xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <asm/uaccess.h>
35 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 #include <scsi/scsi_host.h>
41 
42 #include "aacraid.h"
43 
44 /* values for inqd_pdt: Peripheral device type in plain English */
45 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
46 #define	INQD_PDT_PROC	0x03	/* Processor device */
47 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
48 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
49 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
50 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
51 
52 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
53 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
54 
55 /*
56  *	Sense codes
57  */
58 
59 #define SENCODE_NO_SENSE			0x00
60 #define SENCODE_END_OF_DATA			0x00
61 #define SENCODE_BECOMING_READY			0x04
62 #define SENCODE_INIT_CMD_REQUIRED		0x04
63 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
64 #define SENCODE_INVALID_COMMAND			0x20
65 #define SENCODE_LBA_OUT_OF_RANGE		0x21
66 #define SENCODE_INVALID_CDB_FIELD		0x24
67 #define SENCODE_LUN_NOT_SUPPORTED		0x25
68 #define SENCODE_INVALID_PARAM_FIELD		0x26
69 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
70 #define SENCODE_PARAM_VALUE_INVALID		0x26
71 #define SENCODE_RESET_OCCURRED			0x29
72 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
73 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
74 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
75 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
76 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
77 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
78 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
79 #define SENCODE_OVERLAPPED_COMMAND		0x4E
80 
81 /*
82  *	Additional sense codes
83  */
84 
85 #define ASENCODE_NO_SENSE			0x00
86 #define ASENCODE_END_OF_DATA			0x05
87 #define ASENCODE_BECOMING_READY			0x01
88 #define ASENCODE_INIT_CMD_REQUIRED		0x02
89 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
90 #define ASENCODE_INVALID_COMMAND		0x00
91 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
92 #define ASENCODE_INVALID_CDB_FIELD		0x00
93 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
94 #define ASENCODE_INVALID_PARAM_FIELD		0x00
95 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
96 #define ASENCODE_PARAM_VALUE_INVALID		0x02
97 #define ASENCODE_RESET_OCCURRED			0x00
98 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
99 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
100 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
101 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
102 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
103 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
104 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
105 #define ASENCODE_OVERLAPPED_COMMAND		0x00
106 
107 #define BYTE0(x) (unsigned char)(x)
108 #define BYTE1(x) (unsigned char)((x) >> 8)
109 #define BYTE2(x) (unsigned char)((x) >> 16)
110 #define BYTE3(x) (unsigned char)((x) >> 24)
111 
112 /*------------------------------------------------------------------------------
113  *              S T R U C T S / T Y P E D E F S
114  *----------------------------------------------------------------------------*/
115 /* SCSI inquiry data */
116 struct inquiry_data {
117 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
118 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
119 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
120 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
121 	u8 inqd_len;	/* Additional length (n-4) */
122 	u8 inqd_pad1[2];/* Reserved - must be zero */
123 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
124 	u8 inqd_vid[8];	/* Vendor ID */
125 	u8 inqd_pid[16];/* Product ID */
126 	u8 inqd_prl[4];	/* Product Revision Level */
127 };
128 
129 /*
130  *              M O D U L E   G L O B A L S
131  */
132 
133 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
134 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
135 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
140 
141 /*
142  *	Non dasd selection is handled entirely in aachba now
143  */
144 
145 static int nondasd = -1;
146 static int aac_cache;
147 static int dacmode = -1;
148 int aac_msi;
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152 
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
155 	" 0=off, 1=on");
156 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
158 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
159 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
160 	"\tbit 2 - Disable only if Battery not protecting Cache");
161 module_param(dacmode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
163 	" 0=off, 1=on");
164 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
166 	" adapter for foreign arrays.\n"
167 	"This is typically needed in systems that do not have a BIOS."
168 	" 0=off, 1=on");
169 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(msi, "IRQ handling."
171 	" 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
172 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
173 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
174 	" adapter to have it's kernel up and\n"
175 	"running. This is typically adjusted for large systems that do not"
176 	" have a BIOS.");
177 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
179 	" applications to pick up AIFs before\n"
180 	"deregistering them. This is typically adjusted for heavily burdened"
181 	" systems.");
182 
183 int numacb = -1;
184 module_param(numacb, int, S_IRUGO|S_IWUSR);
185 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
186 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
187 	" to use suggestion from Firmware.");
188 
189 int acbsize = -1;
190 module_param(acbsize, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
192 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
193 	" suggestion from Firmware.");
194 
195 int update_interval = 30 * 60;
196 module_param(update_interval, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
198 	" updates issued to adapter.");
199 
200 int check_interval = 24 * 60 * 60;
201 module_param(check_interval, int, S_IRUGO|S_IWUSR);
202 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
203 	" checks.");
204 
205 int aac_check_reset = 1;
206 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
207 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
208 	" adapter. a value of -1 forces the reset to adapters programmed to"
209 	" ignore it.");
210 
211 int expose_physicals = -1;
212 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
214 	" -1=protect 0=off, 1=on");
215 
216 int aac_reset_devices;
217 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
218 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
219 
220 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
221 		struct fib *fibptr) {
222 	struct scsi_device *device;
223 
224 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
225 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
226 		aac_fib_complete(fibptr);
227 		aac_fib_free(fibptr);
228 		return 0;
229 	}
230 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
231 	device = scsicmd->device;
232 	if (unlikely(!device || !scsi_device_online(device))) {
233 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
234 		aac_fib_complete(fibptr);
235 		aac_fib_free(fibptr);
236 		return 0;
237 	}
238 	return 1;
239 }
240 
241 /**
242  *	aac_get_config_status	-	check the adapter configuration
243  *	@common: adapter to query
244  *
245  *	Query config status, and commit the configuration if needed.
246  */
247 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
248 {
249 	int status = 0;
250 	struct fib * fibptr;
251 
252 	if (!(fibptr = aac_fib_alloc(dev)))
253 		return -ENOMEM;
254 
255 	aac_fib_init(fibptr);
256 	{
257 		struct aac_get_config_status *dinfo;
258 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
259 
260 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
261 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
262 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
263 	}
264 
265 	status = aac_fib_send(ContainerCommand,
266 			    fibptr,
267 			    sizeof (struct aac_get_config_status),
268 			    FsaNormal,
269 			    1, 1,
270 			    NULL, NULL);
271 	if (status < 0) {
272 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
273 	} else {
274 		struct aac_get_config_status_resp *reply
275 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
276 		dprintk((KERN_WARNING
277 		  "aac_get_config_status: response=%d status=%d action=%d\n",
278 		  le32_to_cpu(reply->response),
279 		  le32_to_cpu(reply->status),
280 		  le32_to_cpu(reply->data.action)));
281 		if ((le32_to_cpu(reply->response) != ST_OK) ||
282 		     (le32_to_cpu(reply->status) != CT_OK) ||
283 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
284 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
285 			status = -EINVAL;
286 		}
287 	}
288 	aac_fib_complete(fibptr);
289 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
290 	if (status >= 0) {
291 		if ((aac_commit == 1) || commit_flag) {
292 			struct aac_commit_config * dinfo;
293 			aac_fib_init(fibptr);
294 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
295 
296 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
297 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
298 
299 			status = aac_fib_send(ContainerCommand,
300 				    fibptr,
301 				    sizeof (struct aac_commit_config),
302 				    FsaNormal,
303 				    1, 1,
304 				    NULL, NULL);
305 			aac_fib_complete(fibptr);
306 		} else if (aac_commit == 0) {
307 			printk(KERN_WARNING
308 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
309 		}
310 	}
311 	aac_fib_free(fibptr);
312 	return status;
313 }
314 
315 /**
316  *	aac_get_containers	-	list containers
317  *	@common: adapter to probe
318  *
319  *	Make a list of all containers on this controller
320  */
321 int aac_get_containers(struct aac_dev *dev)
322 {
323 	struct fsa_dev_info *fsa_dev_ptr;
324 	u32 index;
325 	int status = 0;
326 	struct fib * fibptr;
327 	struct aac_get_container_count *dinfo;
328 	struct aac_get_container_count_resp *dresp;
329 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
330 
331 	if (!(fibptr = aac_fib_alloc(dev)))
332 		return -ENOMEM;
333 
334 	aac_fib_init(fibptr);
335 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
336 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
337 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
338 
339 	status = aac_fib_send(ContainerCommand,
340 		    fibptr,
341 		    sizeof (struct aac_get_container_count),
342 		    FsaNormal,
343 		    1, 1,
344 		    NULL, NULL);
345 	if (status >= 0) {
346 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
347 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
348 		aac_fib_complete(fibptr);
349 	}
350 	aac_fib_free(fibptr);
351 
352 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
353 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
354 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
355 			GFP_KERNEL);
356 	if (!fsa_dev_ptr)
357 		return -ENOMEM;
358 
359 	dev->fsa_dev = fsa_dev_ptr;
360 	dev->maximum_num_containers = maximum_num_containers;
361 
362 	for (index = 0; index < dev->maximum_num_containers; ) {
363 		fsa_dev_ptr[index].devname[0] = '\0';
364 
365 		status = aac_probe_container(dev, index);
366 
367 		if (status < 0) {
368 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
369 			break;
370 		}
371 
372 		/*
373 		 *	If there are no more containers, then stop asking.
374 		 */
375 		if (++index >= status)
376 			break;
377 	}
378 	return status;
379 }
380 
381 static void get_container_name_callback(void *context, struct fib * fibptr)
382 {
383 	struct aac_get_name_resp * get_name_reply;
384 	struct scsi_cmnd * scsicmd;
385 
386 	scsicmd = (struct scsi_cmnd *) context;
387 
388 	if (!aac_valid_context(scsicmd, fibptr))
389 		return;
390 
391 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
392 	BUG_ON(fibptr == NULL);
393 
394 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
395 	/* Failure is irrelevant, using default value instead */
396 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
397 	 && (get_name_reply->data[0] != '\0')) {
398 		char *sp = get_name_reply->data;
399 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
400 		while (*sp == ' ')
401 			++sp;
402 		if (*sp) {
403 			struct inquiry_data inq;
404 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
405 			int count = sizeof(d);
406 			char *dp = d;
407 			do {
408 				*dp++ = (*sp) ? *sp++ : ' ';
409 			} while (--count > 0);
410 
411 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
412 			memcpy(inq.inqd_pid, d, sizeof(d));
413 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
414 		}
415 	}
416 
417 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
418 
419 	aac_fib_complete(fibptr);
420 	aac_fib_free(fibptr);
421 	scsicmd->scsi_done(scsicmd);
422 }
423 
424 /**
425  *	aac_get_container_name	-	get container name, none blocking.
426  */
427 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
428 {
429 	int status;
430 	struct aac_get_name *dinfo;
431 	struct fib * cmd_fibcontext;
432 	struct aac_dev * dev;
433 
434 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
435 
436 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
437 		return -ENOMEM;
438 
439 	aac_fib_init(cmd_fibcontext);
440 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
441 
442 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
443 	dinfo->type = cpu_to_le32(CT_READ_NAME);
444 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
445 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
446 
447 	status = aac_fib_send(ContainerCommand,
448 		  cmd_fibcontext,
449 		  sizeof (struct aac_get_name),
450 		  FsaNormal,
451 		  0, 1,
452 		  (fib_callback)get_container_name_callback,
453 		  (void *) scsicmd);
454 
455 	/*
456 	 *	Check that the command queued to the controller
457 	 */
458 	if (status == -EINPROGRESS) {
459 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
460 		return 0;
461 	}
462 
463 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
464 	aac_fib_complete(cmd_fibcontext);
465 	aac_fib_free(cmd_fibcontext);
466 	return -1;
467 }
468 
469 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
470 {
471 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
472 
473 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
474 		return aac_scsi_cmd(scsicmd);
475 
476 	scsicmd->result = DID_NO_CONNECT << 16;
477 	scsicmd->scsi_done(scsicmd);
478 	return 0;
479 }
480 
481 static void _aac_probe_container2(void * context, struct fib * fibptr)
482 {
483 	struct fsa_dev_info *fsa_dev_ptr;
484 	int (*callback)(struct scsi_cmnd *);
485 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
486 
487 
488 	if (!aac_valid_context(scsicmd, fibptr))
489 		return;
490 
491 	scsicmd->SCp.Status = 0;
492 	fsa_dev_ptr = fibptr->dev->fsa_dev;
493 	if (fsa_dev_ptr) {
494 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
495 		fsa_dev_ptr += scmd_id(scsicmd);
496 
497 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
498 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
499 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
500 			fsa_dev_ptr->valid = 1;
501 			/* sense_key holds the current state of the spin-up */
502 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
503 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
504 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
505 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
506 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
507 			fsa_dev_ptr->size
508 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
509 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
510 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
511 		}
512 		if ((fsa_dev_ptr->valid & 1) == 0)
513 			fsa_dev_ptr->valid = 0;
514 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
515 	}
516 	aac_fib_complete(fibptr);
517 	aac_fib_free(fibptr);
518 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
519 	scsicmd->SCp.ptr = NULL;
520 	(*callback)(scsicmd);
521 	return;
522 }
523 
524 static void _aac_probe_container1(void * context, struct fib * fibptr)
525 {
526 	struct scsi_cmnd * scsicmd;
527 	struct aac_mount * dresp;
528 	struct aac_query_mount *dinfo;
529 	int status;
530 
531 	dresp = (struct aac_mount *) fib_data(fibptr);
532 	dresp->mnt[0].capacityhigh = 0;
533 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
534 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
535 		_aac_probe_container2(context, fibptr);
536 		return;
537 	}
538 	scsicmd = (struct scsi_cmnd *) context;
539 
540 	if (!aac_valid_context(scsicmd, fibptr))
541 		return;
542 
543 	aac_fib_init(fibptr);
544 
545 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
546 
547 	dinfo->command = cpu_to_le32(VM_NameServe64);
548 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
549 	dinfo->type = cpu_to_le32(FT_FILESYS);
550 
551 	status = aac_fib_send(ContainerCommand,
552 			  fibptr,
553 			  sizeof(struct aac_query_mount),
554 			  FsaNormal,
555 			  0, 1,
556 			  _aac_probe_container2,
557 			  (void *) scsicmd);
558 	/*
559 	 *	Check that the command queued to the controller
560 	 */
561 	if (status == -EINPROGRESS)
562 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
563 	else if (status < 0) {
564 		/* Inherit results from VM_NameServe, if any */
565 		dresp->status = cpu_to_le32(ST_OK);
566 		_aac_probe_container2(context, fibptr);
567 	}
568 }
569 
570 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
571 {
572 	struct fib * fibptr;
573 	int status = -ENOMEM;
574 
575 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
576 		struct aac_query_mount *dinfo;
577 
578 		aac_fib_init(fibptr);
579 
580 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
581 
582 		dinfo->command = cpu_to_le32(VM_NameServe);
583 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
584 		dinfo->type = cpu_to_le32(FT_FILESYS);
585 		scsicmd->SCp.ptr = (char *)callback;
586 
587 		status = aac_fib_send(ContainerCommand,
588 			  fibptr,
589 			  sizeof(struct aac_query_mount),
590 			  FsaNormal,
591 			  0, 1,
592 			  _aac_probe_container1,
593 			  (void *) scsicmd);
594 		/*
595 		 *	Check that the command queued to the controller
596 		 */
597 		if (status == -EINPROGRESS) {
598 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
599 			return 0;
600 		}
601 		if (status < 0) {
602 			scsicmd->SCp.ptr = NULL;
603 			aac_fib_complete(fibptr);
604 			aac_fib_free(fibptr);
605 		}
606 	}
607 	if (status < 0) {
608 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
609 		if (fsa_dev_ptr) {
610 			fsa_dev_ptr += scmd_id(scsicmd);
611 			if ((fsa_dev_ptr->valid & 1) == 0) {
612 				fsa_dev_ptr->valid = 0;
613 				return (*callback)(scsicmd);
614 			}
615 		}
616 	}
617 	return status;
618 }
619 
620 /**
621  *	aac_probe_container		-	query a logical volume
622  *	@dev: device to query
623  *	@cid: container identifier
624  *
625  *	Queries the controller about the given volume. The volume information
626  *	is updated in the struct fsa_dev_info structure rather than returned.
627  */
628 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
629 {
630 	scsicmd->device = NULL;
631 	return 0;
632 }
633 
634 int aac_probe_container(struct aac_dev *dev, int cid)
635 {
636 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
637 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
638 	int status;
639 
640 	if (!scsicmd || !scsidev) {
641 		kfree(scsicmd);
642 		kfree(scsidev);
643 		return -ENOMEM;
644 	}
645 	scsicmd->list.next = NULL;
646 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
647 
648 	scsicmd->device = scsidev;
649 	scsidev->sdev_state = 0;
650 	scsidev->id = cid;
651 	scsidev->host = dev->scsi_host_ptr;
652 
653 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
654 		while (scsicmd->device == scsidev)
655 			schedule();
656 	kfree(scsidev);
657 	status = scsicmd->SCp.Status;
658 	kfree(scsicmd);
659 	return status;
660 }
661 
662 /* Local Structure to set SCSI inquiry data strings */
663 struct scsi_inq {
664 	char vid[8];         /* Vendor ID */
665 	char pid[16];        /* Product ID */
666 	char prl[4];         /* Product Revision Level */
667 };
668 
669 /**
670  *	InqStrCopy	-	string merge
671  *	@a:	string to copy from
672  *	@b:	string to copy to
673  *
674  *	Copy a String from one location to another
675  *	without copying \0
676  */
677 
678 static void inqstrcpy(char *a, char *b)
679 {
680 
681 	while (*a != (char)0)
682 		*b++ = *a++;
683 }
684 
685 static char *container_types[] = {
686 	"None",
687 	"Volume",
688 	"Mirror",
689 	"Stripe",
690 	"RAID5",
691 	"SSRW",
692 	"SSRO",
693 	"Morph",
694 	"Legacy",
695 	"RAID4",
696 	"RAID10",
697 	"RAID00",
698 	"V-MIRRORS",
699 	"PSEUDO R4",
700 	"RAID50",
701 	"RAID5D",
702 	"RAID5D0",
703 	"RAID1E",
704 	"RAID6",
705 	"RAID60",
706 	"Unknown"
707 };
708 
709 char * get_container_type(unsigned tindex)
710 {
711 	if (tindex >= ARRAY_SIZE(container_types))
712 		tindex = ARRAY_SIZE(container_types) - 1;
713 	return container_types[tindex];
714 }
715 
716 /* Function: setinqstr
717  *
718  * Arguments: [1] pointer to void [1] int
719  *
720  * Purpose: Sets SCSI inquiry data strings for vendor, product
721  * and revision level. Allows strings to be set in platform dependant
722  * files instead of in OS dependant driver source.
723  */
724 
725 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
726 {
727 	struct scsi_inq *str;
728 
729 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
730 	memset(str, ' ', sizeof(*str));
731 
732 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
733 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
734 		int c;
735 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
736 			inqstrcpy("SMC", str->vid);
737 		else {
738 			c = sizeof(str->vid);
739 			while (*cp && *cp != ' ' && --c)
740 				++cp;
741 			c = *cp;
742 			*cp = '\0';
743 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
744 				   str->vid);
745 			*cp = c;
746 			while (*cp && *cp != ' ')
747 				++cp;
748 		}
749 		while (*cp == ' ')
750 			++cp;
751 		/* last six chars reserved for vol type */
752 		c = 0;
753 		if (strlen(cp) > sizeof(str->pid)) {
754 			c = cp[sizeof(str->pid)];
755 			cp[sizeof(str->pid)] = '\0';
756 		}
757 		inqstrcpy (cp, str->pid);
758 		if (c)
759 			cp[sizeof(str->pid)] = c;
760 	} else {
761 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
762 
763 		inqstrcpy (mp->vname, str->vid);
764 		/* last six chars reserved for vol type */
765 		inqstrcpy (mp->model, str->pid);
766 	}
767 
768 	if (tindex < ARRAY_SIZE(container_types)){
769 		char *findit = str->pid;
770 
771 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
772 		/* RAID is superfluous in the context of a RAID device */
773 		if (memcmp(findit-4, "RAID", 4) == 0)
774 			*(findit -= 4) = ' ';
775 		if (((findit - str->pid) + strlen(container_types[tindex]))
776 		 < (sizeof(str->pid) + sizeof(str->prl)))
777 			inqstrcpy (container_types[tindex], findit + 1);
778 	}
779 	inqstrcpy ("V1.0", str->prl);
780 }
781 
782 static void get_container_serial_callback(void *context, struct fib * fibptr)
783 {
784 	struct aac_get_serial_resp * get_serial_reply;
785 	struct scsi_cmnd * scsicmd;
786 
787 	BUG_ON(fibptr == NULL);
788 
789 	scsicmd = (struct scsi_cmnd *) context;
790 	if (!aac_valid_context(scsicmd, fibptr))
791 		return;
792 
793 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
794 	/* Failure is irrelevant, using default value instead */
795 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
796 		char sp[13];
797 		/* EVPD bit set */
798 		sp[0] = INQD_PDT_DA;
799 		sp[1] = scsicmd->cmnd[2];
800 		sp[2] = 0;
801 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
802 		  le32_to_cpu(get_serial_reply->uid));
803 		scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
804 	}
805 
806 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
807 
808 	aac_fib_complete(fibptr);
809 	aac_fib_free(fibptr);
810 	scsicmd->scsi_done(scsicmd);
811 }
812 
813 /**
814  *	aac_get_container_serial - get container serial, none blocking.
815  */
816 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
817 {
818 	int status;
819 	struct aac_get_serial *dinfo;
820 	struct fib * cmd_fibcontext;
821 	struct aac_dev * dev;
822 
823 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
824 
825 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
826 		return -ENOMEM;
827 
828 	aac_fib_init(cmd_fibcontext);
829 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
830 
831 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
832 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
833 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
834 
835 	status = aac_fib_send(ContainerCommand,
836 		  cmd_fibcontext,
837 		  sizeof (struct aac_get_serial),
838 		  FsaNormal,
839 		  0, 1,
840 		  (fib_callback) get_container_serial_callback,
841 		  (void *) scsicmd);
842 
843 	/*
844 	 *	Check that the command queued to the controller
845 	 */
846 	if (status == -EINPROGRESS) {
847 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
848 		return 0;
849 	}
850 
851 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
852 	aac_fib_complete(cmd_fibcontext);
853 	aac_fib_free(cmd_fibcontext);
854 	return -1;
855 }
856 
857 /* Function: setinqserial
858  *
859  * Arguments: [1] pointer to void [1] int
860  *
861  * Purpose: Sets SCSI Unit Serial number.
862  *          This is a fake. We should read a proper
863  *          serial number from the container. <SuSE>But
864  *          without docs it's quite hard to do it :-)
865  *          So this will have to do in the meantime.</SuSE>
866  */
867 
868 static int setinqserial(struct aac_dev *dev, void *data, int cid)
869 {
870 	/*
871 	 *	This breaks array migration.
872 	 */
873 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
874 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
875 }
876 
877 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
878 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
879 {
880 	u8 *sense_buf = (u8 *)sense_data;
881 	/* Sense data valid, err code 70h */
882 	sense_buf[0] = 0x70; /* No info field */
883 	sense_buf[1] = 0;	/* Segment number, always zero */
884 
885 	sense_buf[2] = sense_key;	/* Sense key */
886 
887 	sense_buf[12] = sense_code;	/* Additional sense code */
888 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
889 
890 	if (sense_key == ILLEGAL_REQUEST) {
891 		sense_buf[7] = 10;	/* Additional sense length */
892 
893 		sense_buf[15] = bit_pointer;
894 		/* Illegal parameter is in the parameter block */
895 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
896 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
897 		/* Illegal parameter is in the CDB block */
898 		sense_buf[16] = field_pointer >> 8;	/* MSB */
899 		sense_buf[17] = field_pointer;		/* LSB */
900 	} else
901 		sense_buf[7] = 6;	/* Additional sense length */
902 }
903 
904 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
905 {
906 	if (lba & 0xffffffff00000000LL) {
907 		int cid = scmd_id(cmd);
908 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
909 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
910 			SAM_STAT_CHECK_CONDITION;
911 		set_sense(&dev->fsa_dev[cid].sense_data,
912 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
913 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
914 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
915 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
916 			     SCSI_SENSE_BUFFERSIZE));
917 		cmd->scsi_done(cmd);
918 		return 1;
919 	}
920 	return 0;
921 }
922 
923 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
924 {
925 	return 0;
926 }
927 
928 static void io_callback(void *context, struct fib * fibptr);
929 
930 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
931 {
932 	u16 fibsize;
933 	struct aac_raw_io *readcmd;
934 	aac_fib_init(fib);
935 	readcmd = (struct aac_raw_io *) fib_data(fib);
936 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
937 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
938 	readcmd->count = cpu_to_le32(count<<9);
939 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
940 	readcmd->flags = cpu_to_le16(IO_TYPE_READ);
941 	readcmd->bpTotal = 0;
942 	readcmd->bpComplete = 0;
943 
944 	aac_build_sgraw(cmd, &readcmd->sg);
945 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
946 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
947 	/*
948 	 *	Now send the Fib to the adapter
949 	 */
950 	return aac_fib_send(ContainerRawIo,
951 			  fib,
952 			  fibsize,
953 			  FsaNormal,
954 			  0, 1,
955 			  (fib_callback) io_callback,
956 			  (void *) cmd);
957 }
958 
959 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
960 {
961 	u16 fibsize;
962 	struct aac_read64 *readcmd;
963 	aac_fib_init(fib);
964 	readcmd = (struct aac_read64 *) fib_data(fib);
965 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
966 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
967 	readcmd->sector_count = cpu_to_le16(count);
968 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
969 	readcmd->pad   = 0;
970 	readcmd->flags = 0;
971 
972 	aac_build_sg64(cmd, &readcmd->sg);
973 	fibsize = sizeof(struct aac_read64) +
974 		((le32_to_cpu(readcmd->sg.count) - 1) *
975 		 sizeof (struct sgentry64));
976 	BUG_ON (fibsize > (fib->dev->max_fib_size -
977 				sizeof(struct aac_fibhdr)));
978 	/*
979 	 *	Now send the Fib to the adapter
980 	 */
981 	return aac_fib_send(ContainerCommand64,
982 			  fib,
983 			  fibsize,
984 			  FsaNormal,
985 			  0, 1,
986 			  (fib_callback) io_callback,
987 			  (void *) cmd);
988 }
989 
990 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
991 {
992 	u16 fibsize;
993 	struct aac_read *readcmd;
994 	aac_fib_init(fib);
995 	readcmd = (struct aac_read *) fib_data(fib);
996 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
997 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
998 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
999 	readcmd->count = cpu_to_le32(count * 512);
1000 
1001 	aac_build_sg(cmd, &readcmd->sg);
1002 	fibsize = sizeof(struct aac_read) +
1003 			((le32_to_cpu(readcmd->sg.count) - 1) *
1004 			 sizeof (struct sgentry));
1005 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1006 				sizeof(struct aac_fibhdr)));
1007 	/*
1008 	 *	Now send the Fib to the adapter
1009 	 */
1010 	return aac_fib_send(ContainerCommand,
1011 			  fib,
1012 			  fibsize,
1013 			  FsaNormal,
1014 			  0, 1,
1015 			  (fib_callback) io_callback,
1016 			  (void *) cmd);
1017 }
1018 
1019 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1020 {
1021 	u16 fibsize;
1022 	struct aac_raw_io *writecmd;
1023 	aac_fib_init(fib);
1024 	writecmd = (struct aac_raw_io *) fib_data(fib);
1025 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1026 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1027 	writecmd->count = cpu_to_le32(count<<9);
1028 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1029 	writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1030 	  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1031 		cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1032 		cpu_to_le16(IO_TYPE_WRITE);
1033 	writecmd->bpTotal = 0;
1034 	writecmd->bpComplete = 0;
1035 
1036 	aac_build_sgraw(cmd, &writecmd->sg);
1037 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1038 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1039 	/*
1040 	 *	Now send the Fib to the adapter
1041 	 */
1042 	return aac_fib_send(ContainerRawIo,
1043 			  fib,
1044 			  fibsize,
1045 			  FsaNormal,
1046 			  0, 1,
1047 			  (fib_callback) io_callback,
1048 			  (void *) cmd);
1049 }
1050 
1051 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1052 {
1053 	u16 fibsize;
1054 	struct aac_write64 *writecmd;
1055 	aac_fib_init(fib);
1056 	writecmd = (struct aac_write64 *) fib_data(fib);
1057 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1058 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1059 	writecmd->sector_count = cpu_to_le16(count);
1060 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1061 	writecmd->pad	= 0;
1062 	writecmd->flags	= 0;
1063 
1064 	aac_build_sg64(cmd, &writecmd->sg);
1065 	fibsize = sizeof(struct aac_write64) +
1066 		((le32_to_cpu(writecmd->sg.count) - 1) *
1067 		 sizeof (struct sgentry64));
1068 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1069 				sizeof(struct aac_fibhdr)));
1070 	/*
1071 	 *	Now send the Fib to the adapter
1072 	 */
1073 	return aac_fib_send(ContainerCommand64,
1074 			  fib,
1075 			  fibsize,
1076 			  FsaNormal,
1077 			  0, 1,
1078 			  (fib_callback) io_callback,
1079 			  (void *) cmd);
1080 }
1081 
1082 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1083 {
1084 	u16 fibsize;
1085 	struct aac_write *writecmd;
1086 	aac_fib_init(fib);
1087 	writecmd = (struct aac_write *) fib_data(fib);
1088 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1089 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1090 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1091 	writecmd->count = cpu_to_le32(count * 512);
1092 	writecmd->sg.count = cpu_to_le32(1);
1093 	/* ->stable is not used - it did mean which type of write */
1094 
1095 	aac_build_sg(cmd, &writecmd->sg);
1096 	fibsize = sizeof(struct aac_write) +
1097 		((le32_to_cpu(writecmd->sg.count) - 1) *
1098 		 sizeof (struct sgentry));
1099 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1100 				sizeof(struct aac_fibhdr)));
1101 	/*
1102 	 *	Now send the Fib to the adapter
1103 	 */
1104 	return aac_fib_send(ContainerCommand,
1105 			  fib,
1106 			  fibsize,
1107 			  FsaNormal,
1108 			  0, 1,
1109 			  (fib_callback) io_callback,
1110 			  (void *) cmd);
1111 }
1112 
1113 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1114 {
1115 	struct aac_srb * srbcmd;
1116 	u32 flag;
1117 	u32 timeout;
1118 
1119 	aac_fib_init(fib);
1120 	switch(cmd->sc_data_direction){
1121 	case DMA_TO_DEVICE:
1122 		flag = SRB_DataOut;
1123 		break;
1124 	case DMA_BIDIRECTIONAL:
1125 		flag = SRB_DataIn | SRB_DataOut;
1126 		break;
1127 	case DMA_FROM_DEVICE:
1128 		flag = SRB_DataIn;
1129 		break;
1130 	case DMA_NONE:
1131 	default:	/* shuts up some versions of gcc */
1132 		flag = SRB_NoDataXfer;
1133 		break;
1134 	}
1135 
1136 	srbcmd = (struct aac_srb*) fib_data(fib);
1137 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1138 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1139 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1140 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1141 	srbcmd->flags    = cpu_to_le32(flag);
1142 	timeout = cmd->request->timeout/HZ;
1143 	if (timeout == 0)
1144 		timeout = 1;
1145 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1146 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1147 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1148 	return srbcmd;
1149 }
1150 
1151 static void aac_srb_callback(void *context, struct fib * fibptr);
1152 
1153 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1154 {
1155 	u16 fibsize;
1156 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1157 
1158 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1159 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1160 
1161 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1162 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1163 	/*
1164 	 *	Build Scatter/Gather list
1165 	 */
1166 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1167 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1168 		 sizeof (struct sgentry64));
1169 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1170 				sizeof(struct aac_fibhdr)));
1171 
1172 	/*
1173 	 *	Now send the Fib to the adapter
1174 	 */
1175 	return aac_fib_send(ScsiPortCommand64, fib,
1176 				fibsize, FsaNormal, 0, 1,
1177 				  (fib_callback) aac_srb_callback,
1178 				  (void *) cmd);
1179 }
1180 
1181 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1182 {
1183 	u16 fibsize;
1184 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1185 
1186 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1187 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1188 
1189 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1190 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1191 	/*
1192 	 *	Build Scatter/Gather list
1193 	 */
1194 	fibsize = sizeof (struct aac_srb) +
1195 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1196 		 sizeof (struct sgentry));
1197 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1198 				sizeof(struct aac_fibhdr)));
1199 
1200 	/*
1201 	 *	Now send the Fib to the adapter
1202 	 */
1203 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1204 				  (fib_callback) aac_srb_callback, (void *) cmd);
1205 }
1206 
1207 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1208 {
1209 	if ((sizeof(dma_addr_t) > 4) &&
1210 	 (num_physpages > (0xFFFFFFFFULL >> PAGE_SHIFT)) &&
1211 	 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1212 		return FAILED;
1213 	return aac_scsi_32(fib, cmd);
1214 }
1215 
1216 int aac_get_adapter_info(struct aac_dev* dev)
1217 {
1218 	struct fib* fibptr;
1219 	int rcode;
1220 	u32 tmp;
1221 	struct aac_adapter_info *info;
1222 	struct aac_bus_info *command;
1223 	struct aac_bus_info_response *bus_info;
1224 
1225 	if (!(fibptr = aac_fib_alloc(dev)))
1226 		return -ENOMEM;
1227 
1228 	aac_fib_init(fibptr);
1229 	info = (struct aac_adapter_info *) fib_data(fibptr);
1230 	memset(info,0,sizeof(*info));
1231 
1232 	rcode = aac_fib_send(RequestAdapterInfo,
1233 			 fibptr,
1234 			 sizeof(*info),
1235 			 FsaNormal,
1236 			 -1, 1, /* First `interrupt' command uses special wait */
1237 			 NULL,
1238 			 NULL);
1239 
1240 	if (rcode < 0) {
1241 		aac_fib_complete(fibptr);
1242 		aac_fib_free(fibptr);
1243 		return rcode;
1244 	}
1245 	memcpy(&dev->adapter_info, info, sizeof(*info));
1246 
1247 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1248 		struct aac_supplement_adapter_info * sinfo;
1249 
1250 		aac_fib_init(fibptr);
1251 
1252 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1253 
1254 		memset(sinfo,0,sizeof(*sinfo));
1255 
1256 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1257 				 fibptr,
1258 				 sizeof(*sinfo),
1259 				 FsaNormal,
1260 				 1, 1,
1261 				 NULL,
1262 				 NULL);
1263 
1264 		if (rcode >= 0)
1265 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1266 	}
1267 
1268 
1269 	/*
1270 	 * GetBusInfo
1271 	 */
1272 
1273 	aac_fib_init(fibptr);
1274 
1275 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1276 
1277 	memset(bus_info, 0, sizeof(*bus_info));
1278 
1279 	command = (struct aac_bus_info *)bus_info;
1280 
1281 	command->Command = cpu_to_le32(VM_Ioctl);
1282 	command->ObjType = cpu_to_le32(FT_DRIVE);
1283 	command->MethodId = cpu_to_le32(1);
1284 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1285 
1286 	rcode = aac_fib_send(ContainerCommand,
1287 			 fibptr,
1288 			 sizeof (*bus_info),
1289 			 FsaNormal,
1290 			 1, 1,
1291 			 NULL, NULL);
1292 
1293 	/* reasoned default */
1294 	dev->maximum_num_physicals = 16;
1295 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1296 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1297 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1298 	}
1299 
1300 	if (!dev->in_reset) {
1301 		char buffer[16];
1302 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1303 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1304 			dev->name,
1305 			dev->id,
1306 			tmp>>24,
1307 			(tmp>>16)&0xff,
1308 			tmp&0xff,
1309 			le32_to_cpu(dev->adapter_info.kernelbuild),
1310 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1311 			dev->supplement_adapter_info.BuildDate);
1312 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1313 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1314 			dev->name, dev->id,
1315 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1316 			le32_to_cpu(dev->adapter_info.monitorbuild));
1317 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1318 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1319 			dev->name, dev->id,
1320 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1321 			le32_to_cpu(dev->adapter_info.biosbuild));
1322 		buffer[0] = '\0';
1323 		if (aac_get_serial_number(
1324 		  shost_to_class(dev->scsi_host_ptr), buffer))
1325 			printk(KERN_INFO "%s%d: serial %s",
1326 			  dev->name, dev->id, buffer);
1327 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1328 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1329 			  dev->name, dev->id,
1330 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1331 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1332 		}
1333 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1334 		  (dev->supplement_adapter_info.SupportedOptions2 &
1335 		  AAC_OPTION_IGNORE_RESET))) {
1336 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1337 			  dev->name, dev->id);
1338 		}
1339 	}
1340 
1341 	dev->cache_protected = 0;
1342 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1343 		AAC_FEATURE_JBOD) != 0);
1344 	dev->nondasd_support = 0;
1345 	dev->raid_scsi_mode = 0;
1346 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1347 		dev->nondasd_support = 1;
1348 
1349 	/*
1350 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1351 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1352 	 * force nondasd support on. If we decide to allow the non-dasd flag
1353 	 * additional changes changes will have to be made to support
1354 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1355 	 * changed to support the new dev->raid_scsi_mode flag instead of
1356 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1357 	 * function aac_detect will have to be modified where it sets up the
1358 	 * max number of channels based on the aac->nondasd_support flag only.
1359 	 */
1360 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1361 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1362 		dev->nondasd_support = 1;
1363 		dev->raid_scsi_mode = 1;
1364 	}
1365 	if (dev->raid_scsi_mode != 0)
1366 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1367 				dev->name, dev->id);
1368 
1369 	if (nondasd != -1)
1370 		dev->nondasd_support = (nondasd!=0);
1371 	if (dev->nondasd_support && !dev->in_reset)
1372 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1373 
1374 	dev->dac_support = 0;
1375 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1376 		if (!dev->in_reset)
1377 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1378 				dev->name, dev->id);
1379 		dev->dac_support = 1;
1380 	}
1381 
1382 	if(dacmode != -1) {
1383 		dev->dac_support = (dacmode!=0);
1384 	}
1385 	if(dev->dac_support != 0) {
1386 		if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1387 			!pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1388 			if (!dev->in_reset)
1389 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1390 					dev->name, dev->id);
1391 		} else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1392 			!pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1393 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1394 				dev->name, dev->id);
1395 			dev->dac_support = 0;
1396 		} else {
1397 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1398 				dev->name, dev->id);
1399 			rcode = -ENOMEM;
1400 		}
1401 	}
1402 	/*
1403 	 * Deal with configuring for the individualized limits of each packet
1404 	 * interface.
1405 	 */
1406 	dev->a_ops.adapter_scsi = (dev->dac_support)
1407 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1408 				? aac_scsi_32_64
1409 				: aac_scsi_64)
1410 				: aac_scsi_32;
1411 	if (dev->raw_io_interface) {
1412 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1413 					? aac_bounds_64
1414 					: aac_bounds_32;
1415 		dev->a_ops.adapter_read = aac_read_raw_io;
1416 		dev->a_ops.adapter_write = aac_write_raw_io;
1417 	} else {
1418 		dev->a_ops.adapter_bounds = aac_bounds_32;
1419 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1420 			sizeof(struct aac_fibhdr) -
1421 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1422 				sizeof(struct sgentry);
1423 		if (dev->dac_support) {
1424 			dev->a_ops.adapter_read = aac_read_block64;
1425 			dev->a_ops.adapter_write = aac_write_block64;
1426 			/*
1427 			 * 38 scatter gather elements
1428 			 */
1429 			dev->scsi_host_ptr->sg_tablesize =
1430 				(dev->max_fib_size -
1431 				sizeof(struct aac_fibhdr) -
1432 				sizeof(struct aac_write64) +
1433 				sizeof(struct sgentry64)) /
1434 					sizeof(struct sgentry64);
1435 		} else {
1436 			dev->a_ops.adapter_read = aac_read_block;
1437 			dev->a_ops.adapter_write = aac_write_block;
1438 		}
1439 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1440 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1441 			/*
1442 			 * Worst case size that could cause sg overflow when
1443 			 * we break up SG elements that are larger than 64KB.
1444 			 * Would be nice if we could tell the SCSI layer what
1445 			 * the maximum SG element size can be. Worst case is
1446 			 * (sg_tablesize-1) 4KB elements with one 64KB
1447 			 * element.
1448 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1449 			 */
1450 			dev->scsi_host_ptr->max_sectors =
1451 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1452 		}
1453 	}
1454 
1455 	aac_fib_complete(fibptr);
1456 	aac_fib_free(fibptr);
1457 
1458 	return rcode;
1459 }
1460 
1461 
1462 static void io_callback(void *context, struct fib * fibptr)
1463 {
1464 	struct aac_dev *dev;
1465 	struct aac_read_reply *readreply;
1466 	struct scsi_cmnd *scsicmd;
1467 	u32 cid;
1468 
1469 	scsicmd = (struct scsi_cmnd *) context;
1470 
1471 	if (!aac_valid_context(scsicmd, fibptr))
1472 		return;
1473 
1474 	dev = fibptr->dev;
1475 	cid = scmd_id(scsicmd);
1476 
1477 	if (nblank(dprintk(x))) {
1478 		u64 lba;
1479 		switch (scsicmd->cmnd[0]) {
1480 		case WRITE_6:
1481 		case READ_6:
1482 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1483 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1484 			break;
1485 		case WRITE_16:
1486 		case READ_16:
1487 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1488 			      ((u64)scsicmd->cmnd[3] << 48) |
1489 			      ((u64)scsicmd->cmnd[4] << 40) |
1490 			      ((u64)scsicmd->cmnd[5] << 32) |
1491 			      ((u64)scsicmd->cmnd[6] << 24) |
1492 			      (scsicmd->cmnd[7] << 16) |
1493 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1494 			break;
1495 		case WRITE_12:
1496 		case READ_12:
1497 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1498 			      (scsicmd->cmnd[3] << 16) |
1499 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1500 			break;
1501 		default:
1502 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1503 			       (scsicmd->cmnd[3] << 16) |
1504 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1505 			break;
1506 		}
1507 		printk(KERN_DEBUG
1508 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1509 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1510 	}
1511 
1512 	BUG_ON(fibptr == NULL);
1513 
1514 	scsi_dma_unmap(scsicmd);
1515 
1516 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1517 	switch (le32_to_cpu(readreply->status)) {
1518 	case ST_OK:
1519 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1520 			SAM_STAT_GOOD;
1521 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1522 		break;
1523 	case ST_NOT_READY:
1524 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1525 			SAM_STAT_CHECK_CONDITION;
1526 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1527 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1528 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1529 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1530 			     SCSI_SENSE_BUFFERSIZE));
1531 		break;
1532 	default:
1533 #ifdef AAC_DETAILED_STATUS_INFO
1534 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1535 		  le32_to_cpu(readreply->status));
1536 #endif
1537 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1538 			SAM_STAT_CHECK_CONDITION;
1539 		set_sense(&dev->fsa_dev[cid].sense_data,
1540 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1541 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1542 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1543 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1544 			     SCSI_SENSE_BUFFERSIZE));
1545 		break;
1546 	}
1547 	aac_fib_complete(fibptr);
1548 	aac_fib_free(fibptr);
1549 
1550 	scsicmd->scsi_done(scsicmd);
1551 }
1552 
1553 static int aac_read(struct scsi_cmnd * scsicmd)
1554 {
1555 	u64 lba;
1556 	u32 count;
1557 	int status;
1558 	struct aac_dev *dev;
1559 	struct fib * cmd_fibcontext;
1560 
1561 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1562 	/*
1563 	 *	Get block address and transfer length
1564 	 */
1565 	switch (scsicmd->cmnd[0]) {
1566 	case READ_6:
1567 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1568 
1569 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1570 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1571 		count = scsicmd->cmnd[4];
1572 
1573 		if (count == 0)
1574 			count = 256;
1575 		break;
1576 	case READ_16:
1577 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1578 
1579 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1580 			((u64)scsicmd->cmnd[3] << 48) |
1581 			((u64)scsicmd->cmnd[4] << 40) |
1582 			((u64)scsicmd->cmnd[5] << 32) |
1583 			((u64)scsicmd->cmnd[6] << 24) |
1584 			(scsicmd->cmnd[7] << 16) |
1585 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1586 		count = (scsicmd->cmnd[10] << 24) |
1587 			(scsicmd->cmnd[11] << 16) |
1588 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1589 		break;
1590 	case READ_12:
1591 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1592 
1593 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1594 			(scsicmd->cmnd[3] << 16) |
1595 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1596 		count = (scsicmd->cmnd[6] << 24) |
1597 			(scsicmd->cmnd[7] << 16) |
1598 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1599 		break;
1600 	default:
1601 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1602 
1603 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1604 			(scsicmd->cmnd[3] << 16) |
1605 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1606 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1607 		break;
1608 	}
1609 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1610 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1611 	if (aac_adapter_bounds(dev,scsicmd,lba))
1612 		return 0;
1613 	/*
1614 	 *	Alocate and initialize a Fib
1615 	 */
1616 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1617 		return -1;
1618 	}
1619 
1620 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1621 
1622 	/*
1623 	 *	Check that the command queued to the controller
1624 	 */
1625 	if (status == -EINPROGRESS) {
1626 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1627 		return 0;
1628 	}
1629 
1630 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1631 	/*
1632 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1633 	 */
1634 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1635 	scsicmd->scsi_done(scsicmd);
1636 	aac_fib_complete(cmd_fibcontext);
1637 	aac_fib_free(cmd_fibcontext);
1638 	return 0;
1639 }
1640 
1641 static int aac_write(struct scsi_cmnd * scsicmd)
1642 {
1643 	u64 lba;
1644 	u32 count;
1645 	int fua;
1646 	int status;
1647 	struct aac_dev *dev;
1648 	struct fib * cmd_fibcontext;
1649 
1650 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1651 	/*
1652 	 *	Get block address and transfer length
1653 	 */
1654 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1655 	{
1656 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1657 		count = scsicmd->cmnd[4];
1658 		if (count == 0)
1659 			count = 256;
1660 		fua = 0;
1661 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1662 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1663 
1664 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1665 			((u64)scsicmd->cmnd[3] << 48) |
1666 			((u64)scsicmd->cmnd[4] << 40) |
1667 			((u64)scsicmd->cmnd[5] << 32) |
1668 			((u64)scsicmd->cmnd[6] << 24) |
1669 			(scsicmd->cmnd[7] << 16) |
1670 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1671 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1672 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1673 		fua = scsicmd->cmnd[1] & 0x8;
1674 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1675 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1676 
1677 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1678 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1679 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1680 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1681 		fua = scsicmd->cmnd[1] & 0x8;
1682 	} else {
1683 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1684 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1685 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1686 		fua = scsicmd->cmnd[1] & 0x8;
1687 	}
1688 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1689 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1690 	if (aac_adapter_bounds(dev,scsicmd,lba))
1691 		return 0;
1692 	/*
1693 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1694 	 */
1695 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1696 		scsicmd->result = DID_ERROR << 16;
1697 		scsicmd->scsi_done(scsicmd);
1698 		return 0;
1699 	}
1700 
1701 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1702 
1703 	/*
1704 	 *	Check that the command queued to the controller
1705 	 */
1706 	if (status == -EINPROGRESS) {
1707 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1708 		return 0;
1709 	}
1710 
1711 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1712 	/*
1713 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1714 	 */
1715 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1716 	scsicmd->scsi_done(scsicmd);
1717 
1718 	aac_fib_complete(cmd_fibcontext);
1719 	aac_fib_free(cmd_fibcontext);
1720 	return 0;
1721 }
1722 
1723 static void synchronize_callback(void *context, struct fib *fibptr)
1724 {
1725 	struct aac_synchronize_reply *synchronizereply;
1726 	struct scsi_cmnd *cmd;
1727 
1728 	cmd = context;
1729 
1730 	if (!aac_valid_context(cmd, fibptr))
1731 		return;
1732 
1733 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1734 				smp_processor_id(), jiffies));
1735 	BUG_ON(fibptr == NULL);
1736 
1737 
1738 	synchronizereply = fib_data(fibptr);
1739 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1740 		cmd->result = DID_OK << 16 |
1741 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1742 	else {
1743 		struct scsi_device *sdev = cmd->device;
1744 		struct aac_dev *dev = fibptr->dev;
1745 		u32 cid = sdev_id(sdev);
1746 		printk(KERN_WARNING
1747 		     "synchronize_callback: synchronize failed, status = %d\n",
1748 		     le32_to_cpu(synchronizereply->status));
1749 		cmd->result = DID_OK << 16 |
1750 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1751 		set_sense(&dev->fsa_dev[cid].sense_data,
1752 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1753 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1754 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1755 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1756 			     SCSI_SENSE_BUFFERSIZE));
1757 	}
1758 
1759 	aac_fib_complete(fibptr);
1760 	aac_fib_free(fibptr);
1761 	cmd->scsi_done(cmd);
1762 }
1763 
1764 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1765 {
1766 	int status;
1767 	struct fib *cmd_fibcontext;
1768 	struct aac_synchronize *synchronizecmd;
1769 	struct scsi_cmnd *cmd;
1770 	struct scsi_device *sdev = scsicmd->device;
1771 	int active = 0;
1772 	struct aac_dev *aac;
1773 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1774 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1775 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1776 	unsigned long flags;
1777 
1778 	/*
1779 	 * Wait for all outstanding queued commands to complete to this
1780 	 * specific target (block).
1781 	 */
1782 	spin_lock_irqsave(&sdev->list_lock, flags);
1783 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1784 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1785 			u64 cmnd_lba;
1786 			u32 cmnd_count;
1787 
1788 			if (cmd->cmnd[0] == WRITE_6) {
1789 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1790 					(cmd->cmnd[2] << 8) |
1791 					cmd->cmnd[3];
1792 				cmnd_count = cmd->cmnd[4];
1793 				if (cmnd_count == 0)
1794 					cmnd_count = 256;
1795 			} else if (cmd->cmnd[0] == WRITE_16) {
1796 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1797 					((u64)cmd->cmnd[3] << 48) |
1798 					((u64)cmd->cmnd[4] << 40) |
1799 					((u64)cmd->cmnd[5] << 32) |
1800 					((u64)cmd->cmnd[6] << 24) |
1801 					(cmd->cmnd[7] << 16) |
1802 					(cmd->cmnd[8] << 8) |
1803 					cmd->cmnd[9];
1804 				cmnd_count = (cmd->cmnd[10] << 24) |
1805 					(cmd->cmnd[11] << 16) |
1806 					(cmd->cmnd[12] << 8) |
1807 					cmd->cmnd[13];
1808 			} else if (cmd->cmnd[0] == WRITE_12) {
1809 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1810 					(cmd->cmnd[3] << 16) |
1811 					(cmd->cmnd[4] << 8) |
1812 					cmd->cmnd[5];
1813 				cmnd_count = (cmd->cmnd[6] << 24) |
1814 					(cmd->cmnd[7] << 16) |
1815 					(cmd->cmnd[8] << 8) |
1816 					cmd->cmnd[9];
1817 			} else if (cmd->cmnd[0] == WRITE_10) {
1818 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1819 					(cmd->cmnd[3] << 16) |
1820 					(cmd->cmnd[4] << 8) |
1821 					cmd->cmnd[5];
1822 				cmnd_count = (cmd->cmnd[7] << 8) |
1823 					cmd->cmnd[8];
1824 			} else
1825 				continue;
1826 			if (((cmnd_lba + cmnd_count) < lba) ||
1827 			  (count && ((lba + count) < cmnd_lba)))
1828 				continue;
1829 			++active;
1830 			break;
1831 		}
1832 
1833 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1834 
1835 	/*
1836 	 *	Yield the processor (requeue for later)
1837 	 */
1838 	if (active)
1839 		return SCSI_MLQUEUE_DEVICE_BUSY;
1840 
1841 	aac = (struct aac_dev *)sdev->host->hostdata;
1842 	if (aac->in_reset)
1843 		return SCSI_MLQUEUE_HOST_BUSY;
1844 
1845 	/*
1846 	 *	Allocate and initialize a Fib
1847 	 */
1848 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1849 		return SCSI_MLQUEUE_HOST_BUSY;
1850 
1851 	aac_fib_init(cmd_fibcontext);
1852 
1853 	synchronizecmd = fib_data(cmd_fibcontext);
1854 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1855 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1856 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1857 	synchronizecmd->count =
1858 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1859 
1860 	/*
1861 	 *	Now send the Fib to the adapter
1862 	 */
1863 	status = aac_fib_send(ContainerCommand,
1864 		  cmd_fibcontext,
1865 		  sizeof(struct aac_synchronize),
1866 		  FsaNormal,
1867 		  0, 1,
1868 		  (fib_callback)synchronize_callback,
1869 		  (void *)scsicmd);
1870 
1871 	/*
1872 	 *	Check that the command queued to the controller
1873 	 */
1874 	if (status == -EINPROGRESS) {
1875 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1876 		return 0;
1877 	}
1878 
1879 	printk(KERN_WARNING
1880 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1881 	aac_fib_complete(cmd_fibcontext);
1882 	aac_fib_free(cmd_fibcontext);
1883 	return SCSI_MLQUEUE_HOST_BUSY;
1884 }
1885 
1886 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1887 {
1888 	struct scsi_cmnd *scsicmd = context;
1889 
1890 	if (!aac_valid_context(scsicmd, fibptr))
1891 		return;
1892 
1893 	BUG_ON(fibptr == NULL);
1894 
1895 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1896 
1897 	aac_fib_complete(fibptr);
1898 	aac_fib_free(fibptr);
1899 	scsicmd->scsi_done(scsicmd);
1900 }
1901 
1902 static int aac_start_stop(struct scsi_cmnd *scsicmd)
1903 {
1904 	int status;
1905 	struct fib *cmd_fibcontext;
1906 	struct aac_power_management *pmcmd;
1907 	struct scsi_device *sdev = scsicmd->device;
1908 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
1909 
1910 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
1911 	      AAC_OPTION_POWER_MANAGEMENT)) {
1912 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1913 				  SAM_STAT_GOOD;
1914 		scsicmd->scsi_done(scsicmd);
1915 		return 0;
1916 	}
1917 
1918 	if (aac->in_reset)
1919 		return SCSI_MLQUEUE_HOST_BUSY;
1920 
1921 	/*
1922 	 *	Allocate and initialize a Fib
1923 	 */
1924 	cmd_fibcontext = aac_fib_alloc(aac);
1925 	if (!cmd_fibcontext)
1926 		return SCSI_MLQUEUE_HOST_BUSY;
1927 
1928 	aac_fib_init(cmd_fibcontext);
1929 
1930 	pmcmd = fib_data(cmd_fibcontext);
1931 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
1932 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
1933 	/* Eject bit ignored, not relevant */
1934 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
1935 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
1936 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
1937 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
1938 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
1939 
1940 	/*
1941 	 *	Now send the Fib to the adapter
1942 	 */
1943 	status = aac_fib_send(ContainerCommand,
1944 		  cmd_fibcontext,
1945 		  sizeof(struct aac_power_management),
1946 		  FsaNormal,
1947 		  0, 1,
1948 		  (fib_callback)aac_start_stop_callback,
1949 		  (void *)scsicmd);
1950 
1951 	/*
1952 	 *	Check that the command queued to the controller
1953 	 */
1954 	if (status == -EINPROGRESS) {
1955 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1956 		return 0;
1957 	}
1958 
1959 	aac_fib_complete(cmd_fibcontext);
1960 	aac_fib_free(cmd_fibcontext);
1961 	return SCSI_MLQUEUE_HOST_BUSY;
1962 }
1963 
1964 /**
1965  *	aac_scsi_cmd()		-	Process SCSI command
1966  *	@scsicmd:		SCSI command block
1967  *
1968  *	Emulate a SCSI command and queue the required request for the
1969  *	aacraid firmware.
1970  */
1971 
1972 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1973 {
1974 	u32 cid;
1975 	struct Scsi_Host *host = scsicmd->device->host;
1976 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1977 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1978 
1979 	if (fsa_dev_ptr == NULL)
1980 		return -1;
1981 	/*
1982 	 *	If the bus, id or lun is out of range, return fail
1983 	 *	Test does not apply to ID 16, the pseudo id for the controller
1984 	 *	itself.
1985 	 */
1986 	cid = scmd_id(scsicmd);
1987 	if (cid != host->this_id) {
1988 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
1989 			if((cid >= dev->maximum_num_containers) ||
1990 					(scsicmd->device->lun != 0)) {
1991 				scsicmd->result = DID_NO_CONNECT << 16;
1992 				scsicmd->scsi_done(scsicmd);
1993 				return 0;
1994 			}
1995 
1996 			/*
1997 			 *	If the target container doesn't exist, it may have
1998 			 *	been newly created
1999 			 */
2000 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2001 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2002 			   NOT_READY)) {
2003 				switch (scsicmd->cmnd[0]) {
2004 				case SERVICE_ACTION_IN:
2005 					if (!(dev->raw_io_interface) ||
2006 					    !(dev->raw_io_64) ||
2007 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2008 						break;
2009 				case INQUIRY:
2010 				case READ_CAPACITY:
2011 				case TEST_UNIT_READY:
2012 					if (dev->in_reset)
2013 						return -1;
2014 					return _aac_probe_container(scsicmd,
2015 							aac_probe_container_callback2);
2016 				default:
2017 					break;
2018 				}
2019 			}
2020 		} else {  /* check for physical non-dasd devices */
2021 			if (dev->nondasd_support || expose_physicals ||
2022 					dev->jbod) {
2023 				if (dev->in_reset)
2024 					return -1;
2025 				return aac_send_srb_fib(scsicmd);
2026 			} else {
2027 				scsicmd->result = DID_NO_CONNECT << 16;
2028 				scsicmd->scsi_done(scsicmd);
2029 				return 0;
2030 			}
2031 		}
2032 	}
2033 	/*
2034 	 * else Command for the controller itself
2035 	 */
2036 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2037 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2038 	{
2039 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2040 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2041 		set_sense(&dev->fsa_dev[cid].sense_data,
2042 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2043 		  ASENCODE_INVALID_COMMAND, 0, 0);
2044 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2045 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2046 			     SCSI_SENSE_BUFFERSIZE));
2047 		scsicmd->scsi_done(scsicmd);
2048 		return 0;
2049 	}
2050 
2051 
2052 	/* Handle commands here that don't really require going out to the adapter */
2053 	switch (scsicmd->cmnd[0]) {
2054 	case INQUIRY:
2055 	{
2056 		struct inquiry_data inq_data;
2057 
2058 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2059 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2060 
2061 		if (scsicmd->cmnd[1] & 0x1) {
2062 			char *arr = (char *)&inq_data;
2063 
2064 			/* EVPD bit set */
2065 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2066 			  INQD_PDT_PROC : INQD_PDT_DA;
2067 			if (scsicmd->cmnd[2] == 0) {
2068 				/* supported vital product data pages */
2069 				arr[3] = 2;
2070 				arr[4] = 0x0;
2071 				arr[5] = 0x80;
2072 				arr[1] = scsicmd->cmnd[2];
2073 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2074 							 sizeof(inq_data));
2075 				scsicmd->result = DID_OK << 16 |
2076 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2077 			} else if (scsicmd->cmnd[2] == 0x80) {
2078 				/* unit serial number page */
2079 				arr[3] = setinqserial(dev, &arr[4],
2080 				  scmd_id(scsicmd));
2081 				arr[1] = scsicmd->cmnd[2];
2082 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2083 							 sizeof(inq_data));
2084 				return aac_get_container_serial(scsicmd);
2085 			} else {
2086 				/* vpd page not implemented */
2087 				scsicmd->result = DID_OK << 16 |
2088 				  COMMAND_COMPLETE << 8 |
2089 				  SAM_STAT_CHECK_CONDITION;
2090 				set_sense(&dev->fsa_dev[cid].sense_data,
2091 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2092 				  ASENCODE_NO_SENSE, 7, 2);
2093 				memcpy(scsicmd->sense_buffer,
2094 				  &dev->fsa_dev[cid].sense_data,
2095 				  min_t(size_t,
2096 					sizeof(dev->fsa_dev[cid].sense_data),
2097 					SCSI_SENSE_BUFFERSIZE));
2098 			}
2099 			scsicmd->scsi_done(scsicmd);
2100 			return 0;
2101 		}
2102 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2103 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2104 		inq_data.inqd_len = 31;
2105 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2106 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2107 		/*
2108 		 *	Set the Vendor, Product, and Revision Level
2109 		 *	see: <vendor>.c i.e. aac.c
2110 		 */
2111 		if (cid == host->this_id) {
2112 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2113 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2114 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2115 						 sizeof(inq_data));
2116 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2117 			scsicmd->scsi_done(scsicmd);
2118 			return 0;
2119 		}
2120 		if (dev->in_reset)
2121 			return -1;
2122 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2123 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2124 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2125 		return aac_get_container_name(scsicmd);
2126 	}
2127 	case SERVICE_ACTION_IN:
2128 		if (!(dev->raw_io_interface) ||
2129 		    !(dev->raw_io_64) ||
2130 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2131 			break;
2132 	{
2133 		u64 capacity;
2134 		char cp[13];
2135 		unsigned int alloc_len;
2136 
2137 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2138 		capacity = fsa_dev_ptr[cid].size - 1;
2139 		cp[0] = (capacity >> 56) & 0xff;
2140 		cp[1] = (capacity >> 48) & 0xff;
2141 		cp[2] = (capacity >> 40) & 0xff;
2142 		cp[3] = (capacity >> 32) & 0xff;
2143 		cp[4] = (capacity >> 24) & 0xff;
2144 		cp[5] = (capacity >> 16) & 0xff;
2145 		cp[6] = (capacity >> 8) & 0xff;
2146 		cp[7] = (capacity >> 0) & 0xff;
2147 		cp[8] = 0;
2148 		cp[9] = 0;
2149 		cp[10] = 2;
2150 		cp[11] = 0;
2151 		cp[12] = 0;
2152 
2153 		alloc_len = ((scsicmd->cmnd[10] << 24)
2154 			     + (scsicmd->cmnd[11] << 16)
2155 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2156 
2157 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2158 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2159 		if (alloc_len < scsi_bufflen(scsicmd))
2160 			scsi_set_resid(scsicmd,
2161 				       scsi_bufflen(scsicmd) - alloc_len);
2162 
2163 		/* Do not cache partition table for arrays */
2164 		scsicmd->device->removable = 1;
2165 
2166 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2167 		scsicmd->scsi_done(scsicmd);
2168 
2169 		return 0;
2170 	}
2171 
2172 	case READ_CAPACITY:
2173 	{
2174 		u32 capacity;
2175 		char cp[8];
2176 
2177 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2178 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2179 			capacity = fsa_dev_ptr[cid].size - 1;
2180 		else
2181 			capacity = (u32)-1;
2182 
2183 		cp[0] = (capacity >> 24) & 0xff;
2184 		cp[1] = (capacity >> 16) & 0xff;
2185 		cp[2] = (capacity >> 8) & 0xff;
2186 		cp[3] = (capacity >> 0) & 0xff;
2187 		cp[4] = 0;
2188 		cp[5] = 0;
2189 		cp[6] = 2;
2190 		cp[7] = 0;
2191 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2192 		/* Do not cache partition table for arrays */
2193 		scsicmd->device->removable = 1;
2194 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2195 		  SAM_STAT_GOOD;
2196 		scsicmd->scsi_done(scsicmd);
2197 
2198 		return 0;
2199 	}
2200 
2201 	case MODE_SENSE:
2202 	{
2203 		char mode_buf[7];
2204 		int mode_buf_length = 4;
2205 
2206 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2207 		mode_buf[0] = 3;	/* Mode data length */
2208 		mode_buf[1] = 0;	/* Medium type - default */
2209 		mode_buf[2] = 0;	/* Device-specific param,
2210 					   bit 8: 0/1 = write enabled/protected
2211 					   bit 4: 0/1 = FUA enabled */
2212 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2213 			mode_buf[2] = 0x10;
2214 		mode_buf[3] = 0;	/* Block descriptor length */
2215 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2216 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2217 			mode_buf[0] = 6;
2218 			mode_buf[4] = 8;
2219 			mode_buf[5] = 1;
2220 			mode_buf[6] = ((aac_cache & 6) == 2)
2221 				? 0 : 0x04; /* WCE */
2222 			mode_buf_length = 7;
2223 			if (mode_buf_length > scsicmd->cmnd[4])
2224 				mode_buf_length = scsicmd->cmnd[4];
2225 		}
2226 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2227 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2228 		scsicmd->scsi_done(scsicmd);
2229 
2230 		return 0;
2231 	}
2232 	case MODE_SENSE_10:
2233 	{
2234 		char mode_buf[11];
2235 		int mode_buf_length = 8;
2236 
2237 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2238 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2239 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2240 		mode_buf[2] = 0;	/* Medium type - default */
2241 		mode_buf[3] = 0;	/* Device-specific param,
2242 					   bit 8: 0/1 = write enabled/protected
2243 					   bit 4: 0/1 = FUA enabled */
2244 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2245 			mode_buf[3] = 0x10;
2246 		mode_buf[4] = 0;	/* reserved */
2247 		mode_buf[5] = 0;	/* reserved */
2248 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2249 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2250 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2251 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2252 			mode_buf[1] = 9;
2253 			mode_buf[8] = 8;
2254 			mode_buf[9] = 1;
2255 			mode_buf[10] = ((aac_cache & 6) == 2)
2256 				? 0 : 0x04; /* WCE */
2257 			mode_buf_length = 11;
2258 			if (mode_buf_length > scsicmd->cmnd[8])
2259 				mode_buf_length = scsicmd->cmnd[8];
2260 		}
2261 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2262 
2263 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2264 		scsicmd->scsi_done(scsicmd);
2265 
2266 		return 0;
2267 	}
2268 	case REQUEST_SENSE:
2269 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2270 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2271 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2272 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2273 		scsicmd->scsi_done(scsicmd);
2274 		return 0;
2275 
2276 	case ALLOW_MEDIUM_REMOVAL:
2277 		dprintk((KERN_DEBUG "LOCK command.\n"));
2278 		if (scsicmd->cmnd[4])
2279 			fsa_dev_ptr[cid].locked = 1;
2280 		else
2281 			fsa_dev_ptr[cid].locked = 0;
2282 
2283 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2284 		scsicmd->scsi_done(scsicmd);
2285 		return 0;
2286 	/*
2287 	 *	These commands are all No-Ops
2288 	 */
2289 	case TEST_UNIT_READY:
2290 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2291 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2292 				SAM_STAT_CHECK_CONDITION;
2293 			set_sense(&dev->fsa_dev[cid].sense_data,
2294 				  NOT_READY, SENCODE_BECOMING_READY,
2295 				  ASENCODE_BECOMING_READY, 0, 0);
2296 			memcpy(scsicmd->sense_buffer,
2297 			       &dev->fsa_dev[cid].sense_data,
2298 			       min_t(size_t,
2299 				     sizeof(dev->fsa_dev[cid].sense_data),
2300 				     SCSI_SENSE_BUFFERSIZE));
2301 			scsicmd->scsi_done(scsicmd);
2302 			return 0;
2303 		}
2304 		/* FALLTHRU */
2305 	case RESERVE:
2306 	case RELEASE:
2307 	case REZERO_UNIT:
2308 	case REASSIGN_BLOCKS:
2309 	case SEEK_10:
2310 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2311 		scsicmd->scsi_done(scsicmd);
2312 		return 0;
2313 
2314 	case START_STOP:
2315 		return aac_start_stop(scsicmd);
2316 	}
2317 
2318 	switch (scsicmd->cmnd[0])
2319 	{
2320 		case READ_6:
2321 		case READ_10:
2322 		case READ_12:
2323 		case READ_16:
2324 			if (dev->in_reset)
2325 				return -1;
2326 			/*
2327 			 *	Hack to keep track of ordinal number of the device that
2328 			 *	corresponds to a container. Needed to convert
2329 			 *	containers to /dev/sd device names
2330 			 */
2331 
2332 			if (scsicmd->request->rq_disk)
2333 				strlcpy(fsa_dev_ptr[cid].devname,
2334 				scsicmd->request->rq_disk->disk_name,
2335 				min(sizeof(fsa_dev_ptr[cid].devname),
2336 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2337 
2338 			return aac_read(scsicmd);
2339 
2340 		case WRITE_6:
2341 		case WRITE_10:
2342 		case WRITE_12:
2343 		case WRITE_16:
2344 			if (dev->in_reset)
2345 				return -1;
2346 			return aac_write(scsicmd);
2347 
2348 		case SYNCHRONIZE_CACHE:
2349 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2350 				scsicmd->result = DID_OK << 16 |
2351 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2352 				scsicmd->scsi_done(scsicmd);
2353 				return 0;
2354 			}
2355 			/* Issue FIB to tell Firmware to flush it's cache */
2356 			if ((aac_cache & 6) != 2)
2357 				return aac_synchronize(scsicmd);
2358 			/* FALLTHRU */
2359 		default:
2360 			/*
2361 			 *	Unhandled commands
2362 			 */
2363 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2364 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2365 			set_sense(&dev->fsa_dev[cid].sense_data,
2366 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2367 			  ASENCODE_INVALID_COMMAND, 0, 0);
2368 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2369 				min_t(size_t,
2370 				      sizeof(dev->fsa_dev[cid].sense_data),
2371 				      SCSI_SENSE_BUFFERSIZE));
2372 			scsicmd->scsi_done(scsicmd);
2373 			return 0;
2374 	}
2375 }
2376 
2377 static int query_disk(struct aac_dev *dev, void __user *arg)
2378 {
2379 	struct aac_query_disk qd;
2380 	struct fsa_dev_info *fsa_dev_ptr;
2381 
2382 	fsa_dev_ptr = dev->fsa_dev;
2383 	if (!fsa_dev_ptr)
2384 		return -EBUSY;
2385 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2386 		return -EFAULT;
2387 	if (qd.cnum == -1)
2388 		qd.cnum = qd.id;
2389 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2390 	{
2391 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2392 			return -EINVAL;
2393 		qd.instance = dev->scsi_host_ptr->host_no;
2394 		qd.bus = 0;
2395 		qd.id = CONTAINER_TO_ID(qd.cnum);
2396 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2397 	}
2398 	else return -EINVAL;
2399 
2400 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2401 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2402 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2403 
2404 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2405 		qd.unmapped = 1;
2406 	else
2407 		qd.unmapped = 0;
2408 
2409 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2410 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2411 
2412 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2413 		return -EFAULT;
2414 	return 0;
2415 }
2416 
2417 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2418 {
2419 	struct aac_delete_disk dd;
2420 	struct fsa_dev_info *fsa_dev_ptr;
2421 
2422 	fsa_dev_ptr = dev->fsa_dev;
2423 	if (!fsa_dev_ptr)
2424 		return -EBUSY;
2425 
2426 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2427 		return -EFAULT;
2428 
2429 	if (dd.cnum >= dev->maximum_num_containers)
2430 		return -EINVAL;
2431 	/*
2432 	 *	Mark this container as being deleted.
2433 	 */
2434 	fsa_dev_ptr[dd.cnum].deleted = 1;
2435 	/*
2436 	 *	Mark the container as no longer valid
2437 	 */
2438 	fsa_dev_ptr[dd.cnum].valid = 0;
2439 	return 0;
2440 }
2441 
2442 static int delete_disk(struct aac_dev *dev, void __user *arg)
2443 {
2444 	struct aac_delete_disk dd;
2445 	struct fsa_dev_info *fsa_dev_ptr;
2446 
2447 	fsa_dev_ptr = dev->fsa_dev;
2448 	if (!fsa_dev_ptr)
2449 		return -EBUSY;
2450 
2451 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2452 		return -EFAULT;
2453 
2454 	if (dd.cnum >= dev->maximum_num_containers)
2455 		return -EINVAL;
2456 	/*
2457 	 *	If the container is locked, it can not be deleted by the API.
2458 	 */
2459 	if (fsa_dev_ptr[dd.cnum].locked)
2460 		return -EBUSY;
2461 	else {
2462 		/*
2463 		 *	Mark the container as no longer being valid.
2464 		 */
2465 		fsa_dev_ptr[dd.cnum].valid = 0;
2466 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2467 		return 0;
2468 	}
2469 }
2470 
2471 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2472 {
2473 	switch (cmd) {
2474 	case FSACTL_QUERY_DISK:
2475 		return query_disk(dev, arg);
2476 	case FSACTL_DELETE_DISK:
2477 		return delete_disk(dev, arg);
2478 	case FSACTL_FORCE_DELETE_DISK:
2479 		return force_delete_disk(dev, arg);
2480 	case FSACTL_GET_CONTAINERS:
2481 		return aac_get_containers(dev);
2482 	default:
2483 		return -ENOTTY;
2484 	}
2485 }
2486 
2487 /**
2488  *
2489  * aac_srb_callback
2490  * @context: the context set in the fib - here it is scsi cmd
2491  * @fibptr: pointer to the fib
2492  *
2493  * Handles the completion of a scsi command to a non dasd device
2494  *
2495  */
2496 
2497 static void aac_srb_callback(void *context, struct fib * fibptr)
2498 {
2499 	struct aac_dev *dev;
2500 	struct aac_srb_reply *srbreply;
2501 	struct scsi_cmnd *scsicmd;
2502 
2503 	scsicmd = (struct scsi_cmnd *) context;
2504 
2505 	if (!aac_valid_context(scsicmd, fibptr))
2506 		return;
2507 
2508 	BUG_ON(fibptr == NULL);
2509 
2510 	dev = fibptr->dev;
2511 
2512 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2513 
2514 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2515 	/*
2516 	 *	Calculate resid for sg
2517 	 */
2518 
2519 	scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2520 		       - le32_to_cpu(srbreply->data_xfer_length));
2521 
2522 	scsi_dma_unmap(scsicmd);
2523 
2524 	/*
2525 	 * First check the fib status
2526 	 */
2527 
2528 	if (le32_to_cpu(srbreply->status) != ST_OK){
2529 		int len;
2530 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2531 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2532 			    SCSI_SENSE_BUFFERSIZE);
2533 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2534 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2535 	}
2536 
2537 	/*
2538 	 * Next check the srb status
2539 	 */
2540 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2541 	case SRB_STATUS_ERROR_RECOVERY:
2542 	case SRB_STATUS_PENDING:
2543 	case SRB_STATUS_SUCCESS:
2544 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2545 		break;
2546 	case SRB_STATUS_DATA_OVERRUN:
2547 		switch(scsicmd->cmnd[0]){
2548 		case  READ_6:
2549 		case  WRITE_6:
2550 		case  READ_10:
2551 		case  WRITE_10:
2552 		case  READ_12:
2553 		case  WRITE_12:
2554 		case  READ_16:
2555 		case  WRITE_16:
2556 			if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2557 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2558 			} else {
2559 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2560 			}
2561 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2562 			break;
2563 		case INQUIRY: {
2564 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2565 			break;
2566 		}
2567 		default:
2568 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2569 			break;
2570 		}
2571 		break;
2572 	case SRB_STATUS_ABORTED:
2573 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2574 		break;
2575 	case SRB_STATUS_ABORT_FAILED:
2576 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2577 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2578 		break;
2579 	case SRB_STATUS_PARITY_ERROR:
2580 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2581 		break;
2582 	case SRB_STATUS_NO_DEVICE:
2583 	case SRB_STATUS_INVALID_PATH_ID:
2584 	case SRB_STATUS_INVALID_TARGET_ID:
2585 	case SRB_STATUS_INVALID_LUN:
2586 	case SRB_STATUS_SELECTION_TIMEOUT:
2587 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2588 		break;
2589 
2590 	case SRB_STATUS_COMMAND_TIMEOUT:
2591 	case SRB_STATUS_TIMEOUT:
2592 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2593 		break;
2594 
2595 	case SRB_STATUS_BUSY:
2596 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2597 		break;
2598 
2599 	case SRB_STATUS_BUS_RESET:
2600 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2601 		break;
2602 
2603 	case SRB_STATUS_MESSAGE_REJECTED:
2604 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2605 		break;
2606 	case SRB_STATUS_REQUEST_FLUSHED:
2607 	case SRB_STATUS_ERROR:
2608 	case SRB_STATUS_INVALID_REQUEST:
2609 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2610 	case SRB_STATUS_NO_HBA:
2611 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2612 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2613 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2614 	case SRB_STATUS_DELAYED_RETRY:
2615 	case SRB_STATUS_BAD_FUNCTION:
2616 	case SRB_STATUS_NOT_STARTED:
2617 	case SRB_STATUS_NOT_IN_USE:
2618 	case SRB_STATUS_FORCE_ABORT:
2619 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2620 	default:
2621 #ifdef AAC_DETAILED_STATUS_INFO
2622 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2623 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2624 			aac_get_status_string(
2625 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2626 			scsicmd->cmnd[0],
2627 			le32_to_cpu(srbreply->scsi_status));
2628 #endif
2629 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2630 		break;
2631 	}
2632 	if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2633 		int len;
2634 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2635 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2636 			    SCSI_SENSE_BUFFERSIZE);
2637 #ifdef AAC_DETAILED_STATUS_INFO
2638 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2639 					le32_to_cpu(srbreply->status), len);
2640 #endif
2641 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2642 	}
2643 	/*
2644 	 * OR in the scsi status (already shifted up a bit)
2645 	 */
2646 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2647 
2648 	aac_fib_complete(fibptr);
2649 	aac_fib_free(fibptr);
2650 	scsicmd->scsi_done(scsicmd);
2651 }
2652 
2653 /**
2654  *
2655  * aac_send_scb_fib
2656  * @scsicmd: the scsi command block
2657  *
2658  * This routine will form a FIB and fill in the aac_srb from the
2659  * scsicmd passed in.
2660  */
2661 
2662 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2663 {
2664 	struct fib* cmd_fibcontext;
2665 	struct aac_dev* dev;
2666 	int status;
2667 
2668 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2669 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2670 			scsicmd->device->lun > 7) {
2671 		scsicmd->result = DID_NO_CONNECT << 16;
2672 		scsicmd->scsi_done(scsicmd);
2673 		return 0;
2674 	}
2675 
2676 	/*
2677 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2678 	 */
2679 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2680 		return -1;
2681 	}
2682 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2683 
2684 	/*
2685 	 *	Check that the command queued to the controller
2686 	 */
2687 	if (status == -EINPROGRESS) {
2688 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2689 		return 0;
2690 	}
2691 
2692 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2693 	aac_fib_complete(cmd_fibcontext);
2694 	aac_fib_free(cmd_fibcontext);
2695 
2696 	return -1;
2697 }
2698 
2699 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2700 {
2701 	struct aac_dev *dev;
2702 	unsigned long byte_count = 0;
2703 	int nseg;
2704 
2705 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2706 	// Get rid of old data
2707 	psg->count = 0;
2708 	psg->sg[0].addr = 0;
2709 	psg->sg[0].count = 0;
2710 
2711 	nseg = scsi_dma_map(scsicmd);
2712 	BUG_ON(nseg < 0);
2713 	if (nseg) {
2714 		struct scatterlist *sg;
2715 		int i;
2716 
2717 		psg->count = cpu_to_le32(nseg);
2718 
2719 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2720 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2721 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2722 			byte_count += sg_dma_len(sg);
2723 		}
2724 		/* hba wants the size to be exact */
2725 		if (byte_count > scsi_bufflen(scsicmd)) {
2726 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2727 				(byte_count - scsi_bufflen(scsicmd));
2728 			psg->sg[i-1].count = cpu_to_le32(temp);
2729 			byte_count = scsi_bufflen(scsicmd);
2730 		}
2731 		/* Check for command underflow */
2732 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2733 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2734 					byte_count, scsicmd->underflow);
2735 		}
2736 	}
2737 	return byte_count;
2738 }
2739 
2740 
2741 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2742 {
2743 	struct aac_dev *dev;
2744 	unsigned long byte_count = 0;
2745 	u64 addr;
2746 	int nseg;
2747 
2748 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2749 	// Get rid of old data
2750 	psg->count = 0;
2751 	psg->sg[0].addr[0] = 0;
2752 	psg->sg[0].addr[1] = 0;
2753 	psg->sg[0].count = 0;
2754 
2755 	nseg = scsi_dma_map(scsicmd);
2756 	BUG_ON(nseg < 0);
2757 	if (nseg) {
2758 		struct scatterlist *sg;
2759 		int i;
2760 
2761 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2762 			int count = sg_dma_len(sg);
2763 			addr = sg_dma_address(sg);
2764 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2765 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2766 			psg->sg[i].count = cpu_to_le32(count);
2767 			byte_count += count;
2768 		}
2769 		psg->count = cpu_to_le32(nseg);
2770 		/* hba wants the size to be exact */
2771 		if (byte_count > scsi_bufflen(scsicmd)) {
2772 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2773 				(byte_count - scsi_bufflen(scsicmd));
2774 			psg->sg[i-1].count = cpu_to_le32(temp);
2775 			byte_count = scsi_bufflen(scsicmd);
2776 		}
2777 		/* Check for command underflow */
2778 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2779 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2780 					byte_count, scsicmd->underflow);
2781 		}
2782 	}
2783 	return byte_count;
2784 }
2785 
2786 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2787 {
2788 	unsigned long byte_count = 0;
2789 	int nseg;
2790 
2791 	// Get rid of old data
2792 	psg->count = 0;
2793 	psg->sg[0].next = 0;
2794 	psg->sg[0].prev = 0;
2795 	psg->sg[0].addr[0] = 0;
2796 	psg->sg[0].addr[1] = 0;
2797 	psg->sg[0].count = 0;
2798 	psg->sg[0].flags = 0;
2799 
2800 	nseg = scsi_dma_map(scsicmd);
2801 	BUG_ON(nseg < 0);
2802 	if (nseg) {
2803 		struct scatterlist *sg;
2804 		int i;
2805 
2806 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2807 			int count = sg_dma_len(sg);
2808 			u64 addr = sg_dma_address(sg);
2809 			psg->sg[i].next = 0;
2810 			psg->sg[i].prev = 0;
2811 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2812 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2813 			psg->sg[i].count = cpu_to_le32(count);
2814 			psg->sg[i].flags = 0;
2815 			byte_count += count;
2816 		}
2817 		psg->count = cpu_to_le32(nseg);
2818 		/* hba wants the size to be exact */
2819 		if (byte_count > scsi_bufflen(scsicmd)) {
2820 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2821 				(byte_count - scsi_bufflen(scsicmd));
2822 			psg->sg[i-1].count = cpu_to_le32(temp);
2823 			byte_count = scsi_bufflen(scsicmd);
2824 		}
2825 		/* Check for command underflow */
2826 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2827 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2828 					byte_count, scsicmd->underflow);
2829 		}
2830 	}
2831 	return byte_count;
2832 }
2833 
2834 #ifdef AAC_DETAILED_STATUS_INFO
2835 
2836 struct aac_srb_status_info {
2837 	u32	status;
2838 	char	*str;
2839 };
2840 
2841 
2842 static struct aac_srb_status_info srb_status_info[] = {
2843 	{ SRB_STATUS_PENDING,		"Pending Status"},
2844 	{ SRB_STATUS_SUCCESS,		"Success"},
2845 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2846 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2847 	{ SRB_STATUS_ERROR,		"Error Event"},
2848 	{ SRB_STATUS_BUSY,		"Device Busy"},
2849 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2850 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2851 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2852 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2853 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2854 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2855 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2856 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2857 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2858 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2859 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2860 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2861 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2862 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2863 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2864 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2865 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2866 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2867 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2868 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2869 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2870 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2871 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2872 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2873 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2874 	{ 0xff,				"Unknown Error"}
2875 };
2876 
2877 char *aac_get_status_string(u32 status)
2878 {
2879 	int i;
2880 
2881 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2882 		if (srb_status_info[i].status == status)
2883 			return srb_status_info[i].str;
2884 
2885 	return "Bad Status Code";
2886 }
2887 
2888 #endif
2889