1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/module.h> 29 30 #include <asm/unaligned.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 37 #include "aacraid.h" 38 39 /* values for inqd_pdt: Peripheral device type in plain English */ 40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 41 #define INQD_PDT_PROC 0x03 /* Processor device */ 42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 46 47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 49 50 /* 51 * Sense codes 52 */ 53 54 #define SENCODE_NO_SENSE 0x00 55 #define SENCODE_END_OF_DATA 0x00 56 #define SENCODE_BECOMING_READY 0x04 57 #define SENCODE_INIT_CMD_REQUIRED 0x04 58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 60 #define SENCODE_INVALID_COMMAND 0x20 61 #define SENCODE_LBA_OUT_OF_RANGE 0x21 62 #define SENCODE_INVALID_CDB_FIELD 0x24 63 #define SENCODE_LUN_NOT_SUPPORTED 0x25 64 #define SENCODE_INVALID_PARAM_FIELD 0x26 65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 66 #define SENCODE_PARAM_VALUE_INVALID 0x26 67 #define SENCODE_RESET_OCCURRED 0x29 68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 75 #define SENCODE_OVERLAPPED_COMMAND 0x4E 76 77 /* 78 * Additional sense codes 79 */ 80 81 #define ASENCODE_NO_SENSE 0x00 82 #define ASENCODE_END_OF_DATA 0x05 83 #define ASENCODE_BECOMING_READY 0x01 84 #define ASENCODE_INIT_CMD_REQUIRED 0x02 85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 86 #define ASENCODE_INVALID_COMMAND 0x00 87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 88 #define ASENCODE_INVALID_CDB_FIELD 0x00 89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 90 #define ASENCODE_INVALID_PARAM_FIELD 0x00 91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 92 #define ASENCODE_PARAM_VALUE_INVALID 0x02 93 #define ASENCODE_RESET_OCCURRED 0x00 94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 101 #define ASENCODE_OVERLAPPED_COMMAND 0x00 102 103 #define BYTE0(x) (unsigned char)(x) 104 #define BYTE1(x) (unsigned char)((x) >> 8) 105 #define BYTE2(x) (unsigned char)((x) >> 16) 106 #define BYTE3(x) (unsigned char)((x) >> 24) 107 108 /* MODE_SENSE data format */ 109 typedef struct { 110 struct { 111 u8 data_length; 112 u8 med_type; 113 u8 dev_par; 114 u8 bd_length; 115 } __attribute__((packed)) hd; 116 struct { 117 u8 dens_code; 118 u8 block_count[3]; 119 u8 reserved; 120 u8 block_length[3]; 121 } __attribute__((packed)) bd; 122 u8 mpc_buf[3]; 123 } __attribute__((packed)) aac_modep_data; 124 125 /* MODE_SENSE_10 data format */ 126 typedef struct { 127 struct { 128 u8 data_length[2]; 129 u8 med_type; 130 u8 dev_par; 131 u8 rsrvd[2]; 132 u8 bd_length[2]; 133 } __attribute__((packed)) hd; 134 struct { 135 u8 dens_code; 136 u8 block_count[3]; 137 u8 reserved; 138 u8 block_length[3]; 139 } __attribute__((packed)) bd; 140 u8 mpc_buf[3]; 141 } __attribute__((packed)) aac_modep10_data; 142 143 /*------------------------------------------------------------------------------ 144 * S T R U C T S / T Y P E D E F S 145 *----------------------------------------------------------------------------*/ 146 /* SCSI inquiry data */ 147 struct inquiry_data { 148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 149 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 152 u8 inqd_len; /* Additional length (n-4) */ 153 u8 inqd_pad1[2];/* Reserved - must be zero */ 154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 155 u8 inqd_vid[8]; /* Vendor ID */ 156 u8 inqd_pid[16];/* Product ID */ 157 u8 inqd_prl[4]; /* Product Revision Level */ 158 }; 159 160 /* Added for VPD 0x83 */ 161 struct tvpd_id_descriptor_type_1 { 162 u8 codeset:4; /* VPD_CODE_SET */ 163 u8 reserved:4; 164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 165 u8 reserved2:4; 166 u8 reserved3; 167 u8 identifierlength; 168 u8 venid[8]; 169 u8 productid[16]; 170 u8 serialnumber[8]; /* SN in ASCII */ 171 172 }; 173 174 struct tvpd_id_descriptor_type_2 { 175 u8 codeset:4; /* VPD_CODE_SET */ 176 u8 reserved:4; 177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 178 u8 reserved2:4; 179 u8 reserved3; 180 u8 identifierlength; 181 struct teu64id { 182 u32 Serial; 183 /* The serial number supposed to be 40 bits, 184 * bit we only support 32, so make the last byte zero. */ 185 u8 reserved; 186 u8 venid[3]; 187 } eu64id; 188 189 }; 190 191 struct tvpd_id_descriptor_type_3 { 192 u8 codeset : 4; /* VPD_CODE_SET */ 193 u8 reserved : 4; 194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 195 u8 reserved2 : 4; 196 u8 reserved3; 197 u8 identifierlength; 198 u8 Identifier[16]; 199 }; 200 201 struct tvpd_page83 { 202 u8 DeviceType:5; 203 u8 DeviceTypeQualifier:3; 204 u8 PageCode; 205 u8 reserved; 206 u8 PageLength; 207 struct tvpd_id_descriptor_type_1 type1; 208 struct tvpd_id_descriptor_type_2 type2; 209 struct tvpd_id_descriptor_type_3 type3; 210 }; 211 212 /* 213 * M O D U L E G L O B A L S 214 */ 215 216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 220 struct aac_raw_io2 *rio2, int sg_max); 221 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 222 struct aac_hba_cmd_req *hbacmd, 223 int sg_max, u64 sg_address); 224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 225 int pages, int nseg, int nseg_new); 226 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 static int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 static int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @dev: aac driver data 354 * @commit_flag: force sending CT_COMMIT_CONFIG 355 * 356 * Query config status, and commit the configuration if needed. 357 */ 358 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 359 { 360 int status = 0; 361 struct fib * fibptr; 362 363 if (!(fibptr = aac_fib_alloc(dev))) 364 return -ENOMEM; 365 366 aac_fib_init(fibptr); 367 { 368 struct aac_get_config_status *dinfo; 369 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 370 371 dinfo->command = cpu_to_le32(VM_ContainerConfig); 372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 374 } 375 376 status = aac_fib_send(ContainerCommand, 377 fibptr, 378 sizeof (struct aac_get_config_status), 379 FsaNormal, 380 1, 1, 381 NULL, NULL); 382 if (status < 0) { 383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 384 } else { 385 struct aac_get_config_status_resp *reply 386 = (struct aac_get_config_status_resp *) fib_data(fibptr); 387 dprintk((KERN_WARNING 388 "aac_get_config_status: response=%d status=%d action=%d\n", 389 le32_to_cpu(reply->response), 390 le32_to_cpu(reply->status), 391 le32_to_cpu(reply->data.action))); 392 if ((le32_to_cpu(reply->response) != ST_OK) || 393 (le32_to_cpu(reply->status) != CT_OK) || 394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 396 status = -EINVAL; 397 } 398 } 399 /* Do not set XferState to zero unless receives a response from F/W */ 400 if (status >= 0) 401 aac_fib_complete(fibptr); 402 403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 404 if (status >= 0) { 405 if ((aac_commit == 1) || commit_flag) { 406 struct aac_commit_config * dinfo; 407 aac_fib_init(fibptr); 408 dinfo = (struct aac_commit_config *) fib_data(fibptr); 409 410 dinfo->command = cpu_to_le32(VM_ContainerConfig); 411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 412 413 status = aac_fib_send(ContainerCommand, 414 fibptr, 415 sizeof (struct aac_commit_config), 416 FsaNormal, 417 1, 1, 418 NULL, NULL); 419 /* Do not set XferState to zero unless 420 * receives a response from F/W */ 421 if (status >= 0) 422 aac_fib_complete(fibptr); 423 } else if (aac_commit == 0) { 424 printk(KERN_WARNING 425 "aac_get_config_status: Foreign device configurations are being ignored\n"); 426 } 427 } 428 /* FIB should be freed only after getting the response from the F/W */ 429 if (status != -ERESTARTSYS) 430 aac_fib_free(fibptr); 431 return status; 432 } 433 434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 435 { 436 char inq_data; 437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 439 inq_data &= 0xdf; 440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 441 } 442 } 443 444 /** 445 * aac_get_containers - list containers 446 * @dev: aac driver data 447 * 448 * Make a list of all containers on this controller 449 */ 450 int aac_get_containers(struct aac_dev *dev) 451 { 452 struct fsa_dev_info *fsa_dev_ptr; 453 u32 index; 454 int status = 0; 455 struct fib * fibptr; 456 struct aac_get_container_count *dinfo; 457 struct aac_get_container_count_resp *dresp; 458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 459 460 if (!(fibptr = aac_fib_alloc(dev))) 461 return -ENOMEM; 462 463 aac_fib_init(fibptr); 464 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 465 dinfo->command = cpu_to_le32(VM_ContainerConfig); 466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 467 468 status = aac_fib_send(ContainerCommand, 469 fibptr, 470 sizeof (struct aac_get_container_count), 471 FsaNormal, 472 1, 1, 473 NULL, NULL); 474 if (status >= 0) { 475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 477 if (fibptr->dev->supplement_adapter_info.supported_options2 & 478 AAC_OPTION_SUPPORTED_240_VOLUMES) { 479 maximum_num_containers = 480 le32_to_cpu(dresp->MaxSimpleVolumes); 481 } 482 aac_fib_complete(fibptr); 483 } 484 /* FIB should be freed only after getting the response from the F/W */ 485 if (status != -ERESTARTSYS) 486 aac_fib_free(fibptr); 487 488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 490 if (dev->fsa_dev == NULL || 491 dev->maximum_num_containers != maximum_num_containers) { 492 493 fsa_dev_ptr = dev->fsa_dev; 494 495 dev->fsa_dev = kcalloc(maximum_num_containers, 496 sizeof(*fsa_dev_ptr), GFP_KERNEL); 497 498 kfree(fsa_dev_ptr); 499 fsa_dev_ptr = NULL; 500 501 502 if (!dev->fsa_dev) 503 return -ENOMEM; 504 505 dev->maximum_num_containers = maximum_num_containers; 506 } 507 for (index = 0; index < dev->maximum_num_containers; index++) { 508 dev->fsa_dev[index].devname[0] = '\0'; 509 dev->fsa_dev[index].valid = 0; 510 511 status = aac_probe_container(dev, index); 512 513 if (status < 0) { 514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 515 break; 516 } 517 } 518 return status; 519 } 520 521 static void aac_scsi_done(struct scsi_cmnd *scmd) 522 { 523 if (scmd->device->request_queue) { 524 /* SCSI command has been submitted by the SCSI mid-layer. */ 525 scsi_done(scmd); 526 } else { 527 /* SCSI command has been submitted by aac_probe_container(). */ 528 aac_probe_container_scsi_done(scmd); 529 } 530 } 531 532 static void get_container_name_callback(void *context, struct fib * fibptr) 533 { 534 struct aac_get_name_resp * get_name_reply; 535 struct scsi_cmnd * scsicmd; 536 537 scsicmd = (struct scsi_cmnd *) context; 538 539 if (!aac_valid_context(scsicmd, fibptr)) 540 return; 541 542 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 543 BUG_ON(fibptr == NULL); 544 545 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 546 /* Failure is irrelevant, using default value instead */ 547 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 548 && (get_name_reply->data[0] != '\0')) { 549 char *sp = get_name_reply->data; 550 int data_size = sizeof_field(struct aac_get_name_resp, data); 551 552 sp[data_size - 1] = '\0'; 553 while (*sp == ' ') 554 ++sp; 555 if (*sp) { 556 struct inquiry_data inq; 557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 558 int count = sizeof(d); 559 char *dp = d; 560 do { 561 *dp++ = (*sp) ? *sp++ : ' '; 562 } while (--count > 0); 563 564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 565 memcpy(inq.inqd_pid, d, sizeof(d)); 566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 567 } 568 } 569 570 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 571 572 aac_fib_complete(fibptr); 573 aac_scsi_done(scsicmd); 574 } 575 576 /* 577 * aac_get_container_name - get container name, none blocking. 578 */ 579 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 580 { 581 int status; 582 int data_size; 583 struct aac_get_name *dinfo; 584 struct fib * cmd_fibcontext; 585 struct aac_dev * dev; 586 587 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 588 589 data_size = sizeof_field(struct aac_get_name_resp, data); 590 591 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 592 593 aac_fib_init(cmd_fibcontext); 594 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 595 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 596 597 dinfo->command = cpu_to_le32(VM_ContainerConfig); 598 dinfo->type = cpu_to_le32(CT_READ_NAME); 599 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 600 dinfo->count = cpu_to_le32(data_size - 1); 601 602 status = aac_fib_send(ContainerCommand, 603 cmd_fibcontext, 604 sizeof(struct aac_get_name_resp), 605 FsaNormal, 606 0, 1, 607 (fib_callback)get_container_name_callback, 608 (void *) scsicmd); 609 610 /* 611 * Check that the command queued to the controller 612 */ 613 if (status == -EINPROGRESS) 614 return 0; 615 616 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 617 aac_fib_complete(cmd_fibcontext); 618 return -1; 619 } 620 621 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 622 { 623 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 624 625 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 626 return aac_scsi_cmd(scsicmd); 627 628 scsicmd->result = DID_NO_CONNECT << 16; 629 aac_scsi_done(scsicmd); 630 return 0; 631 } 632 633 static void _aac_probe_container2(void * context, struct fib * fibptr) 634 { 635 struct fsa_dev_info *fsa_dev_ptr; 636 int (*callback)(struct scsi_cmnd *); 637 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 638 int i; 639 640 641 if (!aac_valid_context(scsicmd, fibptr)) 642 return; 643 644 scsicmd->SCp.Status = 0; 645 fsa_dev_ptr = fibptr->dev->fsa_dev; 646 if (fsa_dev_ptr) { 647 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 648 __le32 sup_options2; 649 650 fsa_dev_ptr += scmd_id(scsicmd); 651 sup_options2 = 652 fibptr->dev->supplement_adapter_info.supported_options2; 653 654 if ((le32_to_cpu(dresp->status) == ST_OK) && 655 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 656 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 657 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 658 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 659 fsa_dev_ptr->block_size = 0x200; 660 } else { 661 fsa_dev_ptr->block_size = 662 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 663 } 664 for (i = 0; i < 16; i++) 665 fsa_dev_ptr->identifier[i] = 666 dresp->mnt[0].fileinfo.bdevinfo 667 .identifier[i]; 668 fsa_dev_ptr->valid = 1; 669 /* sense_key holds the current state of the spin-up */ 670 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 671 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 672 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 673 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 674 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 675 fsa_dev_ptr->size 676 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 677 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 678 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 679 } 680 if ((fsa_dev_ptr->valid & 1) == 0) 681 fsa_dev_ptr->valid = 0; 682 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 683 } 684 aac_fib_complete(fibptr); 685 aac_fib_free(fibptr); 686 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 687 scsicmd->SCp.ptr = NULL; 688 (*callback)(scsicmd); 689 return; 690 } 691 692 static void _aac_probe_container1(void * context, struct fib * fibptr) 693 { 694 struct scsi_cmnd * scsicmd; 695 struct aac_mount * dresp; 696 struct aac_query_mount *dinfo; 697 int status; 698 699 dresp = (struct aac_mount *) fib_data(fibptr); 700 if (!aac_supports_2T(fibptr->dev)) { 701 dresp->mnt[0].capacityhigh = 0; 702 if ((le32_to_cpu(dresp->status) == ST_OK) && 703 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 704 _aac_probe_container2(context, fibptr); 705 return; 706 } 707 } 708 scsicmd = (struct scsi_cmnd *) context; 709 710 if (!aac_valid_context(scsicmd, fibptr)) 711 return; 712 713 aac_fib_init(fibptr); 714 715 dinfo = (struct aac_query_mount *)fib_data(fibptr); 716 717 if (fibptr->dev->supplement_adapter_info.supported_options2 & 718 AAC_OPTION_VARIABLE_BLOCK_SIZE) 719 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 720 else 721 dinfo->command = cpu_to_le32(VM_NameServe64); 722 723 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 724 dinfo->type = cpu_to_le32(FT_FILESYS); 725 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 726 727 status = aac_fib_send(ContainerCommand, 728 fibptr, 729 sizeof(struct aac_query_mount), 730 FsaNormal, 731 0, 1, 732 _aac_probe_container2, 733 (void *) scsicmd); 734 /* 735 * Check that the command queued to the controller 736 */ 737 if (status < 0 && status != -EINPROGRESS) { 738 /* Inherit results from VM_NameServe, if any */ 739 dresp->status = cpu_to_le32(ST_OK); 740 _aac_probe_container2(context, fibptr); 741 } 742 } 743 744 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 745 { 746 struct fib * fibptr; 747 int status = -ENOMEM; 748 749 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 750 struct aac_query_mount *dinfo; 751 752 aac_fib_init(fibptr); 753 754 dinfo = (struct aac_query_mount *)fib_data(fibptr); 755 756 if (fibptr->dev->supplement_adapter_info.supported_options2 & 757 AAC_OPTION_VARIABLE_BLOCK_SIZE) 758 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 759 else 760 dinfo->command = cpu_to_le32(VM_NameServe); 761 762 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 763 dinfo->type = cpu_to_le32(FT_FILESYS); 764 scsicmd->SCp.ptr = (char *)callback; 765 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 766 767 status = aac_fib_send(ContainerCommand, 768 fibptr, 769 sizeof(struct aac_query_mount), 770 FsaNormal, 771 0, 1, 772 _aac_probe_container1, 773 (void *) scsicmd); 774 /* 775 * Check that the command queued to the controller 776 */ 777 if (status == -EINPROGRESS) 778 return 0; 779 780 if (status < 0) { 781 scsicmd->SCp.ptr = NULL; 782 aac_fib_complete(fibptr); 783 aac_fib_free(fibptr); 784 } 785 } 786 if (status < 0) { 787 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 788 if (fsa_dev_ptr) { 789 fsa_dev_ptr += scmd_id(scsicmd); 790 if ((fsa_dev_ptr->valid & 1) == 0) { 791 fsa_dev_ptr->valid = 0; 792 return (*callback)(scsicmd); 793 } 794 } 795 } 796 return status; 797 } 798 799 /** 800 * aac_probe_container_callback1 - query a logical volume 801 * @scsicmd: the scsi command block 802 * 803 * Queries the controller about the given volume. The volume information 804 * is updated in the struct fsa_dev_info structure rather than returned. 805 */ 806 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 807 { 808 scsicmd->device = NULL; 809 return 0; 810 } 811 812 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 813 { 814 aac_probe_container_callback1(scsi_cmnd); 815 } 816 817 int aac_probe_container(struct aac_dev *dev, int cid) 818 { 819 struct scsi_cmnd *scsicmd = kzalloc(sizeof(*scsicmd), GFP_KERNEL); 820 struct scsi_device *scsidev = kzalloc(sizeof(*scsidev), GFP_KERNEL); 821 int status; 822 823 if (!scsicmd || !scsidev) { 824 kfree(scsicmd); 825 kfree(scsidev); 826 return -ENOMEM; 827 } 828 829 scsicmd->device = scsidev; 830 scsidev->sdev_state = 0; 831 scsidev->id = cid; 832 scsidev->host = dev->scsi_host_ptr; 833 834 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 835 while (scsicmd->device == scsidev) 836 schedule(); 837 kfree(scsidev); 838 status = scsicmd->SCp.Status; 839 kfree(scsicmd); 840 return status; 841 } 842 843 /* Local Structure to set SCSI inquiry data strings */ 844 struct scsi_inq { 845 char vid[8]; /* Vendor ID */ 846 char pid[16]; /* Product ID */ 847 char prl[4]; /* Product Revision Level */ 848 }; 849 850 /** 851 * inqstrcpy - string merge 852 * @a: string to copy from 853 * @b: string to copy to 854 * 855 * Copy a String from one location to another 856 * without copying \0 857 */ 858 859 static void inqstrcpy(char *a, char *b) 860 { 861 862 while (*a != (char)0) 863 *b++ = *a++; 864 } 865 866 static char *container_types[] = { 867 "None", 868 "Volume", 869 "Mirror", 870 "Stripe", 871 "RAID5", 872 "SSRW", 873 "SSRO", 874 "Morph", 875 "Legacy", 876 "RAID4", 877 "RAID10", 878 "RAID00", 879 "V-MIRRORS", 880 "PSEUDO R4", 881 "RAID50", 882 "RAID5D", 883 "RAID5D0", 884 "RAID1E", 885 "RAID6", 886 "RAID60", 887 "Unknown" 888 }; 889 890 char * get_container_type(unsigned tindex) 891 { 892 if (tindex >= ARRAY_SIZE(container_types)) 893 tindex = ARRAY_SIZE(container_types) - 1; 894 return container_types[tindex]; 895 } 896 897 /* Function: setinqstr 898 * 899 * Arguments: [1] pointer to void [1] int 900 * 901 * Purpose: Sets SCSI inquiry data strings for vendor, product 902 * and revision level. Allows strings to be set in platform dependent 903 * files instead of in OS dependent driver source. 904 */ 905 906 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 907 { 908 struct scsi_inq *str; 909 struct aac_supplement_adapter_info *sup_adap_info; 910 911 sup_adap_info = &dev->supplement_adapter_info; 912 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 913 memset(str, ' ', sizeof(*str)); 914 915 if (sup_adap_info->adapter_type_text[0]) { 916 int c; 917 char *cp; 918 char *cname = kmemdup(sup_adap_info->adapter_type_text, 919 sizeof(sup_adap_info->adapter_type_text), 920 GFP_ATOMIC); 921 if (!cname) 922 return; 923 924 cp = cname; 925 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 926 inqstrcpy("SMC", str->vid); 927 else { 928 c = sizeof(str->vid); 929 while (*cp && *cp != ' ' && --c) 930 ++cp; 931 c = *cp; 932 *cp = '\0'; 933 inqstrcpy(cname, str->vid); 934 *cp = c; 935 while (*cp && *cp != ' ') 936 ++cp; 937 } 938 while (*cp == ' ') 939 ++cp; 940 /* last six chars reserved for vol type */ 941 if (strlen(cp) > sizeof(str->pid)) 942 cp[sizeof(str->pid)] = '\0'; 943 inqstrcpy (cp, str->pid); 944 945 kfree(cname); 946 } else { 947 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 948 949 inqstrcpy (mp->vname, str->vid); 950 /* last six chars reserved for vol type */ 951 inqstrcpy (mp->model, str->pid); 952 } 953 954 if (tindex < ARRAY_SIZE(container_types)){ 955 char *findit = str->pid; 956 957 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 958 /* RAID is superfluous in the context of a RAID device */ 959 if (memcmp(findit-4, "RAID", 4) == 0) 960 *(findit -= 4) = ' '; 961 if (((findit - str->pid) + strlen(container_types[tindex])) 962 < (sizeof(str->pid) + sizeof(str->prl))) 963 inqstrcpy (container_types[tindex], findit + 1); 964 } 965 inqstrcpy ("V1.0", str->prl); 966 } 967 968 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 969 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 970 { 971 int container; 972 973 vpdpage83data->type3.codeset = 1; 974 vpdpage83data->type3.identifiertype = 3; 975 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 976 - 4; 977 978 for (container = 0; container < dev->maximum_num_containers; 979 container++) { 980 981 if (scmd_id(scsicmd) == container) { 982 memcpy(vpdpage83data->type3.Identifier, 983 dev->fsa_dev[container].identifier, 984 16); 985 break; 986 } 987 } 988 } 989 990 static void get_container_serial_callback(void *context, struct fib * fibptr) 991 { 992 struct aac_get_serial_resp * get_serial_reply; 993 struct scsi_cmnd * scsicmd; 994 995 BUG_ON(fibptr == NULL); 996 997 scsicmd = (struct scsi_cmnd *) context; 998 if (!aac_valid_context(scsicmd, fibptr)) 999 return; 1000 1001 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 1002 /* Failure is irrelevant, using default value instead */ 1003 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 1004 /*Check to see if it's for VPD 0x83 or 0x80 */ 1005 if (scsicmd->cmnd[2] == 0x83) { 1006 /* vpd page 0x83 - Device Identification Page */ 1007 struct aac_dev *dev; 1008 int i; 1009 struct tvpd_page83 vpdpage83data; 1010 1011 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1012 1013 memset(((u8 *)&vpdpage83data), 0, 1014 sizeof(vpdpage83data)); 1015 1016 /* DIRECT_ACCESS_DEVIC */ 1017 vpdpage83data.DeviceType = 0; 1018 /* DEVICE_CONNECTED */ 1019 vpdpage83data.DeviceTypeQualifier = 0; 1020 /* VPD_DEVICE_IDENTIFIERS */ 1021 vpdpage83data.PageCode = 0x83; 1022 vpdpage83data.reserved = 0; 1023 vpdpage83data.PageLength = 1024 sizeof(vpdpage83data.type1) + 1025 sizeof(vpdpage83data.type2); 1026 1027 /* VPD 83 Type 3 is not supported for ARC */ 1028 if (dev->sa_firmware) 1029 vpdpage83data.PageLength += 1030 sizeof(vpdpage83data.type3); 1031 1032 /* T10 Vendor Identifier Field Format */ 1033 /* VpdcodesetAscii */ 1034 vpdpage83data.type1.codeset = 2; 1035 /* VpdIdentifierTypeVendorId */ 1036 vpdpage83data.type1.identifiertype = 1; 1037 vpdpage83data.type1.identifierlength = 1038 sizeof(vpdpage83data.type1) - 4; 1039 1040 /* "ADAPTEC " for adaptec */ 1041 memcpy(vpdpage83data.type1.venid, 1042 "ADAPTEC ", 1043 sizeof(vpdpage83data.type1.venid)); 1044 memcpy(vpdpage83data.type1.productid, 1045 "ARRAY ", 1046 sizeof( 1047 vpdpage83data.type1.productid)); 1048 1049 /* Convert to ascii based serial number. 1050 * The LSB is the the end. 1051 */ 1052 for (i = 0; i < 8; i++) { 1053 u8 temp = 1054 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1055 if (temp > 0x9) { 1056 vpdpage83data.type1.serialnumber[i] = 1057 'A' + (temp - 0xA); 1058 } else { 1059 vpdpage83data.type1.serialnumber[i] = 1060 '0' + temp; 1061 } 1062 } 1063 1064 /* VpdCodeSetBinary */ 1065 vpdpage83data.type2.codeset = 1; 1066 /* VpdidentifiertypeEUI64 */ 1067 vpdpage83data.type2.identifiertype = 2; 1068 vpdpage83data.type2.identifierlength = 1069 sizeof(vpdpage83data.type2) - 4; 1070 1071 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1072 vpdpage83data.type2.eu64id.venid[1] = 0; 1073 vpdpage83data.type2.eu64id.venid[2] = 0; 1074 1075 vpdpage83data.type2.eu64id.Serial = 1076 get_serial_reply->uid; 1077 vpdpage83data.type2.eu64id.reserved = 0; 1078 1079 /* 1080 * VpdIdentifierTypeFCPHName 1081 * VPD 0x83 Type 3 not supported for ARC 1082 */ 1083 if (dev->sa_firmware) { 1084 build_vpd83_type3(&vpdpage83data, 1085 dev, scsicmd); 1086 } 1087 1088 /* Move the inquiry data to the response buffer. */ 1089 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1090 sizeof(vpdpage83data)); 1091 } else { 1092 /* It must be for VPD 0x80 */ 1093 char sp[13]; 1094 /* EVPD bit set */ 1095 sp[0] = INQD_PDT_DA; 1096 sp[1] = scsicmd->cmnd[2]; 1097 sp[2] = 0; 1098 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1099 le32_to_cpu(get_serial_reply->uid)); 1100 scsi_sg_copy_from_buffer(scsicmd, sp, 1101 sizeof(sp)); 1102 } 1103 } 1104 1105 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 1106 1107 aac_fib_complete(fibptr); 1108 aac_scsi_done(scsicmd); 1109 } 1110 1111 /* 1112 * aac_get_container_serial - get container serial, none blocking. 1113 */ 1114 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1115 { 1116 int status; 1117 struct aac_get_serial *dinfo; 1118 struct fib * cmd_fibcontext; 1119 struct aac_dev * dev; 1120 1121 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1122 1123 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1124 1125 aac_fib_init(cmd_fibcontext); 1126 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1127 1128 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1129 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1130 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1131 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1132 1133 status = aac_fib_send(ContainerCommand, 1134 cmd_fibcontext, 1135 sizeof(struct aac_get_serial_resp), 1136 FsaNormal, 1137 0, 1, 1138 (fib_callback) get_container_serial_callback, 1139 (void *) scsicmd); 1140 1141 /* 1142 * Check that the command queued to the controller 1143 */ 1144 if (status == -EINPROGRESS) 1145 return 0; 1146 1147 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1148 aac_fib_complete(cmd_fibcontext); 1149 return -1; 1150 } 1151 1152 /* Function: setinqserial 1153 * 1154 * Arguments: [1] pointer to void [1] int 1155 * 1156 * Purpose: Sets SCSI Unit Serial number. 1157 * This is a fake. We should read a proper 1158 * serial number from the container. <SuSE>But 1159 * without docs it's quite hard to do it :-) 1160 * So this will have to do in the meantime.</SuSE> 1161 */ 1162 1163 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1164 { 1165 /* 1166 * This breaks array migration. 1167 */ 1168 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1169 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1170 } 1171 1172 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1173 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1174 { 1175 u8 *sense_buf = (u8 *)sense_data; 1176 /* Sense data valid, err code 70h */ 1177 sense_buf[0] = 0x70; /* No info field */ 1178 sense_buf[1] = 0; /* Segment number, always zero */ 1179 1180 sense_buf[2] = sense_key; /* Sense key */ 1181 1182 sense_buf[12] = sense_code; /* Additional sense code */ 1183 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1184 1185 if (sense_key == ILLEGAL_REQUEST) { 1186 sense_buf[7] = 10; /* Additional sense length */ 1187 1188 sense_buf[15] = bit_pointer; 1189 /* Illegal parameter is in the parameter block */ 1190 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1191 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1192 /* Illegal parameter is in the CDB block */ 1193 sense_buf[16] = field_pointer >> 8; /* MSB */ 1194 sense_buf[17] = field_pointer; /* LSB */ 1195 } else 1196 sense_buf[7] = 6; /* Additional sense length */ 1197 } 1198 1199 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1200 { 1201 if (lba & 0xffffffff00000000LL) { 1202 int cid = scmd_id(cmd); 1203 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1204 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 1205 set_sense(&dev->fsa_dev[cid].sense_data, 1206 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1207 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1208 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1209 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1210 SCSI_SENSE_BUFFERSIZE)); 1211 aac_scsi_done(cmd); 1212 return 1; 1213 } 1214 return 0; 1215 } 1216 1217 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1218 { 1219 return 0; 1220 } 1221 1222 static void io_callback(void *context, struct fib * fibptr); 1223 1224 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1225 { 1226 struct aac_dev *dev = fib->dev; 1227 u16 fibsize, command; 1228 long ret; 1229 1230 aac_fib_init(fib); 1231 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1232 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1233 !dev->sync_mode) { 1234 struct aac_raw_io2 *readcmd2; 1235 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1236 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1237 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1238 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1239 readcmd2->byteCount = cpu_to_le32(count * 1240 dev->fsa_dev[scmd_id(cmd)].block_size); 1241 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1242 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1243 ret = aac_build_sgraw2(cmd, readcmd2, 1244 dev->scsi_host_ptr->sg_tablesize); 1245 if (ret < 0) 1246 return ret; 1247 command = ContainerRawIo2; 1248 fibsize = struct_size(readcmd2, sge, 1249 le32_to_cpu(readcmd2->sgeCnt)); 1250 } else { 1251 struct aac_raw_io *readcmd; 1252 readcmd = (struct aac_raw_io *) fib_data(fib); 1253 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1254 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1255 readcmd->count = cpu_to_le32(count * 1256 dev->fsa_dev[scmd_id(cmd)].block_size); 1257 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1258 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1259 readcmd->bpTotal = 0; 1260 readcmd->bpComplete = 0; 1261 ret = aac_build_sgraw(cmd, &readcmd->sg); 1262 if (ret < 0) 1263 return ret; 1264 command = ContainerRawIo; 1265 fibsize = sizeof(struct aac_raw_io) + 1266 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1267 } 1268 1269 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1270 /* 1271 * Now send the Fib to the adapter 1272 */ 1273 return aac_fib_send(command, 1274 fib, 1275 fibsize, 1276 FsaNormal, 1277 0, 1, 1278 (fib_callback) io_callback, 1279 (void *) cmd); 1280 } 1281 1282 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1283 { 1284 u16 fibsize; 1285 struct aac_read64 *readcmd; 1286 long ret; 1287 1288 aac_fib_init(fib); 1289 readcmd = (struct aac_read64 *) fib_data(fib); 1290 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1291 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1292 readcmd->sector_count = cpu_to_le16(count); 1293 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1294 readcmd->pad = 0; 1295 readcmd->flags = 0; 1296 1297 ret = aac_build_sg64(cmd, &readcmd->sg); 1298 if (ret < 0) 1299 return ret; 1300 fibsize = sizeof(struct aac_read64) + 1301 ((le32_to_cpu(readcmd->sg.count) - 1) * 1302 sizeof (struct sgentry64)); 1303 BUG_ON (fibsize > (fib->dev->max_fib_size - 1304 sizeof(struct aac_fibhdr))); 1305 /* 1306 * Now send the Fib to the adapter 1307 */ 1308 return aac_fib_send(ContainerCommand64, 1309 fib, 1310 fibsize, 1311 FsaNormal, 1312 0, 1, 1313 (fib_callback) io_callback, 1314 (void *) cmd); 1315 } 1316 1317 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1318 { 1319 u16 fibsize; 1320 struct aac_read *readcmd; 1321 struct aac_dev *dev = fib->dev; 1322 long ret; 1323 1324 aac_fib_init(fib); 1325 readcmd = (struct aac_read *) fib_data(fib); 1326 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1327 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1328 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1329 readcmd->count = cpu_to_le32(count * 1330 dev->fsa_dev[scmd_id(cmd)].block_size); 1331 1332 ret = aac_build_sg(cmd, &readcmd->sg); 1333 if (ret < 0) 1334 return ret; 1335 fibsize = sizeof(struct aac_read) + 1336 ((le32_to_cpu(readcmd->sg.count) - 1) * 1337 sizeof (struct sgentry)); 1338 BUG_ON (fibsize > (fib->dev->max_fib_size - 1339 sizeof(struct aac_fibhdr))); 1340 /* 1341 * Now send the Fib to the adapter 1342 */ 1343 return aac_fib_send(ContainerCommand, 1344 fib, 1345 fibsize, 1346 FsaNormal, 1347 0, 1, 1348 (fib_callback) io_callback, 1349 (void *) cmd); 1350 } 1351 1352 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1353 { 1354 struct aac_dev *dev = fib->dev; 1355 u16 fibsize, command; 1356 long ret; 1357 1358 aac_fib_init(fib); 1359 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1360 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1361 !dev->sync_mode) { 1362 struct aac_raw_io2 *writecmd2; 1363 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1364 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1365 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1366 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1367 writecmd2->byteCount = cpu_to_le32(count * 1368 dev->fsa_dev[scmd_id(cmd)].block_size); 1369 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1370 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1371 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1372 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1373 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1374 ret = aac_build_sgraw2(cmd, writecmd2, 1375 dev->scsi_host_ptr->sg_tablesize); 1376 if (ret < 0) 1377 return ret; 1378 command = ContainerRawIo2; 1379 fibsize = struct_size(writecmd2, sge, 1380 le32_to_cpu(writecmd2->sgeCnt)); 1381 } else { 1382 struct aac_raw_io *writecmd; 1383 writecmd = (struct aac_raw_io *) fib_data(fib); 1384 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1385 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1386 writecmd->count = cpu_to_le32(count * 1387 dev->fsa_dev[scmd_id(cmd)].block_size); 1388 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1389 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1390 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1391 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1392 cpu_to_le16(RIO_TYPE_WRITE); 1393 writecmd->bpTotal = 0; 1394 writecmd->bpComplete = 0; 1395 ret = aac_build_sgraw(cmd, &writecmd->sg); 1396 if (ret < 0) 1397 return ret; 1398 command = ContainerRawIo; 1399 fibsize = sizeof(struct aac_raw_io) + 1400 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1401 } 1402 1403 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1404 /* 1405 * Now send the Fib to the adapter 1406 */ 1407 return aac_fib_send(command, 1408 fib, 1409 fibsize, 1410 FsaNormal, 1411 0, 1, 1412 (fib_callback) io_callback, 1413 (void *) cmd); 1414 } 1415 1416 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1417 { 1418 u16 fibsize; 1419 struct aac_write64 *writecmd; 1420 long ret; 1421 1422 aac_fib_init(fib); 1423 writecmd = (struct aac_write64 *) fib_data(fib); 1424 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1425 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1426 writecmd->sector_count = cpu_to_le16(count); 1427 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1428 writecmd->pad = 0; 1429 writecmd->flags = 0; 1430 1431 ret = aac_build_sg64(cmd, &writecmd->sg); 1432 if (ret < 0) 1433 return ret; 1434 fibsize = sizeof(struct aac_write64) + 1435 ((le32_to_cpu(writecmd->sg.count) - 1) * 1436 sizeof (struct sgentry64)); 1437 BUG_ON (fibsize > (fib->dev->max_fib_size - 1438 sizeof(struct aac_fibhdr))); 1439 /* 1440 * Now send the Fib to the adapter 1441 */ 1442 return aac_fib_send(ContainerCommand64, 1443 fib, 1444 fibsize, 1445 FsaNormal, 1446 0, 1, 1447 (fib_callback) io_callback, 1448 (void *) cmd); 1449 } 1450 1451 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1452 { 1453 u16 fibsize; 1454 struct aac_write *writecmd; 1455 struct aac_dev *dev = fib->dev; 1456 long ret; 1457 1458 aac_fib_init(fib); 1459 writecmd = (struct aac_write *) fib_data(fib); 1460 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1461 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1462 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1463 writecmd->count = cpu_to_le32(count * 1464 dev->fsa_dev[scmd_id(cmd)].block_size); 1465 writecmd->sg.count = cpu_to_le32(1); 1466 /* ->stable is not used - it did mean which type of write */ 1467 1468 ret = aac_build_sg(cmd, &writecmd->sg); 1469 if (ret < 0) 1470 return ret; 1471 fibsize = sizeof(struct aac_write) + 1472 ((le32_to_cpu(writecmd->sg.count) - 1) * 1473 sizeof (struct sgentry)); 1474 BUG_ON (fibsize > (fib->dev->max_fib_size - 1475 sizeof(struct aac_fibhdr))); 1476 /* 1477 * Now send the Fib to the adapter 1478 */ 1479 return aac_fib_send(ContainerCommand, 1480 fib, 1481 fibsize, 1482 FsaNormal, 1483 0, 1, 1484 (fib_callback) io_callback, 1485 (void *) cmd); 1486 } 1487 1488 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1489 { 1490 struct aac_srb * srbcmd; 1491 u32 flag; 1492 u32 timeout; 1493 struct aac_dev *dev = fib->dev; 1494 1495 aac_fib_init(fib); 1496 switch(cmd->sc_data_direction){ 1497 case DMA_TO_DEVICE: 1498 flag = SRB_DataOut; 1499 break; 1500 case DMA_BIDIRECTIONAL: 1501 flag = SRB_DataIn | SRB_DataOut; 1502 break; 1503 case DMA_FROM_DEVICE: 1504 flag = SRB_DataIn; 1505 break; 1506 case DMA_NONE: 1507 default: /* shuts up some versions of gcc */ 1508 flag = SRB_NoDataXfer; 1509 break; 1510 } 1511 1512 srbcmd = (struct aac_srb*) fib_data(fib); 1513 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1514 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1515 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1516 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1517 srbcmd->flags = cpu_to_le32(flag); 1518 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ; 1519 if (timeout == 0) 1520 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1521 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1522 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1523 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1524 return srbcmd; 1525 } 1526 1527 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1528 struct scsi_cmnd *cmd) 1529 { 1530 struct aac_hba_cmd_req *hbacmd; 1531 struct aac_dev *dev; 1532 int bus, target; 1533 u64 address; 1534 1535 dev = (struct aac_dev *)cmd->device->host->hostdata; 1536 1537 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1538 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1539 /* iu_type is a parameter of aac_hba_send */ 1540 switch (cmd->sc_data_direction) { 1541 case DMA_TO_DEVICE: 1542 hbacmd->byte1 = 2; 1543 break; 1544 case DMA_FROM_DEVICE: 1545 case DMA_BIDIRECTIONAL: 1546 hbacmd->byte1 = 1; 1547 break; 1548 case DMA_NONE: 1549 default: 1550 break; 1551 } 1552 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1553 1554 bus = aac_logical_to_phys(scmd_channel(cmd)); 1555 target = scmd_id(cmd); 1556 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1557 1558 /* we fill in reply_qid later in aac_src_deliver_message */ 1559 /* we fill in iu_type, request_id later in aac_hba_send */ 1560 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1561 1562 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1563 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1564 1565 address = (u64)fib->hw_error_pa; 1566 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1567 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1568 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1569 1570 return hbacmd; 1571 } 1572 1573 static void aac_srb_callback(void *context, struct fib * fibptr); 1574 1575 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1576 { 1577 u16 fibsize; 1578 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1579 long ret; 1580 1581 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1582 if (ret < 0) 1583 return ret; 1584 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1585 1586 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1587 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1588 /* 1589 * Build Scatter/Gather list 1590 */ 1591 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1592 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1593 sizeof (struct sgentry64)); 1594 BUG_ON (fibsize > (fib->dev->max_fib_size - 1595 sizeof(struct aac_fibhdr))); 1596 1597 /* 1598 * Now send the Fib to the adapter 1599 */ 1600 return aac_fib_send(ScsiPortCommand64, fib, 1601 fibsize, FsaNormal, 0, 1, 1602 (fib_callback) aac_srb_callback, 1603 (void *) cmd); 1604 } 1605 1606 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1607 { 1608 u16 fibsize; 1609 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1610 long ret; 1611 1612 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1613 if (ret < 0) 1614 return ret; 1615 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1616 1617 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1618 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1619 /* 1620 * Build Scatter/Gather list 1621 */ 1622 fibsize = sizeof (struct aac_srb) + 1623 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1624 sizeof (struct sgentry)); 1625 BUG_ON (fibsize > (fib->dev->max_fib_size - 1626 sizeof(struct aac_fibhdr))); 1627 1628 /* 1629 * Now send the Fib to the adapter 1630 */ 1631 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1632 (fib_callback) aac_srb_callback, (void *) cmd); 1633 } 1634 1635 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1636 { 1637 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1638 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1639 return FAILED; 1640 return aac_scsi_32(fib, cmd); 1641 } 1642 1643 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1644 { 1645 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1646 struct aac_dev *dev; 1647 long ret; 1648 1649 dev = (struct aac_dev *)cmd->device->host->hostdata; 1650 1651 ret = aac_build_sghba(cmd, hbacmd, 1652 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1653 if (ret < 0) 1654 return ret; 1655 1656 /* 1657 * Now send the HBA command to the adapter 1658 */ 1659 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1660 sizeof(struct aac_hba_sgl); 1661 1662 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1663 (fib_callback) aac_hba_callback, 1664 (void *) cmd); 1665 } 1666 1667 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1668 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1669 { 1670 struct fib *fibptr; 1671 dma_addr_t addr; 1672 int rcode; 1673 int fibsize; 1674 struct aac_srb *srb; 1675 struct aac_srb_reply *srb_reply; 1676 struct sgmap64 *sg64; 1677 u32 vbus; 1678 u32 vid; 1679 1680 if (!dev->sa_firmware) 1681 return 0; 1682 1683 /* allocate FIB */ 1684 fibptr = aac_fib_alloc(dev); 1685 if (!fibptr) 1686 return -ENOMEM; 1687 1688 aac_fib_init(fibptr); 1689 fibptr->hw_fib_va->header.XferState &= 1690 ~cpu_to_le32(FastResponseCapable); 1691 1692 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1693 sizeof(struct sgentry64); 1694 1695 /* allocate DMA buffer for response */ 1696 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1697 DMA_BIDIRECTIONAL); 1698 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1699 rcode = -ENOMEM; 1700 goto fib_error; 1701 } 1702 1703 srb = fib_data(fibptr); 1704 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1705 1706 vbus = (u32)le16_to_cpu( 1707 dev->supplement_adapter_info.virt_device_bus); 1708 vid = (u32)le16_to_cpu( 1709 dev->supplement_adapter_info.virt_device_target); 1710 1711 /* set the common request fields */ 1712 srb->channel = cpu_to_le32(vbus); 1713 srb->id = cpu_to_le32(vid); 1714 srb->lun = 0; 1715 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1716 srb->timeout = 0; 1717 srb->retry_limit = 0; 1718 srb->cdb_size = cpu_to_le32(16); 1719 srb->count = cpu_to_le32(xfer_len); 1720 1721 sg64 = (struct sgmap64 *)&srb->sg; 1722 sg64->count = cpu_to_le32(1); 1723 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1724 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1725 sg64->sg[0].count = cpu_to_le32(xfer_len); 1726 1727 /* 1728 * Copy the updated data for other dumping or other usage if needed 1729 */ 1730 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1731 1732 /* issue request to the controller */ 1733 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1734 1, 1, NULL, NULL); 1735 1736 if (rcode == -ERESTARTSYS) 1737 rcode = -ERESTART; 1738 1739 if (unlikely(rcode < 0)) 1740 goto bmic_error; 1741 1742 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1743 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1744 1745 bmic_error: 1746 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1747 fib_error: 1748 aac_fib_complete(fibptr); 1749 aac_fib_free(fibptr); 1750 return rcode; 1751 } 1752 1753 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1754 { 1755 1756 struct aac_ciss_identify_pd *identify_resp; 1757 1758 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1759 return; 1760 1761 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1762 if (identify_resp == NULL) { 1763 dev->hba_map[bus][target].qd_limit = 32; 1764 return; 1765 } 1766 1767 if (identify_resp->current_queue_depth_limit <= 0 || 1768 identify_resp->current_queue_depth_limit > 255) 1769 dev->hba_map[bus][target].qd_limit = 32; 1770 else 1771 dev->hba_map[bus][target].qd_limit = 1772 identify_resp->current_queue_depth_limit; 1773 } 1774 1775 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1776 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1777 { 1778 int rcode = -ENOMEM; 1779 int datasize; 1780 struct aac_srb_unit srbu; 1781 struct aac_srb *srbcmd; 1782 struct aac_ciss_identify_pd *identify_reply; 1783 1784 datasize = sizeof(struct aac_ciss_identify_pd); 1785 identify_reply = kmalloc(datasize, GFP_KERNEL); 1786 if (!identify_reply) 1787 goto out; 1788 1789 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1790 1791 srbcmd = &srbu.srb; 1792 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1793 srbcmd->cdb[0] = 0x26; 1794 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1795 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1796 1797 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1798 if (unlikely(rcode < 0)) 1799 goto mem_free_all; 1800 1801 *identify_resp = identify_reply; 1802 1803 out: 1804 return rcode; 1805 mem_free_all: 1806 kfree(identify_reply); 1807 goto out; 1808 } 1809 1810 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1811 { 1812 kfree(dev->safw_phys_luns); 1813 dev->safw_phys_luns = NULL; 1814 } 1815 1816 /** 1817 * aac_get_safw_ciss_luns() - Process topology change 1818 * @dev: aac_dev structure 1819 * 1820 * Execute a CISS REPORT PHYS LUNS and process the results into 1821 * the current hba_map. 1822 */ 1823 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1824 { 1825 int rcode = -ENOMEM; 1826 int datasize; 1827 struct aac_srb *srbcmd; 1828 struct aac_srb_unit srbu; 1829 struct aac_ciss_phys_luns_resp *phys_luns; 1830 1831 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1832 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1833 phys_luns = kmalloc(datasize, GFP_KERNEL); 1834 if (phys_luns == NULL) 1835 goto out; 1836 1837 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1838 1839 srbcmd = &srbu.srb; 1840 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1841 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1842 srbcmd->cdb[1] = 2; /* extended reporting */ 1843 srbcmd->cdb[8] = (u8)(datasize >> 8); 1844 srbcmd->cdb[9] = (u8)(datasize); 1845 1846 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1847 if (unlikely(rcode < 0)) 1848 goto mem_free_all; 1849 1850 if (phys_luns->resp_flag != 2) { 1851 rcode = -ENOMSG; 1852 goto mem_free_all; 1853 } 1854 1855 dev->safw_phys_luns = phys_luns; 1856 1857 out: 1858 return rcode; 1859 mem_free_all: 1860 kfree(phys_luns); 1861 goto out; 1862 } 1863 1864 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1865 { 1866 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1867 } 1868 1869 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1870 { 1871 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1872 } 1873 1874 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1875 { 1876 return dev->safw_phys_luns->lun[lun].level2[0]; 1877 } 1878 1879 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1880 { 1881 return dev->safw_phys_luns->lun[lun].bus >> 6; 1882 } 1883 1884 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1885 { 1886 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1887 } 1888 1889 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1890 { 1891 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1892 } 1893 1894 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1895 int bus, int target) 1896 { 1897 kfree(dev->hba_map[bus][target].safw_identify_resp); 1898 dev->hba_map[bus][target].safw_identify_resp = NULL; 1899 } 1900 1901 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1902 int lun_count) 1903 { 1904 int luns; 1905 int i; 1906 u32 bus; 1907 u32 target; 1908 1909 luns = aac_get_safw_phys_lun_count(dev); 1910 1911 if (luns < lun_count) 1912 lun_count = luns; 1913 else if (lun_count < 0) 1914 lun_count = luns; 1915 1916 for (i = 0; i < lun_count; i++) { 1917 bus = aac_get_safw_phys_bus(dev, i); 1918 target = aac_get_safw_phys_target(dev, i); 1919 1920 aac_free_safw_identify_resp(dev, bus, target); 1921 } 1922 } 1923 1924 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1925 { 1926 int i; 1927 int rcode = 0; 1928 u32 lun_count; 1929 u32 bus; 1930 u32 target; 1931 struct aac_ciss_identify_pd *identify_resp = NULL; 1932 1933 lun_count = aac_get_safw_phys_lun_count(dev); 1934 1935 for (i = 0; i < lun_count; ++i) { 1936 1937 bus = aac_get_safw_phys_bus(dev, i); 1938 target = aac_get_safw_phys_target(dev, i); 1939 1940 rcode = aac_issue_safw_bmic_identify(dev, 1941 &identify_resp, bus, target); 1942 1943 if (unlikely(rcode < 0)) 1944 goto free_identify_resp; 1945 1946 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1947 } 1948 1949 out: 1950 return rcode; 1951 free_identify_resp: 1952 aac_free_safw_all_identify_resp(dev, i); 1953 goto out; 1954 } 1955 1956 /** 1957 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1958 * @dev: aac_dev structure 1959 * 1960 * Update our hba map with the information gathered from the FW 1961 */ 1962 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1963 { 1964 /* ok and extended reporting */ 1965 u32 lun_count, nexus; 1966 u32 i, bus, target; 1967 u8 expose_flag, attribs; 1968 1969 lun_count = aac_get_safw_phys_lun_count(dev); 1970 1971 dev->scan_counter++; 1972 1973 for (i = 0; i < lun_count; ++i) { 1974 1975 bus = aac_get_safw_phys_bus(dev, i); 1976 target = aac_get_safw_phys_target(dev, i); 1977 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1978 attribs = aac_get_safw_phys_attribs(dev, i); 1979 nexus = aac_get_safw_phys_nexus(dev, i); 1980 1981 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1982 continue; 1983 1984 if (expose_flag != 0) { 1985 dev->hba_map[bus][target].devtype = 1986 AAC_DEVTYPE_RAID_MEMBER; 1987 continue; 1988 } 1989 1990 if (nexus != 0 && (attribs & 8)) { 1991 dev->hba_map[bus][target].devtype = 1992 AAC_DEVTYPE_NATIVE_RAW; 1993 dev->hba_map[bus][target].rmw_nexus = 1994 nexus; 1995 } else 1996 dev->hba_map[bus][target].devtype = 1997 AAC_DEVTYPE_ARC_RAW; 1998 1999 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 2000 2001 aac_set_safw_target_qd(dev, bus, target); 2002 } 2003 } 2004 2005 static int aac_setup_safw_targets(struct aac_dev *dev) 2006 { 2007 int rcode = 0; 2008 2009 rcode = aac_get_containers(dev); 2010 if (unlikely(rcode < 0)) 2011 goto out; 2012 2013 rcode = aac_get_safw_ciss_luns(dev); 2014 if (unlikely(rcode < 0)) 2015 goto out; 2016 2017 rcode = aac_get_safw_attr_all_targets(dev); 2018 if (unlikely(rcode < 0)) 2019 goto free_ciss_luns; 2020 2021 aac_set_safw_attr_all_targets(dev); 2022 2023 aac_free_safw_all_identify_resp(dev, -1); 2024 free_ciss_luns: 2025 aac_free_safw_ciss_luns(dev); 2026 out: 2027 return rcode; 2028 } 2029 2030 int aac_setup_safw_adapter(struct aac_dev *dev) 2031 { 2032 return aac_setup_safw_targets(dev); 2033 } 2034 2035 int aac_get_adapter_info(struct aac_dev* dev) 2036 { 2037 struct fib* fibptr; 2038 int rcode; 2039 u32 tmp, bus, target; 2040 struct aac_adapter_info *info; 2041 struct aac_bus_info *command; 2042 struct aac_bus_info_response *bus_info; 2043 2044 if (!(fibptr = aac_fib_alloc(dev))) 2045 return -ENOMEM; 2046 2047 aac_fib_init(fibptr); 2048 info = (struct aac_adapter_info *) fib_data(fibptr); 2049 memset(info,0,sizeof(*info)); 2050 2051 rcode = aac_fib_send(RequestAdapterInfo, 2052 fibptr, 2053 sizeof(*info), 2054 FsaNormal, 2055 -1, 1, /* First `interrupt' command uses special wait */ 2056 NULL, 2057 NULL); 2058 2059 if (rcode < 0) { 2060 /* FIB should be freed only after 2061 * getting the response from the F/W */ 2062 if (rcode != -ERESTARTSYS) { 2063 aac_fib_complete(fibptr); 2064 aac_fib_free(fibptr); 2065 } 2066 return rcode; 2067 } 2068 memcpy(&dev->adapter_info, info, sizeof(*info)); 2069 2070 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2071 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2072 struct aac_supplement_adapter_info * sinfo; 2073 2074 aac_fib_init(fibptr); 2075 2076 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2077 2078 memset(sinfo,0,sizeof(*sinfo)); 2079 2080 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2081 fibptr, 2082 sizeof(*sinfo), 2083 FsaNormal, 2084 1, 1, 2085 NULL, 2086 NULL); 2087 2088 if (rcode >= 0) 2089 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2090 if (rcode == -ERESTARTSYS) { 2091 fibptr = aac_fib_alloc(dev); 2092 if (!fibptr) 2093 return -ENOMEM; 2094 } 2095 2096 } 2097 2098 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2099 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2100 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2101 dev->hba_map[bus][target].devtype = 0; 2102 dev->hba_map[bus][target].qd_limit = 0; 2103 } 2104 } 2105 2106 /* 2107 * GetBusInfo 2108 */ 2109 2110 aac_fib_init(fibptr); 2111 2112 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2113 2114 memset(bus_info, 0, sizeof(*bus_info)); 2115 2116 command = (struct aac_bus_info *)bus_info; 2117 2118 command->Command = cpu_to_le32(VM_Ioctl); 2119 command->ObjType = cpu_to_le32(FT_DRIVE); 2120 command->MethodId = cpu_to_le32(1); 2121 command->CtlCmd = cpu_to_le32(GetBusInfo); 2122 2123 rcode = aac_fib_send(ContainerCommand, 2124 fibptr, 2125 sizeof (*bus_info), 2126 FsaNormal, 2127 1, 1, 2128 NULL, NULL); 2129 2130 /* reasoned default */ 2131 dev->maximum_num_physicals = 16; 2132 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2133 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2134 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2135 } 2136 2137 if (!dev->in_reset) { 2138 char buffer[16]; 2139 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2140 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2141 dev->name, 2142 dev->id, 2143 tmp>>24, 2144 (tmp>>16)&0xff, 2145 tmp&0xff, 2146 le32_to_cpu(dev->adapter_info.kernelbuild), 2147 (int)sizeof(dev->supplement_adapter_info.build_date), 2148 dev->supplement_adapter_info.build_date); 2149 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2150 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2151 dev->name, dev->id, 2152 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2153 le32_to_cpu(dev->adapter_info.monitorbuild)); 2154 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2155 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2156 dev->name, dev->id, 2157 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2158 le32_to_cpu(dev->adapter_info.biosbuild)); 2159 buffer[0] = '\0'; 2160 if (aac_get_serial_number( 2161 shost_to_class(dev->scsi_host_ptr), buffer)) 2162 printk(KERN_INFO "%s%d: serial %s", 2163 dev->name, dev->id, buffer); 2164 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2165 printk(KERN_INFO "%s%d: TSID %.*s\n", 2166 dev->name, dev->id, 2167 (int)sizeof(dev->supplement_adapter_info 2168 .vpd_info.tsid), 2169 dev->supplement_adapter_info.vpd_info.tsid); 2170 } 2171 if (!aac_check_reset || ((aac_check_reset == 1) && 2172 (dev->supplement_adapter_info.supported_options2 & 2173 AAC_OPTION_IGNORE_RESET))) { 2174 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2175 dev->name, dev->id); 2176 } 2177 } 2178 2179 dev->cache_protected = 0; 2180 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2181 AAC_FEATURE_JBOD) != 0); 2182 dev->nondasd_support = 0; 2183 dev->raid_scsi_mode = 0; 2184 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2185 dev->nondasd_support = 1; 2186 2187 /* 2188 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2189 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2190 * force nondasd support on. If we decide to allow the non-dasd flag 2191 * additional changes changes will have to be made to support 2192 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2193 * changed to support the new dev->raid_scsi_mode flag instead of 2194 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2195 * function aac_detect will have to be modified where it sets up the 2196 * max number of channels based on the aac->nondasd_support flag only. 2197 */ 2198 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2199 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2200 dev->nondasd_support = 1; 2201 dev->raid_scsi_mode = 1; 2202 } 2203 if (dev->raid_scsi_mode != 0) 2204 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2205 dev->name, dev->id); 2206 2207 if (nondasd != -1) 2208 dev->nondasd_support = (nondasd!=0); 2209 if (dev->nondasd_support && !dev->in_reset) 2210 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2211 2212 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2213 dev->needs_dac = 1; 2214 dev->dac_support = 0; 2215 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2216 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2217 if (!dev->in_reset) 2218 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2219 dev->name, dev->id); 2220 dev->dac_support = 1; 2221 } 2222 2223 if(dacmode != -1) { 2224 dev->dac_support = (dacmode!=0); 2225 } 2226 2227 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2228 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2229 & AAC_QUIRK_SCSI_32)) { 2230 dev->nondasd_support = 0; 2231 dev->jbod = 0; 2232 expose_physicals = 0; 2233 } 2234 2235 if (dev->dac_support) { 2236 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) { 2237 if (!dev->in_reset) 2238 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2239 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) { 2240 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2241 dev->dac_support = 0; 2242 } else { 2243 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2244 rcode = -ENOMEM; 2245 } 2246 } 2247 /* 2248 * Deal with configuring for the individualized limits of each packet 2249 * interface. 2250 */ 2251 dev->a_ops.adapter_scsi = (dev->dac_support) 2252 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2253 ? aac_scsi_32_64 2254 : aac_scsi_64) 2255 : aac_scsi_32; 2256 if (dev->raw_io_interface) { 2257 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2258 ? aac_bounds_64 2259 : aac_bounds_32; 2260 dev->a_ops.adapter_read = aac_read_raw_io; 2261 dev->a_ops.adapter_write = aac_write_raw_io; 2262 } else { 2263 dev->a_ops.adapter_bounds = aac_bounds_32; 2264 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2265 sizeof(struct aac_fibhdr) - 2266 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2267 sizeof(struct sgentry); 2268 if (dev->dac_support) { 2269 dev->a_ops.adapter_read = aac_read_block64; 2270 dev->a_ops.adapter_write = aac_write_block64; 2271 /* 2272 * 38 scatter gather elements 2273 */ 2274 dev->scsi_host_ptr->sg_tablesize = 2275 (dev->max_fib_size - 2276 sizeof(struct aac_fibhdr) - 2277 sizeof(struct aac_write64) + 2278 sizeof(struct sgentry64)) / 2279 sizeof(struct sgentry64); 2280 } else { 2281 dev->a_ops.adapter_read = aac_read_block; 2282 dev->a_ops.adapter_write = aac_write_block; 2283 } 2284 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2285 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2286 /* 2287 * Worst case size that could cause sg overflow when 2288 * we break up SG elements that are larger than 64KB. 2289 * Would be nice if we could tell the SCSI layer what 2290 * the maximum SG element size can be. Worst case is 2291 * (sg_tablesize-1) 4KB elements with one 64KB 2292 * element. 2293 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2294 */ 2295 dev->scsi_host_ptr->max_sectors = 2296 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2297 } 2298 } 2299 if (!dev->sync_mode && dev->sa_firmware && 2300 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2301 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2302 HBA_MAX_SG_SEPARATE; 2303 2304 /* FIB should be freed only after getting the response from the F/W */ 2305 if (rcode != -ERESTARTSYS) { 2306 aac_fib_complete(fibptr); 2307 aac_fib_free(fibptr); 2308 } 2309 2310 return rcode; 2311 } 2312 2313 2314 static void io_callback(void *context, struct fib * fibptr) 2315 { 2316 struct aac_dev *dev; 2317 struct aac_read_reply *readreply; 2318 struct scsi_cmnd *scsicmd; 2319 u32 cid; 2320 2321 scsicmd = (struct scsi_cmnd *) context; 2322 2323 if (!aac_valid_context(scsicmd, fibptr)) 2324 return; 2325 2326 dev = fibptr->dev; 2327 cid = scmd_id(scsicmd); 2328 2329 if (nblank(dprintk(x))) { 2330 u64 lba; 2331 switch (scsicmd->cmnd[0]) { 2332 case WRITE_6: 2333 case READ_6: 2334 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2335 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2336 break; 2337 case WRITE_16: 2338 case READ_16: 2339 lba = ((u64)scsicmd->cmnd[2] << 56) | 2340 ((u64)scsicmd->cmnd[3] << 48) | 2341 ((u64)scsicmd->cmnd[4] << 40) | 2342 ((u64)scsicmd->cmnd[5] << 32) | 2343 ((u64)scsicmd->cmnd[6] << 24) | 2344 (scsicmd->cmnd[7] << 16) | 2345 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2346 break; 2347 case WRITE_12: 2348 case READ_12: 2349 lba = ((u64)scsicmd->cmnd[2] << 24) | 2350 (scsicmd->cmnd[3] << 16) | 2351 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2352 break; 2353 default: 2354 lba = ((u64)scsicmd->cmnd[2] << 24) | 2355 (scsicmd->cmnd[3] << 16) | 2356 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2357 break; 2358 } 2359 printk(KERN_DEBUG 2360 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2361 smp_processor_id(), (unsigned long long)lba, jiffies); 2362 } 2363 2364 BUG_ON(fibptr == NULL); 2365 2366 scsi_dma_unmap(scsicmd); 2367 2368 readreply = (struct aac_read_reply *)fib_data(fibptr); 2369 switch (le32_to_cpu(readreply->status)) { 2370 case ST_OK: 2371 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2372 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2373 break; 2374 case ST_NOT_READY: 2375 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2376 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2377 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2378 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2379 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2380 SCSI_SENSE_BUFFERSIZE)); 2381 break; 2382 case ST_MEDERR: 2383 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2384 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2385 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2386 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2387 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2388 SCSI_SENSE_BUFFERSIZE)); 2389 break; 2390 default: 2391 #ifdef AAC_DETAILED_STATUS_INFO 2392 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2393 le32_to_cpu(readreply->status)); 2394 #endif 2395 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2396 set_sense(&dev->fsa_dev[cid].sense_data, 2397 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2398 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2399 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2400 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2401 SCSI_SENSE_BUFFERSIZE)); 2402 break; 2403 } 2404 aac_fib_complete(fibptr); 2405 2406 aac_scsi_done(scsicmd); 2407 } 2408 2409 static int aac_read(struct scsi_cmnd * scsicmd) 2410 { 2411 u64 lba; 2412 u32 count; 2413 int status; 2414 struct aac_dev *dev; 2415 struct fib * cmd_fibcontext; 2416 int cid; 2417 2418 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2419 /* 2420 * Get block address and transfer length 2421 */ 2422 switch (scsicmd->cmnd[0]) { 2423 case READ_6: 2424 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2425 2426 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2427 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2428 count = scsicmd->cmnd[4]; 2429 2430 if (count == 0) 2431 count = 256; 2432 break; 2433 case READ_16: 2434 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2435 2436 lba = ((u64)scsicmd->cmnd[2] << 56) | 2437 ((u64)scsicmd->cmnd[3] << 48) | 2438 ((u64)scsicmd->cmnd[4] << 40) | 2439 ((u64)scsicmd->cmnd[5] << 32) | 2440 ((u64)scsicmd->cmnd[6] << 24) | 2441 (scsicmd->cmnd[7] << 16) | 2442 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2443 count = (scsicmd->cmnd[10] << 24) | 2444 (scsicmd->cmnd[11] << 16) | 2445 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2446 break; 2447 case READ_12: 2448 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2449 2450 lba = ((u64)scsicmd->cmnd[2] << 24) | 2451 (scsicmd->cmnd[3] << 16) | 2452 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2453 count = (scsicmd->cmnd[6] << 24) | 2454 (scsicmd->cmnd[7] << 16) | 2455 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2456 break; 2457 default: 2458 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2459 2460 lba = ((u64)scsicmd->cmnd[2] << 24) | 2461 (scsicmd->cmnd[3] << 16) | 2462 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2463 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2464 break; 2465 } 2466 2467 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2468 cid = scmd_id(scsicmd); 2469 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2470 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2471 set_sense(&dev->fsa_dev[cid].sense_data, 2472 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2473 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2474 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2475 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2476 SCSI_SENSE_BUFFERSIZE)); 2477 aac_scsi_done(scsicmd); 2478 return 0; 2479 } 2480 2481 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2482 smp_processor_id(), (unsigned long long)lba, jiffies)); 2483 if (aac_adapter_bounds(dev,scsicmd,lba)) 2484 return 0; 2485 /* 2486 * Alocate and initialize a Fib 2487 */ 2488 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2489 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2490 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2491 2492 /* 2493 * Check that the command queued to the controller 2494 */ 2495 if (status == -EINPROGRESS) 2496 return 0; 2497 2498 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2499 /* 2500 * For some reason, the Fib didn't queue, return QUEUE_FULL 2501 */ 2502 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2503 aac_scsi_done(scsicmd); 2504 aac_fib_complete(cmd_fibcontext); 2505 aac_fib_free(cmd_fibcontext); 2506 return 0; 2507 } 2508 2509 static int aac_write(struct scsi_cmnd * scsicmd) 2510 { 2511 u64 lba; 2512 u32 count; 2513 int fua; 2514 int status; 2515 struct aac_dev *dev; 2516 struct fib * cmd_fibcontext; 2517 int cid; 2518 2519 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2520 /* 2521 * Get block address and transfer length 2522 */ 2523 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2524 { 2525 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2526 count = scsicmd->cmnd[4]; 2527 if (count == 0) 2528 count = 256; 2529 fua = 0; 2530 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2531 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2532 2533 lba = ((u64)scsicmd->cmnd[2] << 56) | 2534 ((u64)scsicmd->cmnd[3] << 48) | 2535 ((u64)scsicmd->cmnd[4] << 40) | 2536 ((u64)scsicmd->cmnd[5] << 32) | 2537 ((u64)scsicmd->cmnd[6] << 24) | 2538 (scsicmd->cmnd[7] << 16) | 2539 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2540 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2541 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2542 fua = scsicmd->cmnd[1] & 0x8; 2543 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2544 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2545 2546 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2547 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2548 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2549 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2550 fua = scsicmd->cmnd[1] & 0x8; 2551 } else { 2552 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2553 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2554 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2555 fua = scsicmd->cmnd[1] & 0x8; 2556 } 2557 2558 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2559 cid = scmd_id(scsicmd); 2560 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2561 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2562 set_sense(&dev->fsa_dev[cid].sense_data, 2563 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2564 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2565 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2566 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2567 SCSI_SENSE_BUFFERSIZE)); 2568 aac_scsi_done(scsicmd); 2569 return 0; 2570 } 2571 2572 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2573 smp_processor_id(), (unsigned long long)lba, jiffies)); 2574 if (aac_adapter_bounds(dev,scsicmd,lba)) 2575 return 0; 2576 /* 2577 * Allocate and initialize a Fib then setup a BlockWrite command 2578 */ 2579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2580 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2581 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2582 2583 /* 2584 * Check that the command queued to the controller 2585 */ 2586 if (status == -EINPROGRESS) 2587 return 0; 2588 2589 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2590 /* 2591 * For some reason, the Fib didn't queue, return QUEUE_FULL 2592 */ 2593 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2594 aac_scsi_done(scsicmd); 2595 2596 aac_fib_complete(cmd_fibcontext); 2597 aac_fib_free(cmd_fibcontext); 2598 return 0; 2599 } 2600 2601 static void synchronize_callback(void *context, struct fib *fibptr) 2602 { 2603 struct aac_synchronize_reply *synchronizereply; 2604 struct scsi_cmnd *cmd = context; 2605 2606 if (!aac_valid_context(cmd, fibptr)) 2607 return; 2608 2609 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2610 smp_processor_id(), jiffies)); 2611 BUG_ON(fibptr == NULL); 2612 2613 2614 synchronizereply = fib_data(fibptr); 2615 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2616 cmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2617 else { 2618 struct scsi_device *sdev = cmd->device; 2619 struct aac_dev *dev = fibptr->dev; 2620 u32 cid = sdev_id(sdev); 2621 printk(KERN_WARNING 2622 "synchronize_callback: synchronize failed, status = %d\n", 2623 le32_to_cpu(synchronizereply->status)); 2624 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2625 set_sense(&dev->fsa_dev[cid].sense_data, 2626 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2627 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2628 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2629 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2630 SCSI_SENSE_BUFFERSIZE)); 2631 } 2632 2633 aac_fib_complete(fibptr); 2634 aac_fib_free(fibptr); 2635 aac_scsi_done(cmd); 2636 } 2637 2638 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2639 { 2640 int status; 2641 struct fib *cmd_fibcontext; 2642 struct aac_synchronize *synchronizecmd; 2643 struct scsi_device *sdev = scsicmd->device; 2644 struct aac_dev *aac; 2645 2646 aac = (struct aac_dev *)sdev->host->hostdata; 2647 if (aac->in_reset) 2648 return SCSI_MLQUEUE_HOST_BUSY; 2649 2650 /* 2651 * Allocate and initialize a Fib 2652 */ 2653 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2654 2655 aac_fib_init(cmd_fibcontext); 2656 2657 synchronizecmd = fib_data(cmd_fibcontext); 2658 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2659 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2660 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2661 synchronizecmd->count = 2662 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2663 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2664 2665 /* 2666 * Now send the Fib to the adapter 2667 */ 2668 status = aac_fib_send(ContainerCommand, 2669 cmd_fibcontext, 2670 sizeof(struct aac_synchronize), 2671 FsaNormal, 2672 0, 1, 2673 (fib_callback)synchronize_callback, 2674 (void *)scsicmd); 2675 2676 /* 2677 * Check that the command queued to the controller 2678 */ 2679 if (status == -EINPROGRESS) 2680 return 0; 2681 2682 printk(KERN_WARNING 2683 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2684 aac_fib_complete(cmd_fibcontext); 2685 aac_fib_free(cmd_fibcontext); 2686 return SCSI_MLQUEUE_HOST_BUSY; 2687 } 2688 2689 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2690 { 2691 struct scsi_cmnd *scsicmd = context; 2692 2693 if (!aac_valid_context(scsicmd, fibptr)) 2694 return; 2695 2696 BUG_ON(fibptr == NULL); 2697 2698 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2699 2700 aac_fib_complete(fibptr); 2701 aac_fib_free(fibptr); 2702 aac_scsi_done(scsicmd); 2703 } 2704 2705 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2706 { 2707 int status; 2708 struct fib *cmd_fibcontext; 2709 struct aac_power_management *pmcmd; 2710 struct scsi_device *sdev = scsicmd->device; 2711 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2712 2713 if (!(aac->supplement_adapter_info.supported_options2 & 2714 AAC_OPTION_POWER_MANAGEMENT)) { 2715 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2716 aac_scsi_done(scsicmd); 2717 return 0; 2718 } 2719 2720 if (aac->in_reset) 2721 return SCSI_MLQUEUE_HOST_BUSY; 2722 2723 /* 2724 * Allocate and initialize a Fib 2725 */ 2726 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2727 2728 aac_fib_init(cmd_fibcontext); 2729 2730 pmcmd = fib_data(cmd_fibcontext); 2731 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2732 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2733 /* Eject bit ignored, not relevant */ 2734 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2735 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2736 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2737 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2738 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2739 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2740 2741 /* 2742 * Now send the Fib to the adapter 2743 */ 2744 status = aac_fib_send(ContainerCommand, 2745 cmd_fibcontext, 2746 sizeof(struct aac_power_management), 2747 FsaNormal, 2748 0, 1, 2749 (fib_callback)aac_start_stop_callback, 2750 (void *)scsicmd); 2751 2752 /* 2753 * Check that the command queued to the controller 2754 */ 2755 if (status == -EINPROGRESS) 2756 return 0; 2757 2758 aac_fib_complete(cmd_fibcontext); 2759 aac_fib_free(cmd_fibcontext); 2760 return SCSI_MLQUEUE_HOST_BUSY; 2761 } 2762 2763 /** 2764 * aac_scsi_cmd() - Process SCSI command 2765 * @scsicmd: SCSI command block 2766 * 2767 * Emulate a SCSI command and queue the required request for the 2768 * aacraid firmware. 2769 */ 2770 2771 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2772 { 2773 u32 cid, bus; 2774 struct Scsi_Host *host = scsicmd->device->host; 2775 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2776 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2777 2778 if (fsa_dev_ptr == NULL) 2779 return -1; 2780 /* 2781 * If the bus, id or lun is out of range, return fail 2782 * Test does not apply to ID 16, the pseudo id for the controller 2783 * itself. 2784 */ 2785 cid = scmd_id(scsicmd); 2786 if (cid != host->this_id) { 2787 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2788 if((cid >= dev->maximum_num_containers) || 2789 (scsicmd->device->lun != 0)) { 2790 scsicmd->result = DID_NO_CONNECT << 16; 2791 goto scsi_done_ret; 2792 } 2793 2794 /* 2795 * If the target container doesn't exist, it may have 2796 * been newly created 2797 */ 2798 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2799 (fsa_dev_ptr[cid].sense_data.sense_key == 2800 NOT_READY)) { 2801 switch (scsicmd->cmnd[0]) { 2802 case SERVICE_ACTION_IN_16: 2803 if (!(dev->raw_io_interface) || 2804 !(dev->raw_io_64) || 2805 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2806 break; 2807 fallthrough; 2808 case INQUIRY: 2809 case READ_CAPACITY: 2810 case TEST_UNIT_READY: 2811 if (dev->in_reset) 2812 return -1; 2813 return _aac_probe_container(scsicmd, 2814 aac_probe_container_callback2); 2815 default: 2816 break; 2817 } 2818 } 2819 } else { /* check for physical non-dasd devices */ 2820 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2821 2822 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2823 dev->hba_map[bus][cid].devtype 2824 == AAC_DEVTYPE_NATIVE_RAW) { 2825 if (dev->in_reset) 2826 return -1; 2827 return aac_send_hba_fib(scsicmd); 2828 } else if (dev->nondasd_support || expose_physicals || 2829 dev->jbod) { 2830 if (dev->in_reset) 2831 return -1; 2832 return aac_send_srb_fib(scsicmd); 2833 } else { 2834 scsicmd->result = DID_NO_CONNECT << 16; 2835 goto scsi_done_ret; 2836 } 2837 } 2838 } 2839 /* 2840 * else Command for the controller itself 2841 */ 2842 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2843 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2844 { 2845 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2846 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2847 set_sense(&dev->fsa_dev[cid].sense_data, 2848 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2849 ASENCODE_INVALID_COMMAND, 0, 0); 2850 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2851 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2852 SCSI_SENSE_BUFFERSIZE)); 2853 goto scsi_done_ret; 2854 } 2855 2856 switch (scsicmd->cmnd[0]) { 2857 case READ_6: 2858 case READ_10: 2859 case READ_12: 2860 case READ_16: 2861 if (dev->in_reset) 2862 return -1; 2863 return aac_read(scsicmd); 2864 2865 case WRITE_6: 2866 case WRITE_10: 2867 case WRITE_12: 2868 case WRITE_16: 2869 if (dev->in_reset) 2870 return -1; 2871 return aac_write(scsicmd); 2872 2873 case SYNCHRONIZE_CACHE: 2874 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2875 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2876 break; 2877 } 2878 /* Issue FIB to tell Firmware to flush it's cache */ 2879 if ((aac_cache & 6) != 2) 2880 return aac_synchronize(scsicmd); 2881 fallthrough; 2882 case INQUIRY: 2883 { 2884 struct inquiry_data inq_data; 2885 2886 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2887 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2888 2889 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2890 char *arr = (char *)&inq_data; 2891 2892 /* EVPD bit set */ 2893 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2894 INQD_PDT_PROC : INQD_PDT_DA; 2895 if (scsicmd->cmnd[2] == 0) { 2896 /* supported vital product data pages */ 2897 arr[3] = 3; 2898 arr[4] = 0x0; 2899 arr[5] = 0x80; 2900 arr[6] = 0x83; 2901 arr[1] = scsicmd->cmnd[2]; 2902 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2903 sizeof(inq_data)); 2904 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2905 } else if (scsicmd->cmnd[2] == 0x80) { 2906 /* unit serial number page */ 2907 arr[3] = setinqserial(dev, &arr[4], 2908 scmd_id(scsicmd)); 2909 arr[1] = scsicmd->cmnd[2]; 2910 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2911 sizeof(inq_data)); 2912 if (aac_wwn != 2) 2913 return aac_get_container_serial( 2914 scsicmd); 2915 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2916 } else if (scsicmd->cmnd[2] == 0x83) { 2917 /* vpd page 0x83 - Device Identification Page */ 2918 char *sno = (char *)&inq_data; 2919 sno[3] = setinqserial(dev, &sno[4], 2920 scmd_id(scsicmd)); 2921 if (aac_wwn != 2) 2922 return aac_get_container_serial( 2923 scsicmd); 2924 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2925 } else { 2926 /* vpd page not implemented */ 2927 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2928 set_sense(&dev->fsa_dev[cid].sense_data, 2929 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2930 ASENCODE_NO_SENSE, 7, 2); 2931 memcpy(scsicmd->sense_buffer, 2932 &dev->fsa_dev[cid].sense_data, 2933 min_t(size_t, 2934 sizeof(dev->fsa_dev[cid].sense_data), 2935 SCSI_SENSE_BUFFERSIZE)); 2936 } 2937 break; 2938 } 2939 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2940 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2941 inq_data.inqd_len = 31; 2942 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2943 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2944 /* 2945 * Set the Vendor, Product, and Revision Level 2946 * see: <vendor>.c i.e. aac.c 2947 */ 2948 if (cid == host->this_id) { 2949 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2950 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2951 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2952 sizeof(inq_data)); 2953 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2954 break; 2955 } 2956 if (dev->in_reset) 2957 return -1; 2958 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2959 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2960 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2961 return aac_get_container_name(scsicmd); 2962 } 2963 case SERVICE_ACTION_IN_16: 2964 if (!(dev->raw_io_interface) || 2965 !(dev->raw_io_64) || 2966 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2967 break; 2968 { 2969 u64 capacity; 2970 char cp[13]; 2971 unsigned int alloc_len; 2972 2973 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2974 capacity = fsa_dev_ptr[cid].size - 1; 2975 cp[0] = (capacity >> 56) & 0xff; 2976 cp[1] = (capacity >> 48) & 0xff; 2977 cp[2] = (capacity >> 40) & 0xff; 2978 cp[3] = (capacity >> 32) & 0xff; 2979 cp[4] = (capacity >> 24) & 0xff; 2980 cp[5] = (capacity >> 16) & 0xff; 2981 cp[6] = (capacity >> 8) & 0xff; 2982 cp[7] = (capacity >> 0) & 0xff; 2983 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2984 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2985 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2986 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 2987 cp[12] = 0; 2988 2989 alloc_len = ((scsicmd->cmnd[10] << 24) 2990 + (scsicmd->cmnd[11] << 16) 2991 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 2992 2993 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 2994 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 2995 if (alloc_len < scsi_bufflen(scsicmd)) 2996 scsi_set_resid(scsicmd, 2997 scsi_bufflen(scsicmd) - alloc_len); 2998 2999 /* Do not cache partition table for arrays */ 3000 scsicmd->device->removable = 1; 3001 3002 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3003 break; 3004 } 3005 3006 case READ_CAPACITY: 3007 { 3008 u32 capacity; 3009 char cp[8]; 3010 3011 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3012 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3013 capacity = fsa_dev_ptr[cid].size - 1; 3014 else 3015 capacity = (u32)-1; 3016 3017 cp[0] = (capacity >> 24) & 0xff; 3018 cp[1] = (capacity >> 16) & 0xff; 3019 cp[2] = (capacity >> 8) & 0xff; 3020 cp[3] = (capacity >> 0) & 0xff; 3021 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3022 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3023 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3024 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3025 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3026 /* Do not cache partition table for arrays */ 3027 scsicmd->device->removable = 1; 3028 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3029 break; 3030 } 3031 3032 case MODE_SENSE: 3033 { 3034 int mode_buf_length = 4; 3035 u32 capacity; 3036 aac_modep_data mpd; 3037 3038 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3039 capacity = fsa_dev_ptr[cid].size - 1; 3040 else 3041 capacity = (u32)-1; 3042 3043 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3044 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3045 3046 /* Mode data length */ 3047 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3048 /* Medium type - default */ 3049 mpd.hd.med_type = 0; 3050 /* Device-specific param, 3051 bit 8: 0/1 = write enabled/protected 3052 bit 4: 0/1 = FUA enabled */ 3053 mpd.hd.dev_par = 0; 3054 3055 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3056 mpd.hd.dev_par = 0x10; 3057 if (scsicmd->cmnd[1] & 0x8) 3058 mpd.hd.bd_length = 0; /* Block descriptor length */ 3059 else { 3060 mpd.hd.bd_length = sizeof(mpd.bd); 3061 mpd.hd.data_length += mpd.hd.bd_length; 3062 mpd.bd.block_length[0] = 3063 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3064 mpd.bd.block_length[1] = 3065 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3066 mpd.bd.block_length[2] = 3067 fsa_dev_ptr[cid].block_size & 0xff; 3068 3069 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3070 if (scsicmd->cmnd[2] == 0x1C) { 3071 /* page length */ 3072 mpd.mpc_buf[1] = 0xa; 3073 /* Mode data length */ 3074 mpd.hd.data_length = 23; 3075 } else { 3076 /* Mode data length */ 3077 mpd.hd.data_length = 15; 3078 } 3079 3080 if (capacity > 0xffffff) { 3081 mpd.bd.block_count[0] = 0xff; 3082 mpd.bd.block_count[1] = 0xff; 3083 mpd.bd.block_count[2] = 0xff; 3084 } else { 3085 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3086 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3087 mpd.bd.block_count[2] = capacity & 0xff; 3088 } 3089 } 3090 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3091 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3092 mpd.hd.data_length += 3; 3093 mpd.mpc_buf[0] = 8; 3094 mpd.mpc_buf[1] = 1; 3095 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3096 ? 0 : 0x04; /* WCE */ 3097 mode_buf_length = sizeof(mpd); 3098 } 3099 3100 if (mode_buf_length > scsicmd->cmnd[4]) 3101 mode_buf_length = scsicmd->cmnd[4]; 3102 else 3103 mode_buf_length = sizeof(mpd); 3104 scsi_sg_copy_from_buffer(scsicmd, 3105 (char *)&mpd, 3106 mode_buf_length); 3107 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3108 break; 3109 } 3110 case MODE_SENSE_10: 3111 { 3112 u32 capacity; 3113 int mode_buf_length = 8; 3114 aac_modep10_data mpd10; 3115 3116 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3117 capacity = fsa_dev_ptr[cid].size - 1; 3118 else 3119 capacity = (u32)-1; 3120 3121 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3122 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3123 /* Mode data length (MSB) */ 3124 mpd10.hd.data_length[0] = 0; 3125 /* Mode data length (LSB) */ 3126 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3127 /* Medium type - default */ 3128 mpd10.hd.med_type = 0; 3129 /* Device-specific param, 3130 bit 8: 0/1 = write enabled/protected 3131 bit 4: 0/1 = FUA enabled */ 3132 mpd10.hd.dev_par = 0; 3133 3134 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3135 mpd10.hd.dev_par = 0x10; 3136 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3137 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3138 if (scsicmd->cmnd[1] & 0x8) { 3139 /* Block descriptor length (MSB) */ 3140 mpd10.hd.bd_length[0] = 0; 3141 /* Block descriptor length (LSB) */ 3142 mpd10.hd.bd_length[1] = 0; 3143 } else { 3144 mpd10.hd.bd_length[0] = 0; 3145 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3146 3147 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3148 3149 mpd10.bd.block_length[0] = 3150 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3151 mpd10.bd.block_length[1] = 3152 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3153 mpd10.bd.block_length[2] = 3154 fsa_dev_ptr[cid].block_size & 0xff; 3155 3156 if (capacity > 0xffffff) { 3157 mpd10.bd.block_count[0] = 0xff; 3158 mpd10.bd.block_count[1] = 0xff; 3159 mpd10.bd.block_count[2] = 0xff; 3160 } else { 3161 mpd10.bd.block_count[0] = 3162 (capacity >> 16) & 0xff; 3163 mpd10.bd.block_count[1] = 3164 (capacity >> 8) & 0xff; 3165 mpd10.bd.block_count[2] = 3166 capacity & 0xff; 3167 } 3168 } 3169 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3170 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3171 mpd10.hd.data_length[1] += 3; 3172 mpd10.mpc_buf[0] = 8; 3173 mpd10.mpc_buf[1] = 1; 3174 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3175 ? 0 : 0x04; /* WCE */ 3176 mode_buf_length = sizeof(mpd10); 3177 if (mode_buf_length > scsicmd->cmnd[8]) 3178 mode_buf_length = scsicmd->cmnd[8]; 3179 } 3180 scsi_sg_copy_from_buffer(scsicmd, 3181 (char *)&mpd10, 3182 mode_buf_length); 3183 3184 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3185 break; 3186 } 3187 case REQUEST_SENSE: 3188 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3189 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3190 sizeof(struct sense_data)); 3191 memset(&dev->fsa_dev[cid].sense_data, 0, 3192 sizeof(struct sense_data)); 3193 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3194 break; 3195 3196 case ALLOW_MEDIUM_REMOVAL: 3197 dprintk((KERN_DEBUG "LOCK command.\n")); 3198 if (scsicmd->cmnd[4]) 3199 fsa_dev_ptr[cid].locked = 1; 3200 else 3201 fsa_dev_ptr[cid].locked = 0; 3202 3203 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3204 break; 3205 /* 3206 * These commands are all No-Ops 3207 */ 3208 case TEST_UNIT_READY: 3209 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3210 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3211 set_sense(&dev->fsa_dev[cid].sense_data, 3212 NOT_READY, SENCODE_BECOMING_READY, 3213 ASENCODE_BECOMING_READY, 0, 0); 3214 memcpy(scsicmd->sense_buffer, 3215 &dev->fsa_dev[cid].sense_data, 3216 min_t(size_t, 3217 sizeof(dev->fsa_dev[cid].sense_data), 3218 SCSI_SENSE_BUFFERSIZE)); 3219 break; 3220 } 3221 fallthrough; 3222 case RESERVE: 3223 case RELEASE: 3224 case REZERO_UNIT: 3225 case REASSIGN_BLOCKS: 3226 case SEEK_10: 3227 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3228 break; 3229 3230 case START_STOP: 3231 return aac_start_stop(scsicmd); 3232 3233 default: 3234 /* 3235 * Unhandled commands 3236 */ 3237 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3238 scsicmd->cmnd[0])); 3239 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3240 set_sense(&dev->fsa_dev[cid].sense_data, 3241 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3242 ASENCODE_INVALID_COMMAND, 0, 0); 3243 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3244 min_t(size_t, 3245 sizeof(dev->fsa_dev[cid].sense_data), 3246 SCSI_SENSE_BUFFERSIZE)); 3247 } 3248 3249 scsi_done_ret: 3250 3251 aac_scsi_done(scsicmd); 3252 return 0; 3253 } 3254 3255 static int query_disk(struct aac_dev *dev, void __user *arg) 3256 { 3257 struct aac_query_disk qd; 3258 struct fsa_dev_info *fsa_dev_ptr; 3259 3260 fsa_dev_ptr = dev->fsa_dev; 3261 if (!fsa_dev_ptr) 3262 return -EBUSY; 3263 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3264 return -EFAULT; 3265 if (qd.cnum == -1) { 3266 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3267 return -EINVAL; 3268 qd.cnum = qd.id; 3269 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3270 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3271 return -EINVAL; 3272 qd.instance = dev->scsi_host_ptr->host_no; 3273 qd.bus = 0; 3274 qd.id = CONTAINER_TO_ID(qd.cnum); 3275 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3276 } 3277 else return -EINVAL; 3278 3279 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3280 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3281 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3282 3283 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3284 qd.unmapped = 1; 3285 else 3286 qd.unmapped = 0; 3287 3288 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3289 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3290 3291 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3292 return -EFAULT; 3293 return 0; 3294 } 3295 3296 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3297 { 3298 struct aac_delete_disk dd; 3299 struct fsa_dev_info *fsa_dev_ptr; 3300 3301 fsa_dev_ptr = dev->fsa_dev; 3302 if (!fsa_dev_ptr) 3303 return -EBUSY; 3304 3305 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3306 return -EFAULT; 3307 3308 if (dd.cnum >= dev->maximum_num_containers) 3309 return -EINVAL; 3310 /* 3311 * Mark this container as being deleted. 3312 */ 3313 fsa_dev_ptr[dd.cnum].deleted = 1; 3314 /* 3315 * Mark the container as no longer valid 3316 */ 3317 fsa_dev_ptr[dd.cnum].valid = 0; 3318 return 0; 3319 } 3320 3321 static int delete_disk(struct aac_dev *dev, void __user *arg) 3322 { 3323 struct aac_delete_disk dd; 3324 struct fsa_dev_info *fsa_dev_ptr; 3325 3326 fsa_dev_ptr = dev->fsa_dev; 3327 if (!fsa_dev_ptr) 3328 return -EBUSY; 3329 3330 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3331 return -EFAULT; 3332 3333 if (dd.cnum >= dev->maximum_num_containers) 3334 return -EINVAL; 3335 /* 3336 * If the container is locked, it can not be deleted by the API. 3337 */ 3338 if (fsa_dev_ptr[dd.cnum].locked) 3339 return -EBUSY; 3340 else { 3341 /* 3342 * Mark the container as no longer being valid. 3343 */ 3344 fsa_dev_ptr[dd.cnum].valid = 0; 3345 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3346 return 0; 3347 } 3348 } 3349 3350 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3351 { 3352 switch (cmd) { 3353 case FSACTL_QUERY_DISK: 3354 return query_disk(dev, arg); 3355 case FSACTL_DELETE_DISK: 3356 return delete_disk(dev, arg); 3357 case FSACTL_FORCE_DELETE_DISK: 3358 return force_delete_disk(dev, arg); 3359 case FSACTL_GET_CONTAINERS: 3360 return aac_get_containers(dev); 3361 default: 3362 return -ENOTTY; 3363 } 3364 } 3365 3366 /** 3367 * aac_srb_callback 3368 * @context: the context set in the fib - here it is scsi cmd 3369 * @fibptr: pointer to the fib 3370 * 3371 * Handles the completion of a scsi command to a non dasd device 3372 */ 3373 static void aac_srb_callback(void *context, struct fib * fibptr) 3374 { 3375 struct aac_srb_reply *srbreply; 3376 struct scsi_cmnd *scsicmd; 3377 3378 scsicmd = (struct scsi_cmnd *) context; 3379 3380 if (!aac_valid_context(scsicmd, fibptr)) 3381 return; 3382 3383 BUG_ON(fibptr == NULL); 3384 3385 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3386 3387 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3388 3389 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3390 /* fast response */ 3391 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3392 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3393 } else { 3394 /* 3395 * Calculate resid for sg 3396 */ 3397 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3398 - le32_to_cpu(srbreply->data_xfer_length)); 3399 } 3400 3401 3402 scsi_dma_unmap(scsicmd); 3403 3404 /* expose physical device if expose_physicald flag is on */ 3405 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3406 && expose_physicals > 0) 3407 aac_expose_phy_device(scsicmd); 3408 3409 /* 3410 * First check the fib status 3411 */ 3412 3413 if (le32_to_cpu(srbreply->status) != ST_OK) { 3414 int len; 3415 3416 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3417 le32_to_cpu(srbreply->status)); 3418 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3419 SCSI_SENSE_BUFFERSIZE); 3420 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION; 3421 memcpy(scsicmd->sense_buffer, 3422 srbreply->sense_data, len); 3423 } 3424 3425 /* 3426 * Next check the srb status 3427 */ 3428 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3429 case SRB_STATUS_ERROR_RECOVERY: 3430 case SRB_STATUS_PENDING: 3431 case SRB_STATUS_SUCCESS: 3432 scsicmd->result = DID_OK << 16; 3433 break; 3434 case SRB_STATUS_DATA_OVERRUN: 3435 switch (scsicmd->cmnd[0]) { 3436 case READ_6: 3437 case WRITE_6: 3438 case READ_10: 3439 case WRITE_10: 3440 case READ_12: 3441 case WRITE_12: 3442 case READ_16: 3443 case WRITE_16: 3444 if (le32_to_cpu(srbreply->data_xfer_length) 3445 < scsicmd->underflow) 3446 pr_warn("aacraid: SCSI CMD underflow\n"); 3447 else 3448 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3449 scsicmd->result = DID_ERROR << 16; 3450 break; 3451 case INQUIRY: 3452 scsicmd->result = DID_OK << 16; 3453 break; 3454 default: 3455 scsicmd->result = DID_OK << 16; 3456 break; 3457 } 3458 break; 3459 case SRB_STATUS_ABORTED: 3460 scsicmd->result = DID_ABORT << 16; 3461 break; 3462 case SRB_STATUS_ABORT_FAILED: 3463 /* 3464 * Not sure about this one - but assuming the 3465 * hba was trying to abort for some reason 3466 */ 3467 scsicmd->result = DID_ERROR << 16; 3468 break; 3469 case SRB_STATUS_PARITY_ERROR: 3470 scsicmd->result = DID_PARITY << 16; 3471 break; 3472 case SRB_STATUS_NO_DEVICE: 3473 case SRB_STATUS_INVALID_PATH_ID: 3474 case SRB_STATUS_INVALID_TARGET_ID: 3475 case SRB_STATUS_INVALID_LUN: 3476 case SRB_STATUS_SELECTION_TIMEOUT: 3477 scsicmd->result = DID_NO_CONNECT << 16; 3478 break; 3479 3480 case SRB_STATUS_COMMAND_TIMEOUT: 3481 case SRB_STATUS_TIMEOUT: 3482 scsicmd->result = DID_TIME_OUT << 16; 3483 break; 3484 3485 case SRB_STATUS_BUSY: 3486 scsicmd->result = DID_BUS_BUSY << 16; 3487 break; 3488 3489 case SRB_STATUS_BUS_RESET: 3490 scsicmd->result = DID_RESET << 16; 3491 break; 3492 3493 case SRB_STATUS_MESSAGE_REJECTED: 3494 scsicmd->result = DID_ERROR << 16; 3495 break; 3496 case SRB_STATUS_REQUEST_FLUSHED: 3497 case SRB_STATUS_ERROR: 3498 case SRB_STATUS_INVALID_REQUEST: 3499 case SRB_STATUS_REQUEST_SENSE_FAILED: 3500 case SRB_STATUS_NO_HBA: 3501 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3502 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3503 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3504 case SRB_STATUS_DELAYED_RETRY: 3505 case SRB_STATUS_BAD_FUNCTION: 3506 case SRB_STATUS_NOT_STARTED: 3507 case SRB_STATUS_NOT_IN_USE: 3508 case SRB_STATUS_FORCE_ABORT: 3509 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3510 default: 3511 #ifdef AAC_DETAILED_STATUS_INFO 3512 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3513 le32_to_cpu(srbreply->srb_status) & 0x3F, 3514 aac_get_status_string( 3515 le32_to_cpu(srbreply->srb_status) & 0x3F), 3516 scsicmd->cmnd[0], 3517 le32_to_cpu(srbreply->scsi_status)); 3518 #endif 3519 /* 3520 * When the CC bit is SET by the host in ATA pass thru CDB, 3521 * driver is supposed to return DID_OK 3522 * 3523 * When the CC bit is RESET by the host, driver should 3524 * return DID_ERROR 3525 */ 3526 if ((scsicmd->cmnd[0] == ATA_12) 3527 || (scsicmd->cmnd[0] == ATA_16)) { 3528 3529 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3530 scsicmd->result = DID_OK << 16; 3531 } else { 3532 scsicmd->result = DID_ERROR << 16; 3533 } 3534 } else { 3535 scsicmd->result = DID_ERROR << 16; 3536 } 3537 break; 3538 } 3539 if (le32_to_cpu(srbreply->scsi_status) 3540 == SAM_STAT_CHECK_CONDITION) { 3541 int len; 3542 3543 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3544 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3545 SCSI_SENSE_BUFFERSIZE); 3546 #ifdef AAC_DETAILED_STATUS_INFO 3547 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3548 le32_to_cpu(srbreply->status), len); 3549 #endif 3550 memcpy(scsicmd->sense_buffer, 3551 srbreply->sense_data, len); 3552 } 3553 3554 /* 3555 * OR in the scsi status (already shifted up a bit) 3556 */ 3557 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3558 3559 aac_fib_complete(fibptr); 3560 aac_scsi_done(scsicmd); 3561 } 3562 3563 static void hba_resp_task_complete(struct aac_dev *dev, 3564 struct scsi_cmnd *scsicmd, 3565 struct aac_hba_resp *err) { 3566 3567 scsicmd->result = err->status; 3568 /* set residual count */ 3569 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3570 3571 switch (err->status) { 3572 case SAM_STAT_GOOD: 3573 scsicmd->result |= DID_OK << 16; 3574 break; 3575 case SAM_STAT_CHECK_CONDITION: 3576 { 3577 int len; 3578 3579 len = min_t(u8, err->sense_response_data_len, 3580 SCSI_SENSE_BUFFERSIZE); 3581 if (len) 3582 memcpy(scsicmd->sense_buffer, 3583 err->sense_response_buf, len); 3584 scsicmd->result |= DID_OK << 16; 3585 break; 3586 } 3587 case SAM_STAT_BUSY: 3588 scsicmd->result |= DID_BUS_BUSY << 16; 3589 break; 3590 case SAM_STAT_TASK_ABORTED: 3591 scsicmd->result |= DID_ABORT << 16; 3592 break; 3593 case SAM_STAT_RESERVATION_CONFLICT: 3594 case SAM_STAT_TASK_SET_FULL: 3595 default: 3596 scsicmd->result |= DID_ERROR << 16; 3597 break; 3598 } 3599 } 3600 3601 static void hba_resp_task_failure(struct aac_dev *dev, 3602 struct scsi_cmnd *scsicmd, 3603 struct aac_hba_resp *err) 3604 { 3605 switch (err->status) { 3606 case HBA_RESP_STAT_HBAMODE_DISABLED: 3607 { 3608 u32 bus, cid; 3609 3610 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3611 cid = scmd_id(scsicmd); 3612 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3613 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3614 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3615 } 3616 scsicmd->result = DID_NO_CONNECT << 16; 3617 break; 3618 } 3619 case HBA_RESP_STAT_IO_ERROR: 3620 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3621 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY; 3622 break; 3623 case HBA_RESP_STAT_IO_ABORTED: 3624 scsicmd->result = DID_ABORT << 16; 3625 break; 3626 case HBA_RESP_STAT_INVALID_DEVICE: 3627 scsicmd->result = DID_NO_CONNECT << 16; 3628 break; 3629 case HBA_RESP_STAT_UNDERRUN: 3630 /* UNDERRUN is OK */ 3631 scsicmd->result = DID_OK << 16; 3632 break; 3633 case HBA_RESP_STAT_OVERRUN: 3634 default: 3635 scsicmd->result = DID_ERROR << 16; 3636 break; 3637 } 3638 } 3639 3640 /** 3641 * aac_hba_callback 3642 * @context: the context set in the fib - here it is scsi cmd 3643 * @fibptr: pointer to the fib 3644 * 3645 * Handles the completion of a native HBA scsi command 3646 */ 3647 void aac_hba_callback(void *context, struct fib *fibptr) 3648 { 3649 struct aac_dev *dev; 3650 struct scsi_cmnd *scsicmd; 3651 3652 struct aac_hba_resp *err = 3653 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3654 3655 scsicmd = (struct scsi_cmnd *) context; 3656 3657 if (!aac_valid_context(scsicmd, fibptr)) 3658 return; 3659 3660 WARN_ON(fibptr == NULL); 3661 dev = fibptr->dev; 3662 3663 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3664 scsi_dma_unmap(scsicmd); 3665 3666 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3667 /* fast response */ 3668 scsicmd->result = DID_OK << 16; 3669 goto out; 3670 } 3671 3672 switch (err->service_response) { 3673 case HBA_RESP_SVCRES_TASK_COMPLETE: 3674 hba_resp_task_complete(dev, scsicmd, err); 3675 break; 3676 case HBA_RESP_SVCRES_FAILURE: 3677 hba_resp_task_failure(dev, scsicmd, err); 3678 break; 3679 case HBA_RESP_SVCRES_TMF_REJECTED: 3680 scsicmd->result = DID_ERROR << 16; 3681 break; 3682 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3683 scsicmd->result = DID_NO_CONNECT << 16; 3684 break; 3685 case HBA_RESP_SVCRES_TMF_COMPLETE: 3686 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3687 scsicmd->result = DID_OK << 16; 3688 break; 3689 default: 3690 scsicmd->result = DID_ERROR << 16; 3691 break; 3692 } 3693 3694 out: 3695 aac_fib_complete(fibptr); 3696 3697 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3698 scsicmd->SCp.sent_command = 1; 3699 else 3700 aac_scsi_done(scsicmd); 3701 } 3702 3703 /** 3704 * aac_send_srb_fib 3705 * @scsicmd: the scsi command block 3706 * 3707 * This routine will form a FIB and fill in the aac_srb from the 3708 * scsicmd passed in. 3709 */ 3710 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3711 { 3712 struct fib* cmd_fibcontext; 3713 struct aac_dev* dev; 3714 int status; 3715 3716 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3717 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3718 scsicmd->device->lun > 7) { 3719 scsicmd->result = DID_NO_CONNECT << 16; 3720 aac_scsi_done(scsicmd); 3721 return 0; 3722 } 3723 3724 /* 3725 * Allocate and initialize a Fib then setup a BlockWrite command 3726 */ 3727 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3728 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3729 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3730 3731 /* 3732 * Check that the command queued to the controller 3733 */ 3734 if (status == -EINPROGRESS) 3735 return 0; 3736 3737 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3738 aac_fib_complete(cmd_fibcontext); 3739 aac_fib_free(cmd_fibcontext); 3740 3741 return -1; 3742 } 3743 3744 /** 3745 * aac_send_hba_fib 3746 * @scsicmd: the scsi command block 3747 * 3748 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3749 * scsicmd passed in. 3750 */ 3751 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3752 { 3753 struct fib *cmd_fibcontext; 3754 struct aac_dev *dev; 3755 int status; 3756 3757 dev = shost_priv(scsicmd->device->host); 3758 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3759 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3760 scsicmd->result = DID_NO_CONNECT << 16; 3761 aac_scsi_done(scsicmd); 3762 return 0; 3763 } 3764 3765 /* 3766 * Allocate and initialize a Fib then setup a BlockWrite command 3767 */ 3768 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3769 if (!cmd_fibcontext) 3770 return -1; 3771 3772 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3773 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3774 3775 /* 3776 * Check that the command queued to the controller 3777 */ 3778 if (status == -EINPROGRESS) 3779 return 0; 3780 3781 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3782 status); 3783 aac_fib_complete(cmd_fibcontext); 3784 aac_fib_free(cmd_fibcontext); 3785 3786 return -1; 3787 } 3788 3789 3790 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3791 { 3792 unsigned long byte_count = 0; 3793 int nseg; 3794 struct scatterlist *sg; 3795 int i; 3796 3797 // Get rid of old data 3798 psg->count = 0; 3799 psg->sg[0].addr = 0; 3800 psg->sg[0].count = 0; 3801 3802 nseg = scsi_dma_map(scsicmd); 3803 if (nseg <= 0) 3804 return nseg; 3805 3806 psg->count = cpu_to_le32(nseg); 3807 3808 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3809 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3810 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3811 byte_count += sg_dma_len(sg); 3812 } 3813 /* hba wants the size to be exact */ 3814 if (byte_count > scsi_bufflen(scsicmd)) { 3815 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3816 (byte_count - scsi_bufflen(scsicmd)); 3817 psg->sg[i-1].count = cpu_to_le32(temp); 3818 byte_count = scsi_bufflen(scsicmd); 3819 } 3820 /* Check for command underflow */ 3821 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3822 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3823 byte_count, scsicmd->underflow); 3824 } 3825 3826 return byte_count; 3827 } 3828 3829 3830 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3831 { 3832 unsigned long byte_count = 0; 3833 u64 addr; 3834 int nseg; 3835 struct scatterlist *sg; 3836 int i; 3837 3838 // Get rid of old data 3839 psg->count = 0; 3840 psg->sg[0].addr[0] = 0; 3841 psg->sg[0].addr[1] = 0; 3842 psg->sg[0].count = 0; 3843 3844 nseg = scsi_dma_map(scsicmd); 3845 if (nseg <= 0) 3846 return nseg; 3847 3848 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3849 int count = sg_dma_len(sg); 3850 addr = sg_dma_address(sg); 3851 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3852 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3853 psg->sg[i].count = cpu_to_le32(count); 3854 byte_count += count; 3855 } 3856 psg->count = cpu_to_le32(nseg); 3857 /* hba wants the size to be exact */ 3858 if (byte_count > scsi_bufflen(scsicmd)) { 3859 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3860 (byte_count - scsi_bufflen(scsicmd)); 3861 psg->sg[i-1].count = cpu_to_le32(temp); 3862 byte_count = scsi_bufflen(scsicmd); 3863 } 3864 /* Check for command underflow */ 3865 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3866 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3867 byte_count, scsicmd->underflow); 3868 } 3869 3870 return byte_count; 3871 } 3872 3873 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3874 { 3875 unsigned long byte_count = 0; 3876 int nseg; 3877 struct scatterlist *sg; 3878 int i; 3879 3880 // Get rid of old data 3881 psg->count = 0; 3882 psg->sg[0].next = 0; 3883 psg->sg[0].prev = 0; 3884 psg->sg[0].addr[0] = 0; 3885 psg->sg[0].addr[1] = 0; 3886 psg->sg[0].count = 0; 3887 psg->sg[0].flags = 0; 3888 3889 nseg = scsi_dma_map(scsicmd); 3890 if (nseg <= 0) 3891 return nseg; 3892 3893 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3894 int count = sg_dma_len(sg); 3895 u64 addr = sg_dma_address(sg); 3896 psg->sg[i].next = 0; 3897 psg->sg[i].prev = 0; 3898 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3899 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3900 psg->sg[i].count = cpu_to_le32(count); 3901 psg->sg[i].flags = 0; 3902 byte_count += count; 3903 } 3904 psg->count = cpu_to_le32(nseg); 3905 /* hba wants the size to be exact */ 3906 if (byte_count > scsi_bufflen(scsicmd)) { 3907 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3908 (byte_count - scsi_bufflen(scsicmd)); 3909 psg->sg[i-1].count = cpu_to_le32(temp); 3910 byte_count = scsi_bufflen(scsicmd); 3911 } 3912 /* Check for command underflow */ 3913 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3914 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3915 byte_count, scsicmd->underflow); 3916 } 3917 3918 return byte_count; 3919 } 3920 3921 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3922 struct aac_raw_io2 *rio2, int sg_max) 3923 { 3924 unsigned long byte_count = 0; 3925 int nseg; 3926 struct scatterlist *sg; 3927 int i, conformable = 0; 3928 u32 min_size = PAGE_SIZE, cur_size; 3929 3930 nseg = scsi_dma_map(scsicmd); 3931 if (nseg <= 0) 3932 return nseg; 3933 3934 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3935 int count = sg_dma_len(sg); 3936 u64 addr = sg_dma_address(sg); 3937 3938 BUG_ON(i >= sg_max); 3939 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3940 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3941 cur_size = cpu_to_le32(count); 3942 rio2->sge[i].length = cur_size; 3943 rio2->sge[i].flags = 0; 3944 if (i == 0) { 3945 conformable = 1; 3946 rio2->sgeFirstSize = cur_size; 3947 } else if (i == 1) { 3948 rio2->sgeNominalSize = cur_size; 3949 min_size = cur_size; 3950 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3951 conformable = 0; 3952 if (cur_size < min_size) 3953 min_size = cur_size; 3954 } 3955 byte_count += count; 3956 } 3957 3958 /* hba wants the size to be exact */ 3959 if (byte_count > scsi_bufflen(scsicmd)) { 3960 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 3961 (byte_count - scsi_bufflen(scsicmd)); 3962 rio2->sge[i-1].length = cpu_to_le32(temp); 3963 byte_count = scsi_bufflen(scsicmd); 3964 } 3965 3966 rio2->sgeCnt = cpu_to_le32(nseg); 3967 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 3968 /* not conformable: evaluate required sg elements */ 3969 if (!conformable) { 3970 int j, nseg_new = nseg, err_found; 3971 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 3972 err_found = 0; 3973 nseg_new = 2; 3974 for (j = 1; j < nseg - 1; ++j) { 3975 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 3976 err_found = 1; 3977 break; 3978 } 3979 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 3980 } 3981 if (!err_found) 3982 break; 3983 } 3984 if (i > 0 && nseg_new <= sg_max) { 3985 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 3986 3987 if (ret < 0) 3988 return ret; 3989 } 3990 } else 3991 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 3992 3993 /* Check for command underflow */ 3994 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3995 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3996 byte_count, scsicmd->underflow); 3997 } 3998 3999 return byte_count; 4000 } 4001 4002 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4003 { 4004 struct sge_ieee1212 *sge; 4005 int i, j, pos; 4006 u32 addr_low; 4007 4008 if (aac_convert_sgl == 0) 4009 return 0; 4010 4011 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC); 4012 if (sge == NULL) 4013 return -ENOMEM; 4014 4015 for (i = 1, pos = 1; i < nseg-1; ++i) { 4016 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4017 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4018 sge[pos].addrLow = addr_low; 4019 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4020 if (addr_low < rio2->sge[i].addrLow) 4021 sge[pos].addrHigh++; 4022 sge[pos].length = pages * PAGE_SIZE; 4023 sge[pos].flags = 0; 4024 pos++; 4025 } 4026 } 4027 sge[pos] = rio2->sge[nseg-1]; 4028 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4029 4030 kfree(sge); 4031 rio2->sgeCnt = cpu_to_le32(nseg_new); 4032 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4033 rio2->sgeNominalSize = pages * PAGE_SIZE; 4034 return 0; 4035 } 4036 4037 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4038 struct aac_hba_cmd_req *hbacmd, 4039 int sg_max, 4040 u64 sg_address) 4041 { 4042 unsigned long byte_count = 0; 4043 int nseg; 4044 struct scatterlist *sg; 4045 int i; 4046 u32 cur_size; 4047 struct aac_hba_sgl *sge; 4048 4049 nseg = scsi_dma_map(scsicmd); 4050 if (nseg <= 0) { 4051 byte_count = nseg; 4052 goto out; 4053 } 4054 4055 if (nseg > HBA_MAX_SG_EMBEDDED) 4056 sge = &hbacmd->sge[2]; 4057 else 4058 sge = &hbacmd->sge[0]; 4059 4060 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4061 int count = sg_dma_len(sg); 4062 u64 addr = sg_dma_address(sg); 4063 4064 WARN_ON(i >= sg_max); 4065 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4066 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4067 cur_size = cpu_to_le32(count); 4068 sge->len = cur_size; 4069 sge->flags = 0; 4070 byte_count += count; 4071 sge++; 4072 } 4073 4074 sge--; 4075 /* hba wants the size to be exact */ 4076 if (byte_count > scsi_bufflen(scsicmd)) { 4077 u32 temp; 4078 4079 temp = le32_to_cpu(sge->len) - byte_count 4080 - scsi_bufflen(scsicmd); 4081 sge->len = cpu_to_le32(temp); 4082 byte_count = scsi_bufflen(scsicmd); 4083 } 4084 4085 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4086 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4087 sge->flags = cpu_to_le32(0x40000000); 4088 } else { 4089 /* not embedded */ 4090 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4091 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4092 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4093 hbacmd->sge[0].addr_lo = 4094 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4095 } 4096 4097 /* Check for command underflow */ 4098 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4099 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4100 byte_count, scsicmd->underflow); 4101 } 4102 out: 4103 return byte_count; 4104 } 4105 4106 #ifdef AAC_DETAILED_STATUS_INFO 4107 4108 struct aac_srb_status_info { 4109 u32 status; 4110 char *str; 4111 }; 4112 4113 4114 static struct aac_srb_status_info srb_status_info[] = { 4115 { SRB_STATUS_PENDING, "Pending Status"}, 4116 { SRB_STATUS_SUCCESS, "Success"}, 4117 { SRB_STATUS_ABORTED, "Aborted Command"}, 4118 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4119 { SRB_STATUS_ERROR, "Error Event"}, 4120 { SRB_STATUS_BUSY, "Device Busy"}, 4121 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4122 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4123 { SRB_STATUS_NO_DEVICE, "No Device"}, 4124 { SRB_STATUS_TIMEOUT, "Timeout"}, 4125 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4126 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4127 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4128 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4129 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4130 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4131 { SRB_STATUS_NO_HBA, "No HBA"}, 4132 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4133 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4134 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4135 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4136 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4137 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4138 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4139 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4140 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4141 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4142 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4143 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4144 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4145 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4146 { 0xff, "Unknown Error"} 4147 }; 4148 4149 char *aac_get_status_string(u32 status) 4150 { 4151 int i; 4152 4153 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4154 if (srb_status_info[i].status == status) 4155 return srb_status_info[i].str; 4156 4157 return "Bad Status Code"; 4158 } 4159 4160 #endif 4161