1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * aachba.c 28 * 29 * Abstract: Contains Interfaces to manage IOs. 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/uaccess.h> 42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 43 #include <linux/module.h> 44 45 #include <scsi/scsi.h> 46 #include <scsi/scsi_cmnd.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_host.h> 49 50 #include "aacraid.h" 51 52 /* values for inqd_pdt: Peripheral device type in plain English */ 53 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 54 #define INQD_PDT_PROC 0x03 /* Processor device */ 55 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 56 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 57 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 58 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 59 60 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 61 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 62 63 /* 64 * Sense codes 65 */ 66 67 #define SENCODE_NO_SENSE 0x00 68 #define SENCODE_END_OF_DATA 0x00 69 #define SENCODE_BECOMING_READY 0x04 70 #define SENCODE_INIT_CMD_REQUIRED 0x04 71 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 72 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 73 #define SENCODE_INVALID_COMMAND 0x20 74 #define SENCODE_LBA_OUT_OF_RANGE 0x21 75 #define SENCODE_INVALID_CDB_FIELD 0x24 76 #define SENCODE_LUN_NOT_SUPPORTED 0x25 77 #define SENCODE_INVALID_PARAM_FIELD 0x26 78 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 79 #define SENCODE_PARAM_VALUE_INVALID 0x26 80 #define SENCODE_RESET_OCCURRED 0x29 81 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 82 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 83 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 84 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 85 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 86 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 87 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 88 #define SENCODE_OVERLAPPED_COMMAND 0x4E 89 90 /* 91 * Additional sense codes 92 */ 93 94 #define ASENCODE_NO_SENSE 0x00 95 #define ASENCODE_END_OF_DATA 0x05 96 #define ASENCODE_BECOMING_READY 0x01 97 #define ASENCODE_INIT_CMD_REQUIRED 0x02 98 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 99 #define ASENCODE_INVALID_COMMAND 0x00 100 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 101 #define ASENCODE_INVALID_CDB_FIELD 0x00 102 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 103 #define ASENCODE_INVALID_PARAM_FIELD 0x00 104 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 105 #define ASENCODE_PARAM_VALUE_INVALID 0x02 106 #define ASENCODE_RESET_OCCURRED 0x00 107 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 108 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 109 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 110 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 111 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 112 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 113 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 114 #define ASENCODE_OVERLAPPED_COMMAND 0x00 115 116 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD) 117 118 #define BYTE0(x) (unsigned char)(x) 119 #define BYTE1(x) (unsigned char)((x) >> 8) 120 #define BYTE2(x) (unsigned char)((x) >> 16) 121 #define BYTE3(x) (unsigned char)((x) >> 24) 122 123 /* MODE_SENSE data format */ 124 typedef struct { 125 struct { 126 u8 data_length; 127 u8 med_type; 128 u8 dev_par; 129 u8 bd_length; 130 } __attribute__((packed)) hd; 131 struct { 132 u8 dens_code; 133 u8 block_count[3]; 134 u8 reserved; 135 u8 block_length[3]; 136 } __attribute__((packed)) bd; 137 u8 mpc_buf[3]; 138 } __attribute__((packed)) aac_modep_data; 139 140 /* MODE_SENSE_10 data format */ 141 typedef struct { 142 struct { 143 u8 data_length[2]; 144 u8 med_type; 145 u8 dev_par; 146 u8 rsrvd[2]; 147 u8 bd_length[2]; 148 } __attribute__((packed)) hd; 149 struct { 150 u8 dens_code; 151 u8 block_count[3]; 152 u8 reserved; 153 u8 block_length[3]; 154 } __attribute__((packed)) bd; 155 u8 mpc_buf[3]; 156 } __attribute__((packed)) aac_modep10_data; 157 158 /*------------------------------------------------------------------------------ 159 * S T R U C T S / T Y P E D E F S 160 *----------------------------------------------------------------------------*/ 161 /* SCSI inquiry data */ 162 struct inquiry_data { 163 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 164 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 165 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 166 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 167 u8 inqd_len; /* Additional length (n-4) */ 168 u8 inqd_pad1[2];/* Reserved - must be zero */ 169 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 170 u8 inqd_vid[8]; /* Vendor ID */ 171 u8 inqd_pid[16];/* Product ID */ 172 u8 inqd_prl[4]; /* Product Revision Level */ 173 }; 174 175 /* Added for VPD 0x83 */ 176 struct tvpd_id_descriptor_type_1 { 177 u8 codeset:4; /* VPD_CODE_SET */ 178 u8 reserved:4; 179 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 180 u8 reserved2:4; 181 u8 reserved3; 182 u8 identifierlength; 183 u8 venid[8]; 184 u8 productid[16]; 185 u8 serialnumber[8]; /* SN in ASCII */ 186 187 }; 188 189 struct tvpd_id_descriptor_type_2 { 190 u8 codeset:4; /* VPD_CODE_SET */ 191 u8 reserved:4; 192 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 193 u8 reserved2:4; 194 u8 reserved3; 195 u8 identifierlength; 196 struct teu64id { 197 u32 Serial; 198 /* The serial number supposed to be 40 bits, 199 * bit we only support 32, so make the last byte zero. */ 200 u8 reserved; 201 u8 venid[3]; 202 } eu64id; 203 204 }; 205 206 struct tvpd_id_descriptor_type_3 { 207 u8 codeset : 4; /* VPD_CODE_SET */ 208 u8 reserved : 4; 209 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 210 u8 reserved2 : 4; 211 u8 reserved3; 212 u8 identifierlength; 213 u8 Identifier[16]; 214 }; 215 216 struct tvpd_page83 { 217 u8 DeviceType:5; 218 u8 DeviceTypeQualifier:3; 219 u8 PageCode; 220 u8 reserved; 221 u8 PageLength; 222 struct tvpd_id_descriptor_type_1 type1; 223 struct tvpd_id_descriptor_type_2 type2; 224 struct tvpd_id_descriptor_type_3 type3; 225 }; 226 227 /* 228 * M O D U L E G L O B A L S 229 */ 230 231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 235 struct aac_raw_io2 *rio2, int sg_max); 236 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 237 struct aac_hba_cmd_req *hbacmd, 238 int sg_max, u64 sg_address); 239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 240 int pages, int nseg, int nseg_new); 241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 243 #ifdef AAC_DETAILED_STATUS_INFO 244 static char *aac_get_status_string(u32 status); 245 #endif 246 247 /* 248 * Non dasd selection is handled entirely in aachba now 249 */ 250 251 static int nondasd = -1; 252 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 253 static int dacmode = -1; 254 int aac_msi; 255 int aac_commit = -1; 256 int startup_timeout = 180; 257 int aif_timeout = 120; 258 int aac_sync_mode; /* Only Sync. transfer - disabled */ 259 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 260 261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 263 " 0=off, 1=on"); 264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 266 " 0=off, 1=on"); 267 module_param(nondasd, int, S_IRUGO|S_IWUSR); 268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 269 " 0=off, 1=on"); 270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 272 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 273 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 274 "\tbit 2 - Disable only if Battery is protecting Cache"); 275 module_param(dacmode, int, S_IRUGO|S_IWUSR); 276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 277 " 0=off, 1=on"); 278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 280 " adapter for foreign arrays.\n" 281 "This is typically needed in systems that do not have a BIOS." 282 " 0=off, 1=on"); 283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 284 MODULE_PARM_DESC(msi, "IRQ handling." 285 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 288 " adapter to have it's kernel up and\n" 289 "running. This is typically adjusted for large systems that do not" 290 " have a BIOS."); 291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 293 " applications to pick up AIFs before\n" 294 "deregistering them. This is typically adjusted for heavily burdened" 295 " systems."); 296 297 int aac_fib_dump; 298 module_param(aac_fib_dump, int, 0644); 299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 300 301 int numacb = -1; 302 module_param(numacb, int, S_IRUGO|S_IWUSR); 303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 304 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 305 " to use suggestion from Firmware."); 306 307 int acbsize = -1; 308 module_param(acbsize, int, S_IRUGO|S_IWUSR); 309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 310 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 311 " suggestion from Firmware."); 312 313 int update_interval = 30 * 60; 314 module_param(update_interval, int, S_IRUGO|S_IWUSR); 315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 316 " updates issued to adapter."); 317 318 int check_interval = 60; 319 module_param(check_interval, int, S_IRUGO|S_IWUSR); 320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 321 " checks."); 322 323 int aac_check_reset = 1; 324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 326 " adapter. a value of -1 forces the reset to adapters programmed to" 327 " ignore it."); 328 329 int expose_physicals = -1; 330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 332 " -1=protect 0=off, 1=on"); 333 334 int aac_reset_devices; 335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 337 338 int aac_wwn = 1; 339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 341 "\t0 - Disable\n" 342 "\t1 - Array Meta Data Signature (default)\n" 343 "\t2 - Adapter Serial Number"); 344 345 346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 347 struct fib *fibptr) { 348 struct scsi_device *device; 349 350 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 351 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 352 aac_fib_complete(fibptr); 353 return 0; 354 } 355 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 356 device = scsicmd->device; 357 if (unlikely(!device)) { 358 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 359 aac_fib_complete(fibptr); 360 return 0; 361 } 362 return 1; 363 } 364 365 /** 366 * aac_get_config_status - check the adapter configuration 367 * @common: adapter to query 368 * 369 * Query config status, and commit the configuration if needed. 370 */ 371 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 372 { 373 int status = 0; 374 struct fib * fibptr; 375 376 if (!(fibptr = aac_fib_alloc(dev))) 377 return -ENOMEM; 378 379 aac_fib_init(fibptr); 380 { 381 struct aac_get_config_status *dinfo; 382 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 383 384 dinfo->command = cpu_to_le32(VM_ContainerConfig); 385 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 386 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 387 } 388 389 status = aac_fib_send(ContainerCommand, 390 fibptr, 391 sizeof (struct aac_get_config_status), 392 FsaNormal, 393 1, 1, 394 NULL, NULL); 395 if (status < 0) { 396 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 397 } else { 398 struct aac_get_config_status_resp *reply 399 = (struct aac_get_config_status_resp *) fib_data(fibptr); 400 dprintk((KERN_WARNING 401 "aac_get_config_status: response=%d status=%d action=%d\n", 402 le32_to_cpu(reply->response), 403 le32_to_cpu(reply->status), 404 le32_to_cpu(reply->data.action))); 405 if ((le32_to_cpu(reply->response) != ST_OK) || 406 (le32_to_cpu(reply->status) != CT_OK) || 407 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 408 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 409 status = -EINVAL; 410 } 411 } 412 /* Do not set XferState to zero unless receives a response from F/W */ 413 if (status >= 0) 414 aac_fib_complete(fibptr); 415 416 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 417 if (status >= 0) { 418 if ((aac_commit == 1) || commit_flag) { 419 struct aac_commit_config * dinfo; 420 aac_fib_init(fibptr); 421 dinfo = (struct aac_commit_config *) fib_data(fibptr); 422 423 dinfo->command = cpu_to_le32(VM_ContainerConfig); 424 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 425 426 status = aac_fib_send(ContainerCommand, 427 fibptr, 428 sizeof (struct aac_commit_config), 429 FsaNormal, 430 1, 1, 431 NULL, NULL); 432 /* Do not set XferState to zero unless 433 * receives a response from F/W */ 434 if (status >= 0) 435 aac_fib_complete(fibptr); 436 } else if (aac_commit == 0) { 437 printk(KERN_WARNING 438 "aac_get_config_status: Foreign device configurations are being ignored\n"); 439 } 440 } 441 /* FIB should be freed only after getting the response from the F/W */ 442 if (status != -ERESTARTSYS) 443 aac_fib_free(fibptr); 444 return status; 445 } 446 447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 448 { 449 char inq_data; 450 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 451 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 452 inq_data &= 0xdf; 453 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 454 } 455 } 456 457 /** 458 * aac_get_containers - list containers 459 * @common: adapter to probe 460 * 461 * Make a list of all containers on this controller 462 */ 463 int aac_get_containers(struct aac_dev *dev) 464 { 465 struct fsa_dev_info *fsa_dev_ptr; 466 u32 index; 467 int status = 0; 468 struct fib * fibptr; 469 struct aac_get_container_count *dinfo; 470 struct aac_get_container_count_resp *dresp; 471 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 472 473 if (!(fibptr = aac_fib_alloc(dev))) 474 return -ENOMEM; 475 476 aac_fib_init(fibptr); 477 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 478 dinfo->command = cpu_to_le32(VM_ContainerConfig); 479 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 480 481 status = aac_fib_send(ContainerCommand, 482 fibptr, 483 sizeof (struct aac_get_container_count), 484 FsaNormal, 485 1, 1, 486 NULL, NULL); 487 if (status >= 0) { 488 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 489 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 490 if (fibptr->dev->supplement_adapter_info.supported_options2 & 491 AAC_OPTION_SUPPORTED_240_VOLUMES) { 492 maximum_num_containers = 493 le32_to_cpu(dresp->MaxSimpleVolumes); 494 } 495 aac_fib_complete(fibptr); 496 } 497 /* FIB should be freed only after getting the response from the F/W */ 498 if (status != -ERESTARTSYS) 499 aac_fib_free(fibptr); 500 501 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 502 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 503 if (dev->fsa_dev == NULL || 504 dev->maximum_num_containers != maximum_num_containers) { 505 506 fsa_dev_ptr = dev->fsa_dev; 507 508 dev->fsa_dev = kcalloc(maximum_num_containers, 509 sizeof(*fsa_dev_ptr), GFP_KERNEL); 510 511 kfree(fsa_dev_ptr); 512 fsa_dev_ptr = NULL; 513 514 515 if (!dev->fsa_dev) 516 return -ENOMEM; 517 518 dev->maximum_num_containers = maximum_num_containers; 519 } 520 for (index = 0; index < dev->maximum_num_containers; index++) { 521 dev->fsa_dev[index].devname[0] = '\0'; 522 dev->fsa_dev[index].valid = 0; 523 524 status = aac_probe_container(dev, index); 525 526 if (status < 0) { 527 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 528 break; 529 } 530 } 531 return status; 532 } 533 534 static void get_container_name_callback(void *context, struct fib * fibptr) 535 { 536 struct aac_get_name_resp * get_name_reply; 537 struct scsi_cmnd * scsicmd; 538 539 scsicmd = (struct scsi_cmnd *) context; 540 541 if (!aac_valid_context(scsicmd, fibptr)) 542 return; 543 544 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 545 BUG_ON(fibptr == NULL); 546 547 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 548 /* Failure is irrelevant, using default value instead */ 549 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 550 && (get_name_reply->data[0] != '\0')) { 551 char *sp = get_name_reply->data; 552 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)] = '\0'; 553 while (*sp == ' ') 554 ++sp; 555 if (*sp) { 556 struct inquiry_data inq; 557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 558 int count = sizeof(d); 559 char *dp = d; 560 do { 561 *dp++ = (*sp) ? *sp++ : ' '; 562 } while (--count > 0); 563 564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 565 memcpy(inq.inqd_pid, d, sizeof(d)); 566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 567 } 568 } 569 570 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 571 572 aac_fib_complete(fibptr); 573 scsicmd->scsi_done(scsicmd); 574 } 575 576 /** 577 * aac_get_container_name - get container name, none blocking. 578 */ 579 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 580 { 581 int status; 582 struct aac_get_name *dinfo; 583 struct fib * cmd_fibcontext; 584 struct aac_dev * dev; 585 586 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 587 588 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 589 590 aac_fib_init(cmd_fibcontext); 591 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 592 593 dinfo->command = cpu_to_le32(VM_ContainerConfig); 594 dinfo->type = cpu_to_le32(CT_READ_NAME); 595 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 596 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data)); 597 598 status = aac_fib_send(ContainerCommand, 599 cmd_fibcontext, 600 sizeof(struct aac_get_name_resp), 601 FsaNormal, 602 0, 1, 603 (fib_callback)get_container_name_callback, 604 (void *) scsicmd); 605 606 /* 607 * Check that the command queued to the controller 608 */ 609 if (status == -EINPROGRESS) { 610 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 611 return 0; 612 } 613 614 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 615 aac_fib_complete(cmd_fibcontext); 616 return -1; 617 } 618 619 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 620 { 621 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 622 623 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 624 return aac_scsi_cmd(scsicmd); 625 626 scsicmd->result = DID_NO_CONNECT << 16; 627 scsicmd->scsi_done(scsicmd); 628 return 0; 629 } 630 631 static void _aac_probe_container2(void * context, struct fib * fibptr) 632 { 633 struct fsa_dev_info *fsa_dev_ptr; 634 int (*callback)(struct scsi_cmnd *); 635 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 636 int i; 637 638 639 if (!aac_valid_context(scsicmd, fibptr)) 640 return; 641 642 scsicmd->SCp.Status = 0; 643 fsa_dev_ptr = fibptr->dev->fsa_dev; 644 if (fsa_dev_ptr) { 645 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 646 __le32 sup_options2; 647 648 fsa_dev_ptr += scmd_id(scsicmd); 649 sup_options2 = 650 fibptr->dev->supplement_adapter_info.supported_options2; 651 652 if ((le32_to_cpu(dresp->status) == ST_OK) && 653 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 654 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 655 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 656 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 657 fsa_dev_ptr->block_size = 0x200; 658 } else { 659 fsa_dev_ptr->block_size = 660 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 661 } 662 for (i = 0; i < 16; i++) 663 fsa_dev_ptr->identifier[i] = 664 dresp->mnt[0].fileinfo.bdevinfo 665 .identifier[i]; 666 fsa_dev_ptr->valid = 1; 667 /* sense_key holds the current state of the spin-up */ 668 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 669 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 670 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 671 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 672 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 673 fsa_dev_ptr->size 674 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 675 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 676 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 677 } 678 if ((fsa_dev_ptr->valid & 1) == 0) 679 fsa_dev_ptr->valid = 0; 680 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 681 } 682 aac_fib_complete(fibptr); 683 aac_fib_free(fibptr); 684 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 685 scsicmd->SCp.ptr = NULL; 686 (*callback)(scsicmd); 687 return; 688 } 689 690 static void _aac_probe_container1(void * context, struct fib * fibptr) 691 { 692 struct scsi_cmnd * scsicmd; 693 struct aac_mount * dresp; 694 struct aac_query_mount *dinfo; 695 int status; 696 697 dresp = (struct aac_mount *) fib_data(fibptr); 698 if (!(fibptr->dev->supplement_adapter_info.supported_options2 & 699 AAC_OPTION_VARIABLE_BLOCK_SIZE)) 700 dresp->mnt[0].capacityhigh = 0; 701 if ((le32_to_cpu(dresp->status) != ST_OK) || 702 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 703 _aac_probe_container2(context, fibptr); 704 return; 705 } 706 scsicmd = (struct scsi_cmnd *) context; 707 708 if (!aac_valid_context(scsicmd, fibptr)) 709 return; 710 711 aac_fib_init(fibptr); 712 713 dinfo = (struct aac_query_mount *)fib_data(fibptr); 714 715 if (fibptr->dev->supplement_adapter_info.supported_options2 & 716 AAC_OPTION_VARIABLE_BLOCK_SIZE) 717 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 718 else 719 dinfo->command = cpu_to_le32(VM_NameServe64); 720 721 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 722 dinfo->type = cpu_to_le32(FT_FILESYS); 723 724 status = aac_fib_send(ContainerCommand, 725 fibptr, 726 sizeof(struct aac_query_mount), 727 FsaNormal, 728 0, 1, 729 _aac_probe_container2, 730 (void *) scsicmd); 731 /* 732 * Check that the command queued to the controller 733 */ 734 if (status == -EINPROGRESS) 735 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 736 else if (status < 0) { 737 /* Inherit results from VM_NameServe, if any */ 738 dresp->status = cpu_to_le32(ST_OK); 739 _aac_probe_container2(context, fibptr); 740 } 741 } 742 743 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 744 { 745 struct fib * fibptr; 746 int status = -ENOMEM; 747 748 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 749 struct aac_query_mount *dinfo; 750 751 aac_fib_init(fibptr); 752 753 dinfo = (struct aac_query_mount *)fib_data(fibptr); 754 755 if (fibptr->dev->supplement_adapter_info.supported_options2 & 756 AAC_OPTION_VARIABLE_BLOCK_SIZE) 757 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 758 else 759 dinfo->command = cpu_to_le32(VM_NameServe); 760 761 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 762 dinfo->type = cpu_to_le32(FT_FILESYS); 763 scsicmd->SCp.ptr = (char *)callback; 764 765 status = aac_fib_send(ContainerCommand, 766 fibptr, 767 sizeof(struct aac_query_mount), 768 FsaNormal, 769 0, 1, 770 _aac_probe_container1, 771 (void *) scsicmd); 772 /* 773 * Check that the command queued to the controller 774 */ 775 if (status == -EINPROGRESS) { 776 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 777 return 0; 778 } 779 if (status < 0) { 780 scsicmd->SCp.ptr = NULL; 781 aac_fib_complete(fibptr); 782 aac_fib_free(fibptr); 783 } 784 } 785 if (status < 0) { 786 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 787 if (fsa_dev_ptr) { 788 fsa_dev_ptr += scmd_id(scsicmd); 789 if ((fsa_dev_ptr->valid & 1) == 0) { 790 fsa_dev_ptr->valid = 0; 791 return (*callback)(scsicmd); 792 } 793 } 794 } 795 return status; 796 } 797 798 /** 799 * aac_probe_container - query a logical volume 800 * @dev: device to query 801 * @cid: container identifier 802 * 803 * Queries the controller about the given volume. The volume information 804 * is updated in the struct fsa_dev_info structure rather than returned. 805 */ 806 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 807 { 808 scsicmd->device = NULL; 809 return 0; 810 } 811 812 int aac_probe_container(struct aac_dev *dev, int cid) 813 { 814 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 815 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 816 int status; 817 818 if (!scsicmd || !scsidev) { 819 kfree(scsicmd); 820 kfree(scsidev); 821 return -ENOMEM; 822 } 823 scsicmd->list.next = NULL; 824 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; 825 826 scsicmd->device = scsidev; 827 scsidev->sdev_state = 0; 828 scsidev->id = cid; 829 scsidev->host = dev->scsi_host_ptr; 830 831 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 832 while (scsicmd->device == scsidev) 833 schedule(); 834 kfree(scsidev); 835 status = scsicmd->SCp.Status; 836 kfree(scsicmd); 837 return status; 838 } 839 840 /* Local Structure to set SCSI inquiry data strings */ 841 struct scsi_inq { 842 char vid[8]; /* Vendor ID */ 843 char pid[16]; /* Product ID */ 844 char prl[4]; /* Product Revision Level */ 845 }; 846 847 /** 848 * InqStrCopy - string merge 849 * @a: string to copy from 850 * @b: string to copy to 851 * 852 * Copy a String from one location to another 853 * without copying \0 854 */ 855 856 static void inqstrcpy(char *a, char *b) 857 { 858 859 while (*a != (char)0) 860 *b++ = *a++; 861 } 862 863 static char *container_types[] = { 864 "None", 865 "Volume", 866 "Mirror", 867 "Stripe", 868 "RAID5", 869 "SSRW", 870 "SSRO", 871 "Morph", 872 "Legacy", 873 "RAID4", 874 "RAID10", 875 "RAID00", 876 "V-MIRRORS", 877 "PSEUDO R4", 878 "RAID50", 879 "RAID5D", 880 "RAID5D0", 881 "RAID1E", 882 "RAID6", 883 "RAID60", 884 "Unknown" 885 }; 886 887 char * get_container_type(unsigned tindex) 888 { 889 if (tindex >= ARRAY_SIZE(container_types)) 890 tindex = ARRAY_SIZE(container_types) - 1; 891 return container_types[tindex]; 892 } 893 894 /* Function: setinqstr 895 * 896 * Arguments: [1] pointer to void [1] int 897 * 898 * Purpose: Sets SCSI inquiry data strings for vendor, product 899 * and revision level. Allows strings to be set in platform dependent 900 * files instead of in OS dependent driver source. 901 */ 902 903 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 904 { 905 struct scsi_inq *str; 906 struct aac_supplement_adapter_info *sup_adap_info; 907 908 sup_adap_info = &dev->supplement_adapter_info; 909 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 910 memset(str, ' ', sizeof(*str)); 911 912 if (sup_adap_info->adapter_type_text[0]) { 913 char *cp = sup_adap_info->adapter_type_text; 914 int c; 915 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 916 inqstrcpy("SMC", str->vid); 917 else { 918 c = sizeof(str->vid); 919 while (*cp && *cp != ' ' && --c) 920 ++cp; 921 c = *cp; 922 *cp = '\0'; 923 inqstrcpy(sup_adap_info->adapter_type_text, str->vid); 924 *cp = c; 925 while (*cp && *cp != ' ') 926 ++cp; 927 } 928 while (*cp == ' ') 929 ++cp; 930 /* last six chars reserved for vol type */ 931 c = 0; 932 if (strlen(cp) > sizeof(str->pid)) { 933 c = cp[sizeof(str->pid)]; 934 cp[sizeof(str->pid)] = '\0'; 935 } 936 inqstrcpy (cp, str->pid); 937 if (c) 938 cp[sizeof(str->pid)] = c; 939 } else { 940 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 941 942 inqstrcpy (mp->vname, str->vid); 943 /* last six chars reserved for vol type */ 944 inqstrcpy (mp->model, str->pid); 945 } 946 947 if (tindex < ARRAY_SIZE(container_types)){ 948 char *findit = str->pid; 949 950 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 951 /* RAID is superfluous in the context of a RAID device */ 952 if (memcmp(findit-4, "RAID", 4) == 0) 953 *(findit -= 4) = ' '; 954 if (((findit - str->pid) + strlen(container_types[tindex])) 955 < (sizeof(str->pid) + sizeof(str->prl))) 956 inqstrcpy (container_types[tindex], findit + 1); 957 } 958 inqstrcpy ("V1.0", str->prl); 959 } 960 961 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 962 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 963 { 964 int container; 965 966 vpdpage83data->type3.codeset = 1; 967 vpdpage83data->type3.identifiertype = 3; 968 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 969 - 4; 970 971 for (container = 0; container < dev->maximum_num_containers; 972 container++) { 973 974 if (scmd_id(scsicmd) == container) { 975 memcpy(vpdpage83data->type3.Identifier, 976 dev->fsa_dev[container].identifier, 977 16); 978 break; 979 } 980 } 981 } 982 983 static void get_container_serial_callback(void *context, struct fib * fibptr) 984 { 985 struct aac_get_serial_resp * get_serial_reply; 986 struct scsi_cmnd * scsicmd; 987 988 BUG_ON(fibptr == NULL); 989 990 scsicmd = (struct scsi_cmnd *) context; 991 if (!aac_valid_context(scsicmd, fibptr)) 992 return; 993 994 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 995 /* Failure is irrelevant, using default value instead */ 996 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 997 /*Check to see if it's for VPD 0x83 or 0x80 */ 998 if (scsicmd->cmnd[2] == 0x83) { 999 /* vpd page 0x83 - Device Identification Page */ 1000 struct aac_dev *dev; 1001 int i; 1002 struct tvpd_page83 vpdpage83data; 1003 1004 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1005 1006 memset(((u8 *)&vpdpage83data), 0, 1007 sizeof(vpdpage83data)); 1008 1009 /* DIRECT_ACCESS_DEVIC */ 1010 vpdpage83data.DeviceType = 0; 1011 /* DEVICE_CONNECTED */ 1012 vpdpage83data.DeviceTypeQualifier = 0; 1013 /* VPD_DEVICE_IDENTIFIERS */ 1014 vpdpage83data.PageCode = 0x83; 1015 vpdpage83data.reserved = 0; 1016 vpdpage83data.PageLength = 1017 sizeof(vpdpage83data.type1) + 1018 sizeof(vpdpage83data.type2); 1019 1020 /* VPD 83 Type 3 is not supported for ARC */ 1021 if (dev->sa_firmware) 1022 vpdpage83data.PageLength += 1023 sizeof(vpdpage83data.type3); 1024 1025 /* T10 Vendor Identifier Field Format */ 1026 /* VpdcodesetAscii */ 1027 vpdpage83data.type1.codeset = 2; 1028 /* VpdIdentifierTypeVendorId */ 1029 vpdpage83data.type1.identifiertype = 1; 1030 vpdpage83data.type1.identifierlength = 1031 sizeof(vpdpage83data.type1) - 4; 1032 1033 /* "ADAPTEC " for adaptec */ 1034 memcpy(vpdpage83data.type1.venid, 1035 "ADAPTEC ", 1036 sizeof(vpdpage83data.type1.venid)); 1037 memcpy(vpdpage83data.type1.productid, 1038 "ARRAY ", 1039 sizeof( 1040 vpdpage83data.type1.productid)); 1041 1042 /* Convert to ascii based serial number. 1043 * The LSB is the the end. 1044 */ 1045 for (i = 0; i < 8; i++) { 1046 u8 temp = 1047 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1048 if (temp > 0x9) { 1049 vpdpage83data.type1.serialnumber[i] = 1050 'A' + (temp - 0xA); 1051 } else { 1052 vpdpage83data.type1.serialnumber[i] = 1053 '0' + temp; 1054 } 1055 } 1056 1057 /* VpdCodeSetBinary */ 1058 vpdpage83data.type2.codeset = 1; 1059 /* VpdidentifiertypeEUI64 */ 1060 vpdpage83data.type2.identifiertype = 2; 1061 vpdpage83data.type2.identifierlength = 1062 sizeof(vpdpage83data.type2) - 4; 1063 1064 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1065 vpdpage83data.type2.eu64id.venid[1] = 0; 1066 vpdpage83data.type2.eu64id.venid[2] = 0; 1067 1068 vpdpage83data.type2.eu64id.Serial = 1069 get_serial_reply->uid; 1070 vpdpage83data.type2.eu64id.reserved = 0; 1071 1072 /* 1073 * VpdIdentifierTypeFCPHName 1074 * VPD 0x83 Type 3 not supported for ARC 1075 */ 1076 if (dev->sa_firmware) { 1077 build_vpd83_type3(&vpdpage83data, 1078 dev, scsicmd); 1079 } 1080 1081 /* Move the inquiry data to the response buffer. */ 1082 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1083 sizeof(vpdpage83data)); 1084 } else { 1085 /* It must be for VPD 0x80 */ 1086 char sp[13]; 1087 /* EVPD bit set */ 1088 sp[0] = INQD_PDT_DA; 1089 sp[1] = scsicmd->cmnd[2]; 1090 sp[2] = 0; 1091 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1092 le32_to_cpu(get_serial_reply->uid)); 1093 scsi_sg_copy_from_buffer(scsicmd, sp, 1094 sizeof(sp)); 1095 } 1096 } 1097 1098 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1099 1100 aac_fib_complete(fibptr); 1101 scsicmd->scsi_done(scsicmd); 1102 } 1103 1104 /** 1105 * aac_get_container_serial - get container serial, none blocking. 1106 */ 1107 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1108 { 1109 int status; 1110 struct aac_get_serial *dinfo; 1111 struct fib * cmd_fibcontext; 1112 struct aac_dev * dev; 1113 1114 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1115 1116 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1117 1118 aac_fib_init(cmd_fibcontext); 1119 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1120 1121 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1122 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1123 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1124 1125 status = aac_fib_send(ContainerCommand, 1126 cmd_fibcontext, 1127 sizeof(struct aac_get_serial_resp), 1128 FsaNormal, 1129 0, 1, 1130 (fib_callback) get_container_serial_callback, 1131 (void *) scsicmd); 1132 1133 /* 1134 * Check that the command queued to the controller 1135 */ 1136 if (status == -EINPROGRESS) { 1137 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1138 return 0; 1139 } 1140 1141 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1142 aac_fib_complete(cmd_fibcontext); 1143 return -1; 1144 } 1145 1146 /* Function: setinqserial 1147 * 1148 * Arguments: [1] pointer to void [1] int 1149 * 1150 * Purpose: Sets SCSI Unit Serial number. 1151 * This is a fake. We should read a proper 1152 * serial number from the container. <SuSE>But 1153 * without docs it's quite hard to do it :-) 1154 * So this will have to do in the meantime.</SuSE> 1155 */ 1156 1157 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1158 { 1159 /* 1160 * This breaks array migration. 1161 */ 1162 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1163 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1164 } 1165 1166 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1167 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1168 { 1169 u8 *sense_buf = (u8 *)sense_data; 1170 /* Sense data valid, err code 70h */ 1171 sense_buf[0] = 0x70; /* No info field */ 1172 sense_buf[1] = 0; /* Segment number, always zero */ 1173 1174 sense_buf[2] = sense_key; /* Sense key */ 1175 1176 sense_buf[12] = sense_code; /* Additional sense code */ 1177 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1178 1179 if (sense_key == ILLEGAL_REQUEST) { 1180 sense_buf[7] = 10; /* Additional sense length */ 1181 1182 sense_buf[15] = bit_pointer; 1183 /* Illegal parameter is in the parameter block */ 1184 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1185 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1186 /* Illegal parameter is in the CDB block */ 1187 sense_buf[16] = field_pointer >> 8; /* MSB */ 1188 sense_buf[17] = field_pointer; /* LSB */ 1189 } else 1190 sense_buf[7] = 6; /* Additional sense length */ 1191 } 1192 1193 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1194 { 1195 if (lba & 0xffffffff00000000LL) { 1196 int cid = scmd_id(cmd); 1197 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1198 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1199 SAM_STAT_CHECK_CONDITION; 1200 set_sense(&dev->fsa_dev[cid].sense_data, 1201 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1202 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1203 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1204 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1205 SCSI_SENSE_BUFFERSIZE)); 1206 cmd->scsi_done(cmd); 1207 return 1; 1208 } 1209 return 0; 1210 } 1211 1212 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1213 { 1214 return 0; 1215 } 1216 1217 static void io_callback(void *context, struct fib * fibptr); 1218 1219 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1220 { 1221 struct aac_dev *dev = fib->dev; 1222 u16 fibsize, command; 1223 long ret; 1224 1225 aac_fib_init(fib); 1226 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1227 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1228 !dev->sync_mode) { 1229 struct aac_raw_io2 *readcmd2; 1230 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1231 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1232 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1233 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1234 readcmd2->byteCount = cpu_to_le32(count * 1235 dev->fsa_dev[scmd_id(cmd)].block_size); 1236 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1237 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1238 ret = aac_build_sgraw2(cmd, readcmd2, 1239 dev->scsi_host_ptr->sg_tablesize); 1240 if (ret < 0) 1241 return ret; 1242 command = ContainerRawIo2; 1243 fibsize = sizeof(struct aac_raw_io2) + 1244 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1245 } else { 1246 struct aac_raw_io *readcmd; 1247 readcmd = (struct aac_raw_io *) fib_data(fib); 1248 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1249 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1250 readcmd->count = cpu_to_le32(count * 1251 dev->fsa_dev[scmd_id(cmd)].block_size); 1252 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1253 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1254 readcmd->bpTotal = 0; 1255 readcmd->bpComplete = 0; 1256 ret = aac_build_sgraw(cmd, &readcmd->sg); 1257 if (ret < 0) 1258 return ret; 1259 command = ContainerRawIo; 1260 fibsize = sizeof(struct aac_raw_io) + 1261 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1262 } 1263 1264 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1265 /* 1266 * Now send the Fib to the adapter 1267 */ 1268 return aac_fib_send(command, 1269 fib, 1270 fibsize, 1271 FsaNormal, 1272 0, 1, 1273 (fib_callback) io_callback, 1274 (void *) cmd); 1275 } 1276 1277 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1278 { 1279 u16 fibsize; 1280 struct aac_read64 *readcmd; 1281 long ret; 1282 1283 aac_fib_init(fib); 1284 readcmd = (struct aac_read64 *) fib_data(fib); 1285 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1286 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1287 readcmd->sector_count = cpu_to_le16(count); 1288 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1289 readcmd->pad = 0; 1290 readcmd->flags = 0; 1291 1292 ret = aac_build_sg64(cmd, &readcmd->sg); 1293 if (ret < 0) 1294 return ret; 1295 fibsize = sizeof(struct aac_read64) + 1296 ((le32_to_cpu(readcmd->sg.count) - 1) * 1297 sizeof (struct sgentry64)); 1298 BUG_ON (fibsize > (fib->dev->max_fib_size - 1299 sizeof(struct aac_fibhdr))); 1300 /* 1301 * Now send the Fib to the adapter 1302 */ 1303 return aac_fib_send(ContainerCommand64, 1304 fib, 1305 fibsize, 1306 FsaNormal, 1307 0, 1, 1308 (fib_callback) io_callback, 1309 (void *) cmd); 1310 } 1311 1312 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1313 { 1314 u16 fibsize; 1315 struct aac_read *readcmd; 1316 struct aac_dev *dev = fib->dev; 1317 long ret; 1318 1319 aac_fib_init(fib); 1320 readcmd = (struct aac_read *) fib_data(fib); 1321 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1322 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1323 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1324 readcmd->count = cpu_to_le32(count * 1325 dev->fsa_dev[scmd_id(cmd)].block_size); 1326 1327 ret = aac_build_sg(cmd, &readcmd->sg); 1328 if (ret < 0) 1329 return ret; 1330 fibsize = sizeof(struct aac_read) + 1331 ((le32_to_cpu(readcmd->sg.count) - 1) * 1332 sizeof (struct sgentry)); 1333 BUG_ON (fibsize > (fib->dev->max_fib_size - 1334 sizeof(struct aac_fibhdr))); 1335 /* 1336 * Now send the Fib to the adapter 1337 */ 1338 return aac_fib_send(ContainerCommand, 1339 fib, 1340 fibsize, 1341 FsaNormal, 1342 0, 1, 1343 (fib_callback) io_callback, 1344 (void *) cmd); 1345 } 1346 1347 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1348 { 1349 struct aac_dev *dev = fib->dev; 1350 u16 fibsize, command; 1351 long ret; 1352 1353 aac_fib_init(fib); 1354 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1355 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1356 !dev->sync_mode) { 1357 struct aac_raw_io2 *writecmd2; 1358 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1359 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1360 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1361 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1362 writecmd2->byteCount = cpu_to_le32(count * 1363 dev->fsa_dev[scmd_id(cmd)].block_size); 1364 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1365 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1366 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1367 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1368 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1369 ret = aac_build_sgraw2(cmd, writecmd2, 1370 dev->scsi_host_ptr->sg_tablesize); 1371 if (ret < 0) 1372 return ret; 1373 command = ContainerRawIo2; 1374 fibsize = sizeof(struct aac_raw_io2) + 1375 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1376 } else { 1377 struct aac_raw_io *writecmd; 1378 writecmd = (struct aac_raw_io *) fib_data(fib); 1379 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1380 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1381 writecmd->count = cpu_to_le32(count * 1382 dev->fsa_dev[scmd_id(cmd)].block_size); 1383 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1384 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1385 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1386 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1387 cpu_to_le16(RIO_TYPE_WRITE); 1388 writecmd->bpTotal = 0; 1389 writecmd->bpComplete = 0; 1390 ret = aac_build_sgraw(cmd, &writecmd->sg); 1391 if (ret < 0) 1392 return ret; 1393 command = ContainerRawIo; 1394 fibsize = sizeof(struct aac_raw_io) + 1395 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1396 } 1397 1398 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1399 /* 1400 * Now send the Fib to the adapter 1401 */ 1402 return aac_fib_send(command, 1403 fib, 1404 fibsize, 1405 FsaNormal, 1406 0, 1, 1407 (fib_callback) io_callback, 1408 (void *) cmd); 1409 } 1410 1411 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1412 { 1413 u16 fibsize; 1414 struct aac_write64 *writecmd; 1415 long ret; 1416 1417 aac_fib_init(fib); 1418 writecmd = (struct aac_write64 *) fib_data(fib); 1419 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1420 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1421 writecmd->sector_count = cpu_to_le16(count); 1422 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1423 writecmd->pad = 0; 1424 writecmd->flags = 0; 1425 1426 ret = aac_build_sg64(cmd, &writecmd->sg); 1427 if (ret < 0) 1428 return ret; 1429 fibsize = sizeof(struct aac_write64) + 1430 ((le32_to_cpu(writecmd->sg.count) - 1) * 1431 sizeof (struct sgentry64)); 1432 BUG_ON (fibsize > (fib->dev->max_fib_size - 1433 sizeof(struct aac_fibhdr))); 1434 /* 1435 * Now send the Fib to the adapter 1436 */ 1437 return aac_fib_send(ContainerCommand64, 1438 fib, 1439 fibsize, 1440 FsaNormal, 1441 0, 1, 1442 (fib_callback) io_callback, 1443 (void *) cmd); 1444 } 1445 1446 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1447 { 1448 u16 fibsize; 1449 struct aac_write *writecmd; 1450 struct aac_dev *dev = fib->dev; 1451 long ret; 1452 1453 aac_fib_init(fib); 1454 writecmd = (struct aac_write *) fib_data(fib); 1455 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1456 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1457 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1458 writecmd->count = cpu_to_le32(count * 1459 dev->fsa_dev[scmd_id(cmd)].block_size); 1460 writecmd->sg.count = cpu_to_le32(1); 1461 /* ->stable is not used - it did mean which type of write */ 1462 1463 ret = aac_build_sg(cmd, &writecmd->sg); 1464 if (ret < 0) 1465 return ret; 1466 fibsize = sizeof(struct aac_write) + 1467 ((le32_to_cpu(writecmd->sg.count) - 1) * 1468 sizeof (struct sgentry)); 1469 BUG_ON (fibsize > (fib->dev->max_fib_size - 1470 sizeof(struct aac_fibhdr))); 1471 /* 1472 * Now send the Fib to the adapter 1473 */ 1474 return aac_fib_send(ContainerCommand, 1475 fib, 1476 fibsize, 1477 FsaNormal, 1478 0, 1, 1479 (fib_callback) io_callback, 1480 (void *) cmd); 1481 } 1482 1483 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1484 { 1485 struct aac_srb * srbcmd; 1486 u32 flag; 1487 u32 timeout; 1488 1489 aac_fib_init(fib); 1490 switch(cmd->sc_data_direction){ 1491 case DMA_TO_DEVICE: 1492 flag = SRB_DataOut; 1493 break; 1494 case DMA_BIDIRECTIONAL: 1495 flag = SRB_DataIn | SRB_DataOut; 1496 break; 1497 case DMA_FROM_DEVICE: 1498 flag = SRB_DataIn; 1499 break; 1500 case DMA_NONE: 1501 default: /* shuts up some versions of gcc */ 1502 flag = SRB_NoDataXfer; 1503 break; 1504 } 1505 1506 srbcmd = (struct aac_srb*) fib_data(fib); 1507 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1508 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1509 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1510 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1511 srbcmd->flags = cpu_to_le32(flag); 1512 timeout = cmd->request->timeout/HZ; 1513 if (timeout == 0) 1514 timeout = 1; 1515 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1516 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1517 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1518 return srbcmd; 1519 } 1520 1521 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1522 struct scsi_cmnd *cmd) 1523 { 1524 struct aac_hba_cmd_req *hbacmd; 1525 struct aac_dev *dev; 1526 int bus, target; 1527 u64 address; 1528 1529 dev = (struct aac_dev *)cmd->device->host->hostdata; 1530 1531 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1532 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1533 /* iu_type is a parameter of aac_hba_send */ 1534 switch (cmd->sc_data_direction) { 1535 case DMA_TO_DEVICE: 1536 hbacmd->byte1 = 2; 1537 break; 1538 case DMA_FROM_DEVICE: 1539 case DMA_BIDIRECTIONAL: 1540 hbacmd->byte1 = 1; 1541 break; 1542 case DMA_NONE: 1543 default: 1544 break; 1545 } 1546 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1547 1548 bus = aac_logical_to_phys(scmd_channel(cmd)); 1549 target = scmd_id(cmd); 1550 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1551 1552 /* we fill in reply_qid later in aac_src_deliver_message */ 1553 /* we fill in iu_type, request_id later in aac_hba_send */ 1554 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1555 1556 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1557 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1558 1559 address = (u64)fib->hw_error_pa; 1560 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1561 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1562 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1563 1564 return hbacmd; 1565 } 1566 1567 static void aac_srb_callback(void *context, struct fib * fibptr); 1568 1569 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1570 { 1571 u16 fibsize; 1572 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1573 long ret; 1574 1575 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1576 if (ret < 0) 1577 return ret; 1578 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1579 1580 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1581 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1582 /* 1583 * Build Scatter/Gather list 1584 */ 1585 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1586 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1587 sizeof (struct sgentry64)); 1588 BUG_ON (fibsize > (fib->dev->max_fib_size - 1589 sizeof(struct aac_fibhdr))); 1590 1591 /* 1592 * Now send the Fib to the adapter 1593 */ 1594 return aac_fib_send(ScsiPortCommand64, fib, 1595 fibsize, FsaNormal, 0, 1, 1596 (fib_callback) aac_srb_callback, 1597 (void *) cmd); 1598 } 1599 1600 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1601 { 1602 u16 fibsize; 1603 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1604 long ret; 1605 1606 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1607 if (ret < 0) 1608 return ret; 1609 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1610 1611 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1612 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1613 /* 1614 * Build Scatter/Gather list 1615 */ 1616 fibsize = sizeof (struct aac_srb) + 1617 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1618 sizeof (struct sgentry)); 1619 BUG_ON (fibsize > (fib->dev->max_fib_size - 1620 sizeof(struct aac_fibhdr))); 1621 1622 /* 1623 * Now send the Fib to the adapter 1624 */ 1625 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1626 (fib_callback) aac_srb_callback, (void *) cmd); 1627 } 1628 1629 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1630 { 1631 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1632 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1633 return FAILED; 1634 return aac_scsi_32(fib, cmd); 1635 } 1636 1637 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1638 { 1639 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1640 struct aac_dev *dev; 1641 long ret; 1642 1643 dev = (struct aac_dev *)cmd->device->host->hostdata; 1644 1645 ret = aac_build_sghba(cmd, hbacmd, 1646 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1647 if (ret < 0) 1648 return ret; 1649 1650 /* 1651 * Now send the HBA command to the adapter 1652 */ 1653 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1654 sizeof(struct aac_hba_sgl); 1655 1656 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1657 (fib_callback) aac_hba_callback, 1658 (void *) cmd); 1659 } 1660 1661 int aac_issue_bmic_identify(struct aac_dev *dev, u32 bus, u32 target) 1662 { 1663 struct fib *fibptr; 1664 struct aac_srb *srbcmd; 1665 struct sgmap64 *sg64; 1666 struct aac_ciss_identify_pd *identify_resp; 1667 dma_addr_t addr; 1668 u32 vbus, vid; 1669 u16 fibsize, datasize; 1670 int rcode = -ENOMEM; 1671 1672 1673 fibptr = aac_fib_alloc(dev); 1674 if (!fibptr) 1675 goto out; 1676 1677 fibsize = sizeof(struct aac_srb) - 1678 sizeof(struct sgentry) + sizeof(struct sgentry64); 1679 datasize = sizeof(struct aac_ciss_identify_pd); 1680 1681 identify_resp = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 1682 GFP_KERNEL); 1683 if (!identify_resp) 1684 goto fib_free_ptr; 1685 1686 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 1687 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 1688 1689 aac_fib_init(fibptr); 1690 1691 srbcmd = (struct aac_srb *) fib_data(fibptr); 1692 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1693 srbcmd->channel = cpu_to_le32(vbus); 1694 srbcmd->id = cpu_to_le32(vid); 1695 srbcmd->lun = 0; 1696 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1697 srbcmd->timeout = cpu_to_le32(10); 1698 srbcmd->retry_limit = 0; 1699 srbcmd->cdb_size = cpu_to_le32(12); 1700 srbcmd->count = cpu_to_le32(datasize); 1701 1702 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1703 srbcmd->cdb[0] = 0x26; 1704 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1705 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1706 1707 sg64 = (struct sgmap64 *)&srbcmd->sg; 1708 sg64->count = cpu_to_le32(1); 1709 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 1710 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 1711 sg64->sg[0].count = cpu_to_le32(datasize); 1712 1713 rcode = aac_fib_send(ScsiPortCommand64, 1714 fibptr, fibsize, FsaNormal, 1, 1, NULL, NULL); 1715 1716 if (identify_resp->current_queue_depth_limit <= 0 || 1717 identify_resp->current_queue_depth_limit > 32) 1718 dev->hba_map[bus][target].qd_limit = 32; 1719 else 1720 dev->hba_map[bus][target].qd_limit = 1721 identify_resp->current_queue_depth_limit; 1722 1723 dma_free_coherent(&dev->pdev->dev, datasize, identify_resp, addr); 1724 1725 aac_fib_complete(fibptr); 1726 1727 fib_free_ptr: 1728 aac_fib_free(fibptr); 1729 out: 1730 return rcode; 1731 } 1732 1733 /** 1734 * aac_update hba_map()- update current hba map with data from FW 1735 * @dev: aac_dev structure 1736 * @phys_luns: FW information from report phys luns 1737 * 1738 * Update our hba map with the information gathered from the FW 1739 */ 1740 void aac_update_hba_map(struct aac_dev *dev, 1741 struct aac_ciss_phys_luns_resp *phys_luns, int rescan) 1742 { 1743 /* ok and extended reporting */ 1744 u32 lun_count, nexus; 1745 u32 i, bus, target; 1746 u8 expose_flag, attribs; 1747 u8 devtype; 1748 1749 lun_count = ((phys_luns->list_length[0] << 24) 1750 + (phys_luns->list_length[1] << 16) 1751 + (phys_luns->list_length[2] << 8) 1752 + (phys_luns->list_length[3])) / 24; 1753 1754 for (i = 0; i < lun_count; ++i) { 1755 1756 bus = phys_luns->lun[i].level2[1] & 0x3f; 1757 target = phys_luns->lun[i].level2[0]; 1758 expose_flag = phys_luns->lun[i].bus >> 6; 1759 attribs = phys_luns->lun[i].node_ident[9]; 1760 nexus = *((u32 *) &phys_luns->lun[i].node_ident[12]); 1761 1762 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1763 continue; 1764 1765 dev->hba_map[bus][target].expose = expose_flag; 1766 1767 if (expose_flag != 0) { 1768 devtype = AAC_DEVTYPE_RAID_MEMBER; 1769 goto update_devtype; 1770 } 1771 1772 if (nexus != 0 && (attribs & 8)) { 1773 devtype = AAC_DEVTYPE_NATIVE_RAW; 1774 dev->hba_map[bus][target].rmw_nexus = 1775 nexus; 1776 } else 1777 devtype = AAC_DEVTYPE_ARC_RAW; 1778 1779 if (devtype != AAC_DEVTYPE_NATIVE_RAW) 1780 goto update_devtype; 1781 1782 if (aac_issue_bmic_identify(dev, bus, target) < 0) 1783 dev->hba_map[bus][target].qd_limit = 32; 1784 1785 update_devtype: 1786 if (rescan == AAC_INIT) 1787 dev->hba_map[bus][target].devtype = devtype; 1788 else 1789 dev->hba_map[bus][target].new_devtype = devtype; 1790 } 1791 } 1792 1793 /** 1794 * aac_report_phys_luns() Process topology change 1795 * @dev: aac_dev structure 1796 * @fibptr: fib pointer 1797 * 1798 * Execute a CISS REPORT PHYS LUNS and process the results into 1799 * the current hba_map. 1800 */ 1801 int aac_report_phys_luns(struct aac_dev *dev, struct fib *fibptr, int rescan) 1802 { 1803 int fibsize, datasize; 1804 struct aac_ciss_phys_luns_resp *phys_luns; 1805 struct aac_srb *srbcmd; 1806 struct sgmap64 *sg64; 1807 dma_addr_t addr; 1808 u32 vbus, vid; 1809 int rcode = 0; 1810 1811 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */ 1812 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) 1813 + sizeof(struct sgentry64); 1814 datasize = sizeof(struct aac_ciss_phys_luns_resp) 1815 + (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1816 1817 phys_luns = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 1818 GFP_KERNEL); 1819 if (phys_luns == NULL) { 1820 rcode = -ENOMEM; 1821 goto err_out; 1822 } 1823 1824 vbus = (u32) le16_to_cpu( 1825 dev->supplement_adapter_info.virt_device_bus); 1826 vid = (u32) le16_to_cpu( 1827 dev->supplement_adapter_info.virt_device_target); 1828 1829 aac_fib_init(fibptr); 1830 1831 srbcmd = (struct aac_srb *) fib_data(fibptr); 1832 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1833 srbcmd->channel = cpu_to_le32(vbus); 1834 srbcmd->id = cpu_to_le32(vid); 1835 srbcmd->lun = 0; 1836 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1837 srbcmd->timeout = cpu_to_le32(10); 1838 srbcmd->retry_limit = 0; 1839 srbcmd->cdb_size = cpu_to_le32(12); 1840 srbcmd->count = cpu_to_le32(datasize); 1841 1842 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1843 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1844 srbcmd->cdb[1] = 2; /* extended reporting */ 1845 srbcmd->cdb[8] = (u8)(datasize >> 8); 1846 srbcmd->cdb[9] = (u8)(datasize); 1847 1848 sg64 = (struct sgmap64 *) &srbcmd->sg; 1849 sg64->count = cpu_to_le32(1); 1850 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1851 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1852 sg64->sg[0].count = cpu_to_le32(datasize); 1853 1854 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, 1855 FsaNormal, 1, 1, NULL, NULL); 1856 1857 /* analyse data */ 1858 if (rcode >= 0 && phys_luns->resp_flag == 2) { 1859 /* ok and extended reporting */ 1860 aac_update_hba_map(dev, phys_luns, rescan); 1861 } 1862 1863 dma_free_coherent(&dev->pdev->dev, datasize, phys_luns, addr); 1864 err_out: 1865 return rcode; 1866 } 1867 1868 int aac_get_adapter_info(struct aac_dev* dev) 1869 { 1870 struct fib* fibptr; 1871 int rcode; 1872 u32 tmp, bus, target; 1873 struct aac_adapter_info *info; 1874 struct aac_bus_info *command; 1875 struct aac_bus_info_response *bus_info; 1876 1877 if (!(fibptr = aac_fib_alloc(dev))) 1878 return -ENOMEM; 1879 1880 aac_fib_init(fibptr); 1881 info = (struct aac_adapter_info *) fib_data(fibptr); 1882 memset(info,0,sizeof(*info)); 1883 1884 rcode = aac_fib_send(RequestAdapterInfo, 1885 fibptr, 1886 sizeof(*info), 1887 FsaNormal, 1888 -1, 1, /* First `interrupt' command uses special wait */ 1889 NULL, 1890 NULL); 1891 1892 if (rcode < 0) { 1893 /* FIB should be freed only after 1894 * getting the response from the F/W */ 1895 if (rcode != -ERESTARTSYS) { 1896 aac_fib_complete(fibptr); 1897 aac_fib_free(fibptr); 1898 } 1899 return rcode; 1900 } 1901 memcpy(&dev->adapter_info, info, sizeof(*info)); 1902 1903 dev->supplement_adapter_info.virt_device_bus = 0xffff; 1904 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 1905 struct aac_supplement_adapter_info * sinfo; 1906 1907 aac_fib_init(fibptr); 1908 1909 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 1910 1911 memset(sinfo,0,sizeof(*sinfo)); 1912 1913 rcode = aac_fib_send(RequestSupplementAdapterInfo, 1914 fibptr, 1915 sizeof(*sinfo), 1916 FsaNormal, 1917 1, 1, 1918 NULL, 1919 NULL); 1920 1921 if (rcode >= 0) 1922 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 1923 if (rcode == -ERESTARTSYS) { 1924 fibptr = aac_fib_alloc(dev); 1925 if (!fibptr) 1926 return -ENOMEM; 1927 } 1928 1929 } 1930 1931 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 1932 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1933 for (target = 0; target < AAC_MAX_TARGETS; target++) { 1934 dev->hba_map[bus][target].devtype = 0; 1935 dev->hba_map[bus][target].qd_limit = 0; 1936 } 1937 } 1938 1939 /* 1940 * GetBusInfo 1941 */ 1942 1943 aac_fib_init(fibptr); 1944 1945 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 1946 1947 memset(bus_info, 0, sizeof(*bus_info)); 1948 1949 command = (struct aac_bus_info *)bus_info; 1950 1951 command->Command = cpu_to_le32(VM_Ioctl); 1952 command->ObjType = cpu_to_le32(FT_DRIVE); 1953 command->MethodId = cpu_to_le32(1); 1954 command->CtlCmd = cpu_to_le32(GetBusInfo); 1955 1956 rcode = aac_fib_send(ContainerCommand, 1957 fibptr, 1958 sizeof (*bus_info), 1959 FsaNormal, 1960 1, 1, 1961 NULL, NULL); 1962 1963 /* reasoned default */ 1964 dev->maximum_num_physicals = 16; 1965 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 1966 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 1967 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 1968 } 1969 1970 if (!dev->sync_mode && dev->sa_firmware && 1971 dev->supplement_adapter_info.virt_device_bus != 0xffff) { 1972 /* Thor SA Firmware -> CISS_REPORT_PHYSICAL_LUNS */ 1973 rcode = aac_report_phys_luns(dev, fibptr, AAC_INIT); 1974 } 1975 1976 if (!dev->in_reset) { 1977 char buffer[16]; 1978 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1979 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 1980 dev->name, 1981 dev->id, 1982 tmp>>24, 1983 (tmp>>16)&0xff, 1984 tmp&0xff, 1985 le32_to_cpu(dev->adapter_info.kernelbuild), 1986 (int)sizeof(dev->supplement_adapter_info.build_date), 1987 dev->supplement_adapter_info.build_date); 1988 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1989 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 1990 dev->name, dev->id, 1991 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 1992 le32_to_cpu(dev->adapter_info.monitorbuild)); 1993 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1994 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 1995 dev->name, dev->id, 1996 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 1997 le32_to_cpu(dev->adapter_info.biosbuild)); 1998 buffer[0] = '\0'; 1999 if (aac_get_serial_number( 2000 shost_to_class(dev->scsi_host_ptr), buffer)) 2001 printk(KERN_INFO "%s%d: serial %s", 2002 dev->name, dev->id, buffer); 2003 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2004 printk(KERN_INFO "%s%d: TSID %.*s\n", 2005 dev->name, dev->id, 2006 (int)sizeof(dev->supplement_adapter_info 2007 .vpd_info.tsid), 2008 dev->supplement_adapter_info.vpd_info.tsid); 2009 } 2010 if (!aac_check_reset || ((aac_check_reset == 1) && 2011 (dev->supplement_adapter_info.supported_options2 & 2012 AAC_OPTION_IGNORE_RESET))) { 2013 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2014 dev->name, dev->id); 2015 } 2016 } 2017 2018 dev->cache_protected = 0; 2019 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2020 AAC_FEATURE_JBOD) != 0); 2021 dev->nondasd_support = 0; 2022 dev->raid_scsi_mode = 0; 2023 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2024 dev->nondasd_support = 1; 2025 2026 /* 2027 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2028 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2029 * force nondasd support on. If we decide to allow the non-dasd flag 2030 * additional changes changes will have to be made to support 2031 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2032 * changed to support the new dev->raid_scsi_mode flag instead of 2033 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2034 * function aac_detect will have to be modified where it sets up the 2035 * max number of channels based on the aac->nondasd_support flag only. 2036 */ 2037 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2038 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2039 dev->nondasd_support = 1; 2040 dev->raid_scsi_mode = 1; 2041 } 2042 if (dev->raid_scsi_mode != 0) 2043 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2044 dev->name, dev->id); 2045 2046 if (nondasd != -1) 2047 dev->nondasd_support = (nondasd!=0); 2048 if (dev->nondasd_support && !dev->in_reset) 2049 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2050 2051 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2052 dev->needs_dac = 1; 2053 dev->dac_support = 0; 2054 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2055 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2056 if (!dev->in_reset) 2057 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2058 dev->name, dev->id); 2059 dev->dac_support = 1; 2060 } 2061 2062 if(dacmode != -1) { 2063 dev->dac_support = (dacmode!=0); 2064 } 2065 2066 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2067 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2068 & AAC_QUIRK_SCSI_32)) { 2069 dev->nondasd_support = 0; 2070 dev->jbod = 0; 2071 expose_physicals = 0; 2072 } 2073 2074 if (dev->dac_support) { 2075 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2076 if (!dev->in_reset) 2077 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2078 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2079 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2080 dev->dac_support = 0; 2081 } else { 2082 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2083 rcode = -ENOMEM; 2084 } 2085 } 2086 /* 2087 * Deal with configuring for the individualized limits of each packet 2088 * interface. 2089 */ 2090 dev->a_ops.adapter_scsi = (dev->dac_support) 2091 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2092 ? aac_scsi_32_64 2093 : aac_scsi_64) 2094 : aac_scsi_32; 2095 if (dev->raw_io_interface) { 2096 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2097 ? aac_bounds_64 2098 : aac_bounds_32; 2099 dev->a_ops.adapter_read = aac_read_raw_io; 2100 dev->a_ops.adapter_write = aac_write_raw_io; 2101 } else { 2102 dev->a_ops.adapter_bounds = aac_bounds_32; 2103 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2104 sizeof(struct aac_fibhdr) - 2105 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2106 sizeof(struct sgentry); 2107 if (dev->dac_support) { 2108 dev->a_ops.adapter_read = aac_read_block64; 2109 dev->a_ops.adapter_write = aac_write_block64; 2110 /* 2111 * 38 scatter gather elements 2112 */ 2113 dev->scsi_host_ptr->sg_tablesize = 2114 (dev->max_fib_size - 2115 sizeof(struct aac_fibhdr) - 2116 sizeof(struct aac_write64) + 2117 sizeof(struct sgentry64)) / 2118 sizeof(struct sgentry64); 2119 } else { 2120 dev->a_ops.adapter_read = aac_read_block; 2121 dev->a_ops.adapter_write = aac_write_block; 2122 } 2123 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2124 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2125 /* 2126 * Worst case size that could cause sg overflow when 2127 * we break up SG elements that are larger than 64KB. 2128 * Would be nice if we could tell the SCSI layer what 2129 * the maximum SG element size can be. Worst case is 2130 * (sg_tablesize-1) 4KB elements with one 64KB 2131 * element. 2132 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2133 */ 2134 dev->scsi_host_ptr->max_sectors = 2135 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2136 } 2137 } 2138 if (!dev->sync_mode && dev->sa_firmware && 2139 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2140 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2141 HBA_MAX_SG_SEPARATE; 2142 2143 /* FIB should be freed only after getting the response from the F/W */ 2144 if (rcode != -ERESTARTSYS) { 2145 aac_fib_complete(fibptr); 2146 aac_fib_free(fibptr); 2147 } 2148 2149 return rcode; 2150 } 2151 2152 2153 static void io_callback(void *context, struct fib * fibptr) 2154 { 2155 struct aac_dev *dev; 2156 struct aac_read_reply *readreply; 2157 struct scsi_cmnd *scsicmd; 2158 u32 cid; 2159 2160 scsicmd = (struct scsi_cmnd *) context; 2161 2162 if (!aac_valid_context(scsicmd, fibptr)) 2163 return; 2164 2165 dev = fibptr->dev; 2166 cid = scmd_id(scsicmd); 2167 2168 if (nblank(dprintk(x))) { 2169 u64 lba; 2170 switch (scsicmd->cmnd[0]) { 2171 case WRITE_6: 2172 case READ_6: 2173 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2174 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2175 break; 2176 case WRITE_16: 2177 case READ_16: 2178 lba = ((u64)scsicmd->cmnd[2] << 56) | 2179 ((u64)scsicmd->cmnd[3] << 48) | 2180 ((u64)scsicmd->cmnd[4] << 40) | 2181 ((u64)scsicmd->cmnd[5] << 32) | 2182 ((u64)scsicmd->cmnd[6] << 24) | 2183 (scsicmd->cmnd[7] << 16) | 2184 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2185 break; 2186 case WRITE_12: 2187 case READ_12: 2188 lba = ((u64)scsicmd->cmnd[2] << 24) | 2189 (scsicmd->cmnd[3] << 16) | 2190 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2191 break; 2192 default: 2193 lba = ((u64)scsicmd->cmnd[2] << 24) | 2194 (scsicmd->cmnd[3] << 16) | 2195 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2196 break; 2197 } 2198 printk(KERN_DEBUG 2199 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2200 smp_processor_id(), (unsigned long long)lba, jiffies); 2201 } 2202 2203 BUG_ON(fibptr == NULL); 2204 2205 scsi_dma_unmap(scsicmd); 2206 2207 readreply = (struct aac_read_reply *)fib_data(fibptr); 2208 switch (le32_to_cpu(readreply->status)) { 2209 case ST_OK: 2210 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2211 SAM_STAT_GOOD; 2212 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2213 break; 2214 case ST_NOT_READY: 2215 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2216 SAM_STAT_CHECK_CONDITION; 2217 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2218 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2219 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2220 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2221 SCSI_SENSE_BUFFERSIZE)); 2222 break; 2223 case ST_MEDERR: 2224 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2225 SAM_STAT_CHECK_CONDITION; 2226 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2227 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2228 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2229 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2230 SCSI_SENSE_BUFFERSIZE)); 2231 break; 2232 default: 2233 #ifdef AAC_DETAILED_STATUS_INFO 2234 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2235 le32_to_cpu(readreply->status)); 2236 #endif 2237 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2238 SAM_STAT_CHECK_CONDITION; 2239 set_sense(&dev->fsa_dev[cid].sense_data, 2240 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2241 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2242 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2243 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2244 SCSI_SENSE_BUFFERSIZE)); 2245 break; 2246 } 2247 aac_fib_complete(fibptr); 2248 2249 scsicmd->scsi_done(scsicmd); 2250 } 2251 2252 static int aac_read(struct scsi_cmnd * scsicmd) 2253 { 2254 u64 lba; 2255 u32 count; 2256 int status; 2257 struct aac_dev *dev; 2258 struct fib * cmd_fibcontext; 2259 int cid; 2260 2261 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2262 /* 2263 * Get block address and transfer length 2264 */ 2265 switch (scsicmd->cmnd[0]) { 2266 case READ_6: 2267 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2268 2269 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2270 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2271 count = scsicmd->cmnd[4]; 2272 2273 if (count == 0) 2274 count = 256; 2275 break; 2276 case READ_16: 2277 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2278 2279 lba = ((u64)scsicmd->cmnd[2] << 56) | 2280 ((u64)scsicmd->cmnd[3] << 48) | 2281 ((u64)scsicmd->cmnd[4] << 40) | 2282 ((u64)scsicmd->cmnd[5] << 32) | 2283 ((u64)scsicmd->cmnd[6] << 24) | 2284 (scsicmd->cmnd[7] << 16) | 2285 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2286 count = (scsicmd->cmnd[10] << 24) | 2287 (scsicmd->cmnd[11] << 16) | 2288 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2289 break; 2290 case READ_12: 2291 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2292 2293 lba = ((u64)scsicmd->cmnd[2] << 24) | 2294 (scsicmd->cmnd[3] << 16) | 2295 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2296 count = (scsicmd->cmnd[6] << 24) | 2297 (scsicmd->cmnd[7] << 16) | 2298 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2299 break; 2300 default: 2301 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2302 2303 lba = ((u64)scsicmd->cmnd[2] << 24) | 2304 (scsicmd->cmnd[3] << 16) | 2305 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2306 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2307 break; 2308 } 2309 2310 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2311 cid = scmd_id(scsicmd); 2312 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2313 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2314 SAM_STAT_CHECK_CONDITION; 2315 set_sense(&dev->fsa_dev[cid].sense_data, 2316 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2317 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2318 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2319 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2320 SCSI_SENSE_BUFFERSIZE)); 2321 scsicmd->scsi_done(scsicmd); 2322 return 1; 2323 } 2324 2325 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2326 smp_processor_id(), (unsigned long long)lba, jiffies)); 2327 if (aac_adapter_bounds(dev,scsicmd,lba)) 2328 return 0; 2329 /* 2330 * Alocate and initialize a Fib 2331 */ 2332 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2333 2334 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2335 2336 /* 2337 * Check that the command queued to the controller 2338 */ 2339 if (status == -EINPROGRESS) { 2340 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2341 return 0; 2342 } 2343 2344 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2345 /* 2346 * For some reason, the Fib didn't queue, return QUEUE_FULL 2347 */ 2348 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2349 scsicmd->scsi_done(scsicmd); 2350 aac_fib_complete(cmd_fibcontext); 2351 aac_fib_free(cmd_fibcontext); 2352 return 0; 2353 } 2354 2355 static int aac_write(struct scsi_cmnd * scsicmd) 2356 { 2357 u64 lba; 2358 u32 count; 2359 int fua; 2360 int status; 2361 struct aac_dev *dev; 2362 struct fib * cmd_fibcontext; 2363 int cid; 2364 2365 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2366 /* 2367 * Get block address and transfer length 2368 */ 2369 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2370 { 2371 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2372 count = scsicmd->cmnd[4]; 2373 if (count == 0) 2374 count = 256; 2375 fua = 0; 2376 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2377 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2378 2379 lba = ((u64)scsicmd->cmnd[2] << 56) | 2380 ((u64)scsicmd->cmnd[3] << 48) | 2381 ((u64)scsicmd->cmnd[4] << 40) | 2382 ((u64)scsicmd->cmnd[5] << 32) | 2383 ((u64)scsicmd->cmnd[6] << 24) | 2384 (scsicmd->cmnd[7] << 16) | 2385 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2386 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2387 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2388 fua = scsicmd->cmnd[1] & 0x8; 2389 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2390 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2391 2392 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2393 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2394 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2395 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2396 fua = scsicmd->cmnd[1] & 0x8; 2397 } else { 2398 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2399 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2400 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2401 fua = scsicmd->cmnd[1] & 0x8; 2402 } 2403 2404 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2405 cid = scmd_id(scsicmd); 2406 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2407 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2408 SAM_STAT_CHECK_CONDITION; 2409 set_sense(&dev->fsa_dev[cid].sense_data, 2410 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2411 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2412 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2413 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2414 SCSI_SENSE_BUFFERSIZE)); 2415 scsicmd->scsi_done(scsicmd); 2416 return 1; 2417 } 2418 2419 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2420 smp_processor_id(), (unsigned long long)lba, jiffies)); 2421 if (aac_adapter_bounds(dev,scsicmd,lba)) 2422 return 0; 2423 /* 2424 * Allocate and initialize a Fib then setup a BlockWrite command 2425 */ 2426 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2427 2428 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2429 2430 /* 2431 * Check that the command queued to the controller 2432 */ 2433 if (status == -EINPROGRESS) { 2434 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2435 return 0; 2436 } 2437 2438 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2439 /* 2440 * For some reason, the Fib didn't queue, return QUEUE_FULL 2441 */ 2442 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2443 scsicmd->scsi_done(scsicmd); 2444 2445 aac_fib_complete(cmd_fibcontext); 2446 aac_fib_free(cmd_fibcontext); 2447 return 0; 2448 } 2449 2450 static void synchronize_callback(void *context, struct fib *fibptr) 2451 { 2452 struct aac_synchronize_reply *synchronizereply; 2453 struct scsi_cmnd *cmd; 2454 2455 cmd = context; 2456 2457 if (!aac_valid_context(cmd, fibptr)) 2458 return; 2459 2460 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2461 smp_processor_id(), jiffies)); 2462 BUG_ON(fibptr == NULL); 2463 2464 2465 synchronizereply = fib_data(fibptr); 2466 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2467 cmd->result = DID_OK << 16 | 2468 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2469 else { 2470 struct scsi_device *sdev = cmd->device; 2471 struct aac_dev *dev = fibptr->dev; 2472 u32 cid = sdev_id(sdev); 2473 printk(KERN_WARNING 2474 "synchronize_callback: synchronize failed, status = %d\n", 2475 le32_to_cpu(synchronizereply->status)); 2476 cmd->result = DID_OK << 16 | 2477 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2478 set_sense(&dev->fsa_dev[cid].sense_data, 2479 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2480 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2481 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2482 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2483 SCSI_SENSE_BUFFERSIZE)); 2484 } 2485 2486 aac_fib_complete(fibptr); 2487 aac_fib_free(fibptr); 2488 cmd->scsi_done(cmd); 2489 } 2490 2491 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2492 { 2493 int status; 2494 struct fib *cmd_fibcontext; 2495 struct aac_synchronize *synchronizecmd; 2496 struct scsi_cmnd *cmd; 2497 struct scsi_device *sdev = scsicmd->device; 2498 int active = 0; 2499 struct aac_dev *aac; 2500 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | 2501 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2502 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2503 unsigned long flags; 2504 2505 /* 2506 * Wait for all outstanding queued commands to complete to this 2507 * specific target (block). 2508 */ 2509 spin_lock_irqsave(&sdev->list_lock, flags); 2510 list_for_each_entry(cmd, &sdev->cmd_list, list) 2511 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { 2512 u64 cmnd_lba; 2513 u32 cmnd_count; 2514 2515 if (cmd->cmnd[0] == WRITE_6) { 2516 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | 2517 (cmd->cmnd[2] << 8) | 2518 cmd->cmnd[3]; 2519 cmnd_count = cmd->cmnd[4]; 2520 if (cmnd_count == 0) 2521 cmnd_count = 256; 2522 } else if (cmd->cmnd[0] == WRITE_16) { 2523 cmnd_lba = ((u64)cmd->cmnd[2] << 56) | 2524 ((u64)cmd->cmnd[3] << 48) | 2525 ((u64)cmd->cmnd[4] << 40) | 2526 ((u64)cmd->cmnd[5] << 32) | 2527 ((u64)cmd->cmnd[6] << 24) | 2528 (cmd->cmnd[7] << 16) | 2529 (cmd->cmnd[8] << 8) | 2530 cmd->cmnd[9]; 2531 cmnd_count = (cmd->cmnd[10] << 24) | 2532 (cmd->cmnd[11] << 16) | 2533 (cmd->cmnd[12] << 8) | 2534 cmd->cmnd[13]; 2535 } else if (cmd->cmnd[0] == WRITE_12) { 2536 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2537 (cmd->cmnd[3] << 16) | 2538 (cmd->cmnd[4] << 8) | 2539 cmd->cmnd[5]; 2540 cmnd_count = (cmd->cmnd[6] << 24) | 2541 (cmd->cmnd[7] << 16) | 2542 (cmd->cmnd[8] << 8) | 2543 cmd->cmnd[9]; 2544 } else if (cmd->cmnd[0] == WRITE_10) { 2545 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2546 (cmd->cmnd[3] << 16) | 2547 (cmd->cmnd[4] << 8) | 2548 cmd->cmnd[5]; 2549 cmnd_count = (cmd->cmnd[7] << 8) | 2550 cmd->cmnd[8]; 2551 } else 2552 continue; 2553 if (((cmnd_lba + cmnd_count) < lba) || 2554 (count && ((lba + count) < cmnd_lba))) 2555 continue; 2556 ++active; 2557 break; 2558 } 2559 2560 spin_unlock_irqrestore(&sdev->list_lock, flags); 2561 2562 /* 2563 * Yield the processor (requeue for later) 2564 */ 2565 if (active) 2566 return SCSI_MLQUEUE_DEVICE_BUSY; 2567 2568 aac = (struct aac_dev *)sdev->host->hostdata; 2569 if (aac->in_reset) 2570 return SCSI_MLQUEUE_HOST_BUSY; 2571 2572 /* 2573 * Allocate and initialize a Fib 2574 */ 2575 if (!(cmd_fibcontext = aac_fib_alloc(aac))) 2576 return SCSI_MLQUEUE_HOST_BUSY; 2577 2578 aac_fib_init(cmd_fibcontext); 2579 2580 synchronizecmd = fib_data(cmd_fibcontext); 2581 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2582 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2583 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2584 synchronizecmd->count = 2585 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2586 2587 /* 2588 * Now send the Fib to the adapter 2589 */ 2590 status = aac_fib_send(ContainerCommand, 2591 cmd_fibcontext, 2592 sizeof(struct aac_synchronize), 2593 FsaNormal, 2594 0, 1, 2595 (fib_callback)synchronize_callback, 2596 (void *)scsicmd); 2597 2598 /* 2599 * Check that the command queued to the controller 2600 */ 2601 if (status == -EINPROGRESS) { 2602 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2603 return 0; 2604 } 2605 2606 printk(KERN_WARNING 2607 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2608 aac_fib_complete(cmd_fibcontext); 2609 aac_fib_free(cmd_fibcontext); 2610 return SCSI_MLQUEUE_HOST_BUSY; 2611 } 2612 2613 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2614 { 2615 struct scsi_cmnd *scsicmd = context; 2616 2617 if (!aac_valid_context(scsicmd, fibptr)) 2618 return; 2619 2620 BUG_ON(fibptr == NULL); 2621 2622 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2623 2624 aac_fib_complete(fibptr); 2625 aac_fib_free(fibptr); 2626 scsicmd->scsi_done(scsicmd); 2627 } 2628 2629 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2630 { 2631 int status; 2632 struct fib *cmd_fibcontext; 2633 struct aac_power_management *pmcmd; 2634 struct scsi_device *sdev = scsicmd->device; 2635 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2636 2637 if (!(aac->supplement_adapter_info.supported_options2 & 2638 AAC_OPTION_POWER_MANAGEMENT)) { 2639 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2640 SAM_STAT_GOOD; 2641 scsicmd->scsi_done(scsicmd); 2642 return 0; 2643 } 2644 2645 if (aac->in_reset) 2646 return SCSI_MLQUEUE_HOST_BUSY; 2647 2648 /* 2649 * Allocate and initialize a Fib 2650 */ 2651 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2652 2653 aac_fib_init(cmd_fibcontext); 2654 2655 pmcmd = fib_data(cmd_fibcontext); 2656 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2657 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2658 /* Eject bit ignored, not relevant */ 2659 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2660 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2661 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2662 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2663 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2664 2665 /* 2666 * Now send the Fib to the adapter 2667 */ 2668 status = aac_fib_send(ContainerCommand, 2669 cmd_fibcontext, 2670 sizeof(struct aac_power_management), 2671 FsaNormal, 2672 0, 1, 2673 (fib_callback)aac_start_stop_callback, 2674 (void *)scsicmd); 2675 2676 /* 2677 * Check that the command queued to the controller 2678 */ 2679 if (status == -EINPROGRESS) { 2680 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2681 return 0; 2682 } 2683 2684 aac_fib_complete(cmd_fibcontext); 2685 aac_fib_free(cmd_fibcontext); 2686 return SCSI_MLQUEUE_HOST_BUSY; 2687 } 2688 2689 /** 2690 * aac_scsi_cmd() - Process SCSI command 2691 * @scsicmd: SCSI command block 2692 * 2693 * Emulate a SCSI command and queue the required request for the 2694 * aacraid firmware. 2695 */ 2696 2697 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2698 { 2699 u32 cid, bus; 2700 struct Scsi_Host *host = scsicmd->device->host; 2701 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2702 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2703 2704 if (fsa_dev_ptr == NULL) 2705 return -1; 2706 /* 2707 * If the bus, id or lun is out of range, return fail 2708 * Test does not apply to ID 16, the pseudo id for the controller 2709 * itself. 2710 */ 2711 cid = scmd_id(scsicmd); 2712 if (cid != host->this_id) { 2713 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2714 if((cid >= dev->maximum_num_containers) || 2715 (scsicmd->device->lun != 0)) { 2716 scsicmd->result = DID_NO_CONNECT << 16; 2717 goto scsi_done_ret; 2718 } 2719 2720 /* 2721 * If the target container doesn't exist, it may have 2722 * been newly created 2723 */ 2724 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2725 (fsa_dev_ptr[cid].sense_data.sense_key == 2726 NOT_READY)) { 2727 switch (scsicmd->cmnd[0]) { 2728 case SERVICE_ACTION_IN_16: 2729 if (!(dev->raw_io_interface) || 2730 !(dev->raw_io_64) || 2731 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2732 break; 2733 case INQUIRY: 2734 case READ_CAPACITY: 2735 case TEST_UNIT_READY: 2736 if (dev->in_reset) 2737 return -1; 2738 return _aac_probe_container(scsicmd, 2739 aac_probe_container_callback2); 2740 default: 2741 break; 2742 } 2743 } 2744 } else { /* check for physical non-dasd devices */ 2745 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2746 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2747 (dev->hba_map[bus][cid].expose 2748 == AAC_HIDE_DISK)){ 2749 if (scsicmd->cmnd[0] == INQUIRY) { 2750 scsicmd->result = DID_NO_CONNECT << 16; 2751 goto scsi_done_ret; 2752 } 2753 } 2754 2755 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2756 dev->hba_map[bus][cid].devtype 2757 == AAC_DEVTYPE_NATIVE_RAW) { 2758 if (dev->in_reset) 2759 return -1; 2760 return aac_send_hba_fib(scsicmd); 2761 } else if (dev->nondasd_support || expose_physicals || 2762 dev->jbod) { 2763 if (dev->in_reset) 2764 return -1; 2765 return aac_send_srb_fib(scsicmd); 2766 } else { 2767 scsicmd->result = DID_NO_CONNECT << 16; 2768 goto scsi_done_ret; 2769 } 2770 } 2771 } 2772 /* 2773 * else Command for the controller itself 2774 */ 2775 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2776 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2777 { 2778 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2779 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2780 set_sense(&dev->fsa_dev[cid].sense_data, 2781 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2782 ASENCODE_INVALID_COMMAND, 0, 0); 2783 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2784 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2785 SCSI_SENSE_BUFFERSIZE)); 2786 goto scsi_done_ret; 2787 } 2788 2789 switch (scsicmd->cmnd[0]) { 2790 case READ_6: 2791 case READ_10: 2792 case READ_12: 2793 case READ_16: 2794 if (dev->in_reset) 2795 return -1; 2796 return aac_read(scsicmd); 2797 2798 case WRITE_6: 2799 case WRITE_10: 2800 case WRITE_12: 2801 case WRITE_16: 2802 if (dev->in_reset) 2803 return -1; 2804 return aac_write(scsicmd); 2805 2806 case SYNCHRONIZE_CACHE: 2807 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2808 scsicmd->result = AAC_STAT_GOOD; 2809 break; 2810 } 2811 /* Issue FIB to tell Firmware to flush it's cache */ 2812 if ((aac_cache & 6) != 2) 2813 return aac_synchronize(scsicmd); 2814 case INQUIRY: 2815 { 2816 struct inquiry_data inq_data; 2817 2818 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2819 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2820 2821 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2822 char *arr = (char *)&inq_data; 2823 2824 /* EVPD bit set */ 2825 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2826 INQD_PDT_PROC : INQD_PDT_DA; 2827 if (scsicmd->cmnd[2] == 0) { 2828 /* supported vital product data pages */ 2829 arr[3] = 3; 2830 arr[4] = 0x0; 2831 arr[5] = 0x80; 2832 arr[6] = 0x83; 2833 arr[1] = scsicmd->cmnd[2]; 2834 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2835 sizeof(inq_data)); 2836 scsicmd->result = AAC_STAT_GOOD; 2837 } else if (scsicmd->cmnd[2] == 0x80) { 2838 /* unit serial number page */ 2839 arr[3] = setinqserial(dev, &arr[4], 2840 scmd_id(scsicmd)); 2841 arr[1] = scsicmd->cmnd[2]; 2842 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2843 sizeof(inq_data)); 2844 if (aac_wwn != 2) 2845 return aac_get_container_serial( 2846 scsicmd); 2847 scsicmd->result = AAC_STAT_GOOD; 2848 } else if (scsicmd->cmnd[2] == 0x83) { 2849 /* vpd page 0x83 - Device Identification Page */ 2850 char *sno = (char *)&inq_data; 2851 sno[3] = setinqserial(dev, &sno[4], 2852 scmd_id(scsicmd)); 2853 if (aac_wwn != 2) 2854 return aac_get_container_serial( 2855 scsicmd); 2856 scsicmd->result = AAC_STAT_GOOD; 2857 } else { 2858 /* vpd page not implemented */ 2859 scsicmd->result = DID_OK << 16 | 2860 COMMAND_COMPLETE << 8 | 2861 SAM_STAT_CHECK_CONDITION; 2862 set_sense(&dev->fsa_dev[cid].sense_data, 2863 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2864 ASENCODE_NO_SENSE, 7, 2); 2865 memcpy(scsicmd->sense_buffer, 2866 &dev->fsa_dev[cid].sense_data, 2867 min_t(size_t, 2868 sizeof(dev->fsa_dev[cid].sense_data), 2869 SCSI_SENSE_BUFFERSIZE)); 2870 } 2871 break; 2872 } 2873 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2874 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2875 inq_data.inqd_len = 31; 2876 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2877 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2878 /* 2879 * Set the Vendor, Product, and Revision Level 2880 * see: <vendor>.c i.e. aac.c 2881 */ 2882 if (cid == host->this_id) { 2883 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2884 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2885 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2886 sizeof(inq_data)); 2887 scsicmd->result = AAC_STAT_GOOD; 2888 break; 2889 } 2890 if (dev->in_reset) 2891 return -1; 2892 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2893 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2894 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2895 return aac_get_container_name(scsicmd); 2896 } 2897 case SERVICE_ACTION_IN_16: 2898 if (!(dev->raw_io_interface) || 2899 !(dev->raw_io_64) || 2900 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2901 break; 2902 { 2903 u64 capacity; 2904 char cp[13]; 2905 unsigned int alloc_len; 2906 2907 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2908 capacity = fsa_dev_ptr[cid].size - 1; 2909 cp[0] = (capacity >> 56) & 0xff; 2910 cp[1] = (capacity >> 48) & 0xff; 2911 cp[2] = (capacity >> 40) & 0xff; 2912 cp[3] = (capacity >> 32) & 0xff; 2913 cp[4] = (capacity >> 24) & 0xff; 2914 cp[5] = (capacity >> 16) & 0xff; 2915 cp[6] = (capacity >> 8) & 0xff; 2916 cp[7] = (capacity >> 0) & 0xff; 2917 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2918 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2919 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2920 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 2921 cp[12] = 0; 2922 2923 alloc_len = ((scsicmd->cmnd[10] << 24) 2924 + (scsicmd->cmnd[11] << 16) 2925 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 2926 2927 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 2928 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 2929 if (alloc_len < scsi_bufflen(scsicmd)) 2930 scsi_set_resid(scsicmd, 2931 scsi_bufflen(scsicmd) - alloc_len); 2932 2933 /* Do not cache partition table for arrays */ 2934 scsicmd->device->removable = 1; 2935 2936 scsicmd->result = AAC_STAT_GOOD; 2937 break; 2938 } 2939 2940 case READ_CAPACITY: 2941 { 2942 u32 capacity; 2943 char cp[8]; 2944 2945 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 2946 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 2947 capacity = fsa_dev_ptr[cid].size - 1; 2948 else 2949 capacity = (u32)-1; 2950 2951 cp[0] = (capacity >> 24) & 0xff; 2952 cp[1] = (capacity >> 16) & 0xff; 2953 cp[2] = (capacity >> 8) & 0xff; 2954 cp[3] = (capacity >> 0) & 0xff; 2955 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2956 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2957 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2958 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 2959 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 2960 /* Do not cache partition table for arrays */ 2961 scsicmd->device->removable = 1; 2962 scsicmd->result = AAC_STAT_GOOD; 2963 break; 2964 } 2965 2966 case MODE_SENSE: 2967 { 2968 int mode_buf_length = 4; 2969 u32 capacity; 2970 aac_modep_data mpd; 2971 2972 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 2973 capacity = fsa_dev_ptr[cid].size - 1; 2974 else 2975 capacity = (u32)-1; 2976 2977 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 2978 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 2979 2980 /* Mode data length */ 2981 mpd.hd.data_length = sizeof(mpd.hd) - 1; 2982 /* Medium type - default */ 2983 mpd.hd.med_type = 0; 2984 /* Device-specific param, 2985 bit 8: 0/1 = write enabled/protected 2986 bit 4: 0/1 = FUA enabled */ 2987 mpd.hd.dev_par = 0; 2988 2989 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 2990 mpd.hd.dev_par = 0x10; 2991 if (scsicmd->cmnd[1] & 0x8) 2992 mpd.hd.bd_length = 0; /* Block descriptor length */ 2993 else { 2994 mpd.hd.bd_length = sizeof(mpd.bd); 2995 mpd.hd.data_length += mpd.hd.bd_length; 2996 mpd.bd.block_length[0] = 2997 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2998 mpd.bd.block_length[1] = 2999 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3000 mpd.bd.block_length[2] = 3001 fsa_dev_ptr[cid].block_size & 0xff; 3002 3003 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3004 if (scsicmd->cmnd[2] == 0x1C) { 3005 /* page length */ 3006 mpd.mpc_buf[1] = 0xa; 3007 /* Mode data length */ 3008 mpd.hd.data_length = 23; 3009 } else { 3010 /* Mode data length */ 3011 mpd.hd.data_length = 15; 3012 } 3013 3014 if (capacity > 0xffffff) { 3015 mpd.bd.block_count[0] = 0xff; 3016 mpd.bd.block_count[1] = 0xff; 3017 mpd.bd.block_count[2] = 0xff; 3018 } else { 3019 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3020 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3021 mpd.bd.block_count[2] = capacity & 0xff; 3022 } 3023 } 3024 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3025 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3026 mpd.hd.data_length += 3; 3027 mpd.mpc_buf[0] = 8; 3028 mpd.mpc_buf[1] = 1; 3029 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3030 ? 0 : 0x04; /* WCE */ 3031 mode_buf_length = sizeof(mpd); 3032 } 3033 3034 if (mode_buf_length > scsicmd->cmnd[4]) 3035 mode_buf_length = scsicmd->cmnd[4]; 3036 else 3037 mode_buf_length = sizeof(mpd); 3038 scsi_sg_copy_from_buffer(scsicmd, 3039 (char *)&mpd, 3040 mode_buf_length); 3041 scsicmd->result = AAC_STAT_GOOD; 3042 break; 3043 } 3044 case MODE_SENSE_10: 3045 { 3046 u32 capacity; 3047 int mode_buf_length = 8; 3048 aac_modep10_data mpd10; 3049 3050 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3051 capacity = fsa_dev_ptr[cid].size - 1; 3052 else 3053 capacity = (u32)-1; 3054 3055 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3056 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3057 /* Mode data length (MSB) */ 3058 mpd10.hd.data_length[0] = 0; 3059 /* Mode data length (LSB) */ 3060 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3061 /* Medium type - default */ 3062 mpd10.hd.med_type = 0; 3063 /* Device-specific param, 3064 bit 8: 0/1 = write enabled/protected 3065 bit 4: 0/1 = FUA enabled */ 3066 mpd10.hd.dev_par = 0; 3067 3068 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3069 mpd10.hd.dev_par = 0x10; 3070 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3071 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3072 if (scsicmd->cmnd[1] & 0x8) { 3073 /* Block descriptor length (MSB) */ 3074 mpd10.hd.bd_length[0] = 0; 3075 /* Block descriptor length (LSB) */ 3076 mpd10.hd.bd_length[1] = 0; 3077 } else { 3078 mpd10.hd.bd_length[0] = 0; 3079 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3080 3081 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3082 3083 mpd10.bd.block_length[0] = 3084 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3085 mpd10.bd.block_length[1] = 3086 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3087 mpd10.bd.block_length[2] = 3088 fsa_dev_ptr[cid].block_size & 0xff; 3089 3090 if (capacity > 0xffffff) { 3091 mpd10.bd.block_count[0] = 0xff; 3092 mpd10.bd.block_count[1] = 0xff; 3093 mpd10.bd.block_count[2] = 0xff; 3094 } else { 3095 mpd10.bd.block_count[0] = 3096 (capacity >> 16) & 0xff; 3097 mpd10.bd.block_count[1] = 3098 (capacity >> 8) & 0xff; 3099 mpd10.bd.block_count[2] = 3100 capacity & 0xff; 3101 } 3102 } 3103 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3104 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3105 mpd10.hd.data_length[1] += 3; 3106 mpd10.mpc_buf[0] = 8; 3107 mpd10.mpc_buf[1] = 1; 3108 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3109 ? 0 : 0x04; /* WCE */ 3110 mode_buf_length = sizeof(mpd10); 3111 if (mode_buf_length > scsicmd->cmnd[8]) 3112 mode_buf_length = scsicmd->cmnd[8]; 3113 } 3114 scsi_sg_copy_from_buffer(scsicmd, 3115 (char *)&mpd10, 3116 mode_buf_length); 3117 3118 scsicmd->result = AAC_STAT_GOOD; 3119 break; 3120 } 3121 case REQUEST_SENSE: 3122 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3123 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3124 sizeof(struct sense_data)); 3125 memset(&dev->fsa_dev[cid].sense_data, 0, 3126 sizeof(struct sense_data)); 3127 scsicmd->result = AAC_STAT_GOOD; 3128 break; 3129 3130 case ALLOW_MEDIUM_REMOVAL: 3131 dprintk((KERN_DEBUG "LOCK command.\n")); 3132 if (scsicmd->cmnd[4]) 3133 fsa_dev_ptr[cid].locked = 1; 3134 else 3135 fsa_dev_ptr[cid].locked = 0; 3136 3137 scsicmd->result = AAC_STAT_GOOD; 3138 break; 3139 /* 3140 * These commands are all No-Ops 3141 */ 3142 case TEST_UNIT_READY: 3143 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3144 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3145 SAM_STAT_CHECK_CONDITION; 3146 set_sense(&dev->fsa_dev[cid].sense_data, 3147 NOT_READY, SENCODE_BECOMING_READY, 3148 ASENCODE_BECOMING_READY, 0, 0); 3149 memcpy(scsicmd->sense_buffer, 3150 &dev->fsa_dev[cid].sense_data, 3151 min_t(size_t, 3152 sizeof(dev->fsa_dev[cid].sense_data), 3153 SCSI_SENSE_BUFFERSIZE)); 3154 break; 3155 } 3156 case RESERVE: 3157 case RELEASE: 3158 case REZERO_UNIT: 3159 case REASSIGN_BLOCKS: 3160 case SEEK_10: 3161 scsicmd->result = AAC_STAT_GOOD; 3162 break; 3163 3164 case START_STOP: 3165 return aac_start_stop(scsicmd); 3166 3167 /* FALLTHRU */ 3168 default: 3169 /* 3170 * Unhandled commands 3171 */ 3172 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3173 scsicmd->cmnd[0])); 3174 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3175 SAM_STAT_CHECK_CONDITION; 3176 set_sense(&dev->fsa_dev[cid].sense_data, 3177 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3178 ASENCODE_INVALID_COMMAND, 0, 0); 3179 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3180 min_t(size_t, 3181 sizeof(dev->fsa_dev[cid].sense_data), 3182 SCSI_SENSE_BUFFERSIZE)); 3183 } 3184 3185 scsi_done_ret: 3186 3187 scsicmd->scsi_done(scsicmd); 3188 return 0; 3189 } 3190 3191 static int query_disk(struct aac_dev *dev, void __user *arg) 3192 { 3193 struct aac_query_disk qd; 3194 struct fsa_dev_info *fsa_dev_ptr; 3195 3196 fsa_dev_ptr = dev->fsa_dev; 3197 if (!fsa_dev_ptr) 3198 return -EBUSY; 3199 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3200 return -EFAULT; 3201 if (qd.cnum == -1) 3202 qd.cnum = qd.id; 3203 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) 3204 { 3205 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3206 return -EINVAL; 3207 qd.instance = dev->scsi_host_ptr->host_no; 3208 qd.bus = 0; 3209 qd.id = CONTAINER_TO_ID(qd.cnum); 3210 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3211 } 3212 else return -EINVAL; 3213 3214 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3215 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3216 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3217 3218 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3219 qd.unmapped = 1; 3220 else 3221 qd.unmapped = 0; 3222 3223 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3224 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3225 3226 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3227 return -EFAULT; 3228 return 0; 3229 } 3230 3231 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3232 { 3233 struct aac_delete_disk dd; 3234 struct fsa_dev_info *fsa_dev_ptr; 3235 3236 fsa_dev_ptr = dev->fsa_dev; 3237 if (!fsa_dev_ptr) 3238 return -EBUSY; 3239 3240 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3241 return -EFAULT; 3242 3243 if (dd.cnum >= dev->maximum_num_containers) 3244 return -EINVAL; 3245 /* 3246 * Mark this container as being deleted. 3247 */ 3248 fsa_dev_ptr[dd.cnum].deleted = 1; 3249 /* 3250 * Mark the container as no longer valid 3251 */ 3252 fsa_dev_ptr[dd.cnum].valid = 0; 3253 return 0; 3254 } 3255 3256 static int delete_disk(struct aac_dev *dev, void __user *arg) 3257 { 3258 struct aac_delete_disk dd; 3259 struct fsa_dev_info *fsa_dev_ptr; 3260 3261 fsa_dev_ptr = dev->fsa_dev; 3262 if (!fsa_dev_ptr) 3263 return -EBUSY; 3264 3265 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3266 return -EFAULT; 3267 3268 if (dd.cnum >= dev->maximum_num_containers) 3269 return -EINVAL; 3270 /* 3271 * If the container is locked, it can not be deleted by the API. 3272 */ 3273 if (fsa_dev_ptr[dd.cnum].locked) 3274 return -EBUSY; 3275 else { 3276 /* 3277 * Mark the container as no longer being valid. 3278 */ 3279 fsa_dev_ptr[dd.cnum].valid = 0; 3280 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3281 return 0; 3282 } 3283 } 3284 3285 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg) 3286 { 3287 switch (cmd) { 3288 case FSACTL_QUERY_DISK: 3289 return query_disk(dev, arg); 3290 case FSACTL_DELETE_DISK: 3291 return delete_disk(dev, arg); 3292 case FSACTL_FORCE_DELETE_DISK: 3293 return force_delete_disk(dev, arg); 3294 case FSACTL_GET_CONTAINERS: 3295 return aac_get_containers(dev); 3296 default: 3297 return -ENOTTY; 3298 } 3299 } 3300 3301 /** 3302 * 3303 * aac_srb_callback 3304 * @context: the context set in the fib - here it is scsi cmd 3305 * @fibptr: pointer to the fib 3306 * 3307 * Handles the completion of a scsi command to a non dasd device 3308 * 3309 */ 3310 3311 static void aac_srb_callback(void *context, struct fib * fibptr) 3312 { 3313 struct aac_dev *dev; 3314 struct aac_srb_reply *srbreply; 3315 struct scsi_cmnd *scsicmd; 3316 3317 scsicmd = (struct scsi_cmnd *) context; 3318 3319 if (!aac_valid_context(scsicmd, fibptr)) 3320 return; 3321 3322 BUG_ON(fibptr == NULL); 3323 3324 dev = fibptr->dev; 3325 3326 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3327 3328 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3329 3330 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3331 /* fast response */ 3332 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3333 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3334 } else { 3335 /* 3336 * Calculate resid for sg 3337 */ 3338 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3339 - le32_to_cpu(srbreply->data_xfer_length)); 3340 } 3341 3342 3343 scsi_dma_unmap(scsicmd); 3344 3345 /* expose physical device if expose_physicald flag is on */ 3346 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3347 && expose_physicals > 0) 3348 aac_expose_phy_device(scsicmd); 3349 3350 /* 3351 * First check the fib status 3352 */ 3353 3354 if (le32_to_cpu(srbreply->status) != ST_OK) { 3355 int len; 3356 3357 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3358 le32_to_cpu(srbreply->status)); 3359 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3360 SCSI_SENSE_BUFFERSIZE); 3361 scsicmd->result = DID_ERROR << 16 3362 | COMMAND_COMPLETE << 8 3363 | SAM_STAT_CHECK_CONDITION; 3364 memcpy(scsicmd->sense_buffer, 3365 srbreply->sense_data, len); 3366 } 3367 3368 /* 3369 * Next check the srb status 3370 */ 3371 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3372 case SRB_STATUS_ERROR_RECOVERY: 3373 case SRB_STATUS_PENDING: 3374 case SRB_STATUS_SUCCESS: 3375 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3376 break; 3377 case SRB_STATUS_DATA_OVERRUN: 3378 switch (scsicmd->cmnd[0]) { 3379 case READ_6: 3380 case WRITE_6: 3381 case READ_10: 3382 case WRITE_10: 3383 case READ_12: 3384 case WRITE_12: 3385 case READ_16: 3386 case WRITE_16: 3387 if (le32_to_cpu(srbreply->data_xfer_length) 3388 < scsicmd->underflow) 3389 pr_warn("aacraid: SCSI CMD underflow\n"); 3390 else 3391 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3392 scsicmd->result = DID_ERROR << 16 3393 | COMMAND_COMPLETE << 8; 3394 break; 3395 case INQUIRY: 3396 scsicmd->result = DID_OK << 16 3397 | COMMAND_COMPLETE << 8; 3398 break; 3399 default: 3400 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3401 break; 3402 } 3403 break; 3404 case SRB_STATUS_ABORTED: 3405 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3406 break; 3407 case SRB_STATUS_ABORT_FAILED: 3408 /* 3409 * Not sure about this one - but assuming the 3410 * hba was trying to abort for some reason 3411 */ 3412 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3413 break; 3414 case SRB_STATUS_PARITY_ERROR: 3415 scsicmd->result = DID_PARITY << 16 3416 | MSG_PARITY_ERROR << 8; 3417 break; 3418 case SRB_STATUS_NO_DEVICE: 3419 case SRB_STATUS_INVALID_PATH_ID: 3420 case SRB_STATUS_INVALID_TARGET_ID: 3421 case SRB_STATUS_INVALID_LUN: 3422 case SRB_STATUS_SELECTION_TIMEOUT: 3423 scsicmd->result = DID_NO_CONNECT << 16 3424 | COMMAND_COMPLETE << 8; 3425 break; 3426 3427 case SRB_STATUS_COMMAND_TIMEOUT: 3428 case SRB_STATUS_TIMEOUT: 3429 scsicmd->result = DID_TIME_OUT << 16 3430 | COMMAND_COMPLETE << 8; 3431 break; 3432 3433 case SRB_STATUS_BUSY: 3434 scsicmd->result = DID_BUS_BUSY << 16 3435 | COMMAND_COMPLETE << 8; 3436 break; 3437 3438 case SRB_STATUS_BUS_RESET: 3439 scsicmd->result = DID_RESET << 16 3440 | COMMAND_COMPLETE << 8; 3441 break; 3442 3443 case SRB_STATUS_MESSAGE_REJECTED: 3444 scsicmd->result = DID_ERROR << 16 3445 | MESSAGE_REJECT << 8; 3446 break; 3447 case SRB_STATUS_REQUEST_FLUSHED: 3448 case SRB_STATUS_ERROR: 3449 case SRB_STATUS_INVALID_REQUEST: 3450 case SRB_STATUS_REQUEST_SENSE_FAILED: 3451 case SRB_STATUS_NO_HBA: 3452 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3453 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3454 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3455 case SRB_STATUS_DELAYED_RETRY: 3456 case SRB_STATUS_BAD_FUNCTION: 3457 case SRB_STATUS_NOT_STARTED: 3458 case SRB_STATUS_NOT_IN_USE: 3459 case SRB_STATUS_FORCE_ABORT: 3460 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3461 default: 3462 #ifdef AAC_DETAILED_STATUS_INFO 3463 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3464 le32_to_cpu(srbreply->srb_status) & 0x3F, 3465 aac_get_status_string( 3466 le32_to_cpu(srbreply->srb_status) & 0x3F), 3467 scsicmd->cmnd[0], 3468 le32_to_cpu(srbreply->scsi_status)); 3469 #endif 3470 /* 3471 * When the CC bit is SET by the host in ATA pass thru CDB, 3472 * driver is supposed to return DID_OK 3473 * 3474 * When the CC bit is RESET by the host, driver should 3475 * return DID_ERROR 3476 */ 3477 if ((scsicmd->cmnd[0] == ATA_12) 3478 || (scsicmd->cmnd[0] == ATA_16)) { 3479 3480 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3481 scsicmd->result = DID_OK << 16 3482 | COMMAND_COMPLETE << 8; 3483 break; 3484 } else { 3485 scsicmd->result = DID_ERROR << 16 3486 | COMMAND_COMPLETE << 8; 3487 break; 3488 } 3489 } else { 3490 scsicmd->result = DID_ERROR << 16 3491 | COMMAND_COMPLETE << 8; 3492 break; 3493 } 3494 } 3495 if (le32_to_cpu(srbreply->scsi_status) 3496 == SAM_STAT_CHECK_CONDITION) { 3497 int len; 3498 3499 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3500 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3501 SCSI_SENSE_BUFFERSIZE); 3502 #ifdef AAC_DETAILED_STATUS_INFO 3503 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3504 le32_to_cpu(srbreply->status), len); 3505 #endif 3506 memcpy(scsicmd->sense_buffer, 3507 srbreply->sense_data, len); 3508 } 3509 3510 /* 3511 * OR in the scsi status (already shifted up a bit) 3512 */ 3513 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3514 3515 aac_fib_complete(fibptr); 3516 scsicmd->scsi_done(scsicmd); 3517 } 3518 3519 static void hba_resp_task_complete(struct aac_dev *dev, 3520 struct scsi_cmnd *scsicmd, 3521 struct aac_hba_resp *err) { 3522 3523 scsicmd->result = err->status; 3524 /* set residual count */ 3525 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3526 3527 switch (err->status) { 3528 case SAM_STAT_GOOD: 3529 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3530 break; 3531 case SAM_STAT_CHECK_CONDITION: 3532 { 3533 int len; 3534 3535 len = min_t(u8, err->sense_response_data_len, 3536 SCSI_SENSE_BUFFERSIZE); 3537 if (len) 3538 memcpy(scsicmd->sense_buffer, 3539 err->sense_response_buf, len); 3540 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3541 break; 3542 } 3543 case SAM_STAT_BUSY: 3544 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3545 break; 3546 case SAM_STAT_TASK_ABORTED: 3547 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3548 break; 3549 case SAM_STAT_RESERVATION_CONFLICT: 3550 case SAM_STAT_TASK_SET_FULL: 3551 default: 3552 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3553 break; 3554 } 3555 } 3556 3557 static void hba_resp_task_failure(struct aac_dev *dev, 3558 struct scsi_cmnd *scsicmd, 3559 struct aac_hba_resp *err) 3560 { 3561 switch (err->status) { 3562 case HBA_RESP_STAT_HBAMODE_DISABLED: 3563 { 3564 u32 bus, cid; 3565 3566 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3567 cid = scmd_id(scsicmd); 3568 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3569 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3570 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3571 } 3572 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3573 break; 3574 } 3575 case HBA_RESP_STAT_IO_ERROR: 3576 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3577 scsicmd->result = DID_OK << 16 | 3578 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3579 break; 3580 case HBA_RESP_STAT_IO_ABORTED: 3581 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3582 break; 3583 case HBA_RESP_STAT_INVALID_DEVICE: 3584 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3585 break; 3586 case HBA_RESP_STAT_UNDERRUN: 3587 /* UNDERRUN is OK */ 3588 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3589 break; 3590 case HBA_RESP_STAT_OVERRUN: 3591 default: 3592 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3593 break; 3594 } 3595 } 3596 3597 /** 3598 * 3599 * aac_hba_callback 3600 * @context: the context set in the fib - here it is scsi cmd 3601 * @fibptr: pointer to the fib 3602 * 3603 * Handles the completion of a native HBA scsi command 3604 * 3605 */ 3606 void aac_hba_callback(void *context, struct fib *fibptr) 3607 { 3608 struct aac_dev *dev; 3609 struct scsi_cmnd *scsicmd; 3610 3611 struct aac_hba_resp *err = 3612 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3613 3614 scsicmd = (struct scsi_cmnd *) context; 3615 3616 if (!aac_valid_context(scsicmd, fibptr)) 3617 return; 3618 3619 WARN_ON(fibptr == NULL); 3620 dev = fibptr->dev; 3621 3622 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3623 scsi_dma_unmap(scsicmd); 3624 3625 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3626 /* fast response */ 3627 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3628 goto out; 3629 } 3630 3631 switch (err->service_response) { 3632 case HBA_RESP_SVCRES_TASK_COMPLETE: 3633 hba_resp_task_complete(dev, scsicmd, err); 3634 break; 3635 case HBA_RESP_SVCRES_FAILURE: 3636 hba_resp_task_failure(dev, scsicmd, err); 3637 break; 3638 case HBA_RESP_SVCRES_TMF_REJECTED: 3639 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3640 break; 3641 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3642 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3643 break; 3644 case HBA_RESP_SVCRES_TMF_COMPLETE: 3645 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3646 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3647 break; 3648 default: 3649 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3650 break; 3651 } 3652 3653 out: 3654 aac_fib_complete(fibptr); 3655 3656 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3657 scsicmd->SCp.sent_command = 1; 3658 else 3659 scsicmd->scsi_done(scsicmd); 3660 } 3661 3662 /** 3663 * 3664 * aac_send_srb_fib 3665 * @scsicmd: the scsi command block 3666 * 3667 * This routine will form a FIB and fill in the aac_srb from the 3668 * scsicmd passed in. 3669 */ 3670 3671 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3672 { 3673 struct fib* cmd_fibcontext; 3674 struct aac_dev* dev; 3675 int status; 3676 3677 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3678 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3679 scsicmd->device->lun > 7) { 3680 scsicmd->result = DID_NO_CONNECT << 16; 3681 scsicmd->scsi_done(scsicmd); 3682 return 0; 3683 } 3684 3685 /* 3686 * Allocate and initialize a Fib then setup a BlockWrite command 3687 */ 3688 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3689 3690 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3691 3692 /* 3693 * Check that the command queued to the controller 3694 */ 3695 if (status == -EINPROGRESS) { 3696 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3697 return 0; 3698 } 3699 3700 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3701 aac_fib_complete(cmd_fibcontext); 3702 aac_fib_free(cmd_fibcontext); 3703 3704 return -1; 3705 } 3706 3707 /** 3708 * 3709 * aac_send_hba_fib 3710 * @scsicmd: the scsi command block 3711 * 3712 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3713 * scsicmd passed in. 3714 */ 3715 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3716 { 3717 struct fib *cmd_fibcontext; 3718 struct aac_dev *dev; 3719 int status; 3720 3721 dev = shost_priv(scsicmd->device->host); 3722 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3723 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3724 scsicmd->result = DID_NO_CONNECT << 16; 3725 scsicmd->scsi_done(scsicmd); 3726 return 0; 3727 } 3728 3729 /* 3730 * Allocate and initialize a Fib then setup a BlockWrite command 3731 */ 3732 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3733 if (!cmd_fibcontext) 3734 return -1; 3735 3736 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3737 3738 /* 3739 * Check that the command queued to the controller 3740 */ 3741 if (status == -EINPROGRESS) { 3742 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3743 return 0; 3744 } 3745 3746 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3747 status); 3748 aac_fib_complete(cmd_fibcontext); 3749 aac_fib_free(cmd_fibcontext); 3750 3751 return -1; 3752 } 3753 3754 3755 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3756 { 3757 struct aac_dev *dev; 3758 unsigned long byte_count = 0; 3759 int nseg; 3760 3761 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3762 // Get rid of old data 3763 psg->count = 0; 3764 psg->sg[0].addr = 0; 3765 psg->sg[0].count = 0; 3766 3767 nseg = scsi_dma_map(scsicmd); 3768 if (nseg < 0) 3769 return nseg; 3770 if (nseg) { 3771 struct scatterlist *sg; 3772 int i; 3773 3774 psg->count = cpu_to_le32(nseg); 3775 3776 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3777 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3778 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3779 byte_count += sg_dma_len(sg); 3780 } 3781 /* hba wants the size to be exact */ 3782 if (byte_count > scsi_bufflen(scsicmd)) { 3783 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3784 (byte_count - scsi_bufflen(scsicmd)); 3785 psg->sg[i-1].count = cpu_to_le32(temp); 3786 byte_count = scsi_bufflen(scsicmd); 3787 } 3788 /* Check for command underflow */ 3789 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 3790 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3791 byte_count, scsicmd->underflow); 3792 } 3793 } 3794 return byte_count; 3795 } 3796 3797 3798 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3799 { 3800 struct aac_dev *dev; 3801 unsigned long byte_count = 0; 3802 u64 addr; 3803 int nseg; 3804 3805 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3806 // Get rid of old data 3807 psg->count = 0; 3808 psg->sg[0].addr[0] = 0; 3809 psg->sg[0].addr[1] = 0; 3810 psg->sg[0].count = 0; 3811 3812 nseg = scsi_dma_map(scsicmd); 3813 if (nseg < 0) 3814 return nseg; 3815 if (nseg) { 3816 struct scatterlist *sg; 3817 int i; 3818 3819 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3820 int count = sg_dma_len(sg); 3821 addr = sg_dma_address(sg); 3822 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3823 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3824 psg->sg[i].count = cpu_to_le32(count); 3825 byte_count += count; 3826 } 3827 psg->count = cpu_to_le32(nseg); 3828 /* hba wants the size to be exact */ 3829 if (byte_count > scsi_bufflen(scsicmd)) { 3830 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3831 (byte_count - scsi_bufflen(scsicmd)); 3832 psg->sg[i-1].count = cpu_to_le32(temp); 3833 byte_count = scsi_bufflen(scsicmd); 3834 } 3835 /* Check for command underflow */ 3836 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 3837 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3838 byte_count, scsicmd->underflow); 3839 } 3840 } 3841 return byte_count; 3842 } 3843 3844 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3845 { 3846 unsigned long byte_count = 0; 3847 int nseg; 3848 3849 // Get rid of old data 3850 psg->count = 0; 3851 psg->sg[0].next = 0; 3852 psg->sg[0].prev = 0; 3853 psg->sg[0].addr[0] = 0; 3854 psg->sg[0].addr[1] = 0; 3855 psg->sg[0].count = 0; 3856 psg->sg[0].flags = 0; 3857 3858 nseg = scsi_dma_map(scsicmd); 3859 if (nseg < 0) 3860 return nseg; 3861 if (nseg) { 3862 struct scatterlist *sg; 3863 int i; 3864 3865 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3866 int count = sg_dma_len(sg); 3867 u64 addr = sg_dma_address(sg); 3868 psg->sg[i].next = 0; 3869 psg->sg[i].prev = 0; 3870 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3871 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3872 psg->sg[i].count = cpu_to_le32(count); 3873 psg->sg[i].flags = 0; 3874 byte_count += count; 3875 } 3876 psg->count = cpu_to_le32(nseg); 3877 /* hba wants the size to be exact */ 3878 if (byte_count > scsi_bufflen(scsicmd)) { 3879 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3880 (byte_count - scsi_bufflen(scsicmd)); 3881 psg->sg[i-1].count = cpu_to_le32(temp); 3882 byte_count = scsi_bufflen(scsicmd); 3883 } 3884 /* Check for command underflow */ 3885 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){ 3886 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3887 byte_count, scsicmd->underflow); 3888 } 3889 } 3890 return byte_count; 3891 } 3892 3893 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3894 struct aac_raw_io2 *rio2, int sg_max) 3895 { 3896 unsigned long byte_count = 0; 3897 int nseg; 3898 3899 nseg = scsi_dma_map(scsicmd); 3900 if (nseg < 0) 3901 return nseg; 3902 if (nseg) { 3903 struct scatterlist *sg; 3904 int i, conformable = 0; 3905 u32 min_size = PAGE_SIZE, cur_size; 3906 3907 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3908 int count = sg_dma_len(sg); 3909 u64 addr = sg_dma_address(sg); 3910 3911 BUG_ON(i >= sg_max); 3912 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3913 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3914 cur_size = cpu_to_le32(count); 3915 rio2->sge[i].length = cur_size; 3916 rio2->sge[i].flags = 0; 3917 if (i == 0) { 3918 conformable = 1; 3919 rio2->sgeFirstSize = cur_size; 3920 } else if (i == 1) { 3921 rio2->sgeNominalSize = cur_size; 3922 min_size = cur_size; 3923 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3924 conformable = 0; 3925 if (cur_size < min_size) 3926 min_size = cur_size; 3927 } 3928 byte_count += count; 3929 } 3930 3931 /* hba wants the size to be exact */ 3932 if (byte_count > scsi_bufflen(scsicmd)) { 3933 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 3934 (byte_count - scsi_bufflen(scsicmd)); 3935 rio2->sge[i-1].length = cpu_to_le32(temp); 3936 byte_count = scsi_bufflen(scsicmd); 3937 } 3938 3939 rio2->sgeCnt = cpu_to_le32(nseg); 3940 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 3941 /* not conformable: evaluate required sg elements */ 3942 if (!conformable) { 3943 int j, nseg_new = nseg, err_found; 3944 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 3945 err_found = 0; 3946 nseg_new = 2; 3947 for (j = 1; j < nseg - 1; ++j) { 3948 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 3949 err_found = 1; 3950 break; 3951 } 3952 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 3953 } 3954 if (!err_found) 3955 break; 3956 } 3957 if (i > 0 && nseg_new <= sg_max) 3958 aac_convert_sgraw2(rio2, i, nseg, nseg_new); 3959 } else 3960 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 3961 3962 /* Check for command underflow */ 3963 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3964 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3965 byte_count, scsicmd->underflow); 3966 } 3967 } 3968 3969 return byte_count; 3970 } 3971 3972 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 3973 { 3974 struct sge_ieee1212 *sge; 3975 int i, j, pos; 3976 u32 addr_low; 3977 3978 if (aac_convert_sgl == 0) 3979 return 0; 3980 3981 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC); 3982 if (sge == NULL) 3983 return -1; 3984 3985 for (i = 1, pos = 1; i < nseg-1; ++i) { 3986 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 3987 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 3988 sge[pos].addrLow = addr_low; 3989 sge[pos].addrHigh = rio2->sge[i].addrHigh; 3990 if (addr_low < rio2->sge[i].addrLow) 3991 sge[pos].addrHigh++; 3992 sge[pos].length = pages * PAGE_SIZE; 3993 sge[pos].flags = 0; 3994 pos++; 3995 } 3996 } 3997 sge[pos] = rio2->sge[nseg-1]; 3998 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 3999 4000 kfree(sge); 4001 rio2->sgeCnt = cpu_to_le32(nseg_new); 4002 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4003 rio2->sgeNominalSize = pages * PAGE_SIZE; 4004 return 0; 4005 } 4006 4007 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4008 struct aac_hba_cmd_req *hbacmd, 4009 int sg_max, 4010 u64 sg_address) 4011 { 4012 unsigned long byte_count = 0; 4013 int nseg; 4014 struct scatterlist *sg; 4015 int i; 4016 u32 cur_size; 4017 struct aac_hba_sgl *sge; 4018 4019 nseg = scsi_dma_map(scsicmd); 4020 if (nseg <= 0) { 4021 byte_count = nseg; 4022 goto out; 4023 } 4024 4025 if (nseg > HBA_MAX_SG_EMBEDDED) 4026 sge = &hbacmd->sge[2]; 4027 else 4028 sge = &hbacmd->sge[0]; 4029 4030 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4031 int count = sg_dma_len(sg); 4032 u64 addr = sg_dma_address(sg); 4033 4034 WARN_ON(i >= sg_max); 4035 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4036 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4037 cur_size = cpu_to_le32(count); 4038 sge->len = cur_size; 4039 sge->flags = 0; 4040 byte_count += count; 4041 sge++; 4042 } 4043 4044 sge--; 4045 /* hba wants the size to be exact */ 4046 if (byte_count > scsi_bufflen(scsicmd)) { 4047 u32 temp; 4048 4049 temp = le32_to_cpu(sge->len) - byte_count 4050 - scsi_bufflen(scsicmd); 4051 sge->len = cpu_to_le32(temp); 4052 byte_count = scsi_bufflen(scsicmd); 4053 } 4054 4055 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4056 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4057 sge->flags = cpu_to_le32(0x40000000); 4058 } else { 4059 /* not embedded */ 4060 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4061 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4062 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4063 hbacmd->sge[0].addr_lo = 4064 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4065 } 4066 4067 /* Check for command underflow */ 4068 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4069 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4070 byte_count, scsicmd->underflow); 4071 } 4072 out: 4073 return byte_count; 4074 } 4075 4076 #ifdef AAC_DETAILED_STATUS_INFO 4077 4078 struct aac_srb_status_info { 4079 u32 status; 4080 char *str; 4081 }; 4082 4083 4084 static struct aac_srb_status_info srb_status_info[] = { 4085 { SRB_STATUS_PENDING, "Pending Status"}, 4086 { SRB_STATUS_SUCCESS, "Success"}, 4087 { SRB_STATUS_ABORTED, "Aborted Command"}, 4088 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4089 { SRB_STATUS_ERROR, "Error Event"}, 4090 { SRB_STATUS_BUSY, "Device Busy"}, 4091 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4092 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4093 { SRB_STATUS_NO_DEVICE, "No Device"}, 4094 { SRB_STATUS_TIMEOUT, "Timeout"}, 4095 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4096 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4097 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4098 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4099 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4100 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4101 { SRB_STATUS_NO_HBA, "No HBA"}, 4102 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4103 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4104 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4105 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4106 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4107 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4108 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4109 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4110 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4111 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4112 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4113 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4114 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4115 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4116 { 0xff, "Unknown Error"} 4117 }; 4118 4119 char *aac_get_status_string(u32 status) 4120 { 4121 int i; 4122 4123 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4124 if (srb_status_info[i].status == status) 4125 return srb_status_info[i].str; 4126 4127 return "Bad Status Code"; 4128 } 4129 4130 #endif 4131