_scsi_32; 2249 if (dev->raw_io_interface) { 2250 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2251 ? aac_bounds_64 2252 : aac_bounds_32; 2253 dev->a_ops.adapter_read = aac_read_raw_io; 2254 dev->a_ops.adapter_write = aac_write_raw_io; 2255 } else { 2256 dev->a_ops.adapter_bounds = aac_bounds_32; 2257 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2258 sizeof(struct aac_fibhdr) - 2259 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2260 sizeof(struct sgentry); 2261 if (dev->dac_support) { 2262 dev->a_ops.adapter_read = aac_read_block64; 2263 dev->a_ops.adapter_write = aac_write_block64; 2264 /* 2265 * 38 scatter gather elements 2266 */ 2267 dev->scsi_host_ptr->sg_tablesize = 2268 (dev->max_fib_size - 2269 sizeof(struct aac_fibhdr) - 2270 sizeof(struct aac_write64) + 2271 sizeof(struct sgentry64)) / 2272 sizeof(struct sgentry64); 2273 } else { 2274 dev->a_ops.adapter_read = aac_read_block; 2275 dev->a_ops.adapter_write = aac_write_block; 2276 } 2277 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2278 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2279 /* 2280 * Worst case size that could cause sg overflow when 2281 * we break up SG elements that are larger than 64KB. 2282 * Would be nice if we could tell the SCSI layer what 2283 * the maximum SG element size can be. Worst case is 2284 * (sg_tablesize-1) 4KB elements with one 64KB 2285 * element. 2286 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2287 */ 2288 dev->scsi_host_ptr->max_sectors = 2289 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2290 } 2291 } 2292 if (!dev->sync_mode && dev->sa_firmware && 2293 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2294 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2295 HBA_MAX_SG_SEPARATE; 2296 2297 /* FIB should be freed only after getting the response from the F/W */ 2298 if (rcode != -ERESTARTSYS) { 2299 aac_fib_complete(fibptr); 2300 aac_fib_free(fibptr); 2301 } 2302 2303 return rcode; 2304 } 2305 2306 2307 static void io_callback(void *context, struct fib * fibptr) 2308 { 2309 struct aac_dev *dev; 2310 struct aac_read_reply *readreply; 2311 struct scsi_cmnd *scsicmd; 2312 u32 cid; 2313 2314 scsicmd = (struct scsi_cmnd *) context; 2315 2316 if (!aac_valid_context(scsicmd, fibptr)) 2317 return; 2318 2319 dev = fibptr->dev; 2320 cid = scmd_id(scsicmd); 2321 2322 if (nblank(dprintk(x))) { 2323 u64 lba; 2324 switch (scsicmd->cmnd[0]) { 2325 case WRITE_6: 2326 case READ_6: 2327 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2328 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2329 break; 2330 case WRITE_16: 2331 case READ_16: 2332 lba = ((u64)scsicmd->cmnd[2] << 56) | 2333 ((u64)scsicmd->cmnd[3] << 48) | 2334 ((u64)scsicmd->cmnd[4] << 40) | 2335 ((u64)scsicmd->cmnd[5] << 32) | 2336 ((u64)scsicmd->cmnd[6] << 24) | 2337 (scsicmd->cmnd[7] << 16) | 2338 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2339 break; 2340 case WRITE_12: 2341 case READ_12: 2342 lba = ((u64)scsicmd->cmnd[2] << 24) | 2343 (scsicmd->cmnd[3] << 16) | 2344 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2345 break; 2346 default: 2347 lba = ((u64)scsicmd->cmnd[2] << 24) | 2348 (scsicmd->cmnd[3] << 16) | 2349 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2350 break; 2351 } 2352 printk(KERN_DEBUG 2353 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2354 smp_processor_id(), (unsigned long long)lba, jiffies); 2355 } 2356 2357 BUG_ON(fibptr == NULL); 2358 2359 scsi_dma_unmap(scsicmd); 2360 2361 readreply = (struct aac_read_reply *)fib_data(fibptr); 2362 switch (le32_to_cpu(readreply->status)) { 2363 case ST_OK: 2364 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2365 SAM_STAT_GOOD; 2366 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2367 break; 2368 case ST_NOT_READY: 2369 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2370 SAM_STAT_CHECK_CONDITION; 2371 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2372 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2373 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2374 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2375 SCSI_SENSE_BUFFERSIZE)); 2376 break; 2377 case ST_MEDERR: 2378 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2379 SAM_STAT_CHECK_CONDITION; 2380 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2381 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2382 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2383 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2384 SCSI_SENSE_BUFFERSIZE)); 2385 break; 2386 default: 2387 #ifdef AAC_DETAILED_STATUS_INFO 2388 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2389 le32_to_cpu(readreply->status)); 2390 #endif 2391 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2392 SAM_STAT_CHECK_CONDITION; 2393 set_sense(&dev->fsa_dev[cid].sense_data, 2394 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2395 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2396 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2397 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2398 SCSI_SENSE_BUFFERSIZE)); 2399 break; 2400 } 2401 aac_fib_complete(fibptr); 2402 2403 scsicmd->scsi_done(scsicmd); 2404 } 2405 2406 static int aac_read(struct scsi_cmnd * scsicmd) 2407 { 2408 u64 lba; 2409 u32 count; 2410 int status; 2411 struct aac_dev *dev; 2412 struct fib * cmd_fibcontext; 2413 int cid; 2414 2415 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2416 /* 2417 * Get block address and transfer length 2418 */ 2419 switch (scsicmd->cmnd[0]) { 2420 case READ_6: 2421 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2422 2423 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2424 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2425 count = scsicmd->cmnd[4]; 2426 2427 if (count == 0) 2428 count = 256; 2429 break; 2430 case READ_16: 2431 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2432 2433 lba = ((u64)scsicmd->cmnd[2] << 56) | 2434 ((u64)scsicmd->cmnd[3] << 48) | 2435 ((u64)scsicmd->cmnd[4] << 40) | 2436 ((u64)scsicmd->cmnd[5] << 32) | 2437 ((u64)scsicmd->cmnd[6] << 24) | 2438 (scsicmd->cmnd[7] << 16) | 2439 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2440 count = (scsicmd->cmnd[10] << 24) | 2441 (scsicmd->cmnd[11] << 16) | 2442 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2443 break; 2444 case READ_12: 2445 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2446 2447 lba = ((u64)scsicmd->cmnd[2] << 24) | 2448 (scsicmd->cmnd[3] << 16) | 2449 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2450 count = (scsicmd->cmnd[6] << 24) | 2451 (scsicmd->cmnd[7] << 16) | 2452 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2453 break; 2454 default: 2455 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2456 2457 lba = ((u64)scsicmd->cmnd[2] << 24) | 2458 (scsicmd->cmnd[3] << 16) | 2459 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2460 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2461 break; 2462 } 2463 2464 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2465 cid = scmd_id(scsicmd); 2466 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2467 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2468 SAM_STAT_CHECK_CONDITION; 2469 set_sense(&dev->fsa_dev[cid].sense_data, 2470 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2471 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2472 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2473 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2474 SCSI_SENSE_BUFFERSIZE)); 2475 scsicmd->scsi_done(scsicmd); 2476 return 1; 2477 } 2478 2479 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2480 smp_processor_id(), (unsigned long long)lba, jiffies)); 2481 if (aac_adapter_bounds(dev,scsicmd,lba)) 2482 return 0; 2483 /* 2484 * Alocate and initialize a Fib 2485 */ 2486 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2487 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2488 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2489 2490 /* 2491 * Check that the command queued to the controller 2492 */ 2493 if (status == -EINPROGRESS) 2494 return 0; 2495 2496 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2497 /* 2498 * For some reason, the Fib didn't queue, return QUEUE_FULL 2499 */ 2500 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2501 scsicmd->scsi_done(scsicmd); 2502 aac_fib_complete(cmd_fibcontext); 2503 aac_fib_free(cmd_fibcontext); 2504 return 0; 2505 } 2506 2507 static int aac_write(struct scsi_cmnd * scsicmd) 2508 { 2509 u64 lba; 2510 u32 count; 2511 int fua; 2512 int status; 2513 struct aac_dev *dev; 2514 struct fib * cmd_fibcontext; 2515 int cid; 2516 2517 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2518 /* 2519 * Get block address and transfer length 2520 */ 2521 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2522 { 2523 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2524 count = scsicmd->cmnd[4]; 2525 if (count == 0) 2526 count = 256; 2527 fua = 0; 2528 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2529 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2530 2531 lba = ((u64)scsicmd->cmnd[2] << 56) | 2532 ((u64)scsicmd->cmnd[3] << 48) | 2533 ((u64)scsicmd->cmnd[4] << 40) | 2534 ((u64)scsicmd->cmnd[5] << 32) | 2535 ((u64)scsicmd->cmnd[6] << 24) | 2536 (scsicmd->cmnd[7] << 16) | 2537 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2538 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2539 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2540 fua = scsicmd->cmnd[1] & 0x8; 2541 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2542 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2543 2544 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2545 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2546 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2547 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2548 fua = scsicmd->cmnd[1] & 0x8; 2549 } else { 2550 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2551 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2552 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2553 fua = scsicmd->cmnd[1] & 0x8; 2554 } 2555 2556 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2557 cid = scmd_id(scsicmd); 2558 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2559 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2560 SAM_STAT_CHECK_CONDITION; 2561 set_sense(&dev->fsa_dev[cid].sense_data, 2562 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2563 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2564 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2565 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2566 SCSI_SENSE_BUFFERSIZE)); 2567 scsicmd->scsi_done(scsicmd); 2568 return 1; 2569 } 2570 2571 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2572 smp_processor_id(), (unsigned long long)lba, jiffies)); 2573 if (aac_adapter_bounds(dev,scsicmd,lba)) 2574 return 0; 2575 /* 2576 * Allocate and initialize a Fib then setup a BlockWrite command 2577 */ 2578 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2579 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2580 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2581 2582 /* 2583 * Check that the command queued to the controller 2584 */ 2585 if (status == -EINPROGRESS) 2586 return 0; 2587 2588 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2589 /* 2590 * For some reason, the Fib didn't queue, return QUEUE_FULL 2591 */ 2592 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2593 scsicmd->scsi_done(scsicmd); 2594 2595 aac_fib_complete(cmd_fibcontext); 2596 aac_fib_free(cmd_fibcontext); 2597 return 0; 2598 } 2599 2600 static void synchronize_callback(void *context, struct fib *fibptr) 2601 { 2602 struct aac_synchronize_reply *synchronizereply; 2603 struct scsi_cmnd *cmd; 2604 2605 cmd = context; 2606 2607 if (!aac_valid_context(cmd, fibptr)) 2608 return; 2609 2610 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2611 smp_processor_id(), jiffies)); 2612 BUG_ON(fibptr == NULL); 2613 2614 2615 synchronizereply = fib_data(fibptr); 2616 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2617 cmd->result = DID_OK << 16 | 2618 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2619 else { 2620 struct scsi_device *sdev = cmd->device; 2621 struct aac_dev *dev = fibptr->dev; 2622 u32 cid = sdev_id(sdev); 2623 printk(KERN_WARNING 2624 "synchronize_callback: synchronize failed, status = %d\n", 2625 le32_to_cpu(synchronizereply->status)); 2626 cmd->result = DID_OK << 16 | 2627 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2628 set_sense(&dev->fsa_dev[cid].sense_data, 2629 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2630 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2631 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2632 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2633 SCSI_SENSE_BUFFERSIZE)); 2634 } 2635 2636 aac_fib_complete(fibptr); 2637 aac_fib_free(fibptr); 2638 cmd->scsi_done(cmd); 2639 } 2640 2641 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2642 { 2643 int status; 2644 struct fib *cmd_fibcontext; 2645 struct aac_synchronize *synchronizecmd; 2646 struct scsi_cmnd *cmd; 2647 struct scsi_device *sdev = scsicmd->device; 2648 int active = 0; 2649 struct aac_dev *aac; 2650 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | 2651 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2652 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2653 unsigned long flags; 2654 2655 /* 2656 * Wait for all outstanding queued commands to complete to this 2657 * specific target (block). 2658 */ 2659 spin_lock_irqsave(&sdev->list_lock, flags); 2660 list_for_each_entry(cmd, &sdev->cmd_list, list) 2661 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { 2662 u64 cmnd_lba; 2663 u32 cmnd_count; 2664 2665 if (cmd->cmnd[0] == WRITE_6) { 2666 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | 2667 (cmd->cmnd[2] << 8) | 2668 cmd->cmnd[3]; 2669 cmnd_count = cmd->cmnd[4]; 2670 if (cmnd_count == 0) 2671 cmnd_count = 256; 2672 } else if (cmd->cmnd[0] == WRITE_16) { 2673 cmnd_lba = ((u64)cmd->cmnd[2] << 56) | 2674 ((u64)cmd->cmnd[3] << 48) | 2675 ((u64)cmd->cmnd[4] << 40) | 2676 ((u64)cmd->cmnd[5] << 32) | 2677 ((u64)cmd->cmnd[6] << 24) | 2678 (cmd->cmnd[7] << 16) | 2679 (cmd->cmnd[8] << 8) | 2680 cmd->cmnd[9]; 2681 cmnd_count = (cmd->cmnd[10] << 24) | 2682 (cmd->cmnd[11] << 16) | 2683 (cmd->cmnd[12] << 8) | 2684 cmd->cmnd[13]; 2685 } else if (cmd->cmnd[0] == WRITE_12) { 2686 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2687 (cmd->cmnd[3] << 16) | 2688 (cmd->cmnd[4] << 8) | 2689 cmd->cmnd[5]; 2690 cmnd_count = (cmd->cmnd[6] << 24) | 2691 (cmd->cmnd[7] << 16) | 2692 (cmd->cmnd[8] << 8) | 2693 cmd->cmnd[9]; 2694 } else if (cmd->cmnd[0] == WRITE_10) { 2695 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2696 (cmd->cmnd[3] << 16) | 2697 (cmd->cmnd[4] << 8) | 2698 cmd->cmnd[5]; 2699 cmnd_count = (cmd->cmnd[7] << 8) | 2700 cmd->cmnd[8]; 2701 } else 2702 continue; 2703 if (((cmnd_lba + cmnd_count) < lba) || 2704 (count && ((lba + count) < cmnd_lba))) 2705 continue; 2706 ++active; 2707 break; 2708 } 2709 2710 spin_unlock_irqrestore(&sdev->list_lock, flags); 2711 2712 /* 2713 * Yield the processor (requeue for later) 2714 */ 2715 if (active) 2716 return SCSI_MLQUEUE_DEVICE_BUSY; 2717 2718 aac = (struct aac_dev *)sdev->host->hostdata; 2719 if (aac->in_reset) 2720 return SCSI_MLQUEUE_HOST_BUSY; 2721 2722 /* 2723 * Allocate and initialize a Fib 2724 */ 2725 if (!(cmd_fibcontext = aac_fib_alloc(aac))) 2726 return SCSI_MLQUEUE_HOST_BUSY; 2727 2728 aac_fib_init(cmd_fibcontext); 2729 2730 synchronizecmd = fib_data(cmd_fibcontext); 2731 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2732 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2733 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2734 synchronizecmd->count = 2735 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2736 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2737 2738 /* 2739 * Now send the Fib to the adapter 2740 */ 2741 status = aac_fib_send(ContainerCommand, 2742 cmd_fibcontext, 2743 sizeof(struct aac_synchronize), 2744 FsaNormal, 2745 0, 1, 2746 (fib_callback)synchronize_callback, 2747 (void *)scsicmd); 2748 2749 /* 2750 * Check that the command queued to the controller 2751 */ 2752 if (status == -EINPROGRESS) 2753 return 0; 2754 2755 printk(KERN_WARNING 2756 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2757 aac_fib_complete(cmd_fibcontext); 2758 aac_fib_free(cmd_fibcontext); 2759 return SCSI_MLQUEUE_HOST_BUSY; 2760 } 2761 2762 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2763 { 2764 struct scsi_cmnd *scsicmd = context; 2765 2766 if (!aac_valid_context(scsicmd, fibptr)) 2767 return; 2768 2769 BUG_ON(fibptr == NULL); 2770 2771 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2772 2773 aac_fib_complete(fibptr); 2774 aac_fib_free(fibptr); 2775 scsicmd->scsi_done(scsicmd); 2776 } 2777 2778 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2779 { 2780 int status; 2781 struct fib *cmd_fibcontext; 2782 struct aac_power_management *pmcmd; 2783 struct scsi_device *sdev = scsicmd->device; 2784 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2785 2786 if (!(aac->supplement_adapter_info.supported_options2 & 2787 AAC_OPTION_POWER_MANAGEMENT)) { 2788 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2789 SAM_STAT_GOOD; 2790 scsicmd->scsi_done(scsicmd); 2791 return 0; 2792 } 2793 2794 if (aac->in_reset) 2795 return SCSI_MLQUEUE_HOST_BUSY; 2796 2797 /* 2798 * Allocate and initialize a Fib 2799 */ 2800 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2801 2802 aac_fib_init(cmd_fibcontext); 2803 2804 pmcmd = fib_data(cmd_fibcontext); 2805 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2806 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2807 /* Eject bit ignored, not relevant */ 2808 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2809 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2810 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2811 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2812 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2813 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2814 2815 /* 2816 * Now send the Fib to the adapter 2817 */ 2818 status = aac_fib_send(ContainerCommand, 2819 cmd_fibcontext, 2820 sizeof(struct aac_power_management), 2821 FsaNormal, 2822 0, 1, 2823 (fib_callback)aac_start_stop_callback, 2824 (void *)scsicmd); 2825 2826 /* 2827 * Check that the command queued to the controller 2828 */ 2829 if (status == -EINPROGRESS) 2830 return 0; 2831 2832 aac_fib_complete(cmd_fibcontext); 2833 aac_fib_free(cmd_fibcontext); 2834 return SCSI_MLQUEUE_HOST_BUSY; 2835 } 2836 2837 /** 2838 * aac_scsi_cmd() - Process SCSI command 2839 * @scsicmd: SCSI command block 2840 * 2841 * Emulate a SCSI command and queue the required request for the 2842 * aacraid firmware. 2843 */ 2844 2845 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2846 { 2847 u32 cid, bus; 2848 struct Scsi_Host *host = scsicmd->device->host; 2849 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2850 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2851 2852 if (fsa_dev_ptr == NULL) 2853 return -1; 2854 /* 2855 * If the bus, id or lun is out of range, return fail 2856 * Test does not apply to ID 16, the pseudo id for the controller 2857 * itself. 2858 */ 2859 cid = scmd_id(scsicmd); 2860 if (cid != host->this_id) { 2861 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2862 if((cid >= dev->maximum_num_containers) || 2863 (scsicmd->device->lun != 0)) { 2864 scsicmd->result = DID_NO_CONNECT << 16; 2865 goto scsi_done_ret; 2866 } 2867 2868 /* 2869 * If the target container doesn't exist, it may have 2870 * been newly created 2871 */ 2872 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2873 (fsa_dev_ptr[cid].sense_data.sense_key == 2874 NOT_READY)) { 2875 switch (scsicmd->cmnd[0]) { 2876 case SERVICE_ACTION_IN_16: 2877 if (!(dev->raw_io_interface) || 2878 !(dev->raw_io_64) || 2879 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2880 break; 2881 /* fall through */ 2882 case INQUIRY: 2883 case READ_CAPACITY: 2884 case TEST_UNIT_READY: 2885 if (dev->in_reset) 2886 return -1; 2887 return _aac_probe_container(scsicmd, 2888 aac_probe_container_callback2); 2889 default: 2890 break; 2891 } 2892 } 2893 } else { /* check for physical non-dasd devices */ 2894 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2895 2896 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2897 dev->hba_map[bus][cid].devtype 2898 == AAC_DEVTYPE_NATIVE_RAW) { 2899 if (dev->in_reset) 2900 return -1; 2901 return aac_send_hba_fib(scsicmd); 2902 } else if (dev->nondasd_support || expose_physicals || 2903 dev->jbod) { 2904 if (dev->in_reset) 2905 return -1; 2906 return aac_send_srb_fib(scsicmd); 2907 } else { 2908 scsicmd->result = DID_NO_CONNECT << 16; 2909 goto scsi_done_ret; 2910 } 2911 } 2912 } 2913 /* 2914 * else Command for the controller itself 2915 */ 2916 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2917 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2918 { 2919 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2920 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2921 set_sense(&dev->fsa_dev[cid].sense_data, 2922 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2923 ASENCODE_INVALID_COMMAND, 0, 0); 2924 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2925 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2926 SCSI_SENSE_BUFFERSIZE)); 2927 goto scsi_done_ret; 2928 } 2929 2930 switch (scsicmd->cmnd[0]) { 2931 case READ_6: 2932 case READ_10: 2933 case READ_12: 2934 case READ_16: 2935 if (dev->in_reset) 2936 return -1; 2937 return aac_read(scsicmd); 2938 2939 case WRITE_6: 2940 case WRITE_10: 2941 case WRITE_12: 2942 case WRITE_16: 2943 if (dev->in_reset) 2944 return -1; 2945 return aac_write(scsicmd); 2946 2947 case SYNCHRONIZE_CACHE: 2948 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2949 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2950 SAM_STAT_GOOD; 2951 break; 2952 } 2953 /* Issue FIB to tell Firmware to flush it's cache */ 2954 if ((aac_cache & 6) != 2) 2955 return aac_synchronize(scsicmd); 2956 /* fall through */ 2957 case INQUIRY: 2958 { 2959 struct inquiry_data inq_data; 2960 2961 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2962 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2963 2964 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2965 char *arr = (char *)&inq_data; 2966 2967 /* EVPD bit set */ 2968 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2969 INQD_PDT_PROC : INQD_PDT_DA; 2970 if (scsicmd->cmnd[2] == 0) { 2971 /* supported vital product data pages */ 2972 arr[3] = 3; 2973 arr[4] = 0x0; 2974 arr[5] = 0x80; 2975 arr[6] = 0x83; 2976 arr[1] = scsicmd->cmnd[2]; 2977 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2978 sizeof(inq_data)); 2979 scsicmd->result = DID_OK << 16 | 2980 COMMAND_COMPLETE << 8 | 2981 SAM_STAT_GOOD; 2982 } else if (scsicmd->cmnd[2] == 0x80) { 2983 /* unit serial number page */ 2984 arr[3] = setinqserial(dev, &arr[4], 2985 scmd_id(scsicmd)); 2986 arr[1] = scsicmd->cmnd[2]; 2987 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2988 sizeof(inq_data)); 2989 if (aac_wwn != 2) 2990 return aac_get_container_serial( 2991 scsicmd); 2992 scsicmd->result = DID_OK << 16 | 2993 COMMAND_COMPLETE << 8 | 2994 SAM_STAT_GOOD; 2995 } else if (scsicmd->cmnd[2] == 0x83) { 2996 /* vpd page 0x83 - Device Identification Page */ 2997 char *sno = (char *)&inq_data; 2998 sno[3] = setinqserial(dev, &sno[4], 2999 scmd_id(scsicmd)); 3000 if (aac_wwn != 2) 3001 return aac_get_container_serial( 3002 scsicmd); 3003 scsicmd->result = DID_OK << 16 | 3004 COMMAND_COMPLETE << 8 | 3005 SAM_STAT_GOOD; 3006 } else { 3007 /* vpd page not implemented */ 3008 scsicmd->result = DID_OK << 16 | 3009 COMMAND_COMPLETE << 8 | 3010 SAM_STAT_CHECK_CONDITION; 3011 set_sense(&dev->fsa_dev[cid].sense_data, 3012 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 3013 ASENCODE_NO_SENSE, 7, 2); 3014 memcpy(scsicmd->sense_buffer, 3015 &dev->fsa_dev[cid].sense_data, 3016 min_t(size_t, 3017 sizeof(dev->fsa_dev[cid].sense_data), 3018 SCSI_SENSE_BUFFERSIZE)); 3019 } 3020 break; 3021 } 3022 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 3023 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 3024 inq_data.inqd_len = 31; 3025 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 3026 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 3027 /* 3028 * Set the Vendor, Product, and Revision Level 3029 * see: <vendor>.c i.e. aac.c 3030 */ 3031 if (cid == host->this_id) { 3032 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 3033 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 3034 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 3035 sizeof(inq_data)); 3036 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3037 SAM_STAT_GOOD; 3038 break; 3039 } 3040 if (dev->in_reset) 3041 return -1; 3042 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 3043 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 3044 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 3045 return aac_get_container_name(scsicmd); 3046 } 3047 case SERVICE_ACTION_IN_16: 3048 if (!(dev->raw_io_interface) || 3049 !(dev->raw_io_64) || 3050 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 3051 break; 3052 { 3053 u64 capacity; 3054 char cp[13]; 3055 unsigned int alloc_len; 3056 3057 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 3058 capacity = fsa_dev_ptr[cid].size - 1; 3059 cp[0] = (capacity >> 56) & 0xff; 3060 cp[1] = (capacity >> 48) & 0xff; 3061 cp[2] = (capacity >> 40) & 0xff; 3062 cp[3] = (capacity >> 32) & 0xff; 3063 cp[4] = (capacity >> 24) & 0xff; 3064 cp[5] = (capacity >> 16) & 0xff; 3065 cp[6] = (capacity >> 8) & 0xff; 3066 cp[7] = (capacity >> 0) & 0xff; 3067 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3068 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3069 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3070 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3071 cp[12] = 0; 3072 3073 alloc_len = ((scsicmd->cmnd[10] << 24) 3074 + (scsicmd->cmnd[11] << 16) 3075 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3076 3077 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3078 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3079 if (alloc_len < scsi_bufflen(scsicmd)) 3080 scsi_set_resid(scsicmd, 3081 scsi_bufflen(scsicmd) - alloc_len); 3082 3083 /* Do not cache partition table for arrays */ 3084 scsicmd->device->removable = 1; 3085 3086 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3087 SAM_STAT_GOOD; 3088 break; 3089 } 3090 3091 case READ_CAPACITY: 3092 { 3093 u32 capacity; 3094 char cp[8]; 3095 3096 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3097 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3098 capacity = fsa_dev_ptr[cid].size - 1; 3099 else 3100 capacity = (u32)-1; 3101 3102 cp[0] = (capacity >> 24) & 0xff; 3103 cp[1] = (capacity >> 16) & 0xff; 3104 cp[2] = (capacity >> 8) & 0xff; 3105 cp[3] = (capacity >> 0) & 0xff; 3106 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3107 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3108 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3109 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3110 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3111 /* Do not cache partition table for arrays */ 3112 scsicmd->device->removable = 1; 3113 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3114 SAM_STAT_GOOD; 3115 break; 3116 } 3117 3118 case MODE_SENSE: 3119 { 3120 int mode_buf_length = 4; 3121 u32 capacity; 3122 aac_modep_data mpd; 3123 3124 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3125 capacity = fsa_dev_ptr[cid].size - 1; 3126 else 3127 capacity = (u32)-1; 3128 3129 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3130 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3131 3132 /* Mode data length */ 3133 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3134 /* Medium type - default */ 3135 mpd.hd.med_type = 0; 3136 /* Device-specific param, 3137 bit 8: 0/1 = write enabled/protected 3138 bit 4: 0/1 = FUA enabled */ 3139 mpd.hd.dev_par = 0; 3140 3141 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3142 mpd.hd.dev_par = 0x10; 3143 if (scsicmd->cmnd[1] & 0x8) 3144 mpd.hd.bd_length = 0; /* Block descriptor length */ 3145 else { 3146 mpd.hd.bd_length = sizeof(mpd.bd); 3147 mpd.hd.data_length += mpd.hd.bd_length; 3148 mpd.bd.block_length[0] = 3149 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3150 mpd.bd.block_length[1] = 3151 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3152 mpd.bd.block_length[2] = 3153 fsa_dev_ptr[cid].block_size & 0xff; 3154 3155 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3156 if (scsicmd->cmnd[2] == 0x1C) { 3157 /* page length */ 3158 mpd.mpc_buf[1] = 0xa; 3159 /* Mode data length */ 3160 mpd.hd.data_length = 23; 3161 } else { 3162 /* Mode data length */ 3163 mpd.hd.data_length = 15; 3164 } 3165 3166 if (capacity > 0xffffff) { 3167 mpd.bd.block_count[0] = 0xff; 3168 mpd.bd.block_count[1] = 0xff; 3169 mpd.bd.block_count[2] = 0xff; 3170 } else { 3171 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3172 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3173 mpd.bd.block_count[2] = capacity & 0xff; 3174 } 3175 } 3176 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3177 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3178 mpd.hd.data_length += 3; 3179 mpd.mpc_buf[0] = 8; 3180 mpd.mpc_buf[1] = 1; 3181 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3182 ? 0 : 0x04; /* WCE */ 3183 mode_buf_length = sizeof(mpd); 3184 } 3185 3186 if (mode_buf_length > scsicmd->cmnd[4]) 3187 mode_buf_length = scsicmd->cmnd[4]; 3188 else 3189 mode_buf_length = sizeof(mpd); 3190 scsi_sg_copy_from_buffer(scsicmd, 3191 (char *)&mpd, 3192 mode_buf_length); 3193 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3194 SAM_STAT_GOOD; 3195 break; 3196 } 3197 case MODE_SENSE_10: 3198 { 3199 u32 capacity; 3200 int mode_buf_length = 8; 3201 aac_modep10_data mpd10; 3202 3203 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3204 capacity = fsa_dev_ptr[cid].size - 1; 3205 else 3206 capacity = (u32)-1; 3207 3208 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3209 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3210 /* Mode data length (MSB) */ 3211 mpd10.hd.data_length[0] = 0; 3212 /* Mode data length (LSB) */ 3213 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3214 /* Medium type - default */ 3215 mpd10.hd.med_type = 0; 3216 /* Device-specific param, 3217 bit 8: 0/1 = write enabled/protected 3218 bit 4: 0/1 = FUA enabled */ 3219 mpd10.hd.dev_par = 0; 3220 3221 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3222 mpd10.hd.dev_par = 0x10; 3223 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3224 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3225 if (scsicmd->cmnd[1] & 0x8) { 3226 /* Block descriptor length (MSB) */ 3227 mpd10.hd.bd_length[0] = 0; 3228 /* Block descriptor length (LSB) */ 3229 mpd10.hd.bd_length[1] = 0; 3230 } else { 3231 mpd10.hd.bd_length[0] = 0; 3232 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3233 3234 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3235 3236 mpd10.bd.block_length[0] = 3237 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3238 mpd10.bd.block_length[1] = 3239 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3240 mpd10.bd.block_length[2] = 3241 fsa_dev_ptr[cid].block_size & 0xff; 3242 3243 if (capacity > 0xffffff) { 3244 mpd10.bd.block_count[0] = 0xff; 3245 mpd10.bd.block_count[1] = 0xff; 3246 mpd10.bd.block_count[2] = 0xff; 3247 } else { 3248 mpd10.bd.block_count[0] = 3249 (capacity >> 16) & 0xff; 3250 mpd10.bd.block_count[1] = 3251 (capacity >> 8) & 0xff; 3252 mpd10.bd.block_count[2] = 3253 capacity & 0xff; 3254 } 3255 } 3256 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3257 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3258 mpd10.hd.data_length[1] += 3; 3259 mpd10.mpc_buf[0] = 8; 3260 mpd10.mpc_buf[1] = 1; 3261 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3262 ? 0 : 0x04; /* WCE */ 3263 mode_buf_length = sizeof(mpd10); 3264 if (mode_buf_length > scsicmd->cmnd[8]) 3265 mode_buf_length = scsicmd->cmnd[8]; 3266 } 3267 scsi_sg_copy_from_buffer(scsicmd, 3268 (char *)&mpd10, 3269 mode_buf_length); 3270 3271 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3272 SAM_STAT_GOOD; 3273 break; 3274 } 3275 case REQUEST_SENSE: 3276 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3277 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3278 sizeof(struct sense_data)); 3279 memset(&dev->fsa_dev[cid].sense_data, 0, 3280 sizeof(struct sense_data)); 3281 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3282 SAM_STAT_GOOD; 3283 break; 3284 3285 case ALLOW_MEDIUM_REMOVAL: 3286 dprintk((KERN_DEBUG "LOCK command.\n")); 3287 if (scsicmd->cmnd[4]) 3288 fsa_dev_ptr[cid].locked = 1; 3289 else 3290 fsa_dev_ptr[cid].locked = 0; 3291 3292 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3293 SAM_STAT_GOOD; 3294 break; 3295 /* 3296 * These commands are all No-Ops 3297 */ 3298 case TEST_UNIT_READY: 3299 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3300 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3301 SAM_STAT_CHECK_CONDITION; 3302 set_sense(&dev->fsa_dev[cid].sense_data, 3303 NOT_READY, SENCODE_BECOMING_READY, 3304 ASENCODE_BECOMING_READY, 0, 0); 3305 memcpy(scsicmd->sense_buffer, 3306 &dev->fsa_dev[cid].sense_data, 3307 min_t(size_t, 3308 sizeof(dev->fsa_dev[cid].sense_data), 3309 SCSI_SENSE_BUFFERSIZE)); 3310 break; 3311 } 3312 /* fall through */ 3313 case RESERVE: 3314 case RELEASE: 3315 case REZERO_UNIT: 3316 case REASSIGN_BLOCKS: 3317 case SEEK_10: 3318 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3319 SAM_STAT_GOOD; 3320 break; 3321 3322 case START_STOP: 3323 return aac_start_stop(scsicmd); 3324 3325 /* FALLTHRU */ 3326 default: 3327 /* 3328 * Unhandled commands 3329 */ 3330 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3331 scsicmd->cmnd[0])); 3332 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3333 SAM_STAT_CHECK_CONDITION; 3334 set_sense(&dev->fsa_dev[cid].sense_data, 3335 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3336 ASENCODE_INVALID_COMMAND, 0, 0); 3337 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3338 min_t(size_t, 3339 sizeof(dev->fsa_dev[cid].sense_data), 3340 SCSI_SENSE_BUFFERSIZE)); 3341 } 3342 3343 scsi_done_ret: 3344 3345 scsicmd->scsi_done(scsicmd); 3346 return 0; 3347 } 3348 3349 static int query_disk(struct aac_dev *dev, void __user *arg) 3350 { 3351 struct aac_query_disk qd; 3352 struct fsa_dev_info *fsa_dev_ptr; 3353 3354 fsa_dev_ptr = dev->fsa_dev; 3355 if (!fsa_dev_ptr) 3356 return -EBUSY; 3357 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3358 return -EFAULT; 3359 if (qd.cnum == -1) { 3360 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3361 return -EINVAL; 3362 qd.cnum = qd.id; 3363 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3364 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3365 return -EINVAL; 3366 qd.instance = dev->scsi_host_ptr->host_no; 3367 qd.bus = 0; 3368 qd.id = CONTAINER_TO_ID(qd.cnum); 3369 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3370 } 3371 else return -EINVAL; 3372 3373 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3374 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3375 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3376 3377 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3378 qd.unmapped = 1; 3379 else 3380 qd.unmapped = 0; 3381 3382 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3383 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3384 3385 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3386 return -EFAULT; 3387 return 0; 3388 } 3389 3390 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3391 { 3392 struct aac_delete_disk dd; 3393 struct fsa_dev_info *fsa_dev_ptr; 3394 3395 fsa_dev_ptr = dev->fsa_dev; 3396 if (!fsa_dev_ptr) 3397 return -EBUSY; 3398 3399 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3400 return -EFAULT; 3401 3402 if (dd.cnum >= dev->maximum_num_containers) 3403 return -EINVAL; 3404 /* 3405 * Mark this container as being deleted. 3406 */ 3407 fsa_dev_ptr[dd.cnum].deleted = 1; 3408 /* 3409 * Mark the container as no longer valid 3410 */ 3411 fsa_dev_ptr[dd.cnum].valid = 0; 3412 return 0; 3413 } 3414 3415 static int delete_disk(struct aac_dev *dev, void __user *arg) 3416 { 3417 struct aac_delete_disk dd; 3418 struct fsa_dev_info *fsa_dev_ptr; 3419 3420 fsa_dev_ptr = dev->fsa_dev; 3421 if (!fsa_dev_ptr) 3422 return -EBUSY; 3423 3424 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3425 return -EFAULT; 3426 3427 if (dd.cnum >= dev->maximum_num_containers) 3428 return -EINVAL; 3429 /* 3430 * If the container is locked, it can not be deleted by the API. 3431 */ 3432 if (fsa_dev_ptr[dd.cnum].locked) 3433 return -EBUSY; 3434 else { 3435 /* 3436 * Mark the container as no longer being valid. 3437 */ 3438 fsa_dev_ptr[dd.cnum].valid = 0; 3439 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3440 return 0; 3441 } 3442 } 3443 3444 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3445 { 3446 switch (cmd) { 3447 case FSACTL_QUERY_DISK: 3448 return query_disk(dev, arg); 3449 case FSACTL_DELETE_DISK: 3450 return delete_disk(dev, arg); 3451 case FSACTL_FORCE_DELETE_DISK: 3452 return force_delete_disk(dev, arg); 3453 case FSACTL_GET_CONTAINERS: 3454 return aac_get_containers(dev); 3455 default: 3456 return -ENOTTY; 3457 } 3458 } 3459 3460 /** 3461 * 3462 * aac_srb_callback 3463 * @context: the context set in the fib - here it is scsi cmd 3464 * @fibptr: pointer to the fib 3465 * 3466 * Handles the completion of a scsi command to a non dasd device 3467 * 3468 */ 3469 3470 static void aac_srb_callback(void *context, struct fib * fibptr) 3471 { 3472 struct aac_srb_reply *srbreply; 3473 struct scsi_cmnd *scsicmd; 3474 3475 scsicmd = (struct scsi_cmnd *) context; 3476 3477 if (!aac_valid_context(scsicmd, fibptr)) 3478 return; 3479 3480 BUG_ON(fibptr == NULL); 3481 3482 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3483 3484 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3485 3486 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3487 /* fast response */ 3488 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3489 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3490 } else { 3491 /* 3492 * Calculate resid for sg 3493 */ 3494 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3495 - le32_to_cpu(srbreply->data_xfer_length)); 3496 } 3497 3498 3499 scsi_dma_unmap(scsicmd); 3500 3501 /* expose physical device if expose_physicald flag is on */ 3502 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3503 && expose_physicals > 0) 3504 aac_expose_phy_device(scsicmd); 3505 3506 /* 3507 * First check the fib status 3508 */ 3509 3510 if (le32_to_cpu(srbreply->status) != ST_OK) { 3511 int len; 3512 3513 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3514 le32_to_cpu(srbreply->status)); 3515 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3516 SCSI_SENSE_BUFFERSIZE); 3517 scsicmd->result = DID_ERROR << 16 3518 | COMMAND_COMPLETE << 8 3519 | SAM_STAT_CHECK_CONDITION; 3520 memcpy(scsicmd->sense_buffer, 3521 srbreply->sense_data, len); 3522 } 3523 3524 /* 3525 * Next check the srb status 3526 */ 3527 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3528 case SRB_STATUS_ERROR_RECOVERY: 3529 case SRB_STATUS_PENDING: 3530 case SRB_STATUS_SUCCESS: 3531 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3532 break; 3533 case SRB_STATUS_DATA_OVERRUN: 3534 switch (scsicmd->cmnd[0]) { 3535 case READ_6: 3536 case WRITE_6: 3537 case READ_10: 3538 case WRITE_10: 3539 case READ_12: 3540 case WRITE_12: 3541 case READ_16: 3542 case WRITE_16: 3543 if (le32_to_cpu(srbreply->data_xfer_length) 3544 < scsicmd->underflow) 3545 pr_warn("aacraid: SCSI CMD underflow\n"); 3546 else 3547 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3548 scsicmd->result = DID_ERROR << 16 3549 | COMMAND_COMPLETE << 8; 3550 break; 3551 case INQUIRY: 3552 scsicmd->result = DID_OK << 16 3553 | COMMAND_COMPLETE << 8; 3554 break; 3555 default: 3556 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3557 break; 3558 } 3559 break; 3560 case SRB_STATUS_ABORTED: 3561 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3562 break; 3563 case SRB_STATUS_ABORT_FAILED: 3564 /* 3565 * Not sure about this one - but assuming the 3566 * hba was trying to abort for some reason 3567 */ 3568 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3569 break; 3570 case SRB_STATUS_PARITY_ERROR: 3571 scsicmd->result = DID_PARITY << 16 3572 | MSG_PARITY_ERROR << 8; 3573 break; 3574 case SRB_STATUS_NO_DEVICE: 3575 case SRB_STATUS_INVALID_PATH_ID: 3576 case SRB_STATUS_INVALID_TARGET_ID: 3577 case SRB_STATUS_INVALID_LUN: 3578 case SRB_STATUS_SELECTION_TIMEOUT: 3579 scsicmd->result = DID_NO_CONNECT << 16 3580 | COMMAND_COMPLETE << 8; 3581 break; 3582 3583 case SRB_STATUS_COMMAND_TIMEOUT: 3584 case SRB_STATUS_TIMEOUT: 3585 scsicmd->result = DID_TIME_OUT << 16 3586 | COMMAND_COMPLETE << 8; 3587 break; 3588 3589 case SRB_STATUS_BUSY: 3590 scsicmd->result = DID_BUS_BUSY << 16 3591 | COMMAND_COMPLETE << 8; 3592 break; 3593 3594 case SRB_STATUS_BUS_RESET: 3595 scsicmd->result = DID_RESET << 16 3596 | COMMAND_COMPLETE << 8; 3597 break; 3598 3599 case SRB_STATUS_MESSAGE_REJECTED: 3600 scsicmd->result = DID_ERROR << 16 3601 | MESSAGE_REJECT << 8; 3602 break; 3603 case SRB_STATUS_REQUEST_FLUSHED: 3604 case SRB_STATUS_ERROR: 3605 case SRB_STATUS_INVALID_REQUEST: 3606 case SRB_STATUS_REQUEST_SENSE_FAILED: 3607 case SRB_STATUS_NO_HBA: 3608 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3609 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3610 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3611 case SRB_STATUS_DELAYED_RETRY: 3612 case SRB_STATUS_BAD_FUNCTION: 3613 case SRB_STATUS_NOT_STARTED: 3614 case SRB_STATUS_NOT_IN_USE: 3615 case SRB_STATUS_FORCE_ABORT: 3616 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3617 default: 3618 #ifdef AAC_DETAILED_STATUS_INFO 3619 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3620 le32_to_cpu(srbreply->srb_status) & 0x3F, 3621 aac_get_status_string( 3622 le32_to_cpu(srbreply->srb_status) & 0x3F), 3623 scsicmd->cmnd[0], 3624 le32_to_cpu(srbreply->scsi_status)); 3625 #endif 3626 /* 3627 * When the CC bit is SET by the host in ATA pass thru CDB, 3628 * driver is supposed to return DID_OK 3629 * 3630 * When the CC bit is RESET by the host, driver should 3631 * return DID_ERROR 3632 */ 3633 if ((scsicmd->cmnd[0] == ATA_12) 3634 || (scsicmd->cmnd[0] == ATA_16)) { 3635 3636 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3637 scsicmd->result = DID_OK << 16 3638 | COMMAND_COMPLETE << 8; 3639 break; 3640 } else { 3641 scsicmd->result = DID_ERROR << 16 3642 | COMMAND_COMPLETE << 8; 3643 break; 3644 } 3645 } else { 3646 scsicmd->result = DID_ERROR << 16 3647 | COMMAND_COMPLETE << 8; 3648 break; 3649 } 3650 } 3651 if (le32_to_cpu(srbreply->scsi_status) 3652 == SAM_STAT_CHECK_CONDITION) { 3653 int len; 3654 3655 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3656 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3657 SCSI_SENSE_BUFFERSIZE); 3658 #ifdef AAC_DETAILED_STATUS_INFO 3659 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3660 le32_to_cpu(srbreply->status), len); 3661 #endif 3662 memcpy(scsicmd->sense_buffer, 3663 srbreply->sense_data, len); 3664 } 3665 3666 /* 3667 * OR in the scsi status (already shifted up a bit) 3668 */ 3669 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3670 3671 aac_fib_complete(fibptr); 3672 scsicmd->scsi_done(scsicmd); 3673 } 3674 3675 static void hba_resp_task_complete(struct aac_dev *dev, 3676 struct scsi_cmnd *scsicmd, 3677 struct aac_hba_resp *err) { 3678 3679 scsicmd->result = err->status; 3680 /* set residual count */ 3681 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3682 3683 switch (err->status) { 3684 case SAM_STAT_GOOD: 3685 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3686 break; 3687 case SAM_STAT_CHECK_CONDITION: 3688 { 3689 int len; 3690 3691 len = min_t(u8, err->sense_response_data_len, 3692 SCSI_SENSE_BUFFERSIZE); 3693 if (len) 3694 memcpy(scsicmd->sense_buffer, 3695 err->sense_response_buf, len); 3696 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3697 break; 3698 } 3699 case SAM_STAT_BUSY: 3700 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3701 break; 3702 case SAM_STAT_TASK_ABORTED: 3703 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3704 break; 3705 case SAM_STAT_RESERVATION_CONFLICT: 3706 case SAM_STAT_TASK_SET_FULL: 3707 default: 3708 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3709 break; 3710 } 3711 } 3712 3713 static void hba_resp_task_failure(struct aac_dev *dev, 3714 struct scsi_cmnd *scsicmd, 3715 struct aac_hba_resp *err) 3716 { 3717 switch (err->status) { 3718 case HBA_RESP_STAT_HBAMODE_DISABLED: 3719 { 3720 u32 bus, cid; 3721 3722 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3723 cid = scmd_id(scsicmd); 3724 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3725 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3726 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3727 } 3728 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3729 break; 3730 } 3731 case HBA_RESP_STAT_IO_ERROR: 3732 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3733 scsicmd->result = DID_OK << 16 | 3734 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3735 break; 3736 case HBA_RESP_STAT_IO_ABORTED: 3737 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3738 break; 3739 case HBA_RESP_STAT_INVALID_DEVICE: 3740 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3741 break; 3742 case HBA_RESP_STAT_UNDERRUN: 3743 /* UNDERRUN is OK */ 3744 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3745 break; 3746 case HBA_RESP_STAT_OVERRUN: 3747 default: 3748 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3749 break; 3750 } 3751 } 3752 3753 /** 3754 * 3755 * aac_hba_callback 3756 * @context: the context set in the fib - here it is scsi cmd 3757 * @fibptr: pointer to the fib 3758 * 3759 * Handles the completion of a native HBA scsi command 3760 * 3761 */ 3762 void aac_hba_callback(void *context, struct fib *fibptr) 3763 { 3764 struct aac_dev *dev; 3765 struct scsi_cmnd *scsicmd; 3766 3767 struct aac_hba_resp *err = 3768 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3769 3770 scsicmd = (struct scsi_cmnd *) context; 3771 3772 if (!aac_valid_context(scsicmd, fibptr)) 3773 return; 3774 3775 WARN_ON(fibptr == NULL); 3776 dev = fibptr->dev; 3777 3778 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3779 scsi_dma_unmap(scsicmd); 3780 3781 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3782 /* fast response */ 3783 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3784 goto out; 3785 } 3786 3787 switch (err->service_response) { 3788 case HBA_RESP_SVCRES_TASK_COMPLETE: 3789 hba_resp_task_complete(dev, scsicmd, err); 3790 break; 3791 case HBA_RESP_SVCRES_FAILURE: 3792 hba_resp_task_failure(dev, scsicmd, err); 3793 break; 3794 case HBA_RESP_SVCRES_TMF_REJECTED: 3795 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3796 break; 3797 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3798 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3799 break; 3800 case HBA_RESP_SVCRES_TMF_COMPLETE: 3801 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3802 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3803 break; 3804 default: 3805 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3806 break; 3807 } 3808 3809 out: 3810 aac_fib_complete(fibptr); 3811 3812 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3813 scsicmd->SCp.sent_command = 1; 3814 else 3815 scsicmd->scsi_done(scsicmd); 3816 } 3817 3818 /** 3819 * 3820 * aac_send_srb_fib 3821 * @scsicmd: the scsi command block 3822 * 3823 * This routine will form a FIB and fill in the aac_srb from the 3824 * scsicmd passed in. 3825 */ 3826 3827 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3828 { 3829 struct fib* cmd_fibcontext; 3830 struct aac_dev* dev; 3831 int status; 3832 3833 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3834 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3835 scsicmd->device->lun > 7) { 3836 scsicmd->result = DID_NO_CONNECT << 16; 3837 scsicmd->scsi_done(scsicmd); 3838 return 0; 3839 } 3840 3841 /* 3842 * Allocate and initialize a Fib then setup a BlockWrite command 3843 */ 3844 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3845 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3846 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3847 3848 /* 3849 * Check that the command queued to the controller 3850 */ 3851 if (status == -EINPROGRESS) 3852 return 0; 3853 3854 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3855 aac_fib_complete(cmd_fibcontext); 3856 aac_fib_free(cmd_fibcontext); 3857 3858 return -1; 3859 } 3860 3861 /** 3862 * 3863 * aac_send_hba_fib 3864 * @scsicmd: the scsi command block 3865 * 3866 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3867 * scsicmd passed in. 3868 */ 3869 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3870 { 3871 struct fib *cmd_fibcontext; 3872 struct aac_dev *dev; 3873 int status; 3874 3875 dev = shost_priv(scsicmd->device->host); 3876 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3877 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3878 scsicmd->result = DID_NO_CONNECT << 16; 3879 scsicmd->scsi_done(scsicmd); 3880 return 0; 3881 } 3882 3883 /* 3884 * Allocate and initialize a Fib then setup a BlockWrite command 3885 */ 3886 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3887 if (!cmd_fibcontext) 3888 return -1; 3889 3890 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3891 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3892 3893 /* 3894 * Check that the command queued to the controller 3895 */ 3896 if (status == -EINPROGRESS) 3897 return 0; 3898 3899 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3900 status); 3901 aac_fib_complete(cmd_fibcontext); 3902 aac_fib_free(cmd_fibcontext); 3903 3904 return -1; 3905 } 3906 3907 3908 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3909 { 3910 unsigned long byte_count = 0; 3911 int nseg; 3912 struct scatterlist *sg; 3913 int i; 3914 3915 // Get rid of old data 3916 psg->count = 0; 3917 psg->sg[0].addr = 0; 3918 psg->sg[0].count = 0; 3919 3920 nseg = scsi_dma_map(scsicmd); 3921 if (nseg <= 0) 3922 return nseg; 3923 3924 psg->count = cpu_to_le32(nseg); 3925 3926 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3927 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3928 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3929 byte_count += sg_dma_len(sg); 3930 } 3931 /* hba wants the size to be exact */ 3932 if (byte_count > scsi_bufflen(scsicmd)) { 3933 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3934 (byte_count - scsi_bufflen(scsicmd)); 3935 psg->sg[i-1].count = cpu_to_le32(temp); 3936 byte_count = scsi_bufflen(scsicmd); 3937 } 3938 /* Check for command underflow */ 3939 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3940 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3941 byte_count, scsicmd->underflow); 3942 } 3943 3944 return byte_count; 3945 } 3946 3947 3948 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3949 { 3950 unsigned long byte_count = 0; 3951 u64 addr; 3952 int nseg; 3953 struct scatterlist *sg; 3954 int i; 3955 3956 // Get rid of old data 3957 psg->count = 0; 3958 psg->sg[0].addr[0] = 0; 3959 psg->sg[0].addr[1] = 0; 3960 psg->sg[0].count = 0; 3961 3962 nseg = scsi_dma_map(scsicmd); 3963 if (nseg <= 0) 3964 return nseg; 3965 3966 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3967 int count = sg_dma_len(sg); 3968 addr = sg_dma_address(sg); 3969 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3970 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3971 psg->sg[i].count = cpu_to_le32(count); 3972 byte_count += count; 3973 } 3974 psg->count = cpu_to_le32(nseg); 3975 /* hba wants the size to be exact */ 3976 if (byte_count > scsi_bufflen(scsicmd)) { 3977 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3978 (byte_count - scsi_bufflen(scsicmd)); 3979 psg->sg[i-1].count = cpu_to_le32(temp); 3980 byte_count = scsi_bufflen(scsicmd); 3981 } 3982 /* Check for command underflow */ 3983 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3984 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3985 byte_count, scsicmd->underflow); 3986 } 3987 3988 return byte_count; 3989 } 3990 3991 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3992 { 3993 unsigned long byte_count = 0; 3994 int nseg; 3995 struct scatterlist *sg; 3996 int i; 3997 3998 // Get rid of old data 3999 psg->count = 0; 4000 psg->sg[0].next = 0; 4001 psg->sg[0].prev = 0; 4002 psg->sg[0].addr[0] = 0; 4003 psg->sg[0].addr[1] = 0; 4004 psg->sg[0].count = 0; 4005 psg->sg[0].flags = 0; 4006 4007 nseg = scsi_dma_map(scsicmd); 4008 if (nseg <= 0) 4009 return nseg; 4010 4011 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4012 int count = sg_dma_len(sg); 4013 u64 addr = sg_dma_address(sg); 4014 psg->sg[i].next = 0; 4015 psg->sg[i].prev = 0; 4016 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 4017 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 4018 psg->sg[i].count = cpu_to_le32(count); 4019 psg->sg[i].flags = 0; 4020 byte_count += count; 4021 } 4022 psg->count = cpu_to_le32(nseg); 4023 /* hba wants the size to be exact */ 4024 if (byte_count > scsi_bufflen(scsicmd)) { 4025 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 4026 (byte_count - scsi_bufflen(scsicmd)); 4027 psg->sg[i-1].count = cpu_to_le32(temp); 4028 byte_count = scsi_bufflen(scsicmd); 4029 } 4030 /* Check for command underflow */ 4031 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4032 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4033 byte_count, scsicmd->underflow); 4034 } 4035 4036 return byte_count; 4037 } 4038 4039 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 4040 struct aac_raw_io2 *rio2, int sg_max) 4041 { 4042 unsigned long byte_count = 0; 4043 int nseg; 4044 struct scatterlist *sg; 4045 int i, conformable = 0; 4046 u32 min_size = PAGE_SIZE, cur_size; 4047 4048 nseg = scsi_dma_map(scsicmd); 4049 if (nseg <= 0) 4050 return nseg; 4051 4052 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4053 int count = sg_dma_len(sg); 4054 u64 addr = sg_dma_address(sg); 4055 4056 BUG_ON(i >= sg_max); 4057 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 4058 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 4059 cur_size = cpu_to_le32(count); 4060 rio2->sge[i].length = cur_size; 4061 rio2->sge[i].flags = 0; 4062 if (i == 0) { 4063 conformable = 1; 4064 rio2->sgeFirstSize = cur_size; 4065 } else if (i == 1) { 4066 rio2->sgeNominalSize = cur_size; 4067 min_size = cur_size; 4068 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 4069 conformable = 0; 4070 if (cur_size < min_size) 4071 min_size = cur_size; 4072 } 4073 byte_count += count; 4074 } 4075 4076 /* hba wants the size to be exact */ 4077 if (byte_count > scsi_bufflen(scsicmd)) { 4078 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4079 (byte_count - scsi_bufflen(scsicmd)); 4080 rio2->sge[i-1].length = cpu_to_le32(temp); 4081 byte_count = scsi_bufflen(scsicmd); 4082 } 4083 4084 rio2->sgeCnt = cpu_to_le32(nseg); 4085 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4086 /* not conformable: evaluate required sg elements */ 4087 if (!conformable) { 4088 int j, nseg_new = nseg, err_found; 4089 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4090 err_found = 0; 4091 nseg_new = 2; 4092 for (j = 1; j < nseg - 1; ++j) { 4093 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4094 err_found = 1; 4095 break; 4096 } 4097 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4098 } 4099 if (!err_found) 4100 break; 4101 } 4102 if (i > 0 && nseg_new <= sg_max) { 4103 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4104 4105 if (ret < 0) 4106 return ret; 4107 } 4108 } else 4109 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4110 4111 /* Check for command underflow */ 4112 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4113 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4114 byte_count, scsicmd->underflow); 4115 } 4116 4117 return byte_count; 4118 } 4119 4120 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4121 { 4122 struct sge_ieee1212 *sge; 4123 int i, j, pos; 4124 u32 addr_low; 4125 4126 if (aac_convert_sgl == 0) 4127 return 0; 4128 4129 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4130 if (sge == NULL) 4131 return -ENOMEM; 4132 4133 for (i = 1, pos = 1; i < nseg-1; ++i) { 4134 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4135 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4136 sge[pos].addrLow = addr_low; 4137 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4138 if (addr_low < rio2->sge[i].addrLow) 4139 sge[pos].addrHigh++; 4140 sge[pos].length = pages * PAGE_SIZE; 4141 sge[pos].flags = 0; 4142 pos++; 4143 } 4144 } 4145 sge[pos] = rio2->sge[nseg-1]; 4146 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4147 4148 kfree(sge); 4149 rio2->sgeCnt = cpu_to_le32(nseg_new); 4150 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4151 rio2->sgeNominalSize = pages * PAGE_SIZE; 4152 return 0; 4153 } 4154 4155 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4156 struct aac_hba_cmd_req *hbacmd, 4157 int sg_max, 4158 u64 sg_address) 4159 { 4160 unsigned long byte_count = 0; 4161 int nseg; 4162 struct scatterlist *sg; 4163 int i; 4164 u32 cur_size; 4165 struct aac_hba_sgl *sge; 4166 4167 nseg = scsi_dma_map(scsicmd); 4168 if (nseg <= 0) { 4169 byte_count = nseg; 4170 goto out; 4171 } 4172 4173 if (nseg > HBA_MAX_SG_EMBEDDED) 4174 sge = &hbacmd->sge[2]; 4175 else 4176 sge = &hbacmd->sge[0]; 4177 4178 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4179 int count = sg_dma_len(sg); 4180 u64 addr = sg_dma_address(sg); 4181 4182 WARN_ON(i >= sg_max); 4183 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4184 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4185 cur_size = cpu_to_le32(count); 4186 sge->len = cur_size; 4187 sge->flags = 0; 4188 byte_count += count; 4189 sge++; 4190 } 4191 4192 sge--; 4193 /* hba wants the size to be exact */ 4194 if (byte_count > scsi_bufflen(scsicmd)) { 4195 u32 temp; 4196 4197 temp = le32_to_cpu(sge->len) - byte_count 4198 - scsi_bufflen(scsicmd); 4199 sge->len = cpu_to_le32(temp); 4200 byte_count = scsi_bufflen(scsicmd); 4201 } 4202 4203 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4204 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4205 sge->flags = cpu_to_le32(0x40000000); 4206 } else { 4207 /* not embedded */ 4208 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4209 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4210 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4211 hbacmd->sge[0].addr_lo = 4212 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4213 } 4214 4215 /* Check for command underflow */ 4216 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4217 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4218 byte_count, scsicmd->underflow); 4219 } 4220 out: 4221 return byte_count; 4222 } 4223 4224 #ifdef AAC_DETAILED_STATUS_INFO 4225 4226 struct aac_srb_status_info { 4227 u32 status; 4228 char *str; 4229 }; 4230 4231 4232 static struct aac_srb_status_info srb_status_info[] = { 4233 { SRB_STATUS_PENDING, "Pending Status"}, 4234 { SRB_STATUS_SUCCESS, "Success"}, 4235 { SRB_STATUS_ABORTED, "Aborted Command"}, 4236 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4237 { SRB_STATUS_ERROR, "Error Event"}, 4238 { SRB_STATUS_BUSY, "Device Busy"}, 4239 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4240 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4241 { SRB_STATUS_NO_DEVICE, "No Device"}, 4242 { SRB_STATUS_TIMEOUT, "Timeout"}, 4243 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4244 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4245 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4246 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4247 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4248 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4249 { SRB_STATUS_NO_HBA, "No HBA"}, 4250 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4251 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4252 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4253 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4254 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4255 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4256 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4257 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4258 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4259 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4260 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4261 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4262 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4263 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4264 { 0xff, "Unknown Error"} 4265 }; 4266 4267 char *aac_get_status_string(u32 status) 4268 { 4269 int i; 4270 4271 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4272 if (srb_status_info[i].status == status) 4273 return srb_status_info[i].str; 4274 4275 return "Bad Status Code"; 4276 } 4277 4278 #endif 4279