1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 29 #include <linux/module.h> 30 31 #include <asm/unaligned.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 38 #include "aacraid.h" 39 40 /* values for inqd_pdt: Peripheral device type in plain English */ 41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 42 #define INQD_PDT_PROC 0x03 /* Processor device */ 43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 47 48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 50 51 /* 52 * Sense codes 53 */ 54 55 #define SENCODE_NO_SENSE 0x00 56 #define SENCODE_END_OF_DATA 0x00 57 #define SENCODE_BECOMING_READY 0x04 58 #define SENCODE_INIT_CMD_REQUIRED 0x04 59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 61 #define SENCODE_INVALID_COMMAND 0x20 62 #define SENCODE_LBA_OUT_OF_RANGE 0x21 63 #define SENCODE_INVALID_CDB_FIELD 0x24 64 #define SENCODE_LUN_NOT_SUPPORTED 0x25 65 #define SENCODE_INVALID_PARAM_FIELD 0x26 66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 67 #define SENCODE_PARAM_VALUE_INVALID 0x26 68 #define SENCODE_RESET_OCCURRED 0x29 69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 76 #define SENCODE_OVERLAPPED_COMMAND 0x4E 77 78 /* 79 * Additional sense codes 80 */ 81 82 #define ASENCODE_NO_SENSE 0x00 83 #define ASENCODE_END_OF_DATA 0x05 84 #define ASENCODE_BECOMING_READY 0x01 85 #define ASENCODE_INIT_CMD_REQUIRED 0x02 86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 87 #define ASENCODE_INVALID_COMMAND 0x00 88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 89 #define ASENCODE_INVALID_CDB_FIELD 0x00 90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 91 #define ASENCODE_INVALID_PARAM_FIELD 0x00 92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 93 #define ASENCODE_PARAM_VALUE_INVALID 0x02 94 #define ASENCODE_RESET_OCCURRED 0x00 95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 102 #define ASENCODE_OVERLAPPED_COMMAND 0x00 103 104 #define BYTE0(x) (unsigned char)(x) 105 #define BYTE1(x) (unsigned char)((x) >> 8) 106 #define BYTE2(x) (unsigned char)((x) >> 16) 107 #define BYTE3(x) (unsigned char)((x) >> 24) 108 109 /* MODE_SENSE data format */ 110 typedef struct { 111 struct { 112 u8 data_length; 113 u8 med_type; 114 u8 dev_par; 115 u8 bd_length; 116 } __attribute__((packed)) hd; 117 struct { 118 u8 dens_code; 119 u8 block_count[3]; 120 u8 reserved; 121 u8 block_length[3]; 122 } __attribute__((packed)) bd; 123 u8 mpc_buf[3]; 124 } __attribute__((packed)) aac_modep_data; 125 126 /* MODE_SENSE_10 data format */ 127 typedef struct { 128 struct { 129 u8 data_length[2]; 130 u8 med_type; 131 u8 dev_par; 132 u8 rsrvd[2]; 133 u8 bd_length[2]; 134 } __attribute__((packed)) hd; 135 struct { 136 u8 dens_code; 137 u8 block_count[3]; 138 u8 reserved; 139 u8 block_length[3]; 140 } __attribute__((packed)) bd; 141 u8 mpc_buf[3]; 142 } __attribute__((packed)) aac_modep10_data; 143 144 /*------------------------------------------------------------------------------ 145 * S T R U C T S / T Y P E D E F S 146 *----------------------------------------------------------------------------*/ 147 /* SCSI inquiry data */ 148 struct inquiry_data { 149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 150 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 153 u8 inqd_len; /* Additional length (n-4) */ 154 u8 inqd_pad1[2];/* Reserved - must be zero */ 155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 156 u8 inqd_vid[8]; /* Vendor ID */ 157 u8 inqd_pid[16];/* Product ID */ 158 u8 inqd_prl[4]; /* Product Revision Level */ 159 }; 160 161 /* Added for VPD 0x83 */ 162 struct tvpd_id_descriptor_type_1 { 163 u8 codeset:4; /* VPD_CODE_SET */ 164 u8 reserved:4; 165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 166 u8 reserved2:4; 167 u8 reserved3; 168 u8 identifierlength; 169 u8 venid[8]; 170 u8 productid[16]; 171 u8 serialnumber[8]; /* SN in ASCII */ 172 173 }; 174 175 struct tvpd_id_descriptor_type_2 { 176 u8 codeset:4; /* VPD_CODE_SET */ 177 u8 reserved:4; 178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 179 u8 reserved2:4; 180 u8 reserved3; 181 u8 identifierlength; 182 struct teu64id { 183 u32 Serial; 184 /* The serial number supposed to be 40 bits, 185 * bit we only support 32, so make the last byte zero. */ 186 u8 reserved; 187 u8 venid[3]; 188 } eu64id; 189 190 }; 191 192 struct tvpd_id_descriptor_type_3 { 193 u8 codeset : 4; /* VPD_CODE_SET */ 194 u8 reserved : 4; 195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 196 u8 reserved2 : 4; 197 u8 reserved3; 198 u8 identifierlength; 199 u8 Identifier[16]; 200 }; 201 202 struct tvpd_page83 { 203 u8 DeviceType:5; 204 u8 DeviceTypeQualifier:3; 205 u8 PageCode; 206 u8 reserved; 207 u8 PageLength; 208 struct tvpd_id_descriptor_type_1 type1; 209 struct tvpd_id_descriptor_type_2 type2; 210 struct tvpd_id_descriptor_type_3 type3; 211 }; 212 213 /* 214 * M O D U L E G L O B A L S 215 */ 216 217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 221 struct aac_raw_io2 *rio2, int sg_max); 222 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 223 struct aac_hba_cmd_req *hbacmd, 224 int sg_max, u64 sg_address); 225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 226 int pages, int nseg, int nseg_new); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @common: adapter to query 354 * 355 * Query config status, and commit the configuration if needed. 356 */ 357 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 358 { 359 int status = 0; 360 struct fib * fibptr; 361 362 if (!(fibptr = aac_fib_alloc(dev))) 363 return -ENOMEM; 364 365 aac_fib_init(fibptr); 366 { 367 struct aac_get_config_status *dinfo; 368 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 369 370 dinfo->command = cpu_to_le32(VM_ContainerConfig); 371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 373 } 374 375 status = aac_fib_send(ContainerCommand, 376 fibptr, 377 sizeof (struct aac_get_config_status), 378 FsaNormal, 379 1, 1, 380 NULL, NULL); 381 if (status < 0) { 382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 383 } else { 384 struct aac_get_config_status_resp *reply 385 = (struct aac_get_config_status_resp *) fib_data(fibptr); 386 dprintk((KERN_WARNING 387 "aac_get_config_status: response=%d status=%d action=%d\n", 388 le32_to_cpu(reply->response), 389 le32_to_cpu(reply->status), 390 le32_to_cpu(reply->data.action))); 391 if ((le32_to_cpu(reply->response) != ST_OK) || 392 (le32_to_cpu(reply->status) != CT_OK) || 393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 395 status = -EINVAL; 396 } 397 } 398 /* Do not set XferState to zero unless receives a response from F/W */ 399 if (status >= 0) 400 aac_fib_complete(fibptr); 401 402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 403 if (status >= 0) { 404 if ((aac_commit == 1) || commit_flag) { 405 struct aac_commit_config * dinfo; 406 aac_fib_init(fibptr); 407 dinfo = (struct aac_commit_config *) fib_data(fibptr); 408 409 dinfo->command = cpu_to_le32(VM_ContainerConfig); 410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 411 412 status = aac_fib_send(ContainerCommand, 413 fibptr, 414 sizeof (struct aac_commit_config), 415 FsaNormal, 416 1, 1, 417 NULL, NULL); 418 /* Do not set XferState to zero unless 419 * receives a response from F/W */ 420 if (status >= 0) 421 aac_fib_complete(fibptr); 422 } else if (aac_commit == 0) { 423 printk(KERN_WARNING 424 "aac_get_config_status: Foreign device configurations are being ignored\n"); 425 } 426 } 427 /* FIB should be freed only after getting the response from the F/W */ 428 if (status != -ERESTARTSYS) 429 aac_fib_free(fibptr); 430 return status; 431 } 432 433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 434 { 435 char inq_data; 436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 438 inq_data &= 0xdf; 439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 440 } 441 } 442 443 /** 444 * aac_get_containers - list containers 445 * @common: adapter to probe 446 * 447 * Make a list of all containers on this controller 448 */ 449 int aac_get_containers(struct aac_dev *dev) 450 { 451 struct fsa_dev_info *fsa_dev_ptr; 452 u32 index; 453 int status = 0; 454 struct fib * fibptr; 455 struct aac_get_container_count *dinfo; 456 struct aac_get_container_count_resp *dresp; 457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 458 459 if (!(fibptr = aac_fib_alloc(dev))) 460 return -ENOMEM; 461 462 aac_fib_init(fibptr); 463 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 464 dinfo->command = cpu_to_le32(VM_ContainerConfig); 465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 466 467 status = aac_fib_send(ContainerCommand, 468 fibptr, 469 sizeof (struct aac_get_container_count), 470 FsaNormal, 471 1, 1, 472 NULL, NULL); 473 if (status >= 0) { 474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 476 if (fibptr->dev->supplement_adapter_info.supported_options2 & 477 AAC_OPTION_SUPPORTED_240_VOLUMES) { 478 maximum_num_containers = 479 le32_to_cpu(dresp->MaxSimpleVolumes); 480 } 481 aac_fib_complete(fibptr); 482 } 483 /* FIB should be freed only after getting the response from the F/W */ 484 if (status != -ERESTARTSYS) 485 aac_fib_free(fibptr); 486 487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 489 if (dev->fsa_dev == NULL || 490 dev->maximum_num_containers != maximum_num_containers) { 491 492 fsa_dev_ptr = dev->fsa_dev; 493 494 dev->fsa_dev = kcalloc(maximum_num_containers, 495 sizeof(*fsa_dev_ptr), GFP_KERNEL); 496 497 kfree(fsa_dev_ptr); 498 fsa_dev_ptr = NULL; 499 500 501 if (!dev->fsa_dev) 502 return -ENOMEM; 503 504 dev->maximum_num_containers = maximum_num_containers; 505 } 506 for (index = 0; index < dev->maximum_num_containers; index++) { 507 dev->fsa_dev[index].devname[0] = '\0'; 508 dev->fsa_dev[index].valid = 0; 509 510 status = aac_probe_container(dev, index); 511 512 if (status < 0) { 513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 514 break; 515 } 516 } 517 return status; 518 } 519 520 static void get_container_name_callback(void *context, struct fib * fibptr) 521 { 522 struct aac_get_name_resp * get_name_reply; 523 struct scsi_cmnd * scsicmd; 524 525 scsicmd = (struct scsi_cmnd *) context; 526 527 if (!aac_valid_context(scsicmd, fibptr)) 528 return; 529 530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 531 BUG_ON(fibptr == NULL); 532 533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 534 /* Failure is irrelevant, using default value instead */ 535 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 536 && (get_name_reply->data[0] != '\0')) { 537 char *sp = get_name_reply->data; 538 int data_size = sizeof_field(struct aac_get_name_resp, data); 539 540 sp[data_size - 1] = '\0'; 541 while (*sp == ' ') 542 ++sp; 543 if (*sp) { 544 struct inquiry_data inq; 545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 546 int count = sizeof(d); 547 char *dp = d; 548 do { 549 *dp++ = (*sp) ? *sp++ : ' '; 550 } while (--count > 0); 551 552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 553 memcpy(inq.inqd_pid, d, sizeof(d)); 554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 555 } 556 } 557 558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 559 560 aac_fib_complete(fibptr); 561 scsicmd->scsi_done(scsicmd); 562 } 563 564 /** 565 * aac_get_container_name - get container name, none blocking. 566 */ 567 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 568 { 569 int status; 570 int data_size; 571 struct aac_get_name *dinfo; 572 struct fib * cmd_fibcontext; 573 struct aac_dev * dev; 574 575 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 576 577 data_size = sizeof_field(struct aac_get_name_resp, data); 578 579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 580 581 aac_fib_init(cmd_fibcontext); 582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 584 585 dinfo->command = cpu_to_le32(VM_ContainerConfig); 586 dinfo->type = cpu_to_le32(CT_READ_NAME); 587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 588 dinfo->count = cpu_to_le32(data_size - 1); 589 590 status = aac_fib_send(ContainerCommand, 591 cmd_fibcontext, 592 sizeof(struct aac_get_name_resp), 593 FsaNormal, 594 0, 1, 595 (fib_callback)get_container_name_callback, 596 (void *) scsicmd); 597 598 /* 599 * Check that the command queued to the controller 600 */ 601 if (status == -EINPROGRESS) 602 return 0; 603 604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 605 aac_fib_complete(cmd_fibcontext); 606 return -1; 607 } 608 609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 610 { 611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 612 613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 614 return aac_scsi_cmd(scsicmd); 615 616 scsicmd->result = DID_NO_CONNECT << 16; 617 scsicmd->scsi_done(scsicmd); 618 return 0; 619 } 620 621 static void _aac_probe_container2(void * context, struct fib * fibptr) 622 { 623 struct fsa_dev_info *fsa_dev_ptr; 624 int (*callback)(struct scsi_cmnd *); 625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 626 int i; 627 628 629 if (!aac_valid_context(scsicmd, fibptr)) 630 return; 631 632 scsicmd->SCp.Status = 0; 633 fsa_dev_ptr = fibptr->dev->fsa_dev; 634 if (fsa_dev_ptr) { 635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 636 __le32 sup_options2; 637 638 fsa_dev_ptr += scmd_id(scsicmd); 639 sup_options2 = 640 fibptr->dev->supplement_adapter_info.supported_options2; 641 642 if ((le32_to_cpu(dresp->status) == ST_OK) && 643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 647 fsa_dev_ptr->block_size = 0x200; 648 } else { 649 fsa_dev_ptr->block_size = 650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 651 } 652 for (i = 0; i < 16; i++) 653 fsa_dev_ptr->identifier[i] = 654 dresp->mnt[0].fileinfo.bdevinfo 655 .identifier[i]; 656 fsa_dev_ptr->valid = 1; 657 /* sense_key holds the current state of the spin-up */ 658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 659 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 663 fsa_dev_ptr->size 664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 667 } 668 if ((fsa_dev_ptr->valid & 1) == 0) 669 fsa_dev_ptr->valid = 0; 670 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 671 } 672 aac_fib_complete(fibptr); 673 aac_fib_free(fibptr); 674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 675 scsicmd->SCp.ptr = NULL; 676 (*callback)(scsicmd); 677 return; 678 } 679 680 static void _aac_probe_container1(void * context, struct fib * fibptr) 681 { 682 struct scsi_cmnd * scsicmd; 683 struct aac_mount * dresp; 684 struct aac_query_mount *dinfo; 685 int status; 686 687 dresp = (struct aac_mount *) fib_data(fibptr); 688 if (!aac_supports_2T(fibptr->dev)) { 689 dresp->mnt[0].capacityhigh = 0; 690 if ((le32_to_cpu(dresp->status) == ST_OK) && 691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 692 _aac_probe_container2(context, fibptr); 693 return; 694 } 695 } 696 scsicmd = (struct scsi_cmnd *) context; 697 698 if (!aac_valid_context(scsicmd, fibptr)) 699 return; 700 701 aac_fib_init(fibptr); 702 703 dinfo = (struct aac_query_mount *)fib_data(fibptr); 704 705 if (fibptr->dev->supplement_adapter_info.supported_options2 & 706 AAC_OPTION_VARIABLE_BLOCK_SIZE) 707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 708 else 709 dinfo->command = cpu_to_le32(VM_NameServe64); 710 711 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 712 dinfo->type = cpu_to_le32(FT_FILESYS); 713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 714 715 status = aac_fib_send(ContainerCommand, 716 fibptr, 717 sizeof(struct aac_query_mount), 718 FsaNormal, 719 0, 1, 720 _aac_probe_container2, 721 (void *) scsicmd); 722 /* 723 * Check that the command queued to the controller 724 */ 725 if (status < 0 && status != -EINPROGRESS) { 726 /* Inherit results from VM_NameServe, if any */ 727 dresp->status = cpu_to_le32(ST_OK); 728 _aac_probe_container2(context, fibptr); 729 } 730 } 731 732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 733 { 734 struct fib * fibptr; 735 int status = -ENOMEM; 736 737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 738 struct aac_query_mount *dinfo; 739 740 aac_fib_init(fibptr); 741 742 dinfo = (struct aac_query_mount *)fib_data(fibptr); 743 744 if (fibptr->dev->supplement_adapter_info.supported_options2 & 745 AAC_OPTION_VARIABLE_BLOCK_SIZE) 746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 747 else 748 dinfo->command = cpu_to_le32(VM_NameServe); 749 750 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 751 dinfo->type = cpu_to_le32(FT_FILESYS); 752 scsicmd->SCp.ptr = (char *)callback; 753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 754 755 status = aac_fib_send(ContainerCommand, 756 fibptr, 757 sizeof(struct aac_query_mount), 758 FsaNormal, 759 0, 1, 760 _aac_probe_container1, 761 (void *) scsicmd); 762 /* 763 * Check that the command queued to the controller 764 */ 765 if (status == -EINPROGRESS) 766 return 0; 767 768 if (status < 0) { 769 scsicmd->SCp.ptr = NULL; 770 aac_fib_complete(fibptr); 771 aac_fib_free(fibptr); 772 } 773 } 774 if (status < 0) { 775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 776 if (fsa_dev_ptr) { 777 fsa_dev_ptr += scmd_id(scsicmd); 778 if ((fsa_dev_ptr->valid & 1) == 0) { 779 fsa_dev_ptr->valid = 0; 780 return (*callback)(scsicmd); 781 } 782 } 783 } 784 return status; 785 } 786 787 /** 788 * aac_probe_container - query a logical volume 789 * @dev: device to query 790 * @cid: container identifier 791 * 792 * Queries the controller about the given volume. The volume information 793 * is updated in the struct fsa_dev_info structure rather than returned. 794 */ 795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 796 { 797 scsicmd->device = NULL; 798 return 0; 799 } 800 801 int aac_probe_container(struct aac_dev *dev, int cid) 802 { 803 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 804 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 805 int status; 806 807 if (!scsicmd || !scsidev) { 808 kfree(scsicmd); 809 kfree(scsidev); 810 return -ENOMEM; 811 } 812 scsicmd->list.next = NULL; 813 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; 814 815 scsicmd->device = scsidev; 816 scsidev->sdev_state = 0; 817 scsidev->id = cid; 818 scsidev->host = dev->scsi_host_ptr; 819 820 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 821 while (scsicmd->device == scsidev) 822 schedule(); 823 kfree(scsidev); 824 status = scsicmd->SCp.Status; 825 kfree(scsicmd); 826 return status; 827 } 828 829 /* Local Structure to set SCSI inquiry data strings */ 830 struct scsi_inq { 831 char vid[8]; /* Vendor ID */ 832 char pid[16]; /* Product ID */ 833 char prl[4]; /* Product Revision Level */ 834 }; 835 836 /** 837 * InqStrCopy - string merge 838 * @a: string to copy from 839 * @b: string to copy to 840 * 841 * Copy a String from one location to another 842 * without copying \0 843 */ 844 845 static void inqstrcpy(char *a, char *b) 846 { 847 848 while (*a != (char)0) 849 *b++ = *a++; 850 } 851 852 static char *container_types[] = { 853 "None", 854 "Volume", 855 "Mirror", 856 "Stripe", 857 "RAID5", 858 "SSRW", 859 "SSRO", 860 "Morph", 861 "Legacy", 862 "RAID4", 863 "RAID10", 864 "RAID00", 865 "V-MIRRORS", 866 "PSEUDO R4", 867 "RAID50", 868 "RAID5D", 869 "RAID5D0", 870 "RAID1E", 871 "RAID6", 872 "RAID60", 873 "Unknown" 874 }; 875 876 char * get_container_type(unsigned tindex) 877 { 878 if (tindex >= ARRAY_SIZE(container_types)) 879 tindex = ARRAY_SIZE(container_types) - 1; 880 return container_types[tindex]; 881 } 882 883 /* Function: setinqstr 884 * 885 * Arguments: [1] pointer to void [1] int 886 * 887 * Purpose: Sets SCSI inquiry data strings for vendor, product 888 * and revision level. Allows strings to be set in platform dependent 889 * files instead of in OS dependent driver source. 890 */ 891 892 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 893 { 894 struct scsi_inq *str; 895 struct aac_supplement_adapter_info *sup_adap_info; 896 897 sup_adap_info = &dev->supplement_adapter_info; 898 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 899 memset(str, ' ', sizeof(*str)); 900 901 if (sup_adap_info->adapter_type_text[0]) { 902 int c; 903 char *cp; 904 char *cname = kmemdup(sup_adap_info->adapter_type_text, 905 sizeof(sup_adap_info->adapter_type_text), 906 GFP_ATOMIC); 907 if (!cname) 908 return; 909 910 cp = cname; 911 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 912 inqstrcpy("SMC", str->vid); 913 else { 914 c = sizeof(str->vid); 915 while (*cp && *cp != ' ' && --c) 916 ++cp; 917 c = *cp; 918 *cp = '\0'; 919 inqstrcpy(cname, str->vid); 920 *cp = c; 921 while (*cp && *cp != ' ') 922 ++cp; 923 } 924 while (*cp == ' ') 925 ++cp; 926 /* last six chars reserved for vol type */ 927 if (strlen(cp) > sizeof(str->pid)) 928 cp[sizeof(str->pid)] = '\0'; 929 inqstrcpy (cp, str->pid); 930 931 kfree(cname); 932 } else { 933 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 934 935 inqstrcpy (mp->vname, str->vid); 936 /* last six chars reserved for vol type */ 937 inqstrcpy (mp->model, str->pid); 938 } 939 940 if (tindex < ARRAY_SIZE(container_types)){ 941 char *findit = str->pid; 942 943 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 944 /* RAID is superfluous in the context of a RAID device */ 945 if (memcmp(findit-4, "RAID", 4) == 0) 946 *(findit -= 4) = ' '; 947 if (((findit - str->pid) + strlen(container_types[tindex])) 948 < (sizeof(str->pid) + sizeof(str->prl))) 949 inqstrcpy (container_types[tindex], findit + 1); 950 } 951 inqstrcpy ("V1.0", str->prl); 952 } 953 954 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 955 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 956 { 957 int container; 958 959 vpdpage83data->type3.codeset = 1; 960 vpdpage83data->type3.identifiertype = 3; 961 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 962 - 4; 963 964 for (container = 0; container < dev->maximum_num_containers; 965 container++) { 966 967 if (scmd_id(scsicmd) == container) { 968 memcpy(vpdpage83data->type3.Identifier, 969 dev->fsa_dev[container].identifier, 970 16); 971 break; 972 } 973 } 974 } 975 976 static void get_container_serial_callback(void *context, struct fib * fibptr) 977 { 978 struct aac_get_serial_resp * get_serial_reply; 979 struct scsi_cmnd * scsicmd; 980 981 BUG_ON(fibptr == NULL); 982 983 scsicmd = (struct scsi_cmnd *) context; 984 if (!aac_valid_context(scsicmd, fibptr)) 985 return; 986 987 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 988 /* Failure is irrelevant, using default value instead */ 989 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 990 /*Check to see if it's for VPD 0x83 or 0x80 */ 991 if (scsicmd->cmnd[2] == 0x83) { 992 /* vpd page 0x83 - Device Identification Page */ 993 struct aac_dev *dev; 994 int i; 995 struct tvpd_page83 vpdpage83data; 996 997 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 998 999 memset(((u8 *)&vpdpage83data), 0, 1000 sizeof(vpdpage83data)); 1001 1002 /* DIRECT_ACCESS_DEVIC */ 1003 vpdpage83data.DeviceType = 0; 1004 /* DEVICE_CONNECTED */ 1005 vpdpage83data.DeviceTypeQualifier = 0; 1006 /* VPD_DEVICE_IDENTIFIERS */ 1007 vpdpage83data.PageCode = 0x83; 1008 vpdpage83data.reserved = 0; 1009 vpdpage83data.PageLength = 1010 sizeof(vpdpage83data.type1) + 1011 sizeof(vpdpage83data.type2); 1012 1013 /* VPD 83 Type 3 is not supported for ARC */ 1014 if (dev->sa_firmware) 1015 vpdpage83data.PageLength += 1016 sizeof(vpdpage83data.type3); 1017 1018 /* T10 Vendor Identifier Field Format */ 1019 /* VpdcodesetAscii */ 1020 vpdpage83data.type1.codeset = 2; 1021 /* VpdIdentifierTypeVendorId */ 1022 vpdpage83data.type1.identifiertype = 1; 1023 vpdpage83data.type1.identifierlength = 1024 sizeof(vpdpage83data.type1) - 4; 1025 1026 /* "ADAPTEC " for adaptec */ 1027 memcpy(vpdpage83data.type1.venid, 1028 "ADAPTEC ", 1029 sizeof(vpdpage83data.type1.venid)); 1030 memcpy(vpdpage83data.type1.productid, 1031 "ARRAY ", 1032 sizeof( 1033 vpdpage83data.type1.productid)); 1034 1035 /* Convert to ascii based serial number. 1036 * The LSB is the the end. 1037 */ 1038 for (i = 0; i < 8; i++) { 1039 u8 temp = 1040 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1041 if (temp > 0x9) { 1042 vpdpage83data.type1.serialnumber[i] = 1043 'A' + (temp - 0xA); 1044 } else { 1045 vpdpage83data.type1.serialnumber[i] = 1046 '0' + temp; 1047 } 1048 } 1049 1050 /* VpdCodeSetBinary */ 1051 vpdpage83data.type2.codeset = 1; 1052 /* VpdidentifiertypeEUI64 */ 1053 vpdpage83data.type2.identifiertype = 2; 1054 vpdpage83data.type2.identifierlength = 1055 sizeof(vpdpage83data.type2) - 4; 1056 1057 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1058 vpdpage83data.type2.eu64id.venid[1] = 0; 1059 vpdpage83data.type2.eu64id.venid[2] = 0; 1060 1061 vpdpage83data.type2.eu64id.Serial = 1062 get_serial_reply->uid; 1063 vpdpage83data.type2.eu64id.reserved = 0; 1064 1065 /* 1066 * VpdIdentifierTypeFCPHName 1067 * VPD 0x83 Type 3 not supported for ARC 1068 */ 1069 if (dev->sa_firmware) { 1070 build_vpd83_type3(&vpdpage83data, 1071 dev, scsicmd); 1072 } 1073 1074 /* Move the inquiry data to the response buffer. */ 1075 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1076 sizeof(vpdpage83data)); 1077 } else { 1078 /* It must be for VPD 0x80 */ 1079 char sp[13]; 1080 /* EVPD bit set */ 1081 sp[0] = INQD_PDT_DA; 1082 sp[1] = scsicmd->cmnd[2]; 1083 sp[2] = 0; 1084 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1085 le32_to_cpu(get_serial_reply->uid)); 1086 scsi_sg_copy_from_buffer(scsicmd, sp, 1087 sizeof(sp)); 1088 } 1089 } 1090 1091 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1092 1093 aac_fib_complete(fibptr); 1094 scsicmd->scsi_done(scsicmd); 1095 } 1096 1097 /** 1098 * aac_get_container_serial - get container serial, none blocking. 1099 */ 1100 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1101 { 1102 int status; 1103 struct aac_get_serial *dinfo; 1104 struct fib * cmd_fibcontext; 1105 struct aac_dev * dev; 1106 1107 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1108 1109 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1110 1111 aac_fib_init(cmd_fibcontext); 1112 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1113 1114 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1115 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1116 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1117 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1118 1119 status = aac_fib_send(ContainerCommand, 1120 cmd_fibcontext, 1121 sizeof(struct aac_get_serial_resp), 1122 FsaNormal, 1123 0, 1, 1124 (fib_callback) get_container_serial_callback, 1125 (void *) scsicmd); 1126 1127 /* 1128 * Check that the command queued to the controller 1129 */ 1130 if (status == -EINPROGRESS) 1131 return 0; 1132 1133 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1134 aac_fib_complete(cmd_fibcontext); 1135 return -1; 1136 } 1137 1138 /* Function: setinqserial 1139 * 1140 * Arguments: [1] pointer to void [1] int 1141 * 1142 * Purpose: Sets SCSI Unit Serial number. 1143 * This is a fake. We should read a proper 1144 * serial number from the container. <SuSE>But 1145 * without docs it's quite hard to do it :-) 1146 * So this will have to do in the meantime.</SuSE> 1147 */ 1148 1149 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1150 { 1151 /* 1152 * This breaks array migration. 1153 */ 1154 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1155 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1156 } 1157 1158 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1159 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1160 { 1161 u8 *sense_buf = (u8 *)sense_data; 1162 /* Sense data valid, err code 70h */ 1163 sense_buf[0] = 0x70; /* No info field */ 1164 sense_buf[1] = 0; /* Segment number, always zero */ 1165 1166 sense_buf[2] = sense_key; /* Sense key */ 1167 1168 sense_buf[12] = sense_code; /* Additional sense code */ 1169 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1170 1171 if (sense_key == ILLEGAL_REQUEST) { 1172 sense_buf[7] = 10; /* Additional sense length */ 1173 1174 sense_buf[15] = bit_pointer; 1175 /* Illegal parameter is in the parameter block */ 1176 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1177 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1178 /* Illegal parameter is in the CDB block */ 1179 sense_buf[16] = field_pointer >> 8; /* MSB */ 1180 sense_buf[17] = field_pointer; /* LSB */ 1181 } else 1182 sense_buf[7] = 6; /* Additional sense length */ 1183 } 1184 1185 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1186 { 1187 if (lba & 0xffffffff00000000LL) { 1188 int cid = scmd_id(cmd); 1189 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1190 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1191 SAM_STAT_CHECK_CONDITION; 1192 set_sense(&dev->fsa_dev[cid].sense_data, 1193 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1194 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1195 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1196 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1197 SCSI_SENSE_BUFFERSIZE)); 1198 cmd->scsi_done(cmd); 1199 return 1; 1200 } 1201 return 0; 1202 } 1203 1204 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1205 { 1206 return 0; 1207 } 1208 1209 static void io_callback(void *context, struct fib * fibptr); 1210 1211 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1212 { 1213 struct aac_dev *dev = fib->dev; 1214 u16 fibsize, command; 1215 long ret; 1216 1217 aac_fib_init(fib); 1218 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1219 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1220 !dev->sync_mode) { 1221 struct aac_raw_io2 *readcmd2; 1222 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1223 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1224 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1225 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1226 readcmd2->byteCount = cpu_to_le32(count * 1227 dev->fsa_dev[scmd_id(cmd)].block_size); 1228 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1229 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1230 ret = aac_build_sgraw2(cmd, readcmd2, 1231 dev->scsi_host_ptr->sg_tablesize); 1232 if (ret < 0) 1233 return ret; 1234 command = ContainerRawIo2; 1235 fibsize = sizeof(struct aac_raw_io2) + 1236 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1237 } else { 1238 struct aac_raw_io *readcmd; 1239 readcmd = (struct aac_raw_io *) fib_data(fib); 1240 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1241 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1242 readcmd->count = cpu_to_le32(count * 1243 dev->fsa_dev[scmd_id(cmd)].block_size); 1244 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1245 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1246 readcmd->bpTotal = 0; 1247 readcmd->bpComplete = 0; 1248 ret = aac_build_sgraw(cmd, &readcmd->sg); 1249 if (ret < 0) 1250 return ret; 1251 command = ContainerRawIo; 1252 fibsize = sizeof(struct aac_raw_io) + 1253 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1254 } 1255 1256 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1257 /* 1258 * Now send the Fib to the adapter 1259 */ 1260 return aac_fib_send(command, 1261 fib, 1262 fibsize, 1263 FsaNormal, 1264 0, 1, 1265 (fib_callback) io_callback, 1266 (void *) cmd); 1267 } 1268 1269 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1270 { 1271 u16 fibsize; 1272 struct aac_read64 *readcmd; 1273 long ret; 1274 1275 aac_fib_init(fib); 1276 readcmd = (struct aac_read64 *) fib_data(fib); 1277 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1278 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1279 readcmd->sector_count = cpu_to_le16(count); 1280 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1281 readcmd->pad = 0; 1282 readcmd->flags = 0; 1283 1284 ret = aac_build_sg64(cmd, &readcmd->sg); 1285 if (ret < 0) 1286 return ret; 1287 fibsize = sizeof(struct aac_read64) + 1288 ((le32_to_cpu(readcmd->sg.count) - 1) * 1289 sizeof (struct sgentry64)); 1290 BUG_ON (fibsize > (fib->dev->max_fib_size - 1291 sizeof(struct aac_fibhdr))); 1292 /* 1293 * Now send the Fib to the adapter 1294 */ 1295 return aac_fib_send(ContainerCommand64, 1296 fib, 1297 fibsize, 1298 FsaNormal, 1299 0, 1, 1300 (fib_callback) io_callback, 1301 (void *) cmd); 1302 } 1303 1304 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1305 { 1306 u16 fibsize; 1307 struct aac_read *readcmd; 1308 struct aac_dev *dev = fib->dev; 1309 long ret; 1310 1311 aac_fib_init(fib); 1312 readcmd = (struct aac_read *) fib_data(fib); 1313 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1314 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1315 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1316 readcmd->count = cpu_to_le32(count * 1317 dev->fsa_dev[scmd_id(cmd)].block_size); 1318 1319 ret = aac_build_sg(cmd, &readcmd->sg); 1320 if (ret < 0) 1321 return ret; 1322 fibsize = sizeof(struct aac_read) + 1323 ((le32_to_cpu(readcmd->sg.count) - 1) * 1324 sizeof (struct sgentry)); 1325 BUG_ON (fibsize > (fib->dev->max_fib_size - 1326 sizeof(struct aac_fibhdr))); 1327 /* 1328 * Now send the Fib to the adapter 1329 */ 1330 return aac_fib_send(ContainerCommand, 1331 fib, 1332 fibsize, 1333 FsaNormal, 1334 0, 1, 1335 (fib_callback) io_callback, 1336 (void *) cmd); 1337 } 1338 1339 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1340 { 1341 struct aac_dev *dev = fib->dev; 1342 u16 fibsize, command; 1343 long ret; 1344 1345 aac_fib_init(fib); 1346 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1347 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1348 !dev->sync_mode) { 1349 struct aac_raw_io2 *writecmd2; 1350 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1351 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1352 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1353 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1354 writecmd2->byteCount = cpu_to_le32(count * 1355 dev->fsa_dev[scmd_id(cmd)].block_size); 1356 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1357 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1358 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1359 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1360 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1361 ret = aac_build_sgraw2(cmd, writecmd2, 1362 dev->scsi_host_ptr->sg_tablesize); 1363 if (ret < 0) 1364 return ret; 1365 command = ContainerRawIo2; 1366 fibsize = sizeof(struct aac_raw_io2) + 1367 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1368 } else { 1369 struct aac_raw_io *writecmd; 1370 writecmd = (struct aac_raw_io *) fib_data(fib); 1371 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1372 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1373 writecmd->count = cpu_to_le32(count * 1374 dev->fsa_dev[scmd_id(cmd)].block_size); 1375 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1376 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1377 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1378 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1379 cpu_to_le16(RIO_TYPE_WRITE); 1380 writecmd->bpTotal = 0; 1381 writecmd->bpComplete = 0; 1382 ret = aac_build_sgraw(cmd, &writecmd->sg); 1383 if (ret < 0) 1384 return ret; 1385 command = ContainerRawIo; 1386 fibsize = sizeof(struct aac_raw_io) + 1387 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1388 } 1389 1390 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1391 /* 1392 * Now send the Fib to the adapter 1393 */ 1394 return aac_fib_send(command, 1395 fib, 1396 fibsize, 1397 FsaNormal, 1398 0, 1, 1399 (fib_callback) io_callback, 1400 (void *) cmd); 1401 } 1402 1403 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1404 { 1405 u16 fibsize; 1406 struct aac_write64 *writecmd; 1407 long ret; 1408 1409 aac_fib_init(fib); 1410 writecmd = (struct aac_write64 *) fib_data(fib); 1411 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1412 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1413 writecmd->sector_count = cpu_to_le16(count); 1414 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1415 writecmd->pad = 0; 1416 writecmd->flags = 0; 1417 1418 ret = aac_build_sg64(cmd, &writecmd->sg); 1419 if (ret < 0) 1420 return ret; 1421 fibsize = sizeof(struct aac_write64) + 1422 ((le32_to_cpu(writecmd->sg.count) - 1) * 1423 sizeof (struct sgentry64)); 1424 BUG_ON (fibsize > (fib->dev->max_fib_size - 1425 sizeof(struct aac_fibhdr))); 1426 /* 1427 * Now send the Fib to the adapter 1428 */ 1429 return aac_fib_send(ContainerCommand64, 1430 fib, 1431 fibsize, 1432 FsaNormal, 1433 0, 1, 1434 (fib_callback) io_callback, 1435 (void *) cmd); 1436 } 1437 1438 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1439 { 1440 u16 fibsize; 1441 struct aac_write *writecmd; 1442 struct aac_dev *dev = fib->dev; 1443 long ret; 1444 1445 aac_fib_init(fib); 1446 writecmd = (struct aac_write *) fib_data(fib); 1447 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1448 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1449 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1450 writecmd->count = cpu_to_le32(count * 1451 dev->fsa_dev[scmd_id(cmd)].block_size); 1452 writecmd->sg.count = cpu_to_le32(1); 1453 /* ->stable is not used - it did mean which type of write */ 1454 1455 ret = aac_build_sg(cmd, &writecmd->sg); 1456 if (ret < 0) 1457 return ret; 1458 fibsize = sizeof(struct aac_write) + 1459 ((le32_to_cpu(writecmd->sg.count) - 1) * 1460 sizeof (struct sgentry)); 1461 BUG_ON (fibsize > (fib->dev->max_fib_size - 1462 sizeof(struct aac_fibhdr))); 1463 /* 1464 * Now send the Fib to the adapter 1465 */ 1466 return aac_fib_send(ContainerCommand, 1467 fib, 1468 fibsize, 1469 FsaNormal, 1470 0, 1, 1471 (fib_callback) io_callback, 1472 (void *) cmd); 1473 } 1474 1475 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1476 { 1477 struct aac_srb * srbcmd; 1478 u32 flag; 1479 u32 timeout; 1480 struct aac_dev *dev = fib->dev; 1481 1482 aac_fib_init(fib); 1483 switch(cmd->sc_data_direction){ 1484 case DMA_TO_DEVICE: 1485 flag = SRB_DataOut; 1486 break; 1487 case DMA_BIDIRECTIONAL: 1488 flag = SRB_DataIn | SRB_DataOut; 1489 break; 1490 case DMA_FROM_DEVICE: 1491 flag = SRB_DataIn; 1492 break; 1493 case DMA_NONE: 1494 default: /* shuts up some versions of gcc */ 1495 flag = SRB_NoDataXfer; 1496 break; 1497 } 1498 1499 srbcmd = (struct aac_srb*) fib_data(fib); 1500 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1501 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1502 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1503 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1504 srbcmd->flags = cpu_to_le32(flag); 1505 timeout = cmd->request->timeout/HZ; 1506 if (timeout == 0) 1507 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1508 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1509 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1510 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1511 return srbcmd; 1512 } 1513 1514 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1515 struct scsi_cmnd *cmd) 1516 { 1517 struct aac_hba_cmd_req *hbacmd; 1518 struct aac_dev *dev; 1519 int bus, target; 1520 u64 address; 1521 1522 dev = (struct aac_dev *)cmd->device->host->hostdata; 1523 1524 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1525 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1526 /* iu_type is a parameter of aac_hba_send */ 1527 switch (cmd->sc_data_direction) { 1528 case DMA_TO_DEVICE: 1529 hbacmd->byte1 = 2; 1530 break; 1531 case DMA_FROM_DEVICE: 1532 case DMA_BIDIRECTIONAL: 1533 hbacmd->byte1 = 1; 1534 break; 1535 case DMA_NONE: 1536 default: 1537 break; 1538 } 1539 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1540 1541 bus = aac_logical_to_phys(scmd_channel(cmd)); 1542 target = scmd_id(cmd); 1543 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1544 1545 /* we fill in reply_qid later in aac_src_deliver_message */ 1546 /* we fill in iu_type, request_id later in aac_hba_send */ 1547 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1548 1549 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1550 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1551 1552 address = (u64)fib->hw_error_pa; 1553 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1554 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1555 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1556 1557 return hbacmd; 1558 } 1559 1560 static void aac_srb_callback(void *context, struct fib * fibptr); 1561 1562 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1563 { 1564 u16 fibsize; 1565 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1566 long ret; 1567 1568 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1569 if (ret < 0) 1570 return ret; 1571 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1572 1573 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1574 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1575 /* 1576 * Build Scatter/Gather list 1577 */ 1578 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1579 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1580 sizeof (struct sgentry64)); 1581 BUG_ON (fibsize > (fib->dev->max_fib_size - 1582 sizeof(struct aac_fibhdr))); 1583 1584 /* 1585 * Now send the Fib to the adapter 1586 */ 1587 return aac_fib_send(ScsiPortCommand64, fib, 1588 fibsize, FsaNormal, 0, 1, 1589 (fib_callback) aac_srb_callback, 1590 (void *) cmd); 1591 } 1592 1593 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1594 { 1595 u16 fibsize; 1596 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1597 long ret; 1598 1599 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1600 if (ret < 0) 1601 return ret; 1602 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1603 1604 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1605 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1606 /* 1607 * Build Scatter/Gather list 1608 */ 1609 fibsize = sizeof (struct aac_srb) + 1610 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1611 sizeof (struct sgentry)); 1612 BUG_ON (fibsize > (fib->dev->max_fib_size - 1613 sizeof(struct aac_fibhdr))); 1614 1615 /* 1616 * Now send the Fib to the adapter 1617 */ 1618 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1619 (fib_callback) aac_srb_callback, (void *) cmd); 1620 } 1621 1622 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1623 { 1624 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1625 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1626 return FAILED; 1627 return aac_scsi_32(fib, cmd); 1628 } 1629 1630 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1631 { 1632 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1633 struct aac_dev *dev; 1634 long ret; 1635 1636 dev = (struct aac_dev *)cmd->device->host->hostdata; 1637 1638 ret = aac_build_sghba(cmd, hbacmd, 1639 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1640 if (ret < 0) 1641 return ret; 1642 1643 /* 1644 * Now send the HBA command to the adapter 1645 */ 1646 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1647 sizeof(struct aac_hba_sgl); 1648 1649 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1650 (fib_callback) aac_hba_callback, 1651 (void *) cmd); 1652 } 1653 1654 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1655 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1656 { 1657 struct fib *fibptr; 1658 dma_addr_t addr; 1659 int rcode; 1660 int fibsize; 1661 struct aac_srb *srb; 1662 struct aac_srb_reply *srb_reply; 1663 struct sgmap64 *sg64; 1664 u32 vbus; 1665 u32 vid; 1666 1667 if (!dev->sa_firmware) 1668 return 0; 1669 1670 /* allocate FIB */ 1671 fibptr = aac_fib_alloc(dev); 1672 if (!fibptr) 1673 return -ENOMEM; 1674 1675 aac_fib_init(fibptr); 1676 fibptr->hw_fib_va->header.XferState &= 1677 ~cpu_to_le32(FastResponseCapable); 1678 1679 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1680 sizeof(struct sgentry64); 1681 1682 /* allocate DMA buffer for response */ 1683 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1684 DMA_BIDIRECTIONAL); 1685 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1686 rcode = -ENOMEM; 1687 goto fib_error; 1688 } 1689 1690 srb = fib_data(fibptr); 1691 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1692 1693 vbus = (u32)le16_to_cpu( 1694 dev->supplement_adapter_info.virt_device_bus); 1695 vid = (u32)le16_to_cpu( 1696 dev->supplement_adapter_info.virt_device_target); 1697 1698 /* set the common request fields */ 1699 srb->channel = cpu_to_le32(vbus); 1700 srb->id = cpu_to_le32(vid); 1701 srb->lun = 0; 1702 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1703 srb->timeout = 0; 1704 srb->retry_limit = 0; 1705 srb->cdb_size = cpu_to_le32(16); 1706 srb->count = cpu_to_le32(xfer_len); 1707 1708 sg64 = (struct sgmap64 *)&srb->sg; 1709 sg64->count = cpu_to_le32(1); 1710 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1711 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1712 sg64->sg[0].count = cpu_to_le32(xfer_len); 1713 1714 /* 1715 * Copy the updated data for other dumping or other usage if needed 1716 */ 1717 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1718 1719 /* issue request to the controller */ 1720 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1721 1, 1, NULL, NULL); 1722 1723 if (rcode == -ERESTARTSYS) 1724 rcode = -ERESTART; 1725 1726 if (unlikely(rcode < 0)) 1727 goto bmic_error; 1728 1729 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1730 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1731 1732 bmic_error: 1733 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1734 fib_error: 1735 aac_fib_complete(fibptr); 1736 aac_fib_free(fibptr); 1737 return rcode; 1738 } 1739 1740 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1741 { 1742 1743 struct aac_ciss_identify_pd *identify_resp; 1744 1745 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1746 return; 1747 1748 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1749 if (identify_resp == NULL) { 1750 dev->hba_map[bus][target].qd_limit = 32; 1751 return; 1752 } 1753 1754 if (identify_resp->current_queue_depth_limit <= 0 || 1755 identify_resp->current_queue_depth_limit > 255) 1756 dev->hba_map[bus][target].qd_limit = 32; 1757 else 1758 dev->hba_map[bus][target].qd_limit = 1759 identify_resp->current_queue_depth_limit; 1760 } 1761 1762 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1763 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1764 { 1765 int rcode = -ENOMEM; 1766 int datasize; 1767 struct aac_srb_unit srbu; 1768 struct aac_srb *srbcmd; 1769 struct aac_ciss_identify_pd *identify_reply; 1770 1771 datasize = sizeof(struct aac_ciss_identify_pd); 1772 identify_reply = kmalloc(datasize, GFP_KERNEL); 1773 if (!identify_reply) 1774 goto out; 1775 1776 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1777 1778 srbcmd = &srbu.srb; 1779 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1780 srbcmd->cdb[0] = 0x26; 1781 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1782 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1783 1784 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1785 if (unlikely(rcode < 0)) 1786 goto mem_free_all; 1787 1788 *identify_resp = identify_reply; 1789 1790 out: 1791 return rcode; 1792 mem_free_all: 1793 kfree(identify_reply); 1794 goto out; 1795 } 1796 1797 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1798 { 1799 kfree(dev->safw_phys_luns); 1800 dev->safw_phys_luns = NULL; 1801 } 1802 1803 /** 1804 * aac_get_safw_ciss_luns() Process topology change 1805 * @dev: aac_dev structure 1806 * 1807 * Execute a CISS REPORT PHYS LUNS and process the results into 1808 * the current hba_map. 1809 */ 1810 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1811 { 1812 int rcode = -ENOMEM; 1813 int datasize; 1814 struct aac_srb *srbcmd; 1815 struct aac_srb_unit srbu; 1816 struct aac_ciss_phys_luns_resp *phys_luns; 1817 1818 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1819 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1820 phys_luns = kmalloc(datasize, GFP_KERNEL); 1821 if (phys_luns == NULL) 1822 goto out; 1823 1824 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1825 1826 srbcmd = &srbu.srb; 1827 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1828 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1829 srbcmd->cdb[1] = 2; /* extended reporting */ 1830 srbcmd->cdb[8] = (u8)(datasize >> 8); 1831 srbcmd->cdb[9] = (u8)(datasize); 1832 1833 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1834 if (unlikely(rcode < 0)) 1835 goto mem_free_all; 1836 1837 if (phys_luns->resp_flag != 2) { 1838 rcode = -ENOMSG; 1839 goto mem_free_all; 1840 } 1841 1842 dev->safw_phys_luns = phys_luns; 1843 1844 out: 1845 return rcode; 1846 mem_free_all: 1847 kfree(phys_luns); 1848 goto out; 1849 } 1850 1851 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1852 { 1853 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1854 } 1855 1856 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1857 { 1858 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1859 } 1860 1861 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1862 { 1863 return dev->safw_phys_luns->lun[lun].level2[0]; 1864 } 1865 1866 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1867 { 1868 return dev->safw_phys_luns->lun[lun].bus >> 6; 1869 } 1870 1871 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1872 { 1873 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1874 } 1875 1876 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1877 { 1878 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1879 } 1880 1881 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1882 { 1883 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1884 } 1885 1886 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1887 int bus, int target) 1888 { 1889 kfree(dev->hba_map[bus][target].safw_identify_resp); 1890 dev->hba_map[bus][target].safw_identify_resp = NULL; 1891 } 1892 1893 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1894 int lun_count) 1895 { 1896 int luns; 1897 int i; 1898 u32 bus; 1899 u32 target; 1900 1901 luns = aac_get_safw_phys_lun_count(dev); 1902 1903 if (luns < lun_count) 1904 lun_count = luns; 1905 else if (lun_count < 0) 1906 lun_count = luns; 1907 1908 for (i = 0; i < lun_count; i++) { 1909 bus = aac_get_safw_phys_bus(dev, i); 1910 target = aac_get_safw_phys_target(dev, i); 1911 1912 aac_free_safw_identify_resp(dev, bus, target); 1913 } 1914 } 1915 1916 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1917 { 1918 int i; 1919 int rcode = 0; 1920 u32 lun_count; 1921 u32 bus; 1922 u32 target; 1923 struct aac_ciss_identify_pd *identify_resp = NULL; 1924 1925 lun_count = aac_get_safw_phys_lun_count(dev); 1926 1927 for (i = 0; i < lun_count; ++i) { 1928 1929 bus = aac_get_safw_phys_bus(dev, i); 1930 target = aac_get_safw_phys_target(dev, i); 1931 1932 rcode = aac_issue_safw_bmic_identify(dev, 1933 &identify_resp, bus, target); 1934 1935 if (unlikely(rcode < 0)) 1936 goto free_identify_resp; 1937 1938 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1939 } 1940 1941 out: 1942 return rcode; 1943 free_identify_resp: 1944 aac_free_safw_all_identify_resp(dev, i); 1945 goto out; 1946 } 1947 1948 /** 1949 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1950 * @dev: aac_dev structure 1951 * @phys_luns: FW information from report phys luns 1952 * @rescan: Indicates scan type 1953 * 1954 * Update our hba map with the information gathered from the FW 1955 */ 1956 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1957 { 1958 /* ok and extended reporting */ 1959 u32 lun_count, nexus; 1960 u32 i, bus, target; 1961 u8 expose_flag, attribs; 1962 1963 lun_count = aac_get_safw_phys_lun_count(dev); 1964 1965 dev->scan_counter++; 1966 1967 for (i = 0; i < lun_count; ++i) { 1968 1969 bus = aac_get_safw_phys_bus(dev, i); 1970 target = aac_get_safw_phys_target(dev, i); 1971 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1972 attribs = aac_get_safw_phys_attribs(dev, i); 1973 nexus = aac_get_safw_phys_nexus(dev, i); 1974 1975 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1976 continue; 1977 1978 if (expose_flag != 0) { 1979 dev->hba_map[bus][target].devtype = 1980 AAC_DEVTYPE_RAID_MEMBER; 1981 continue; 1982 } 1983 1984 if (nexus != 0 && (attribs & 8)) { 1985 dev->hba_map[bus][target].devtype = 1986 AAC_DEVTYPE_NATIVE_RAW; 1987 dev->hba_map[bus][target].rmw_nexus = 1988 nexus; 1989 } else 1990 dev->hba_map[bus][target].devtype = 1991 AAC_DEVTYPE_ARC_RAW; 1992 1993 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1994 1995 aac_set_safw_target_qd(dev, bus, target); 1996 } 1997 } 1998 1999 static int aac_setup_safw_targets(struct aac_dev *dev) 2000 { 2001 int rcode = 0; 2002 2003 rcode = aac_get_containers(dev); 2004 if (unlikely(rcode < 0)) 2005 goto out; 2006 2007 rcode = aac_get_safw_ciss_luns(dev); 2008 if (unlikely(rcode < 0)) 2009 goto out; 2010 2011 rcode = aac_get_safw_attr_all_targets(dev); 2012 if (unlikely(rcode < 0)) 2013 goto free_ciss_luns; 2014 2015 aac_set_safw_attr_all_targets(dev); 2016 2017 aac_free_safw_all_identify_resp(dev, -1); 2018 free_ciss_luns: 2019 aac_free_safw_ciss_luns(dev); 2020 out: 2021 return rcode; 2022 } 2023 2024 int aac_setup_safw_adapter(struct aac_dev *dev) 2025 { 2026 return aac_setup_safw_targets(dev); 2027 } 2028 2029 int aac_get_adapter_info(struct aac_dev* dev) 2030 { 2031 struct fib* fibptr; 2032 int rcode; 2033 u32 tmp, bus, target; 2034 struct aac_adapter_info *info; 2035 struct aac_bus_info *command; 2036 struct aac_bus_info_response *bus_info; 2037 2038 if (!(fibptr = aac_fib_alloc(dev))) 2039 return -ENOMEM; 2040 2041 aac_fib_init(fibptr); 2042 info = (struct aac_adapter_info *) fib_data(fibptr); 2043 memset(info,0,sizeof(*info)); 2044 2045 rcode = aac_fib_send(RequestAdapterInfo, 2046 fibptr, 2047 sizeof(*info), 2048 FsaNormal, 2049 -1, 1, /* First `interrupt' command uses special wait */ 2050 NULL, 2051 NULL); 2052 2053 if (rcode < 0) { 2054 /* FIB should be freed only after 2055 * getting the response from the F/W */ 2056 if (rcode != -ERESTARTSYS) { 2057 aac_fib_complete(fibptr); 2058 aac_fib_free(fibptr); 2059 } 2060 return rcode; 2061 } 2062 memcpy(&dev->adapter_info, info, sizeof(*info)); 2063 2064 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2065 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2066 struct aac_supplement_adapter_info * sinfo; 2067 2068 aac_fib_init(fibptr); 2069 2070 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2071 2072 memset(sinfo,0,sizeof(*sinfo)); 2073 2074 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2075 fibptr, 2076 sizeof(*sinfo), 2077 FsaNormal, 2078 1, 1, 2079 NULL, 2080 NULL); 2081 2082 if (rcode >= 0) 2083 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2084 if (rcode == -ERESTARTSYS) { 2085 fibptr = aac_fib_alloc(dev); 2086 if (!fibptr) 2087 return -ENOMEM; 2088 } 2089 2090 } 2091 2092 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2093 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2094 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2095 dev->hba_map[bus][target].devtype = 0; 2096 dev->hba_map[bus][target].qd_limit = 0; 2097 } 2098 } 2099 2100 /* 2101 * GetBusInfo 2102 */ 2103 2104 aac_fib_init(fibptr); 2105 2106 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2107 2108 memset(bus_info, 0, sizeof(*bus_info)); 2109 2110 command = (struct aac_bus_info *)bus_info; 2111 2112 command->Command = cpu_to_le32(VM_Ioctl); 2113 command->ObjType = cpu_to_le32(FT_DRIVE); 2114 command->MethodId = cpu_to_le32(1); 2115 command->CtlCmd = cpu_to_le32(GetBusInfo); 2116 2117 rcode = aac_fib_send(ContainerCommand, 2118 fibptr, 2119 sizeof (*bus_info), 2120 FsaNormal, 2121 1, 1, 2122 NULL, NULL); 2123 2124 /* reasoned default */ 2125 dev->maximum_num_physicals = 16; 2126 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2127 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2128 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2129 } 2130 2131 if (!dev->in_reset) { 2132 char buffer[16]; 2133 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2134 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2135 dev->name, 2136 dev->id, 2137 tmp>>24, 2138 (tmp>>16)&0xff, 2139 tmp&0xff, 2140 le32_to_cpu(dev->adapter_info.kernelbuild), 2141 (int)sizeof(dev->supplement_adapter_info.build_date), 2142 dev->supplement_adapter_info.build_date); 2143 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2144 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2145 dev->name, dev->id, 2146 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2147 le32_to_cpu(dev->adapter_info.monitorbuild)); 2148 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2149 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2150 dev->name, dev->id, 2151 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2152 le32_to_cpu(dev->adapter_info.biosbuild)); 2153 buffer[0] = '\0'; 2154 if (aac_get_serial_number( 2155 shost_to_class(dev->scsi_host_ptr), buffer)) 2156 printk(KERN_INFO "%s%d: serial %s", 2157 dev->name, dev->id, buffer); 2158 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2159 printk(KERN_INFO "%s%d: TSID %.*s\n", 2160 dev->name, dev->id, 2161 (int)sizeof(dev->supplement_adapter_info 2162 .vpd_info.tsid), 2163 dev->supplement_adapter_info.vpd_info.tsid); 2164 } 2165 if (!aac_check_reset || ((aac_check_reset == 1) && 2166 (dev->supplement_adapter_info.supported_options2 & 2167 AAC_OPTION_IGNORE_RESET))) { 2168 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2169 dev->name, dev->id); 2170 } 2171 } 2172 2173 dev->cache_protected = 0; 2174 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2175 AAC_FEATURE_JBOD) != 0); 2176 dev->nondasd_support = 0; 2177 dev->raid_scsi_mode = 0; 2178 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2179 dev->nondasd_support = 1; 2180 2181 /* 2182 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2183 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2184 * force nondasd support on. If we decide to allow the non-dasd flag 2185 * additional changes changes will have to be made to support 2186 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2187 * changed to support the new dev->raid_scsi_mode flag instead of 2188 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2189 * function aac_detect will have to be modified where it sets up the 2190 * max number of channels based on the aac->nondasd_support flag only. 2191 */ 2192 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2193 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2194 dev->nondasd_support = 1; 2195 dev->raid_scsi_mode = 1; 2196 } 2197 if (dev->raid_scsi_mode != 0) 2198 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2199 dev->name, dev->id); 2200 2201 if (nondasd != -1) 2202 dev->nondasd_support = (nondasd!=0); 2203 if (dev->nondasd_support && !dev->in_reset) 2204 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2205 2206 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2207 dev->needs_dac = 1; 2208 dev->dac_support = 0; 2209 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2210 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2211 if (!dev->in_reset) 2212 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2213 dev->name, dev->id); 2214 dev->dac_support = 1; 2215 } 2216 2217 if(dacmode != -1) { 2218 dev->dac_support = (dacmode!=0); 2219 } 2220 2221 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2222 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2223 & AAC_QUIRK_SCSI_32)) { 2224 dev->nondasd_support = 0; 2225 dev->jbod = 0; 2226 expose_physicals = 0; 2227 } 2228 2229 if (dev->dac_support) { 2230 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2231 if (!dev->in_reset) 2232 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2233 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2234 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2235 dev->dac_support = 0; 2236 } else { 2237 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2238 rcode = -ENOMEM; 2239 } 2240 } 2241 /* 2242 * Deal with configuring for the individualized limits of each packet 2243 * interface. 2244 */ 2245 dev->a_ops.adapter_scsi = (dev->dac_support) 2246 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2247 ? aac_scsi_32_64 2248 : aac_scsi_64) 2249 : aac_scsi_32; 2250 if (dev->raw_io_interface) { 2251 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2252 ? aac_bounds_64 2253 : aac_bounds_32; 2254 dev->a_ops.adapter_read = aac_read_raw_io; 2255 dev->a_ops.adapter_write = aac_write_raw_io; 2256 } else { 2257 dev->a_ops.adapter_bounds = aac_bounds_32; 2258 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2259 sizeof(struct aac_fibhdr) - 2260 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2261 sizeof(struct sgentry); 2262 if (dev->dac_support) { 2263 dev->a_ops.adapter_read = aac_read_block64; 2264 dev->a_ops.adapter_write = aac_write_block64; 2265 /* 2266 * 38 scatter gather elements 2267 */ 2268 dev->scsi_host_ptr->sg_tablesize = 2269 (dev->max_fib_size - 2270 sizeof(struct aac_fibhdr) - 2271 sizeof(struct aac_write64) + 2272 sizeof(struct sgentry64)) / 2273 sizeof(struct sgentry64); 2274 } else { 2275 dev->a_ops.adapter_read = aac_read_block; 2276 dev->a_ops.adapter_write = aac_write_block; 2277 } 2278 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2279 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2280 /* 2281 * Worst case size that could cause sg overflow when 2282 * we break up SG elements that are larger than 64KB. 2283 * Would be nice if we could tell the SCSI layer what 2284 * the maximum SG element size can be. Worst case is 2285 * (sg_tablesize-1) 4KB elements with one 64KB 2286 * element. 2287 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2288 */ 2289 dev->scsi_host_ptr->max_sectors = 2290 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2291 } 2292 } 2293 if (!dev->sync_mode && dev->sa_firmware && 2294 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2295 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2296 HBA_MAX_SG_SEPARATE; 2297 2298 /* FIB should be freed only after getting the response from the F/W */ 2299 if (rcode != -ERESTARTSYS) { 2300 aac_fib_complete(fibptr); 2301 aac_fib_free(fibptr); 2302 } 2303 2304 return rcode; 2305 } 2306 2307 2308 static void io_callback(void *context, struct fib * fibptr) 2309 { 2310 struct aac_dev *dev; 2311 struct aac_read_reply *readreply; 2312 struct scsi_cmnd *scsicmd; 2313 u32 cid; 2314 2315 scsicmd = (struct scsi_cmnd *) context; 2316 2317 if (!aac_valid_context(scsicmd, fibptr)) 2318 return; 2319 2320 dev = fibptr->dev; 2321 cid = scmd_id(scsicmd); 2322 2323 if (nblank(dprintk(x))) { 2324 u64 lba; 2325 switch (scsicmd->cmnd[0]) { 2326 case WRITE_6: 2327 case READ_6: 2328 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2329 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2330 break; 2331 case WRITE_16: 2332 case READ_16: 2333 lba = ((u64)scsicmd->cmnd[2] << 56) | 2334 ((u64)scsicmd->cmnd[3] << 48) | 2335 ((u64)scsicmd->cmnd[4] << 40) | 2336 ((u64)scsicmd->cmnd[5] << 32) | 2337 ((u64)scsicmd->cmnd[6] << 24) | 2338 (scsicmd->cmnd[7] << 16) | 2339 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2340 break; 2341 case WRITE_12: 2342 case READ_12: 2343 lba = ((u64)scsicmd->cmnd[2] << 24) | 2344 (scsicmd->cmnd[3] << 16) | 2345 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2346 break; 2347 default: 2348 lba = ((u64)scsicmd->cmnd[2] << 24) | 2349 (scsicmd->cmnd[3] << 16) | 2350 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2351 break; 2352 } 2353 printk(KERN_DEBUG 2354 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2355 smp_processor_id(), (unsigned long long)lba, jiffies); 2356 } 2357 2358 BUG_ON(fibptr == NULL); 2359 2360 scsi_dma_unmap(scsicmd); 2361 2362 readreply = (struct aac_read_reply *)fib_data(fibptr); 2363 switch (le32_to_cpu(readreply->status)) { 2364 case ST_OK: 2365 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2366 SAM_STAT_GOOD; 2367 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2368 break; 2369 case ST_NOT_READY: 2370 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2371 SAM_STAT_CHECK_CONDITION; 2372 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2373 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2374 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2375 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2376 SCSI_SENSE_BUFFERSIZE)); 2377 break; 2378 case ST_MEDERR: 2379 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2380 SAM_STAT_CHECK_CONDITION; 2381 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2382 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2383 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2384 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2385 SCSI_SENSE_BUFFERSIZE)); 2386 break; 2387 default: 2388 #ifdef AAC_DETAILED_STATUS_INFO 2389 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2390 le32_to_cpu(readreply->status)); 2391 #endif 2392 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2393 SAM_STAT_CHECK_CONDITION; 2394 set_sense(&dev->fsa_dev[cid].sense_data, 2395 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2396 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2397 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2398 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2399 SCSI_SENSE_BUFFERSIZE)); 2400 break; 2401 } 2402 aac_fib_complete(fibptr); 2403 2404 scsicmd->scsi_done(scsicmd); 2405 } 2406 2407 static int aac_read(struct scsi_cmnd * scsicmd) 2408 { 2409 u64 lba; 2410 u32 count; 2411 int status; 2412 struct aac_dev *dev; 2413 struct fib * cmd_fibcontext; 2414 int cid; 2415 2416 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2417 /* 2418 * Get block address and transfer length 2419 */ 2420 switch (scsicmd->cmnd[0]) { 2421 case READ_6: 2422 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2423 2424 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2425 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2426 count = scsicmd->cmnd[4]; 2427 2428 if (count == 0) 2429 count = 256; 2430 break; 2431 case READ_16: 2432 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2433 2434 lba = ((u64)scsicmd->cmnd[2] << 56) | 2435 ((u64)scsicmd->cmnd[3] << 48) | 2436 ((u64)scsicmd->cmnd[4] << 40) | 2437 ((u64)scsicmd->cmnd[5] << 32) | 2438 ((u64)scsicmd->cmnd[6] << 24) | 2439 (scsicmd->cmnd[7] << 16) | 2440 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2441 count = (scsicmd->cmnd[10] << 24) | 2442 (scsicmd->cmnd[11] << 16) | 2443 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2444 break; 2445 case READ_12: 2446 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2447 2448 lba = ((u64)scsicmd->cmnd[2] << 24) | 2449 (scsicmd->cmnd[3] << 16) | 2450 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2451 count = (scsicmd->cmnd[6] << 24) | 2452 (scsicmd->cmnd[7] << 16) | 2453 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2454 break; 2455 default: 2456 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2457 2458 lba = ((u64)scsicmd->cmnd[2] << 24) | 2459 (scsicmd->cmnd[3] << 16) | 2460 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2461 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2462 break; 2463 } 2464 2465 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2466 cid = scmd_id(scsicmd); 2467 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2468 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2469 SAM_STAT_CHECK_CONDITION; 2470 set_sense(&dev->fsa_dev[cid].sense_data, 2471 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2472 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2473 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2474 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2475 SCSI_SENSE_BUFFERSIZE)); 2476 scsicmd->scsi_done(scsicmd); 2477 return 0; 2478 } 2479 2480 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2481 smp_processor_id(), (unsigned long long)lba, jiffies)); 2482 if (aac_adapter_bounds(dev,scsicmd,lba)) 2483 return 0; 2484 /* 2485 * Alocate and initialize a Fib 2486 */ 2487 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2488 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2489 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2490 2491 /* 2492 * Check that the command queued to the controller 2493 */ 2494 if (status == -EINPROGRESS) 2495 return 0; 2496 2497 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2498 /* 2499 * For some reason, the Fib didn't queue, return QUEUE_FULL 2500 */ 2501 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2502 scsicmd->scsi_done(scsicmd); 2503 aac_fib_complete(cmd_fibcontext); 2504 aac_fib_free(cmd_fibcontext); 2505 return 0; 2506 } 2507 2508 static int aac_write(struct scsi_cmnd * scsicmd) 2509 { 2510 u64 lba; 2511 u32 count; 2512 int fua; 2513 int status; 2514 struct aac_dev *dev; 2515 struct fib * cmd_fibcontext; 2516 int cid; 2517 2518 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2519 /* 2520 * Get block address and transfer length 2521 */ 2522 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2523 { 2524 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2525 count = scsicmd->cmnd[4]; 2526 if (count == 0) 2527 count = 256; 2528 fua = 0; 2529 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2530 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2531 2532 lba = ((u64)scsicmd->cmnd[2] << 56) | 2533 ((u64)scsicmd->cmnd[3] << 48) | 2534 ((u64)scsicmd->cmnd[4] << 40) | 2535 ((u64)scsicmd->cmnd[5] << 32) | 2536 ((u64)scsicmd->cmnd[6] << 24) | 2537 (scsicmd->cmnd[7] << 16) | 2538 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2539 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2540 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2541 fua = scsicmd->cmnd[1] & 0x8; 2542 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2543 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2544 2545 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2546 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2547 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2548 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2549 fua = scsicmd->cmnd[1] & 0x8; 2550 } else { 2551 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2552 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2553 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2554 fua = scsicmd->cmnd[1] & 0x8; 2555 } 2556 2557 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2558 cid = scmd_id(scsicmd); 2559 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2560 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2561 SAM_STAT_CHECK_CONDITION; 2562 set_sense(&dev->fsa_dev[cid].sense_data, 2563 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2564 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2565 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2566 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2567 SCSI_SENSE_BUFFERSIZE)); 2568 scsicmd->scsi_done(scsicmd); 2569 return 0; 2570 } 2571 2572 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2573 smp_processor_id(), (unsigned long long)lba, jiffies)); 2574 if (aac_adapter_bounds(dev,scsicmd,lba)) 2575 return 0; 2576 /* 2577 * Allocate and initialize a Fib then setup a BlockWrite command 2578 */ 2579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2580 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2581 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2582 2583 /* 2584 * Check that the command queued to the controller 2585 */ 2586 if (status == -EINPROGRESS) 2587 return 0; 2588 2589 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2590 /* 2591 * For some reason, the Fib didn't queue, return QUEUE_FULL 2592 */ 2593 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2594 scsicmd->scsi_done(scsicmd); 2595 2596 aac_fib_complete(cmd_fibcontext); 2597 aac_fib_free(cmd_fibcontext); 2598 return 0; 2599 } 2600 2601 static void synchronize_callback(void *context, struct fib *fibptr) 2602 { 2603 struct aac_synchronize_reply *synchronizereply; 2604 struct scsi_cmnd *cmd; 2605 2606 cmd = context; 2607 2608 if (!aac_valid_context(cmd, fibptr)) 2609 return; 2610 2611 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2612 smp_processor_id(), jiffies)); 2613 BUG_ON(fibptr == NULL); 2614 2615 2616 synchronizereply = fib_data(fibptr); 2617 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2618 cmd->result = DID_OK << 16 | 2619 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2620 else { 2621 struct scsi_device *sdev = cmd->device; 2622 struct aac_dev *dev = fibptr->dev; 2623 u32 cid = sdev_id(sdev); 2624 printk(KERN_WARNING 2625 "synchronize_callback: synchronize failed, status = %d\n", 2626 le32_to_cpu(synchronizereply->status)); 2627 cmd->result = DID_OK << 16 | 2628 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2629 set_sense(&dev->fsa_dev[cid].sense_data, 2630 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2631 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2632 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2633 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2634 SCSI_SENSE_BUFFERSIZE)); 2635 } 2636 2637 aac_fib_complete(fibptr); 2638 aac_fib_free(fibptr); 2639 cmd->scsi_done(cmd); 2640 } 2641 2642 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2643 { 2644 int status; 2645 struct fib *cmd_fibcontext; 2646 struct aac_synchronize *synchronizecmd; 2647 struct scsi_cmnd *cmd; 2648 struct scsi_device *sdev = scsicmd->device; 2649 int active = 0; 2650 struct aac_dev *aac; 2651 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | 2652 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2653 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2654 unsigned long flags; 2655 2656 /* 2657 * Wait for all outstanding queued commands to complete to this 2658 * specific target (block). 2659 */ 2660 spin_lock_irqsave(&sdev->list_lock, flags); 2661 list_for_each_entry(cmd, &sdev->cmd_list, list) 2662 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { 2663 u64 cmnd_lba; 2664 u32 cmnd_count; 2665 2666 if (cmd->cmnd[0] == WRITE_6) { 2667 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | 2668 (cmd->cmnd[2] << 8) | 2669 cmd->cmnd[3]; 2670 cmnd_count = cmd->cmnd[4]; 2671 if (cmnd_count == 0) 2672 cmnd_count = 256; 2673 } else if (cmd->cmnd[0] == WRITE_16) { 2674 cmnd_lba = ((u64)cmd->cmnd[2] << 56) | 2675 ((u64)cmd->cmnd[3] << 48) | 2676 ((u64)cmd->cmnd[4] << 40) | 2677 ((u64)cmd->cmnd[5] << 32) | 2678 ((u64)cmd->cmnd[6] << 24) | 2679 (cmd->cmnd[7] << 16) | 2680 (cmd->cmnd[8] << 8) | 2681 cmd->cmnd[9]; 2682 cmnd_count = (cmd->cmnd[10] << 24) | 2683 (cmd->cmnd[11] << 16) | 2684 (cmd->cmnd[12] << 8) | 2685 cmd->cmnd[13]; 2686 } else if (cmd->cmnd[0] == WRITE_12) { 2687 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2688 (cmd->cmnd[3] << 16) | 2689 (cmd->cmnd[4] << 8) | 2690 cmd->cmnd[5]; 2691 cmnd_count = (cmd->cmnd[6] << 24) | 2692 (cmd->cmnd[7] << 16) | 2693 (cmd->cmnd[8] << 8) | 2694 cmd->cmnd[9]; 2695 } else if (cmd->cmnd[0] == WRITE_10) { 2696 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2697 (cmd->cmnd[3] << 16) | 2698 (cmd->cmnd[4] << 8) | 2699 cmd->cmnd[5]; 2700 cmnd_count = (cmd->cmnd[7] << 8) | 2701 cmd->cmnd[8]; 2702 } else 2703 continue; 2704 if (((cmnd_lba + cmnd_count) < lba) || 2705 (count && ((lba + count) < cmnd_lba))) 2706 continue; 2707 ++active; 2708 break; 2709 } 2710 2711 spin_unlock_irqrestore(&sdev->list_lock, flags); 2712 2713 /* 2714 * Yield the processor (requeue for later) 2715 */ 2716 if (active) 2717 return SCSI_MLQUEUE_DEVICE_BUSY; 2718 2719 aac = (struct aac_dev *)sdev->host->hostdata; 2720 if (aac->in_reset) 2721 return SCSI_MLQUEUE_HOST_BUSY; 2722 2723 /* 2724 * Allocate and initialize a Fib 2725 */ 2726 if (!(cmd_fibcontext = aac_fib_alloc(aac))) 2727 return SCSI_MLQUEUE_HOST_BUSY; 2728 2729 aac_fib_init(cmd_fibcontext); 2730 2731 synchronizecmd = fib_data(cmd_fibcontext); 2732 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2733 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2734 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2735 synchronizecmd->count = 2736 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2737 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2738 2739 /* 2740 * Now send the Fib to the adapter 2741 */ 2742 status = aac_fib_send(ContainerCommand, 2743 cmd_fibcontext, 2744 sizeof(struct aac_synchronize), 2745 FsaNormal, 2746 0, 1, 2747 (fib_callback)synchronize_callback, 2748 (void *)scsicmd); 2749 2750 /* 2751 * Check that the command queued to the controller 2752 */ 2753 if (status == -EINPROGRESS) 2754 return 0; 2755 2756 printk(KERN_WARNING 2757 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2758 aac_fib_complete(cmd_fibcontext); 2759 aac_fib_free(cmd_fibcontext); 2760 return SCSI_MLQUEUE_HOST_BUSY; 2761 } 2762 2763 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2764 { 2765 struct scsi_cmnd *scsicmd = context; 2766 2767 if (!aac_valid_context(scsicmd, fibptr)) 2768 return; 2769 2770 BUG_ON(fibptr == NULL); 2771 2772 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2773 2774 aac_fib_complete(fibptr); 2775 aac_fib_free(fibptr); 2776 scsicmd->scsi_done(scsicmd); 2777 } 2778 2779 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2780 { 2781 int status; 2782 struct fib *cmd_fibcontext; 2783 struct aac_power_management *pmcmd; 2784 struct scsi_device *sdev = scsicmd->device; 2785 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2786 2787 if (!(aac->supplement_adapter_info.supported_options2 & 2788 AAC_OPTION_POWER_MANAGEMENT)) { 2789 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2790 SAM_STAT_GOOD; 2791 scsicmd->scsi_done(scsicmd); 2792 return 0; 2793 } 2794 2795 if (aac->in_reset) 2796 return SCSI_MLQUEUE_HOST_BUSY; 2797 2798 /* 2799 * Allocate and initialize a Fib 2800 */ 2801 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2802 2803 aac_fib_init(cmd_fibcontext); 2804 2805 pmcmd = fib_data(cmd_fibcontext); 2806 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2807 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2808 /* Eject bit ignored, not relevant */ 2809 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2810 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2811 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2812 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2813 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2814 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2815 2816 /* 2817 * Now send the Fib to the adapter 2818 */ 2819 status = aac_fib_send(ContainerCommand, 2820 cmd_fibcontext, 2821 sizeof(struct aac_power_management), 2822 FsaNormal, 2823 0, 1, 2824 (fib_callback)aac_start_stop_callback, 2825 (void *)scsicmd); 2826 2827 /* 2828 * Check that the command queued to the controller 2829 */ 2830 if (status == -EINPROGRESS) 2831 return 0; 2832 2833 aac_fib_complete(cmd_fibcontext); 2834 aac_fib_free(cmd_fibcontext); 2835 return SCSI_MLQUEUE_HOST_BUSY; 2836 } 2837 2838 /** 2839 * aac_scsi_cmd() - Process SCSI command 2840 * @scsicmd: SCSI command block 2841 * 2842 * Emulate a SCSI command and queue the required request for the 2843 * aacraid firmware. 2844 */ 2845 2846 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2847 { 2848 u32 cid, bus; 2849 struct Scsi_Host *host = scsicmd->device->host; 2850 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2851 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2852 2853 if (fsa_dev_ptr == NULL) 2854 return -1; 2855 /* 2856 * If the bus, id or lun is out of range, return fail 2857 * Test does not apply to ID 16, the pseudo id for the controller 2858 * itself. 2859 */ 2860 cid = scmd_id(scsicmd); 2861 if (cid != host->this_id) { 2862 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2863 if((cid >= dev->maximum_num_containers) || 2864 (scsicmd->device->lun != 0)) { 2865 scsicmd->result = DID_NO_CONNECT << 16; 2866 goto scsi_done_ret; 2867 } 2868 2869 /* 2870 * If the target container doesn't exist, it may have 2871 * been newly created 2872 */ 2873 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2874 (fsa_dev_ptr[cid].sense_data.sense_key == 2875 NOT_READY)) { 2876 switch (scsicmd->cmnd[0]) { 2877 case SERVICE_ACTION_IN_16: 2878 if (!(dev->raw_io_interface) || 2879 !(dev->raw_io_64) || 2880 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2881 break; 2882 /* fall through */ 2883 case INQUIRY: 2884 case READ_CAPACITY: 2885 case TEST_UNIT_READY: 2886 if (dev->in_reset) 2887 return -1; 2888 return _aac_probe_container(scsicmd, 2889 aac_probe_container_callback2); 2890 default: 2891 break; 2892 } 2893 } 2894 } else { /* check for physical non-dasd devices */ 2895 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2896 2897 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2898 dev->hba_map[bus][cid].devtype 2899 == AAC_DEVTYPE_NATIVE_RAW) { 2900 if (dev->in_reset) 2901 return -1; 2902 return aac_send_hba_fib(scsicmd); 2903 } else if (dev->nondasd_support || expose_physicals || 2904 dev->jbod) { 2905 if (dev->in_reset) 2906 return -1; 2907 return aac_send_srb_fib(scsicmd); 2908 } else { 2909 scsicmd->result = DID_NO_CONNECT << 16; 2910 goto scsi_done_ret; 2911 } 2912 } 2913 } 2914 /* 2915 * else Command for the controller itself 2916 */ 2917 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2918 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2919 { 2920 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2921 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2922 set_sense(&dev->fsa_dev[cid].sense_data, 2923 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2924 ASENCODE_INVALID_COMMAND, 0, 0); 2925 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2926 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2927 SCSI_SENSE_BUFFERSIZE)); 2928 goto scsi_done_ret; 2929 } 2930 2931 switch (scsicmd->cmnd[0]) { 2932 case READ_6: 2933 case READ_10: 2934 case READ_12: 2935 case READ_16: 2936 if (dev->in_reset) 2937 return -1; 2938 return aac_read(scsicmd); 2939 2940 case WRITE_6: 2941 case WRITE_10: 2942 case WRITE_12: 2943 case WRITE_16: 2944 if (dev->in_reset) 2945 return -1; 2946 return aac_write(scsicmd); 2947 2948 case SYNCHRONIZE_CACHE: 2949 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2950 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2951 SAM_STAT_GOOD; 2952 break; 2953 } 2954 /* Issue FIB to tell Firmware to flush it's cache */ 2955 if ((aac_cache & 6) != 2) 2956 return aac_synchronize(scsicmd); 2957 /* fall through */ 2958 case INQUIRY: 2959 { 2960 struct inquiry_data inq_data; 2961 2962 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2963 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2964 2965 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2966 char *arr = (char *)&inq_data; 2967 2968 /* EVPD bit set */ 2969 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2970 INQD_PDT_PROC : INQD_PDT_DA; 2971 if (scsicmd->cmnd[2] == 0) { 2972 /* supported vital product data pages */ 2973 arr[3] = 3; 2974 arr[4] = 0x0; 2975 arr[5] = 0x80; 2976 arr[6] = 0x83; 2977 arr[1] = scsicmd->cmnd[2]; 2978 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2979 sizeof(inq_data)); 2980 scsicmd->result = DID_OK << 16 | 2981 COMMAND_COMPLETE << 8 | 2982 SAM_STAT_GOOD; 2983 } else if (scsicmd->cmnd[2] == 0x80) { 2984 /* unit serial number page */ 2985 arr[3] = setinqserial(dev, &arr[4], 2986 scmd_id(scsicmd)); 2987 arr[1] = scsicmd->cmnd[2]; 2988 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2989 sizeof(inq_data)); 2990 if (aac_wwn != 2) 2991 return aac_get_container_serial( 2992 scsicmd); 2993 scsicmd->result = DID_OK << 16 | 2994 COMMAND_COMPLETE << 8 | 2995 SAM_STAT_GOOD; 2996 } else if (scsicmd->cmnd[2] == 0x83) { 2997 /* vpd page 0x83 - Device Identification Page */ 2998 char *sno = (char *)&inq_data; 2999 sno[3] = setinqserial(dev, &sno[4], 3000 scmd_id(scsicmd)); 3001 if (aac_wwn != 2) 3002 return aac_get_container_serial( 3003 scsicmd); 3004 scsicmd->result = DID_OK << 16 | 3005 COMMAND_COMPLETE << 8 | 3006 SAM_STAT_GOOD; 3007 } else { 3008 /* vpd page not implemented */ 3009 scsicmd->result = DID_OK << 16 | 3010 COMMAND_COMPLETE << 8 | 3011 SAM_STAT_CHECK_CONDITION; 3012 set_sense(&dev->fsa_dev[cid].sense_data, 3013 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 3014 ASENCODE_NO_SENSE, 7, 2); 3015 memcpy(scsicmd->sense_buffer, 3016 &dev->fsa_dev[cid].sense_data, 3017 min_t(size_t, 3018 sizeof(dev->fsa_dev[cid].sense_data), 3019 SCSI_SENSE_BUFFERSIZE)); 3020 } 3021 break; 3022 } 3023 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 3024 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 3025 inq_data.inqd_len = 31; 3026 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 3027 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 3028 /* 3029 * Set the Vendor, Product, and Revision Level 3030 * see: <vendor>.c i.e. aac.c 3031 */ 3032 if (cid == host->this_id) { 3033 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 3034 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 3035 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 3036 sizeof(inq_data)); 3037 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3038 SAM_STAT_GOOD; 3039 break; 3040 } 3041 if (dev->in_reset) 3042 return -1; 3043 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 3044 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 3045 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 3046 return aac_get_container_name(scsicmd); 3047 } 3048 case SERVICE_ACTION_IN_16: 3049 if (!(dev->raw_io_interface) || 3050 !(dev->raw_io_64) || 3051 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 3052 break; 3053 { 3054 u64 capacity; 3055 char cp[13]; 3056 unsigned int alloc_len; 3057 3058 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 3059 capacity = fsa_dev_ptr[cid].size - 1; 3060 cp[0] = (capacity >> 56) & 0xff; 3061 cp[1] = (capacity >> 48) & 0xff; 3062 cp[2] = (capacity >> 40) & 0xff; 3063 cp[3] = (capacity >> 32) & 0xff; 3064 cp[4] = (capacity >> 24) & 0xff; 3065 cp[5] = (capacity >> 16) & 0xff; 3066 cp[6] = (capacity >> 8) & 0xff; 3067 cp[7] = (capacity >> 0) & 0xff; 3068 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3069 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3070 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3071 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3072 cp[12] = 0; 3073 3074 alloc_len = ((scsicmd->cmnd[10] << 24) 3075 + (scsicmd->cmnd[11] << 16) 3076 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3077 3078 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3079 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3080 if (alloc_len < scsi_bufflen(scsicmd)) 3081 scsi_set_resid(scsicmd, 3082 scsi_bufflen(scsicmd) - alloc_len); 3083 3084 /* Do not cache partition table for arrays */ 3085 scsicmd->device->removable = 1; 3086 3087 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3088 SAM_STAT_GOOD; 3089 break; 3090 } 3091 3092 case READ_CAPACITY: 3093 { 3094 u32 capacity; 3095 char cp[8]; 3096 3097 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3098 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3099 capacity = fsa_dev_ptr[cid].size - 1; 3100 else 3101 capacity = (u32)-1; 3102 3103 cp[0] = (capacity >> 24) & 0xff; 3104 cp[1] = (capacity >> 16) & 0xff; 3105 cp[2] = (capacity >> 8) & 0xff; 3106 cp[3] = (capacity >> 0) & 0xff; 3107 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3108 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3109 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3110 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3111 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3112 /* Do not cache partition table for arrays */ 3113 scsicmd->device->removable = 1; 3114 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3115 SAM_STAT_GOOD; 3116 break; 3117 } 3118 3119 case MODE_SENSE: 3120 { 3121 int mode_buf_length = 4; 3122 u32 capacity; 3123 aac_modep_data mpd; 3124 3125 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3126 capacity = fsa_dev_ptr[cid].size - 1; 3127 else 3128 capacity = (u32)-1; 3129 3130 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3131 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3132 3133 /* Mode data length */ 3134 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3135 /* Medium type - default */ 3136 mpd.hd.med_type = 0; 3137 /* Device-specific param, 3138 bit 8: 0/1 = write enabled/protected 3139 bit 4: 0/1 = FUA enabled */ 3140 mpd.hd.dev_par = 0; 3141 3142 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3143 mpd.hd.dev_par = 0x10; 3144 if (scsicmd->cmnd[1] & 0x8) 3145 mpd.hd.bd_length = 0; /* Block descriptor length */ 3146 else { 3147 mpd.hd.bd_length = sizeof(mpd.bd); 3148 mpd.hd.data_length += mpd.hd.bd_length; 3149 mpd.bd.block_length[0] = 3150 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3151 mpd.bd.block_length[1] = 3152 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3153 mpd.bd.block_length[2] = 3154 fsa_dev_ptr[cid].block_size & 0xff; 3155 3156 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3157 if (scsicmd->cmnd[2] == 0x1C) { 3158 /* page length */ 3159 mpd.mpc_buf[1] = 0xa; 3160 /* Mode data length */ 3161 mpd.hd.data_length = 23; 3162 } else { 3163 /* Mode data length */ 3164 mpd.hd.data_length = 15; 3165 } 3166 3167 if (capacity > 0xffffff) { 3168 mpd.bd.block_count[0] = 0xff; 3169 mpd.bd.block_count[1] = 0xff; 3170 mpd.bd.block_count[2] = 0xff; 3171 } else { 3172 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3173 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3174 mpd.bd.block_count[2] = capacity & 0xff; 3175 } 3176 } 3177 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3178 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3179 mpd.hd.data_length += 3; 3180 mpd.mpc_buf[0] = 8; 3181 mpd.mpc_buf[1] = 1; 3182 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3183 ? 0 : 0x04; /* WCE */ 3184 mode_buf_length = sizeof(mpd); 3185 } 3186 3187 if (mode_buf_length > scsicmd->cmnd[4]) 3188 mode_buf_length = scsicmd->cmnd[4]; 3189 else 3190 mode_buf_length = sizeof(mpd); 3191 scsi_sg_copy_from_buffer(scsicmd, 3192 (char *)&mpd, 3193 mode_buf_length); 3194 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3195 SAM_STAT_GOOD; 3196 break; 3197 } 3198 case MODE_SENSE_10: 3199 { 3200 u32 capacity; 3201 int mode_buf_length = 8; 3202 aac_modep10_data mpd10; 3203 3204 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3205 capacity = fsa_dev_ptr[cid].size - 1; 3206 else 3207 capacity = (u32)-1; 3208 3209 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3210 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3211 /* Mode data length (MSB) */ 3212 mpd10.hd.data_length[0] = 0; 3213 /* Mode data length (LSB) */ 3214 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3215 /* Medium type - default */ 3216 mpd10.hd.med_type = 0; 3217 /* Device-specific param, 3218 bit 8: 0/1 = write enabled/protected 3219 bit 4: 0/1 = FUA enabled */ 3220 mpd10.hd.dev_par = 0; 3221 3222 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3223 mpd10.hd.dev_par = 0x10; 3224 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3225 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3226 if (scsicmd->cmnd[1] & 0x8) { 3227 /* Block descriptor length (MSB) */ 3228 mpd10.hd.bd_length[0] = 0; 3229 /* Block descriptor length (LSB) */ 3230 mpd10.hd.bd_length[1] = 0; 3231 } else { 3232 mpd10.hd.bd_length[0] = 0; 3233 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3234 3235 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3236 3237 mpd10.bd.block_length[0] = 3238 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3239 mpd10.bd.block_length[1] = 3240 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3241 mpd10.bd.block_length[2] = 3242 fsa_dev_ptr[cid].block_size & 0xff; 3243 3244 if (capacity > 0xffffff) { 3245 mpd10.bd.block_count[0] = 0xff; 3246 mpd10.bd.block_count[1] = 0xff; 3247 mpd10.bd.block_count[2] = 0xff; 3248 } else { 3249 mpd10.bd.block_count[0] = 3250 (capacity >> 16) & 0xff; 3251 mpd10.bd.block_count[1] = 3252 (capacity >> 8) & 0xff; 3253 mpd10.bd.block_count[2] = 3254 capacity & 0xff; 3255 } 3256 } 3257 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3258 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3259 mpd10.hd.data_length[1] += 3; 3260 mpd10.mpc_buf[0] = 8; 3261 mpd10.mpc_buf[1] = 1; 3262 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3263 ? 0 : 0x04; /* WCE */ 3264 mode_buf_length = sizeof(mpd10); 3265 if (mode_buf_length > scsicmd->cmnd[8]) 3266 mode_buf_length = scsicmd->cmnd[8]; 3267 } 3268 scsi_sg_copy_from_buffer(scsicmd, 3269 (char *)&mpd10, 3270 mode_buf_length); 3271 3272 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3273 SAM_STAT_GOOD; 3274 break; 3275 } 3276 case REQUEST_SENSE: 3277 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3278 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3279 sizeof(struct sense_data)); 3280 memset(&dev->fsa_dev[cid].sense_data, 0, 3281 sizeof(struct sense_data)); 3282 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3283 SAM_STAT_GOOD; 3284 break; 3285 3286 case ALLOW_MEDIUM_REMOVAL: 3287 dprintk((KERN_DEBUG "LOCK command.\n")); 3288 if (scsicmd->cmnd[4]) 3289 fsa_dev_ptr[cid].locked = 1; 3290 else 3291 fsa_dev_ptr[cid].locked = 0; 3292 3293 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3294 SAM_STAT_GOOD; 3295 break; 3296 /* 3297 * These commands are all No-Ops 3298 */ 3299 case TEST_UNIT_READY: 3300 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3301 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3302 SAM_STAT_CHECK_CONDITION; 3303 set_sense(&dev->fsa_dev[cid].sense_data, 3304 NOT_READY, SENCODE_BECOMING_READY, 3305 ASENCODE_BECOMING_READY, 0, 0); 3306 memcpy(scsicmd->sense_buffer, 3307 &dev->fsa_dev[cid].sense_data, 3308 min_t(size_t, 3309 sizeof(dev->fsa_dev[cid].sense_data), 3310 SCSI_SENSE_BUFFERSIZE)); 3311 break; 3312 } 3313 /* fall through */ 3314 case RESERVE: 3315 case RELEASE: 3316 case REZERO_UNIT: 3317 case REASSIGN_BLOCKS: 3318 case SEEK_10: 3319 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3320 SAM_STAT_GOOD; 3321 break; 3322 3323 case START_STOP: 3324 return aac_start_stop(scsicmd); 3325 3326 /* FALLTHRU */ 3327 default: 3328 /* 3329 * Unhandled commands 3330 */ 3331 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3332 scsicmd->cmnd[0])); 3333 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3334 SAM_STAT_CHECK_CONDITION; 3335 set_sense(&dev->fsa_dev[cid].sense_data, 3336 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3337 ASENCODE_INVALID_COMMAND, 0, 0); 3338 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3339 min_t(size_t, 3340 sizeof(dev->fsa_dev[cid].sense_data), 3341 SCSI_SENSE_BUFFERSIZE)); 3342 } 3343 3344 scsi_done_ret: 3345 3346 scsicmd->scsi_done(scsicmd); 3347 return 0; 3348 } 3349 3350 static int query_disk(struct aac_dev *dev, void __user *arg) 3351 { 3352 struct aac_query_disk qd; 3353 struct fsa_dev_info *fsa_dev_ptr; 3354 3355 fsa_dev_ptr = dev->fsa_dev; 3356 if (!fsa_dev_ptr) 3357 return -EBUSY; 3358 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3359 return -EFAULT; 3360 if (qd.cnum == -1) { 3361 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3362 return -EINVAL; 3363 qd.cnum = qd.id; 3364 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3365 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3366 return -EINVAL; 3367 qd.instance = dev->scsi_host_ptr->host_no; 3368 qd.bus = 0; 3369 qd.id = CONTAINER_TO_ID(qd.cnum); 3370 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3371 } 3372 else return -EINVAL; 3373 3374 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3375 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3376 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3377 3378 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3379 qd.unmapped = 1; 3380 else 3381 qd.unmapped = 0; 3382 3383 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3384 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3385 3386 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3387 return -EFAULT; 3388 return 0; 3389 } 3390 3391 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3392 { 3393 struct aac_delete_disk dd; 3394 struct fsa_dev_info *fsa_dev_ptr; 3395 3396 fsa_dev_ptr = dev->fsa_dev; 3397 if (!fsa_dev_ptr) 3398 return -EBUSY; 3399 3400 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3401 return -EFAULT; 3402 3403 if (dd.cnum >= dev->maximum_num_containers) 3404 return -EINVAL; 3405 /* 3406 * Mark this container as being deleted. 3407 */ 3408 fsa_dev_ptr[dd.cnum].deleted = 1; 3409 /* 3410 * Mark the container as no longer valid 3411 */ 3412 fsa_dev_ptr[dd.cnum].valid = 0; 3413 return 0; 3414 } 3415 3416 static int delete_disk(struct aac_dev *dev, void __user *arg) 3417 { 3418 struct aac_delete_disk dd; 3419 struct fsa_dev_info *fsa_dev_ptr; 3420 3421 fsa_dev_ptr = dev->fsa_dev; 3422 if (!fsa_dev_ptr) 3423 return -EBUSY; 3424 3425 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3426 return -EFAULT; 3427 3428 if (dd.cnum >= dev->maximum_num_containers) 3429 return -EINVAL; 3430 /* 3431 * If the container is locked, it can not be deleted by the API. 3432 */ 3433 if (fsa_dev_ptr[dd.cnum].locked) 3434 return -EBUSY; 3435 else { 3436 /* 3437 * Mark the container as no longer being valid. 3438 */ 3439 fsa_dev_ptr[dd.cnum].valid = 0; 3440 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3441 return 0; 3442 } 3443 } 3444 3445 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3446 { 3447 switch (cmd) { 3448 case FSACTL_QUERY_DISK: 3449 return query_disk(dev, arg); 3450 case FSACTL_DELETE_DISK: 3451 return delete_disk(dev, arg); 3452 case FSACTL_FORCE_DELETE_DISK: 3453 return force_delete_disk(dev, arg); 3454 case FSACTL_GET_CONTAINERS: 3455 return aac_get_containers(dev); 3456 default: 3457 return -ENOTTY; 3458 } 3459 } 3460 3461 /** 3462 * 3463 * aac_srb_callback 3464 * @context: the context set in the fib - here it is scsi cmd 3465 * @fibptr: pointer to the fib 3466 * 3467 * Handles the completion of a scsi command to a non dasd device 3468 * 3469 */ 3470 3471 static void aac_srb_callback(void *context, struct fib * fibptr) 3472 { 3473 struct aac_srb_reply *srbreply; 3474 struct scsi_cmnd *scsicmd; 3475 3476 scsicmd = (struct scsi_cmnd *) context; 3477 3478 if (!aac_valid_context(scsicmd, fibptr)) 3479 return; 3480 3481 BUG_ON(fibptr == NULL); 3482 3483 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3484 3485 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3486 3487 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3488 /* fast response */ 3489 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3490 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3491 } else { 3492 /* 3493 * Calculate resid for sg 3494 */ 3495 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3496 - le32_to_cpu(srbreply->data_xfer_length)); 3497 } 3498 3499 3500 scsi_dma_unmap(scsicmd); 3501 3502 /* expose physical device if expose_physicald flag is on */ 3503 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3504 && expose_physicals > 0) 3505 aac_expose_phy_device(scsicmd); 3506 3507 /* 3508 * First check the fib status 3509 */ 3510 3511 if (le32_to_cpu(srbreply->status) != ST_OK) { 3512 int len; 3513 3514 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3515 le32_to_cpu(srbreply->status)); 3516 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3517 SCSI_SENSE_BUFFERSIZE); 3518 scsicmd->result = DID_ERROR << 16 3519 | COMMAND_COMPLETE << 8 3520 | SAM_STAT_CHECK_CONDITION; 3521 memcpy(scsicmd->sense_buffer, 3522 srbreply->sense_data, len); 3523 } 3524 3525 /* 3526 * Next check the srb status 3527 */ 3528 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3529 case SRB_STATUS_ERROR_RECOVERY: 3530 case SRB_STATUS_PENDING: 3531 case SRB_STATUS_SUCCESS: 3532 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3533 break; 3534 case SRB_STATUS_DATA_OVERRUN: 3535 switch (scsicmd->cmnd[0]) { 3536 case READ_6: 3537 case WRITE_6: 3538 case READ_10: 3539 case WRITE_10: 3540 case READ_12: 3541 case WRITE_12: 3542 case READ_16: 3543 case WRITE_16: 3544 if (le32_to_cpu(srbreply->data_xfer_length) 3545 < scsicmd->underflow) 3546 pr_warn("aacraid: SCSI CMD underflow\n"); 3547 else 3548 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3549 scsicmd->result = DID_ERROR << 16 3550 | COMMAND_COMPLETE << 8; 3551 break; 3552 case INQUIRY: 3553 scsicmd->result = DID_OK << 16 3554 | COMMAND_COMPLETE << 8; 3555 break; 3556 default: 3557 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3558 break; 3559 } 3560 break; 3561 case SRB_STATUS_ABORTED: 3562 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3563 break; 3564 case SRB_STATUS_ABORT_FAILED: 3565 /* 3566 * Not sure about this one - but assuming the 3567 * hba was trying to abort for some reason 3568 */ 3569 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3570 break; 3571 case SRB_STATUS_PARITY_ERROR: 3572 scsicmd->result = DID_PARITY << 16 3573 | MSG_PARITY_ERROR << 8; 3574 break; 3575 case SRB_STATUS_NO_DEVICE: 3576 case SRB_STATUS_INVALID_PATH_ID: 3577 case SRB_STATUS_INVALID_TARGET_ID: 3578 case SRB_STATUS_INVALID_LUN: 3579 case SRB_STATUS_SELECTION_TIMEOUT: 3580 scsicmd->result = DID_NO_CONNECT << 16 3581 | COMMAND_COMPLETE << 8; 3582 break; 3583 3584 case SRB_STATUS_COMMAND_TIMEOUT: 3585 case SRB_STATUS_TIMEOUT: 3586 scsicmd->result = DID_TIME_OUT << 16 3587 | COMMAND_COMPLETE << 8; 3588 break; 3589 3590 case SRB_STATUS_BUSY: 3591 scsicmd->result = DID_BUS_BUSY << 16 3592 | COMMAND_COMPLETE << 8; 3593 break; 3594 3595 case SRB_STATUS_BUS_RESET: 3596 scsicmd->result = DID_RESET << 16 3597 | COMMAND_COMPLETE << 8; 3598 break; 3599 3600 case SRB_STATUS_MESSAGE_REJECTED: 3601 scsicmd->result = DID_ERROR << 16 3602 | MESSAGE_REJECT << 8; 3603 break; 3604 case SRB_STATUS_REQUEST_FLUSHED: 3605 case SRB_STATUS_ERROR: 3606 case SRB_STATUS_INVALID_REQUEST: 3607 case SRB_STATUS_REQUEST_SENSE_FAILED: 3608 case SRB_STATUS_NO_HBA: 3609 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3610 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3611 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3612 case SRB_STATUS_DELAYED_RETRY: 3613 case SRB_STATUS_BAD_FUNCTION: 3614 case SRB_STATUS_NOT_STARTED: 3615 case SRB_STATUS_NOT_IN_USE: 3616 case SRB_STATUS_FORCE_ABORT: 3617 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3618 default: 3619 #ifdef AAC_DETAILED_STATUS_INFO 3620 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3621 le32_to_cpu(srbreply->srb_status) & 0x3F, 3622 aac_get_status_string( 3623 le32_to_cpu(srbreply->srb_status) & 0x3F), 3624 scsicmd->cmnd[0], 3625 le32_to_cpu(srbreply->scsi_status)); 3626 #endif 3627 /* 3628 * When the CC bit is SET by the host in ATA pass thru CDB, 3629 * driver is supposed to return DID_OK 3630 * 3631 * When the CC bit is RESET by the host, driver should 3632 * return DID_ERROR 3633 */ 3634 if ((scsicmd->cmnd[0] == ATA_12) 3635 || (scsicmd->cmnd[0] == ATA_16)) { 3636 3637 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3638 scsicmd->result = DID_OK << 16 3639 | COMMAND_COMPLETE << 8; 3640 break; 3641 } else { 3642 scsicmd->result = DID_ERROR << 16 3643 | COMMAND_COMPLETE << 8; 3644 break; 3645 } 3646 } else { 3647 scsicmd->result = DID_ERROR << 16 3648 | COMMAND_COMPLETE << 8; 3649 break; 3650 } 3651 } 3652 if (le32_to_cpu(srbreply->scsi_status) 3653 == SAM_STAT_CHECK_CONDITION) { 3654 int len; 3655 3656 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3657 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3658 SCSI_SENSE_BUFFERSIZE); 3659 #ifdef AAC_DETAILED_STATUS_INFO 3660 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3661 le32_to_cpu(srbreply->status), len); 3662 #endif 3663 memcpy(scsicmd->sense_buffer, 3664 srbreply->sense_data, len); 3665 } 3666 3667 /* 3668 * OR in the scsi status (already shifted up a bit) 3669 */ 3670 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3671 3672 aac_fib_complete(fibptr); 3673 scsicmd->scsi_done(scsicmd); 3674 } 3675 3676 static void hba_resp_task_complete(struct aac_dev *dev, 3677 struct scsi_cmnd *scsicmd, 3678 struct aac_hba_resp *err) { 3679 3680 scsicmd->result = err->status; 3681 /* set residual count */ 3682 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3683 3684 switch (err->status) { 3685 case SAM_STAT_GOOD: 3686 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3687 break; 3688 case SAM_STAT_CHECK_CONDITION: 3689 { 3690 int len; 3691 3692 len = min_t(u8, err->sense_response_data_len, 3693 SCSI_SENSE_BUFFERSIZE); 3694 if (len) 3695 memcpy(scsicmd->sense_buffer, 3696 err->sense_response_buf, len); 3697 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3698 break; 3699 } 3700 case SAM_STAT_BUSY: 3701 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3702 break; 3703 case SAM_STAT_TASK_ABORTED: 3704 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3705 break; 3706 case SAM_STAT_RESERVATION_CONFLICT: 3707 case SAM_STAT_TASK_SET_FULL: 3708 default: 3709 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3710 break; 3711 } 3712 } 3713 3714 static void hba_resp_task_failure(struct aac_dev *dev, 3715 struct scsi_cmnd *scsicmd, 3716 struct aac_hba_resp *err) 3717 { 3718 switch (err->status) { 3719 case HBA_RESP_STAT_HBAMODE_DISABLED: 3720 { 3721 u32 bus, cid; 3722 3723 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3724 cid = scmd_id(scsicmd); 3725 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3726 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3727 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3728 } 3729 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3730 break; 3731 } 3732 case HBA_RESP_STAT_IO_ERROR: 3733 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3734 scsicmd->result = DID_OK << 16 | 3735 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3736 break; 3737 case HBA_RESP_STAT_IO_ABORTED: 3738 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3739 break; 3740 case HBA_RESP_STAT_INVALID_DEVICE: 3741 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3742 break; 3743 case HBA_RESP_STAT_UNDERRUN: 3744 /* UNDERRUN is OK */ 3745 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3746 break; 3747 case HBA_RESP_STAT_OVERRUN: 3748 default: 3749 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3750 break; 3751 } 3752 } 3753 3754 /** 3755 * 3756 * aac_hba_callback 3757 * @context: the context set in the fib - here it is scsi cmd 3758 * @fibptr: pointer to the fib 3759 * 3760 * Handles the completion of a native HBA scsi command 3761 * 3762 */ 3763 void aac_hba_callback(void *context, struct fib *fibptr) 3764 { 3765 struct aac_dev *dev; 3766 struct scsi_cmnd *scsicmd; 3767 3768 struct aac_hba_resp *err = 3769 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3770 3771 scsicmd = (struct scsi_cmnd *) context; 3772 3773 if (!aac_valid_context(scsicmd, fibptr)) 3774 return; 3775 3776 WARN_ON(fibptr == NULL); 3777 dev = fibptr->dev; 3778 3779 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3780 scsi_dma_unmap(scsicmd); 3781 3782 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3783 /* fast response */ 3784 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3785 goto out; 3786 } 3787 3788 switch (err->service_response) { 3789 case HBA_RESP_SVCRES_TASK_COMPLETE: 3790 hba_resp_task_complete(dev, scsicmd, err); 3791 break; 3792 case HBA_RESP_SVCRES_FAILURE: 3793 hba_resp_task_failure(dev, scsicmd, err); 3794 break; 3795 case HBA_RESP_SVCRES_TMF_REJECTED: 3796 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3797 break; 3798 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3799 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3800 break; 3801 case HBA_RESP_SVCRES_TMF_COMPLETE: 3802 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3803 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3804 break; 3805 default: 3806 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3807 break; 3808 } 3809 3810 out: 3811 aac_fib_complete(fibptr); 3812 3813 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3814 scsicmd->SCp.sent_command = 1; 3815 else 3816 scsicmd->scsi_done(scsicmd); 3817 } 3818 3819 /** 3820 * 3821 * aac_send_srb_fib 3822 * @scsicmd: the scsi command block 3823 * 3824 * This routine will form a FIB and fill in the aac_srb from the 3825 * scsicmd passed in. 3826 */ 3827 3828 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3829 { 3830 struct fib* cmd_fibcontext; 3831 struct aac_dev* dev; 3832 int status; 3833 3834 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3835 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3836 scsicmd->device->lun > 7) { 3837 scsicmd->result = DID_NO_CONNECT << 16; 3838 scsicmd->scsi_done(scsicmd); 3839 return 0; 3840 } 3841 3842 /* 3843 * Allocate and initialize a Fib then setup a BlockWrite command 3844 */ 3845 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3846 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3847 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3848 3849 /* 3850 * Check that the command queued to the controller 3851 */ 3852 if (status == -EINPROGRESS) 3853 return 0; 3854 3855 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3856 aac_fib_complete(cmd_fibcontext); 3857 aac_fib_free(cmd_fibcontext); 3858 3859 return -1; 3860 } 3861 3862 /** 3863 * 3864 * aac_send_hba_fib 3865 * @scsicmd: the scsi command block 3866 * 3867 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3868 * scsicmd passed in. 3869 */ 3870 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3871 { 3872 struct fib *cmd_fibcontext; 3873 struct aac_dev *dev; 3874 int status; 3875 3876 dev = shost_priv(scsicmd->device->host); 3877 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3878 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3879 scsicmd->result = DID_NO_CONNECT << 16; 3880 scsicmd->scsi_done(scsicmd); 3881 return 0; 3882 } 3883 3884 /* 3885 * Allocate and initialize a Fib then setup a BlockWrite command 3886 */ 3887 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3888 if (!cmd_fibcontext) 3889 return -1; 3890 3891 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3892 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3893 3894 /* 3895 * Check that the command queued to the controller 3896 */ 3897 if (status == -EINPROGRESS) 3898 return 0; 3899 3900 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3901 status); 3902 aac_fib_complete(cmd_fibcontext); 3903 aac_fib_free(cmd_fibcontext); 3904 3905 return -1; 3906 } 3907 3908 3909 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3910 { 3911 unsigned long byte_count = 0; 3912 int nseg; 3913 struct scatterlist *sg; 3914 int i; 3915 3916 // Get rid of old data 3917 psg->count = 0; 3918 psg->sg[0].addr = 0; 3919 psg->sg[0].count = 0; 3920 3921 nseg = scsi_dma_map(scsicmd); 3922 if (nseg <= 0) 3923 return nseg; 3924 3925 psg->count = cpu_to_le32(nseg); 3926 3927 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3928 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3929 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3930 byte_count += sg_dma_len(sg); 3931 } 3932 /* hba wants the size to be exact */ 3933 if (byte_count > scsi_bufflen(scsicmd)) { 3934 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3935 (byte_count - scsi_bufflen(scsicmd)); 3936 psg->sg[i-1].count = cpu_to_le32(temp); 3937 byte_count = scsi_bufflen(scsicmd); 3938 } 3939 /* Check for command underflow */ 3940 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3941 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3942 byte_count, scsicmd->underflow); 3943 } 3944 3945 return byte_count; 3946 } 3947 3948 3949 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3950 { 3951 unsigned long byte_count = 0; 3952 u64 addr; 3953 int nseg; 3954 struct scatterlist *sg; 3955 int i; 3956 3957 // Get rid of old data 3958 psg->count = 0; 3959 psg->sg[0].addr[0] = 0; 3960 psg->sg[0].addr[1] = 0; 3961 psg->sg[0].count = 0; 3962 3963 nseg = scsi_dma_map(scsicmd); 3964 if (nseg <= 0) 3965 return nseg; 3966 3967 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3968 int count = sg_dma_len(sg); 3969 addr = sg_dma_address(sg); 3970 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3971 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3972 psg->sg[i].count = cpu_to_le32(count); 3973 byte_count += count; 3974 } 3975 psg->count = cpu_to_le32(nseg); 3976 /* hba wants the size to be exact */ 3977 if (byte_count > scsi_bufflen(scsicmd)) { 3978 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3979 (byte_count - scsi_bufflen(scsicmd)); 3980 psg->sg[i-1].count = cpu_to_le32(temp); 3981 byte_count = scsi_bufflen(scsicmd); 3982 } 3983 /* Check for command underflow */ 3984 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3985 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3986 byte_count, scsicmd->underflow); 3987 } 3988 3989 return byte_count; 3990 } 3991 3992 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3993 { 3994 unsigned long byte_count = 0; 3995 int nseg; 3996 struct scatterlist *sg; 3997 int i; 3998 3999 // Get rid of old data 4000 psg->count = 0; 4001 psg->sg[0].next = 0; 4002 psg->sg[0].prev = 0; 4003 psg->sg[0].addr[0] = 0; 4004 psg->sg[0].addr[1] = 0; 4005 psg->sg[0].count = 0; 4006 psg->sg[0].flags = 0; 4007 4008 nseg = scsi_dma_map(scsicmd); 4009 if (nseg <= 0) 4010 return nseg; 4011 4012 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4013 int count = sg_dma_len(sg); 4014 u64 addr = sg_dma_address(sg); 4015 psg->sg[i].next = 0; 4016 psg->sg[i].prev = 0; 4017 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 4018 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 4019 psg->sg[i].count = cpu_to_le32(count); 4020 psg->sg[i].flags = 0; 4021 byte_count += count; 4022 } 4023 psg->count = cpu_to_le32(nseg); 4024 /* hba wants the size to be exact */ 4025 if (byte_count > scsi_bufflen(scsicmd)) { 4026 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 4027 (byte_count - scsi_bufflen(scsicmd)); 4028 psg->sg[i-1].count = cpu_to_le32(temp); 4029 byte_count = scsi_bufflen(scsicmd); 4030 } 4031 /* Check for command underflow */ 4032 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4033 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4034 byte_count, scsicmd->underflow); 4035 } 4036 4037 return byte_count; 4038 } 4039 4040 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 4041 struct aac_raw_io2 *rio2, int sg_max) 4042 { 4043 unsigned long byte_count = 0; 4044 int nseg; 4045 struct scatterlist *sg; 4046 int i, conformable = 0; 4047 u32 min_size = PAGE_SIZE, cur_size; 4048 4049 nseg = scsi_dma_map(scsicmd); 4050 if (nseg <= 0) 4051 return nseg; 4052 4053 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4054 int count = sg_dma_len(sg); 4055 u64 addr = sg_dma_address(sg); 4056 4057 BUG_ON(i >= sg_max); 4058 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 4059 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 4060 cur_size = cpu_to_le32(count); 4061 rio2->sge[i].length = cur_size; 4062 rio2->sge[i].flags = 0; 4063 if (i == 0) { 4064 conformable = 1; 4065 rio2->sgeFirstSize = cur_size; 4066 } else if (i == 1) { 4067 rio2->sgeNominalSize = cur_size; 4068 min_size = cur_size; 4069 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 4070 conformable = 0; 4071 if (cur_size < min_size) 4072 min_size = cur_size; 4073 } 4074 byte_count += count; 4075 } 4076 4077 /* hba wants the size to be exact */ 4078 if (byte_count > scsi_bufflen(scsicmd)) { 4079 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4080 (byte_count - scsi_bufflen(scsicmd)); 4081 rio2->sge[i-1].length = cpu_to_le32(temp); 4082 byte_count = scsi_bufflen(scsicmd); 4083 } 4084 4085 rio2->sgeCnt = cpu_to_le32(nseg); 4086 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4087 /* not conformable: evaluate required sg elements */ 4088 if (!conformable) { 4089 int j, nseg_new = nseg, err_found; 4090 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4091 err_found = 0; 4092 nseg_new = 2; 4093 for (j = 1; j < nseg - 1; ++j) { 4094 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4095 err_found = 1; 4096 break; 4097 } 4098 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4099 } 4100 if (!err_found) 4101 break; 4102 } 4103 if (i > 0 && nseg_new <= sg_max) { 4104 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4105 4106 if (ret < 0) 4107 return ret; 4108 } 4109 } else 4110 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4111 4112 /* Check for command underflow */ 4113 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4114 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4115 byte_count, scsicmd->underflow); 4116 } 4117 4118 return byte_count; 4119 } 4120 4121 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4122 { 4123 struct sge_ieee1212 *sge; 4124 int i, j, pos; 4125 u32 addr_low; 4126 4127 if (aac_convert_sgl == 0) 4128 return 0; 4129 4130 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4131 if (sge == NULL) 4132 return -ENOMEM; 4133 4134 for (i = 1, pos = 1; i < nseg-1; ++i) { 4135 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4136 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4137 sge[pos].addrLow = addr_low; 4138 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4139 if (addr_low < rio2->sge[i].addrLow) 4140 sge[pos].addrHigh++; 4141 sge[pos].length = pages * PAGE_SIZE; 4142 sge[pos].flags = 0; 4143 pos++; 4144 } 4145 } 4146 sge[pos] = rio2->sge[nseg-1]; 4147 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4148 4149 kfree(sge); 4150 rio2->sgeCnt = cpu_to_le32(nseg_new); 4151 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4152 rio2->sgeNominalSize = pages * PAGE_SIZE; 4153 return 0; 4154 } 4155 4156 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4157 struct aac_hba_cmd_req *hbacmd, 4158 int sg_max, 4159 u64 sg_address) 4160 { 4161 unsigned long byte_count = 0; 4162 int nseg; 4163 struct scatterlist *sg; 4164 int i; 4165 u32 cur_size; 4166 struct aac_hba_sgl *sge; 4167 4168 nseg = scsi_dma_map(scsicmd); 4169 if (nseg <= 0) { 4170 byte_count = nseg; 4171 goto out; 4172 } 4173 4174 if (nseg > HBA_MAX_SG_EMBEDDED) 4175 sge = &hbacmd->sge[2]; 4176 else 4177 sge = &hbacmd->sge[0]; 4178 4179 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4180 int count = sg_dma_len(sg); 4181 u64 addr = sg_dma_address(sg); 4182 4183 WARN_ON(i >= sg_max); 4184 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4185 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4186 cur_size = cpu_to_le32(count); 4187 sge->len = cur_size; 4188 sge->flags = 0; 4189 byte_count += count; 4190 sge++; 4191 } 4192 4193 sge--; 4194 /* hba wants the size to be exact */ 4195 if (byte_count > scsi_bufflen(scsicmd)) { 4196 u32 temp; 4197 4198 temp = le32_to_cpu(sge->len) - byte_count 4199 - scsi_bufflen(scsicmd); 4200 sge->len = cpu_to_le32(temp); 4201 byte_count = scsi_bufflen(scsicmd); 4202 } 4203 4204 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4205 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4206 sge->flags = cpu_to_le32(0x40000000); 4207 } else { 4208 /* not embedded */ 4209 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4210 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4211 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4212 hbacmd->sge[0].addr_lo = 4213 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4214 } 4215 4216 /* Check for command underflow */ 4217 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4218 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4219 byte_count, scsicmd->underflow); 4220 } 4221 out: 4222 return byte_count; 4223 } 4224 4225 #ifdef AAC_DETAILED_STATUS_INFO 4226 4227 struct aac_srb_status_info { 4228 u32 status; 4229 char *str; 4230 }; 4231 4232 4233 static struct aac_srb_status_info srb_status_info[] = { 4234 { SRB_STATUS_PENDING, "Pending Status"}, 4235 { SRB_STATUS_SUCCESS, "Success"}, 4236 { SRB_STATUS_ABORTED, "Aborted Command"}, 4237 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4238 { SRB_STATUS_ERROR, "Error Event"}, 4239 { SRB_STATUS_BUSY, "Device Busy"}, 4240 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4241 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4242 { SRB_STATUS_NO_DEVICE, "No Device"}, 4243 { SRB_STATUS_TIMEOUT, "Timeout"}, 4244 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4245 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4246 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4247 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4248 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4249 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4250 { SRB_STATUS_NO_HBA, "No HBA"}, 4251 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4252 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4253 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4254 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4255 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4256 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4257 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4258 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4259 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4260 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4261 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4262 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4263 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4264 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4265 { 0xff, "Unknown Error"} 4266 }; 4267 4268 char *aac_get_status_string(u32 status) 4269 { 4270 int i; 4271 4272 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4273 if (srb_status_info[i].status == status) 4274 return srb_status_info[i].str; 4275 4276 return "Bad Status Code"; 4277 } 4278 4279 #endif 4280