xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision 7dd65feb)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <asm/uaccess.h>
35 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 #include <scsi/scsi_host.h>
41 
42 #include "aacraid.h"
43 
44 /* values for inqd_pdt: Peripheral device type in plain English */
45 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
46 #define	INQD_PDT_PROC	0x03	/* Processor device */
47 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
48 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
49 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
50 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
51 
52 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
53 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
54 
55 /*
56  *	Sense codes
57  */
58 
59 #define SENCODE_NO_SENSE			0x00
60 #define SENCODE_END_OF_DATA			0x00
61 #define SENCODE_BECOMING_READY			0x04
62 #define SENCODE_INIT_CMD_REQUIRED		0x04
63 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
64 #define SENCODE_INVALID_COMMAND			0x20
65 #define SENCODE_LBA_OUT_OF_RANGE		0x21
66 #define SENCODE_INVALID_CDB_FIELD		0x24
67 #define SENCODE_LUN_NOT_SUPPORTED		0x25
68 #define SENCODE_INVALID_PARAM_FIELD		0x26
69 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
70 #define SENCODE_PARAM_VALUE_INVALID		0x26
71 #define SENCODE_RESET_OCCURRED			0x29
72 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
73 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
74 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
75 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
76 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
77 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
78 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
79 #define SENCODE_OVERLAPPED_COMMAND		0x4E
80 
81 /*
82  *	Additional sense codes
83  */
84 
85 #define ASENCODE_NO_SENSE			0x00
86 #define ASENCODE_END_OF_DATA			0x05
87 #define ASENCODE_BECOMING_READY			0x01
88 #define ASENCODE_INIT_CMD_REQUIRED		0x02
89 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
90 #define ASENCODE_INVALID_COMMAND		0x00
91 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
92 #define ASENCODE_INVALID_CDB_FIELD		0x00
93 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
94 #define ASENCODE_INVALID_PARAM_FIELD		0x00
95 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
96 #define ASENCODE_PARAM_VALUE_INVALID		0x02
97 #define ASENCODE_RESET_OCCURRED			0x00
98 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
99 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
100 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
101 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
102 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
103 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
104 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
105 #define ASENCODE_OVERLAPPED_COMMAND		0x00
106 
107 #define BYTE0(x) (unsigned char)(x)
108 #define BYTE1(x) (unsigned char)((x) >> 8)
109 #define BYTE2(x) (unsigned char)((x) >> 16)
110 #define BYTE3(x) (unsigned char)((x) >> 24)
111 
112 /*------------------------------------------------------------------------------
113  *              S T R U C T S / T Y P E D E F S
114  *----------------------------------------------------------------------------*/
115 /* SCSI inquiry data */
116 struct inquiry_data {
117 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
118 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
119 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
120 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
121 	u8 inqd_len;	/* Additional length (n-4) */
122 	u8 inqd_pad1[2];/* Reserved - must be zero */
123 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
124 	u8 inqd_vid[8];	/* Vendor ID */
125 	u8 inqd_pid[16];/* Product ID */
126 	u8 inqd_prl[4];	/* Product Revision Level */
127 };
128 
129 /*
130  *              M O D U L E   G L O B A L S
131  */
132 
133 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
134 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
135 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
140 
141 /*
142  *	Non dasd selection is handled entirely in aachba now
143  */
144 
145 static int nondasd = -1;
146 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
147 static int dacmode = -1;
148 int aac_msi;
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152 
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
155 	" 0=off, 1=on");
156 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
158 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
159 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
160 	"\tbit 2 - Disable only if Battery is protecting Cache");
161 module_param(dacmode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
163 	" 0=off, 1=on");
164 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
166 	" adapter for foreign arrays.\n"
167 	"This is typically needed in systems that do not have a BIOS."
168 	" 0=off, 1=on");
169 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(msi, "IRQ handling."
171 	" 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
172 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
173 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
174 	" adapter to have it's kernel up and\n"
175 	"running. This is typically adjusted for large systems that do not"
176 	" have a BIOS.");
177 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
179 	" applications to pick up AIFs before\n"
180 	"deregistering them. This is typically adjusted for heavily burdened"
181 	" systems.");
182 
183 int numacb = -1;
184 module_param(numacb, int, S_IRUGO|S_IWUSR);
185 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
186 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
187 	" to use suggestion from Firmware.");
188 
189 int acbsize = -1;
190 module_param(acbsize, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
192 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
193 	" suggestion from Firmware.");
194 
195 int update_interval = 30 * 60;
196 module_param(update_interval, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
198 	" updates issued to adapter.");
199 
200 int check_interval = 24 * 60 * 60;
201 module_param(check_interval, int, S_IRUGO|S_IWUSR);
202 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
203 	" checks.");
204 
205 int aac_check_reset = 1;
206 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
207 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
208 	" adapter. a value of -1 forces the reset to adapters programmed to"
209 	" ignore it.");
210 
211 int expose_physicals = -1;
212 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
214 	" -1=protect 0=off, 1=on");
215 
216 int aac_reset_devices;
217 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
218 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
219 
220 int aac_wwn = 1;
221 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
222 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
223 	"\t0 - Disable\n"
224 	"\t1 - Array Meta Data Signature (default)\n"
225 	"\t2 - Adapter Serial Number");
226 
227 
228 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
229 		struct fib *fibptr) {
230 	struct scsi_device *device;
231 
232 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
233 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
234 		aac_fib_complete(fibptr);
235 		aac_fib_free(fibptr);
236 		return 0;
237 	}
238 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
239 	device = scsicmd->device;
240 	if (unlikely(!device || !scsi_device_online(device))) {
241 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
242 		aac_fib_complete(fibptr);
243 		aac_fib_free(fibptr);
244 		return 0;
245 	}
246 	return 1;
247 }
248 
249 /**
250  *	aac_get_config_status	-	check the adapter configuration
251  *	@common: adapter to query
252  *
253  *	Query config status, and commit the configuration if needed.
254  */
255 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
256 {
257 	int status = 0;
258 	struct fib * fibptr;
259 
260 	if (!(fibptr = aac_fib_alloc(dev)))
261 		return -ENOMEM;
262 
263 	aac_fib_init(fibptr);
264 	{
265 		struct aac_get_config_status *dinfo;
266 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
267 
268 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
269 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
270 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
271 	}
272 
273 	status = aac_fib_send(ContainerCommand,
274 			    fibptr,
275 			    sizeof (struct aac_get_config_status),
276 			    FsaNormal,
277 			    1, 1,
278 			    NULL, NULL);
279 	if (status < 0) {
280 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
281 	} else {
282 		struct aac_get_config_status_resp *reply
283 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
284 		dprintk((KERN_WARNING
285 		  "aac_get_config_status: response=%d status=%d action=%d\n",
286 		  le32_to_cpu(reply->response),
287 		  le32_to_cpu(reply->status),
288 		  le32_to_cpu(reply->data.action)));
289 		if ((le32_to_cpu(reply->response) != ST_OK) ||
290 		     (le32_to_cpu(reply->status) != CT_OK) ||
291 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
292 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
293 			status = -EINVAL;
294 		}
295 	}
296 	aac_fib_complete(fibptr);
297 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
298 	if (status >= 0) {
299 		if ((aac_commit == 1) || commit_flag) {
300 			struct aac_commit_config * dinfo;
301 			aac_fib_init(fibptr);
302 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
303 
304 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
305 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
306 
307 			status = aac_fib_send(ContainerCommand,
308 				    fibptr,
309 				    sizeof (struct aac_commit_config),
310 				    FsaNormal,
311 				    1, 1,
312 				    NULL, NULL);
313 			aac_fib_complete(fibptr);
314 		} else if (aac_commit == 0) {
315 			printk(KERN_WARNING
316 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
317 		}
318 	}
319 	aac_fib_free(fibptr);
320 	return status;
321 }
322 
323 /**
324  *	aac_get_containers	-	list containers
325  *	@common: adapter to probe
326  *
327  *	Make a list of all containers on this controller
328  */
329 int aac_get_containers(struct aac_dev *dev)
330 {
331 	struct fsa_dev_info *fsa_dev_ptr;
332 	u32 index;
333 	int status = 0;
334 	struct fib * fibptr;
335 	struct aac_get_container_count *dinfo;
336 	struct aac_get_container_count_resp *dresp;
337 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
338 
339 	if (!(fibptr = aac_fib_alloc(dev)))
340 		return -ENOMEM;
341 
342 	aac_fib_init(fibptr);
343 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
344 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
345 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
346 
347 	status = aac_fib_send(ContainerCommand,
348 		    fibptr,
349 		    sizeof (struct aac_get_container_count),
350 		    FsaNormal,
351 		    1, 1,
352 		    NULL, NULL);
353 	if (status >= 0) {
354 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
355 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
356 		aac_fib_complete(fibptr);
357 	}
358 	aac_fib_free(fibptr);
359 
360 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
361 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
362 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
363 			GFP_KERNEL);
364 	if (!fsa_dev_ptr)
365 		return -ENOMEM;
366 
367 	dev->fsa_dev = fsa_dev_ptr;
368 	dev->maximum_num_containers = maximum_num_containers;
369 
370 	for (index = 0; index < dev->maximum_num_containers; ) {
371 		fsa_dev_ptr[index].devname[0] = '\0';
372 
373 		status = aac_probe_container(dev, index);
374 
375 		if (status < 0) {
376 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
377 			break;
378 		}
379 
380 		/*
381 		 *	If there are no more containers, then stop asking.
382 		 */
383 		if (++index >= status)
384 			break;
385 	}
386 	return status;
387 }
388 
389 static void get_container_name_callback(void *context, struct fib * fibptr)
390 {
391 	struct aac_get_name_resp * get_name_reply;
392 	struct scsi_cmnd * scsicmd;
393 
394 	scsicmd = (struct scsi_cmnd *) context;
395 
396 	if (!aac_valid_context(scsicmd, fibptr))
397 		return;
398 
399 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
400 	BUG_ON(fibptr == NULL);
401 
402 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
403 	/* Failure is irrelevant, using default value instead */
404 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
405 	 && (get_name_reply->data[0] != '\0')) {
406 		char *sp = get_name_reply->data;
407 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
408 		while (*sp == ' ')
409 			++sp;
410 		if (*sp) {
411 			struct inquiry_data inq;
412 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
413 			int count = sizeof(d);
414 			char *dp = d;
415 			do {
416 				*dp++ = (*sp) ? *sp++ : ' ';
417 			} while (--count > 0);
418 
419 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
420 			memcpy(inq.inqd_pid, d, sizeof(d));
421 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
422 		}
423 	}
424 
425 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
426 
427 	aac_fib_complete(fibptr);
428 	aac_fib_free(fibptr);
429 	scsicmd->scsi_done(scsicmd);
430 }
431 
432 /**
433  *	aac_get_container_name	-	get container name, none blocking.
434  */
435 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
436 {
437 	int status;
438 	struct aac_get_name *dinfo;
439 	struct fib * cmd_fibcontext;
440 	struct aac_dev * dev;
441 
442 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
443 
444 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
445 		return -ENOMEM;
446 
447 	aac_fib_init(cmd_fibcontext);
448 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
449 
450 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
451 	dinfo->type = cpu_to_le32(CT_READ_NAME);
452 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
453 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
454 
455 	status = aac_fib_send(ContainerCommand,
456 		  cmd_fibcontext,
457 		  sizeof (struct aac_get_name),
458 		  FsaNormal,
459 		  0, 1,
460 		  (fib_callback)get_container_name_callback,
461 		  (void *) scsicmd);
462 
463 	/*
464 	 *	Check that the command queued to the controller
465 	 */
466 	if (status == -EINPROGRESS) {
467 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
468 		return 0;
469 	}
470 
471 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
472 	aac_fib_complete(cmd_fibcontext);
473 	aac_fib_free(cmd_fibcontext);
474 	return -1;
475 }
476 
477 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
478 {
479 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
480 
481 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
482 		return aac_scsi_cmd(scsicmd);
483 
484 	scsicmd->result = DID_NO_CONNECT << 16;
485 	scsicmd->scsi_done(scsicmd);
486 	return 0;
487 }
488 
489 static void _aac_probe_container2(void * context, struct fib * fibptr)
490 {
491 	struct fsa_dev_info *fsa_dev_ptr;
492 	int (*callback)(struct scsi_cmnd *);
493 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
494 
495 
496 	if (!aac_valid_context(scsicmd, fibptr))
497 		return;
498 
499 	scsicmd->SCp.Status = 0;
500 	fsa_dev_ptr = fibptr->dev->fsa_dev;
501 	if (fsa_dev_ptr) {
502 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
503 		fsa_dev_ptr += scmd_id(scsicmd);
504 
505 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
506 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
507 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
508 			fsa_dev_ptr->valid = 1;
509 			/* sense_key holds the current state of the spin-up */
510 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
511 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
512 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
513 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
514 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
515 			fsa_dev_ptr->size
516 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
517 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
518 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
519 		}
520 		if ((fsa_dev_ptr->valid & 1) == 0)
521 			fsa_dev_ptr->valid = 0;
522 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
523 	}
524 	aac_fib_complete(fibptr);
525 	aac_fib_free(fibptr);
526 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
527 	scsicmd->SCp.ptr = NULL;
528 	(*callback)(scsicmd);
529 	return;
530 }
531 
532 static void _aac_probe_container1(void * context, struct fib * fibptr)
533 {
534 	struct scsi_cmnd * scsicmd;
535 	struct aac_mount * dresp;
536 	struct aac_query_mount *dinfo;
537 	int status;
538 
539 	dresp = (struct aac_mount *) fib_data(fibptr);
540 	dresp->mnt[0].capacityhigh = 0;
541 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
542 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
543 		_aac_probe_container2(context, fibptr);
544 		return;
545 	}
546 	scsicmd = (struct scsi_cmnd *) context;
547 
548 	if (!aac_valid_context(scsicmd, fibptr))
549 		return;
550 
551 	aac_fib_init(fibptr);
552 
553 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
554 
555 	dinfo->command = cpu_to_le32(VM_NameServe64);
556 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
557 	dinfo->type = cpu_to_le32(FT_FILESYS);
558 
559 	status = aac_fib_send(ContainerCommand,
560 			  fibptr,
561 			  sizeof(struct aac_query_mount),
562 			  FsaNormal,
563 			  0, 1,
564 			  _aac_probe_container2,
565 			  (void *) scsicmd);
566 	/*
567 	 *	Check that the command queued to the controller
568 	 */
569 	if (status == -EINPROGRESS)
570 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
571 	else if (status < 0) {
572 		/* Inherit results from VM_NameServe, if any */
573 		dresp->status = cpu_to_le32(ST_OK);
574 		_aac_probe_container2(context, fibptr);
575 	}
576 }
577 
578 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
579 {
580 	struct fib * fibptr;
581 	int status = -ENOMEM;
582 
583 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
584 		struct aac_query_mount *dinfo;
585 
586 		aac_fib_init(fibptr);
587 
588 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
589 
590 		dinfo->command = cpu_to_le32(VM_NameServe);
591 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
592 		dinfo->type = cpu_to_le32(FT_FILESYS);
593 		scsicmd->SCp.ptr = (char *)callback;
594 
595 		status = aac_fib_send(ContainerCommand,
596 			  fibptr,
597 			  sizeof(struct aac_query_mount),
598 			  FsaNormal,
599 			  0, 1,
600 			  _aac_probe_container1,
601 			  (void *) scsicmd);
602 		/*
603 		 *	Check that the command queued to the controller
604 		 */
605 		if (status == -EINPROGRESS) {
606 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
607 			return 0;
608 		}
609 		if (status < 0) {
610 			scsicmd->SCp.ptr = NULL;
611 			aac_fib_complete(fibptr);
612 			aac_fib_free(fibptr);
613 		}
614 	}
615 	if (status < 0) {
616 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
617 		if (fsa_dev_ptr) {
618 			fsa_dev_ptr += scmd_id(scsicmd);
619 			if ((fsa_dev_ptr->valid & 1) == 0) {
620 				fsa_dev_ptr->valid = 0;
621 				return (*callback)(scsicmd);
622 			}
623 		}
624 	}
625 	return status;
626 }
627 
628 /**
629  *	aac_probe_container		-	query a logical volume
630  *	@dev: device to query
631  *	@cid: container identifier
632  *
633  *	Queries the controller about the given volume. The volume information
634  *	is updated in the struct fsa_dev_info structure rather than returned.
635  */
636 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
637 {
638 	scsicmd->device = NULL;
639 	return 0;
640 }
641 
642 int aac_probe_container(struct aac_dev *dev, int cid)
643 {
644 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
645 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
646 	int status;
647 
648 	if (!scsicmd || !scsidev) {
649 		kfree(scsicmd);
650 		kfree(scsidev);
651 		return -ENOMEM;
652 	}
653 	scsicmd->list.next = NULL;
654 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
655 
656 	scsicmd->device = scsidev;
657 	scsidev->sdev_state = 0;
658 	scsidev->id = cid;
659 	scsidev->host = dev->scsi_host_ptr;
660 
661 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
662 		while (scsicmd->device == scsidev)
663 			schedule();
664 	kfree(scsidev);
665 	status = scsicmd->SCp.Status;
666 	kfree(scsicmd);
667 	return status;
668 }
669 
670 /* Local Structure to set SCSI inquiry data strings */
671 struct scsi_inq {
672 	char vid[8];         /* Vendor ID */
673 	char pid[16];        /* Product ID */
674 	char prl[4];         /* Product Revision Level */
675 };
676 
677 /**
678  *	InqStrCopy	-	string merge
679  *	@a:	string to copy from
680  *	@b:	string to copy to
681  *
682  *	Copy a String from one location to another
683  *	without copying \0
684  */
685 
686 static void inqstrcpy(char *a, char *b)
687 {
688 
689 	while (*a != (char)0)
690 		*b++ = *a++;
691 }
692 
693 static char *container_types[] = {
694 	"None",
695 	"Volume",
696 	"Mirror",
697 	"Stripe",
698 	"RAID5",
699 	"SSRW",
700 	"SSRO",
701 	"Morph",
702 	"Legacy",
703 	"RAID4",
704 	"RAID10",
705 	"RAID00",
706 	"V-MIRRORS",
707 	"PSEUDO R4",
708 	"RAID50",
709 	"RAID5D",
710 	"RAID5D0",
711 	"RAID1E",
712 	"RAID6",
713 	"RAID60",
714 	"Unknown"
715 };
716 
717 char * get_container_type(unsigned tindex)
718 {
719 	if (tindex >= ARRAY_SIZE(container_types))
720 		tindex = ARRAY_SIZE(container_types) - 1;
721 	return container_types[tindex];
722 }
723 
724 /* Function: setinqstr
725  *
726  * Arguments: [1] pointer to void [1] int
727  *
728  * Purpose: Sets SCSI inquiry data strings for vendor, product
729  * and revision level. Allows strings to be set in platform dependant
730  * files instead of in OS dependant driver source.
731  */
732 
733 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
734 {
735 	struct scsi_inq *str;
736 
737 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
738 	memset(str, ' ', sizeof(*str));
739 
740 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
741 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
742 		int c;
743 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
744 			inqstrcpy("SMC", str->vid);
745 		else {
746 			c = sizeof(str->vid);
747 			while (*cp && *cp != ' ' && --c)
748 				++cp;
749 			c = *cp;
750 			*cp = '\0';
751 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
752 				   str->vid);
753 			*cp = c;
754 			while (*cp && *cp != ' ')
755 				++cp;
756 		}
757 		while (*cp == ' ')
758 			++cp;
759 		/* last six chars reserved for vol type */
760 		c = 0;
761 		if (strlen(cp) > sizeof(str->pid)) {
762 			c = cp[sizeof(str->pid)];
763 			cp[sizeof(str->pid)] = '\0';
764 		}
765 		inqstrcpy (cp, str->pid);
766 		if (c)
767 			cp[sizeof(str->pid)] = c;
768 	} else {
769 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
770 
771 		inqstrcpy (mp->vname, str->vid);
772 		/* last six chars reserved for vol type */
773 		inqstrcpy (mp->model, str->pid);
774 	}
775 
776 	if (tindex < ARRAY_SIZE(container_types)){
777 		char *findit = str->pid;
778 
779 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
780 		/* RAID is superfluous in the context of a RAID device */
781 		if (memcmp(findit-4, "RAID", 4) == 0)
782 			*(findit -= 4) = ' ';
783 		if (((findit - str->pid) + strlen(container_types[tindex]))
784 		 < (sizeof(str->pid) + sizeof(str->prl)))
785 			inqstrcpy (container_types[tindex], findit + 1);
786 	}
787 	inqstrcpy ("V1.0", str->prl);
788 }
789 
790 static void get_container_serial_callback(void *context, struct fib * fibptr)
791 {
792 	struct aac_get_serial_resp * get_serial_reply;
793 	struct scsi_cmnd * scsicmd;
794 
795 	BUG_ON(fibptr == NULL);
796 
797 	scsicmd = (struct scsi_cmnd *) context;
798 	if (!aac_valid_context(scsicmd, fibptr))
799 		return;
800 
801 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
802 	/* Failure is irrelevant, using default value instead */
803 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
804 		char sp[13];
805 		/* EVPD bit set */
806 		sp[0] = INQD_PDT_DA;
807 		sp[1] = scsicmd->cmnd[2];
808 		sp[2] = 0;
809 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
810 		  le32_to_cpu(get_serial_reply->uid));
811 		scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
812 	}
813 
814 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
815 
816 	aac_fib_complete(fibptr);
817 	aac_fib_free(fibptr);
818 	scsicmd->scsi_done(scsicmd);
819 }
820 
821 /**
822  *	aac_get_container_serial - get container serial, none blocking.
823  */
824 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
825 {
826 	int status;
827 	struct aac_get_serial *dinfo;
828 	struct fib * cmd_fibcontext;
829 	struct aac_dev * dev;
830 
831 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
832 
833 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
834 		return -ENOMEM;
835 
836 	aac_fib_init(cmd_fibcontext);
837 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
838 
839 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
840 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
841 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
842 
843 	status = aac_fib_send(ContainerCommand,
844 		  cmd_fibcontext,
845 		  sizeof (struct aac_get_serial),
846 		  FsaNormal,
847 		  0, 1,
848 		  (fib_callback) get_container_serial_callback,
849 		  (void *) scsicmd);
850 
851 	/*
852 	 *	Check that the command queued to the controller
853 	 */
854 	if (status == -EINPROGRESS) {
855 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
856 		return 0;
857 	}
858 
859 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
860 	aac_fib_complete(cmd_fibcontext);
861 	aac_fib_free(cmd_fibcontext);
862 	return -1;
863 }
864 
865 /* Function: setinqserial
866  *
867  * Arguments: [1] pointer to void [1] int
868  *
869  * Purpose: Sets SCSI Unit Serial number.
870  *          This is a fake. We should read a proper
871  *          serial number from the container. <SuSE>But
872  *          without docs it's quite hard to do it :-)
873  *          So this will have to do in the meantime.</SuSE>
874  */
875 
876 static int setinqserial(struct aac_dev *dev, void *data, int cid)
877 {
878 	/*
879 	 *	This breaks array migration.
880 	 */
881 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
882 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
883 }
884 
885 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
886 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
887 {
888 	u8 *sense_buf = (u8 *)sense_data;
889 	/* Sense data valid, err code 70h */
890 	sense_buf[0] = 0x70; /* No info field */
891 	sense_buf[1] = 0;	/* Segment number, always zero */
892 
893 	sense_buf[2] = sense_key;	/* Sense key */
894 
895 	sense_buf[12] = sense_code;	/* Additional sense code */
896 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
897 
898 	if (sense_key == ILLEGAL_REQUEST) {
899 		sense_buf[7] = 10;	/* Additional sense length */
900 
901 		sense_buf[15] = bit_pointer;
902 		/* Illegal parameter is in the parameter block */
903 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
904 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
905 		/* Illegal parameter is in the CDB block */
906 		sense_buf[16] = field_pointer >> 8;	/* MSB */
907 		sense_buf[17] = field_pointer;		/* LSB */
908 	} else
909 		sense_buf[7] = 6;	/* Additional sense length */
910 }
911 
912 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
913 {
914 	if (lba & 0xffffffff00000000LL) {
915 		int cid = scmd_id(cmd);
916 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
917 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
918 			SAM_STAT_CHECK_CONDITION;
919 		set_sense(&dev->fsa_dev[cid].sense_data,
920 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
921 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
922 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
923 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
924 			     SCSI_SENSE_BUFFERSIZE));
925 		cmd->scsi_done(cmd);
926 		return 1;
927 	}
928 	return 0;
929 }
930 
931 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
932 {
933 	return 0;
934 }
935 
936 static void io_callback(void *context, struct fib * fibptr);
937 
938 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
939 {
940 	u16 fibsize;
941 	struct aac_raw_io *readcmd;
942 	aac_fib_init(fib);
943 	readcmd = (struct aac_raw_io *) fib_data(fib);
944 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
945 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
946 	readcmd->count = cpu_to_le32(count<<9);
947 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
948 	readcmd->flags = cpu_to_le16(IO_TYPE_READ);
949 	readcmd->bpTotal = 0;
950 	readcmd->bpComplete = 0;
951 
952 	aac_build_sgraw(cmd, &readcmd->sg);
953 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
954 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
955 	/*
956 	 *	Now send the Fib to the adapter
957 	 */
958 	return aac_fib_send(ContainerRawIo,
959 			  fib,
960 			  fibsize,
961 			  FsaNormal,
962 			  0, 1,
963 			  (fib_callback) io_callback,
964 			  (void *) cmd);
965 }
966 
967 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
968 {
969 	u16 fibsize;
970 	struct aac_read64 *readcmd;
971 	aac_fib_init(fib);
972 	readcmd = (struct aac_read64 *) fib_data(fib);
973 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
974 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
975 	readcmd->sector_count = cpu_to_le16(count);
976 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
977 	readcmd->pad   = 0;
978 	readcmd->flags = 0;
979 
980 	aac_build_sg64(cmd, &readcmd->sg);
981 	fibsize = sizeof(struct aac_read64) +
982 		((le32_to_cpu(readcmd->sg.count) - 1) *
983 		 sizeof (struct sgentry64));
984 	BUG_ON (fibsize > (fib->dev->max_fib_size -
985 				sizeof(struct aac_fibhdr)));
986 	/*
987 	 *	Now send the Fib to the adapter
988 	 */
989 	return aac_fib_send(ContainerCommand64,
990 			  fib,
991 			  fibsize,
992 			  FsaNormal,
993 			  0, 1,
994 			  (fib_callback) io_callback,
995 			  (void *) cmd);
996 }
997 
998 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
999 {
1000 	u16 fibsize;
1001 	struct aac_read *readcmd;
1002 	aac_fib_init(fib);
1003 	readcmd = (struct aac_read *) fib_data(fib);
1004 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1005 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1006 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1007 	readcmd->count = cpu_to_le32(count * 512);
1008 
1009 	aac_build_sg(cmd, &readcmd->sg);
1010 	fibsize = sizeof(struct aac_read) +
1011 			((le32_to_cpu(readcmd->sg.count) - 1) *
1012 			 sizeof (struct sgentry));
1013 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1014 				sizeof(struct aac_fibhdr)));
1015 	/*
1016 	 *	Now send the Fib to the adapter
1017 	 */
1018 	return aac_fib_send(ContainerCommand,
1019 			  fib,
1020 			  fibsize,
1021 			  FsaNormal,
1022 			  0, 1,
1023 			  (fib_callback) io_callback,
1024 			  (void *) cmd);
1025 }
1026 
1027 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1028 {
1029 	u16 fibsize;
1030 	struct aac_raw_io *writecmd;
1031 	aac_fib_init(fib);
1032 	writecmd = (struct aac_raw_io *) fib_data(fib);
1033 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1034 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1035 	writecmd->count = cpu_to_le32(count<<9);
1036 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1037 	writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1038 	  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1039 		cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1040 		cpu_to_le16(IO_TYPE_WRITE);
1041 	writecmd->bpTotal = 0;
1042 	writecmd->bpComplete = 0;
1043 
1044 	aac_build_sgraw(cmd, &writecmd->sg);
1045 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1046 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1047 	/*
1048 	 *	Now send the Fib to the adapter
1049 	 */
1050 	return aac_fib_send(ContainerRawIo,
1051 			  fib,
1052 			  fibsize,
1053 			  FsaNormal,
1054 			  0, 1,
1055 			  (fib_callback) io_callback,
1056 			  (void *) cmd);
1057 }
1058 
1059 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1060 {
1061 	u16 fibsize;
1062 	struct aac_write64 *writecmd;
1063 	aac_fib_init(fib);
1064 	writecmd = (struct aac_write64 *) fib_data(fib);
1065 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1066 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1067 	writecmd->sector_count = cpu_to_le16(count);
1068 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1069 	writecmd->pad	= 0;
1070 	writecmd->flags	= 0;
1071 
1072 	aac_build_sg64(cmd, &writecmd->sg);
1073 	fibsize = sizeof(struct aac_write64) +
1074 		((le32_to_cpu(writecmd->sg.count) - 1) *
1075 		 sizeof (struct sgentry64));
1076 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1077 				sizeof(struct aac_fibhdr)));
1078 	/*
1079 	 *	Now send the Fib to the adapter
1080 	 */
1081 	return aac_fib_send(ContainerCommand64,
1082 			  fib,
1083 			  fibsize,
1084 			  FsaNormal,
1085 			  0, 1,
1086 			  (fib_callback) io_callback,
1087 			  (void *) cmd);
1088 }
1089 
1090 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1091 {
1092 	u16 fibsize;
1093 	struct aac_write *writecmd;
1094 	aac_fib_init(fib);
1095 	writecmd = (struct aac_write *) fib_data(fib);
1096 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1097 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1098 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1099 	writecmd->count = cpu_to_le32(count * 512);
1100 	writecmd->sg.count = cpu_to_le32(1);
1101 	/* ->stable is not used - it did mean which type of write */
1102 
1103 	aac_build_sg(cmd, &writecmd->sg);
1104 	fibsize = sizeof(struct aac_write) +
1105 		((le32_to_cpu(writecmd->sg.count) - 1) *
1106 		 sizeof (struct sgentry));
1107 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1108 				sizeof(struct aac_fibhdr)));
1109 	/*
1110 	 *	Now send the Fib to the adapter
1111 	 */
1112 	return aac_fib_send(ContainerCommand,
1113 			  fib,
1114 			  fibsize,
1115 			  FsaNormal,
1116 			  0, 1,
1117 			  (fib_callback) io_callback,
1118 			  (void *) cmd);
1119 }
1120 
1121 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1122 {
1123 	struct aac_srb * srbcmd;
1124 	u32 flag;
1125 	u32 timeout;
1126 
1127 	aac_fib_init(fib);
1128 	switch(cmd->sc_data_direction){
1129 	case DMA_TO_DEVICE:
1130 		flag = SRB_DataOut;
1131 		break;
1132 	case DMA_BIDIRECTIONAL:
1133 		flag = SRB_DataIn | SRB_DataOut;
1134 		break;
1135 	case DMA_FROM_DEVICE:
1136 		flag = SRB_DataIn;
1137 		break;
1138 	case DMA_NONE:
1139 	default:	/* shuts up some versions of gcc */
1140 		flag = SRB_NoDataXfer;
1141 		break;
1142 	}
1143 
1144 	srbcmd = (struct aac_srb*) fib_data(fib);
1145 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1146 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1147 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1148 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1149 	srbcmd->flags    = cpu_to_le32(flag);
1150 	timeout = cmd->request->timeout/HZ;
1151 	if (timeout == 0)
1152 		timeout = 1;
1153 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1154 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1155 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1156 	return srbcmd;
1157 }
1158 
1159 static void aac_srb_callback(void *context, struct fib * fibptr);
1160 
1161 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1162 {
1163 	u16 fibsize;
1164 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1165 
1166 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1167 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1168 
1169 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1170 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1171 	/*
1172 	 *	Build Scatter/Gather list
1173 	 */
1174 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1175 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1176 		 sizeof (struct sgentry64));
1177 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1178 				sizeof(struct aac_fibhdr)));
1179 
1180 	/*
1181 	 *	Now send the Fib to the adapter
1182 	 */
1183 	return aac_fib_send(ScsiPortCommand64, fib,
1184 				fibsize, FsaNormal, 0, 1,
1185 				  (fib_callback) aac_srb_callback,
1186 				  (void *) cmd);
1187 }
1188 
1189 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1190 {
1191 	u16 fibsize;
1192 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1193 
1194 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1195 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1196 
1197 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1198 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1199 	/*
1200 	 *	Build Scatter/Gather list
1201 	 */
1202 	fibsize = sizeof (struct aac_srb) +
1203 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1204 		 sizeof (struct sgentry));
1205 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1206 				sizeof(struct aac_fibhdr)));
1207 
1208 	/*
1209 	 *	Now send the Fib to the adapter
1210 	 */
1211 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1212 				  (fib_callback) aac_srb_callback, (void *) cmd);
1213 }
1214 
1215 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1216 {
1217 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1218 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1219 		return FAILED;
1220 	return aac_scsi_32(fib, cmd);
1221 }
1222 
1223 int aac_get_adapter_info(struct aac_dev* dev)
1224 {
1225 	struct fib* fibptr;
1226 	int rcode;
1227 	u32 tmp;
1228 	struct aac_adapter_info *info;
1229 	struct aac_bus_info *command;
1230 	struct aac_bus_info_response *bus_info;
1231 
1232 	if (!(fibptr = aac_fib_alloc(dev)))
1233 		return -ENOMEM;
1234 
1235 	aac_fib_init(fibptr);
1236 	info = (struct aac_adapter_info *) fib_data(fibptr);
1237 	memset(info,0,sizeof(*info));
1238 
1239 	rcode = aac_fib_send(RequestAdapterInfo,
1240 			 fibptr,
1241 			 sizeof(*info),
1242 			 FsaNormal,
1243 			 -1, 1, /* First `interrupt' command uses special wait */
1244 			 NULL,
1245 			 NULL);
1246 
1247 	if (rcode < 0) {
1248 		aac_fib_complete(fibptr);
1249 		aac_fib_free(fibptr);
1250 		return rcode;
1251 	}
1252 	memcpy(&dev->adapter_info, info, sizeof(*info));
1253 
1254 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1255 		struct aac_supplement_adapter_info * sinfo;
1256 
1257 		aac_fib_init(fibptr);
1258 
1259 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1260 
1261 		memset(sinfo,0,sizeof(*sinfo));
1262 
1263 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1264 				 fibptr,
1265 				 sizeof(*sinfo),
1266 				 FsaNormal,
1267 				 1, 1,
1268 				 NULL,
1269 				 NULL);
1270 
1271 		if (rcode >= 0)
1272 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1273 	}
1274 
1275 
1276 	/*
1277 	 * GetBusInfo
1278 	 */
1279 
1280 	aac_fib_init(fibptr);
1281 
1282 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1283 
1284 	memset(bus_info, 0, sizeof(*bus_info));
1285 
1286 	command = (struct aac_bus_info *)bus_info;
1287 
1288 	command->Command = cpu_to_le32(VM_Ioctl);
1289 	command->ObjType = cpu_to_le32(FT_DRIVE);
1290 	command->MethodId = cpu_to_le32(1);
1291 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1292 
1293 	rcode = aac_fib_send(ContainerCommand,
1294 			 fibptr,
1295 			 sizeof (*bus_info),
1296 			 FsaNormal,
1297 			 1, 1,
1298 			 NULL, NULL);
1299 
1300 	/* reasoned default */
1301 	dev->maximum_num_physicals = 16;
1302 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1303 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1304 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1305 	}
1306 
1307 	if (!dev->in_reset) {
1308 		char buffer[16];
1309 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1310 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1311 			dev->name,
1312 			dev->id,
1313 			tmp>>24,
1314 			(tmp>>16)&0xff,
1315 			tmp&0xff,
1316 			le32_to_cpu(dev->adapter_info.kernelbuild),
1317 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1318 			dev->supplement_adapter_info.BuildDate);
1319 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1320 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1321 			dev->name, dev->id,
1322 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1323 			le32_to_cpu(dev->adapter_info.monitorbuild));
1324 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1325 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1326 			dev->name, dev->id,
1327 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1328 			le32_to_cpu(dev->adapter_info.biosbuild));
1329 		buffer[0] = '\0';
1330 		if (aac_get_serial_number(
1331 		  shost_to_class(dev->scsi_host_ptr), buffer))
1332 			printk(KERN_INFO "%s%d: serial %s",
1333 			  dev->name, dev->id, buffer);
1334 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1335 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1336 			  dev->name, dev->id,
1337 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1338 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1339 		}
1340 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1341 		  (dev->supplement_adapter_info.SupportedOptions2 &
1342 		  AAC_OPTION_IGNORE_RESET))) {
1343 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1344 			  dev->name, dev->id);
1345 		}
1346 	}
1347 
1348 	dev->cache_protected = 0;
1349 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1350 		AAC_FEATURE_JBOD) != 0);
1351 	dev->nondasd_support = 0;
1352 	dev->raid_scsi_mode = 0;
1353 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1354 		dev->nondasd_support = 1;
1355 
1356 	/*
1357 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1358 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1359 	 * force nondasd support on. If we decide to allow the non-dasd flag
1360 	 * additional changes changes will have to be made to support
1361 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1362 	 * changed to support the new dev->raid_scsi_mode flag instead of
1363 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1364 	 * function aac_detect will have to be modified where it sets up the
1365 	 * max number of channels based on the aac->nondasd_support flag only.
1366 	 */
1367 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1368 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1369 		dev->nondasd_support = 1;
1370 		dev->raid_scsi_mode = 1;
1371 	}
1372 	if (dev->raid_scsi_mode != 0)
1373 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1374 				dev->name, dev->id);
1375 
1376 	if (nondasd != -1)
1377 		dev->nondasd_support = (nondasd!=0);
1378 	if (dev->nondasd_support && !dev->in_reset)
1379 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1380 
1381 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1382 		dev->needs_dac = 1;
1383 	dev->dac_support = 0;
1384 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1385 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1386 		if (!dev->in_reset)
1387 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1388 				dev->name, dev->id);
1389 		dev->dac_support = 1;
1390 	}
1391 
1392 	if(dacmode != -1) {
1393 		dev->dac_support = (dacmode!=0);
1394 	}
1395 
1396 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1397 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
1398 		& AAC_QUIRK_SCSI_32)) {
1399 		dev->nondasd_support = 0;
1400 		dev->jbod = 0;
1401 		expose_physicals = 0;
1402 	}
1403 
1404 	if(dev->dac_support != 0) {
1405 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1406 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1407 			if (!dev->in_reset)
1408 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1409 					dev->name, dev->id);
1410 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1411 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1412 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1413 				dev->name, dev->id);
1414 			dev->dac_support = 0;
1415 		} else {
1416 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1417 				dev->name, dev->id);
1418 			rcode = -ENOMEM;
1419 		}
1420 	}
1421 	/*
1422 	 * Deal with configuring for the individualized limits of each packet
1423 	 * interface.
1424 	 */
1425 	dev->a_ops.adapter_scsi = (dev->dac_support)
1426 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1427 				? aac_scsi_32_64
1428 				: aac_scsi_64)
1429 				: aac_scsi_32;
1430 	if (dev->raw_io_interface) {
1431 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1432 					? aac_bounds_64
1433 					: aac_bounds_32;
1434 		dev->a_ops.adapter_read = aac_read_raw_io;
1435 		dev->a_ops.adapter_write = aac_write_raw_io;
1436 	} else {
1437 		dev->a_ops.adapter_bounds = aac_bounds_32;
1438 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1439 			sizeof(struct aac_fibhdr) -
1440 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1441 				sizeof(struct sgentry);
1442 		if (dev->dac_support) {
1443 			dev->a_ops.adapter_read = aac_read_block64;
1444 			dev->a_ops.adapter_write = aac_write_block64;
1445 			/*
1446 			 * 38 scatter gather elements
1447 			 */
1448 			dev->scsi_host_ptr->sg_tablesize =
1449 				(dev->max_fib_size -
1450 				sizeof(struct aac_fibhdr) -
1451 				sizeof(struct aac_write64) +
1452 				sizeof(struct sgentry64)) /
1453 					sizeof(struct sgentry64);
1454 		} else {
1455 			dev->a_ops.adapter_read = aac_read_block;
1456 			dev->a_ops.adapter_write = aac_write_block;
1457 		}
1458 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1459 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1460 			/*
1461 			 * Worst case size that could cause sg overflow when
1462 			 * we break up SG elements that are larger than 64KB.
1463 			 * Would be nice if we could tell the SCSI layer what
1464 			 * the maximum SG element size can be. Worst case is
1465 			 * (sg_tablesize-1) 4KB elements with one 64KB
1466 			 * element.
1467 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1468 			 */
1469 			dev->scsi_host_ptr->max_sectors =
1470 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1471 		}
1472 	}
1473 
1474 	aac_fib_complete(fibptr);
1475 	aac_fib_free(fibptr);
1476 
1477 	return rcode;
1478 }
1479 
1480 
1481 static void io_callback(void *context, struct fib * fibptr)
1482 {
1483 	struct aac_dev *dev;
1484 	struct aac_read_reply *readreply;
1485 	struct scsi_cmnd *scsicmd;
1486 	u32 cid;
1487 
1488 	scsicmd = (struct scsi_cmnd *) context;
1489 
1490 	if (!aac_valid_context(scsicmd, fibptr))
1491 		return;
1492 
1493 	dev = fibptr->dev;
1494 	cid = scmd_id(scsicmd);
1495 
1496 	if (nblank(dprintk(x))) {
1497 		u64 lba;
1498 		switch (scsicmd->cmnd[0]) {
1499 		case WRITE_6:
1500 		case READ_6:
1501 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1502 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1503 			break;
1504 		case WRITE_16:
1505 		case READ_16:
1506 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1507 			      ((u64)scsicmd->cmnd[3] << 48) |
1508 			      ((u64)scsicmd->cmnd[4] << 40) |
1509 			      ((u64)scsicmd->cmnd[5] << 32) |
1510 			      ((u64)scsicmd->cmnd[6] << 24) |
1511 			      (scsicmd->cmnd[7] << 16) |
1512 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1513 			break;
1514 		case WRITE_12:
1515 		case READ_12:
1516 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1517 			      (scsicmd->cmnd[3] << 16) |
1518 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1519 			break;
1520 		default:
1521 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1522 			       (scsicmd->cmnd[3] << 16) |
1523 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1524 			break;
1525 		}
1526 		printk(KERN_DEBUG
1527 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1528 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1529 	}
1530 
1531 	BUG_ON(fibptr == NULL);
1532 
1533 	scsi_dma_unmap(scsicmd);
1534 
1535 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1536 	switch (le32_to_cpu(readreply->status)) {
1537 	case ST_OK:
1538 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1539 			SAM_STAT_GOOD;
1540 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1541 		break;
1542 	case ST_NOT_READY:
1543 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1544 			SAM_STAT_CHECK_CONDITION;
1545 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1546 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1547 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1548 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1549 			     SCSI_SENSE_BUFFERSIZE));
1550 		break;
1551 	default:
1552 #ifdef AAC_DETAILED_STATUS_INFO
1553 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1554 		  le32_to_cpu(readreply->status));
1555 #endif
1556 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1557 			SAM_STAT_CHECK_CONDITION;
1558 		set_sense(&dev->fsa_dev[cid].sense_data,
1559 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1560 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1561 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1562 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1563 			     SCSI_SENSE_BUFFERSIZE));
1564 		break;
1565 	}
1566 	aac_fib_complete(fibptr);
1567 	aac_fib_free(fibptr);
1568 
1569 	scsicmd->scsi_done(scsicmd);
1570 }
1571 
1572 static int aac_read(struct scsi_cmnd * scsicmd)
1573 {
1574 	u64 lba;
1575 	u32 count;
1576 	int status;
1577 	struct aac_dev *dev;
1578 	struct fib * cmd_fibcontext;
1579 
1580 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1581 	/*
1582 	 *	Get block address and transfer length
1583 	 */
1584 	switch (scsicmd->cmnd[0]) {
1585 	case READ_6:
1586 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1587 
1588 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1589 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1590 		count = scsicmd->cmnd[4];
1591 
1592 		if (count == 0)
1593 			count = 256;
1594 		break;
1595 	case READ_16:
1596 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1597 
1598 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1599 			((u64)scsicmd->cmnd[3] << 48) |
1600 			((u64)scsicmd->cmnd[4] << 40) |
1601 			((u64)scsicmd->cmnd[5] << 32) |
1602 			((u64)scsicmd->cmnd[6] << 24) |
1603 			(scsicmd->cmnd[7] << 16) |
1604 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1605 		count = (scsicmd->cmnd[10] << 24) |
1606 			(scsicmd->cmnd[11] << 16) |
1607 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1608 		break;
1609 	case READ_12:
1610 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1611 
1612 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1613 			(scsicmd->cmnd[3] << 16) |
1614 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1615 		count = (scsicmd->cmnd[6] << 24) |
1616 			(scsicmd->cmnd[7] << 16) |
1617 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1618 		break;
1619 	default:
1620 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1621 
1622 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1623 			(scsicmd->cmnd[3] << 16) |
1624 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1625 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1626 		break;
1627 	}
1628 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1629 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1630 	if (aac_adapter_bounds(dev,scsicmd,lba))
1631 		return 0;
1632 	/*
1633 	 *	Alocate and initialize a Fib
1634 	 */
1635 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1636 		return -1;
1637 	}
1638 
1639 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1640 
1641 	/*
1642 	 *	Check that the command queued to the controller
1643 	 */
1644 	if (status == -EINPROGRESS) {
1645 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1646 		return 0;
1647 	}
1648 
1649 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1650 	/*
1651 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1652 	 */
1653 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1654 	scsicmd->scsi_done(scsicmd);
1655 	aac_fib_complete(cmd_fibcontext);
1656 	aac_fib_free(cmd_fibcontext);
1657 	return 0;
1658 }
1659 
1660 static int aac_write(struct scsi_cmnd * scsicmd)
1661 {
1662 	u64 lba;
1663 	u32 count;
1664 	int fua;
1665 	int status;
1666 	struct aac_dev *dev;
1667 	struct fib * cmd_fibcontext;
1668 
1669 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1670 	/*
1671 	 *	Get block address and transfer length
1672 	 */
1673 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1674 	{
1675 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1676 		count = scsicmd->cmnd[4];
1677 		if (count == 0)
1678 			count = 256;
1679 		fua = 0;
1680 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1681 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1682 
1683 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1684 			((u64)scsicmd->cmnd[3] << 48) |
1685 			((u64)scsicmd->cmnd[4] << 40) |
1686 			((u64)scsicmd->cmnd[5] << 32) |
1687 			((u64)scsicmd->cmnd[6] << 24) |
1688 			(scsicmd->cmnd[7] << 16) |
1689 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1690 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1691 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1692 		fua = scsicmd->cmnd[1] & 0x8;
1693 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1694 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1695 
1696 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1697 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1698 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1699 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1700 		fua = scsicmd->cmnd[1] & 0x8;
1701 	} else {
1702 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1703 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1704 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1705 		fua = scsicmd->cmnd[1] & 0x8;
1706 	}
1707 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1708 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1709 	if (aac_adapter_bounds(dev,scsicmd,lba))
1710 		return 0;
1711 	/*
1712 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1713 	 */
1714 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1715 		scsicmd->result = DID_ERROR << 16;
1716 		scsicmd->scsi_done(scsicmd);
1717 		return 0;
1718 	}
1719 
1720 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1721 
1722 	/*
1723 	 *	Check that the command queued to the controller
1724 	 */
1725 	if (status == -EINPROGRESS) {
1726 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1727 		return 0;
1728 	}
1729 
1730 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1731 	/*
1732 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1733 	 */
1734 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1735 	scsicmd->scsi_done(scsicmd);
1736 
1737 	aac_fib_complete(cmd_fibcontext);
1738 	aac_fib_free(cmd_fibcontext);
1739 	return 0;
1740 }
1741 
1742 static void synchronize_callback(void *context, struct fib *fibptr)
1743 {
1744 	struct aac_synchronize_reply *synchronizereply;
1745 	struct scsi_cmnd *cmd;
1746 
1747 	cmd = context;
1748 
1749 	if (!aac_valid_context(cmd, fibptr))
1750 		return;
1751 
1752 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1753 				smp_processor_id(), jiffies));
1754 	BUG_ON(fibptr == NULL);
1755 
1756 
1757 	synchronizereply = fib_data(fibptr);
1758 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1759 		cmd->result = DID_OK << 16 |
1760 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1761 	else {
1762 		struct scsi_device *sdev = cmd->device;
1763 		struct aac_dev *dev = fibptr->dev;
1764 		u32 cid = sdev_id(sdev);
1765 		printk(KERN_WARNING
1766 		     "synchronize_callback: synchronize failed, status = %d\n",
1767 		     le32_to_cpu(synchronizereply->status));
1768 		cmd->result = DID_OK << 16 |
1769 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1770 		set_sense(&dev->fsa_dev[cid].sense_data,
1771 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1772 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1773 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1774 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1775 			     SCSI_SENSE_BUFFERSIZE));
1776 	}
1777 
1778 	aac_fib_complete(fibptr);
1779 	aac_fib_free(fibptr);
1780 	cmd->scsi_done(cmd);
1781 }
1782 
1783 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1784 {
1785 	int status;
1786 	struct fib *cmd_fibcontext;
1787 	struct aac_synchronize *synchronizecmd;
1788 	struct scsi_cmnd *cmd;
1789 	struct scsi_device *sdev = scsicmd->device;
1790 	int active = 0;
1791 	struct aac_dev *aac;
1792 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1793 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1794 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1795 	unsigned long flags;
1796 
1797 	/*
1798 	 * Wait for all outstanding queued commands to complete to this
1799 	 * specific target (block).
1800 	 */
1801 	spin_lock_irqsave(&sdev->list_lock, flags);
1802 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1803 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1804 			u64 cmnd_lba;
1805 			u32 cmnd_count;
1806 
1807 			if (cmd->cmnd[0] == WRITE_6) {
1808 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1809 					(cmd->cmnd[2] << 8) |
1810 					cmd->cmnd[3];
1811 				cmnd_count = cmd->cmnd[4];
1812 				if (cmnd_count == 0)
1813 					cmnd_count = 256;
1814 			} else if (cmd->cmnd[0] == WRITE_16) {
1815 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1816 					((u64)cmd->cmnd[3] << 48) |
1817 					((u64)cmd->cmnd[4] << 40) |
1818 					((u64)cmd->cmnd[5] << 32) |
1819 					((u64)cmd->cmnd[6] << 24) |
1820 					(cmd->cmnd[7] << 16) |
1821 					(cmd->cmnd[8] << 8) |
1822 					cmd->cmnd[9];
1823 				cmnd_count = (cmd->cmnd[10] << 24) |
1824 					(cmd->cmnd[11] << 16) |
1825 					(cmd->cmnd[12] << 8) |
1826 					cmd->cmnd[13];
1827 			} else if (cmd->cmnd[0] == WRITE_12) {
1828 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1829 					(cmd->cmnd[3] << 16) |
1830 					(cmd->cmnd[4] << 8) |
1831 					cmd->cmnd[5];
1832 				cmnd_count = (cmd->cmnd[6] << 24) |
1833 					(cmd->cmnd[7] << 16) |
1834 					(cmd->cmnd[8] << 8) |
1835 					cmd->cmnd[9];
1836 			} else if (cmd->cmnd[0] == WRITE_10) {
1837 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1838 					(cmd->cmnd[3] << 16) |
1839 					(cmd->cmnd[4] << 8) |
1840 					cmd->cmnd[5];
1841 				cmnd_count = (cmd->cmnd[7] << 8) |
1842 					cmd->cmnd[8];
1843 			} else
1844 				continue;
1845 			if (((cmnd_lba + cmnd_count) < lba) ||
1846 			  (count && ((lba + count) < cmnd_lba)))
1847 				continue;
1848 			++active;
1849 			break;
1850 		}
1851 
1852 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1853 
1854 	/*
1855 	 *	Yield the processor (requeue for later)
1856 	 */
1857 	if (active)
1858 		return SCSI_MLQUEUE_DEVICE_BUSY;
1859 
1860 	aac = (struct aac_dev *)sdev->host->hostdata;
1861 	if (aac->in_reset)
1862 		return SCSI_MLQUEUE_HOST_BUSY;
1863 
1864 	/*
1865 	 *	Allocate and initialize a Fib
1866 	 */
1867 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1868 		return SCSI_MLQUEUE_HOST_BUSY;
1869 
1870 	aac_fib_init(cmd_fibcontext);
1871 
1872 	synchronizecmd = fib_data(cmd_fibcontext);
1873 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1874 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1875 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1876 	synchronizecmd->count =
1877 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1878 
1879 	/*
1880 	 *	Now send the Fib to the adapter
1881 	 */
1882 	status = aac_fib_send(ContainerCommand,
1883 		  cmd_fibcontext,
1884 		  sizeof(struct aac_synchronize),
1885 		  FsaNormal,
1886 		  0, 1,
1887 		  (fib_callback)synchronize_callback,
1888 		  (void *)scsicmd);
1889 
1890 	/*
1891 	 *	Check that the command queued to the controller
1892 	 */
1893 	if (status == -EINPROGRESS) {
1894 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1895 		return 0;
1896 	}
1897 
1898 	printk(KERN_WARNING
1899 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1900 	aac_fib_complete(cmd_fibcontext);
1901 	aac_fib_free(cmd_fibcontext);
1902 	return SCSI_MLQUEUE_HOST_BUSY;
1903 }
1904 
1905 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1906 {
1907 	struct scsi_cmnd *scsicmd = context;
1908 
1909 	if (!aac_valid_context(scsicmd, fibptr))
1910 		return;
1911 
1912 	BUG_ON(fibptr == NULL);
1913 
1914 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1915 
1916 	aac_fib_complete(fibptr);
1917 	aac_fib_free(fibptr);
1918 	scsicmd->scsi_done(scsicmd);
1919 }
1920 
1921 static int aac_start_stop(struct scsi_cmnd *scsicmd)
1922 {
1923 	int status;
1924 	struct fib *cmd_fibcontext;
1925 	struct aac_power_management *pmcmd;
1926 	struct scsi_device *sdev = scsicmd->device;
1927 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
1928 
1929 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
1930 	      AAC_OPTION_POWER_MANAGEMENT)) {
1931 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1932 				  SAM_STAT_GOOD;
1933 		scsicmd->scsi_done(scsicmd);
1934 		return 0;
1935 	}
1936 
1937 	if (aac->in_reset)
1938 		return SCSI_MLQUEUE_HOST_BUSY;
1939 
1940 	/*
1941 	 *	Allocate and initialize a Fib
1942 	 */
1943 	cmd_fibcontext = aac_fib_alloc(aac);
1944 	if (!cmd_fibcontext)
1945 		return SCSI_MLQUEUE_HOST_BUSY;
1946 
1947 	aac_fib_init(cmd_fibcontext);
1948 
1949 	pmcmd = fib_data(cmd_fibcontext);
1950 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
1951 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
1952 	/* Eject bit ignored, not relevant */
1953 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
1954 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
1955 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
1956 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
1957 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
1958 
1959 	/*
1960 	 *	Now send the Fib to the adapter
1961 	 */
1962 	status = aac_fib_send(ContainerCommand,
1963 		  cmd_fibcontext,
1964 		  sizeof(struct aac_power_management),
1965 		  FsaNormal,
1966 		  0, 1,
1967 		  (fib_callback)aac_start_stop_callback,
1968 		  (void *)scsicmd);
1969 
1970 	/*
1971 	 *	Check that the command queued to the controller
1972 	 */
1973 	if (status == -EINPROGRESS) {
1974 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1975 		return 0;
1976 	}
1977 
1978 	aac_fib_complete(cmd_fibcontext);
1979 	aac_fib_free(cmd_fibcontext);
1980 	return SCSI_MLQUEUE_HOST_BUSY;
1981 }
1982 
1983 /**
1984  *	aac_scsi_cmd()		-	Process SCSI command
1985  *	@scsicmd:		SCSI command block
1986  *
1987  *	Emulate a SCSI command and queue the required request for the
1988  *	aacraid firmware.
1989  */
1990 
1991 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1992 {
1993 	u32 cid;
1994 	struct Scsi_Host *host = scsicmd->device->host;
1995 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1996 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1997 
1998 	if (fsa_dev_ptr == NULL)
1999 		return -1;
2000 	/*
2001 	 *	If the bus, id or lun is out of range, return fail
2002 	 *	Test does not apply to ID 16, the pseudo id for the controller
2003 	 *	itself.
2004 	 */
2005 	cid = scmd_id(scsicmd);
2006 	if (cid != host->this_id) {
2007 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2008 			if((cid >= dev->maximum_num_containers) ||
2009 					(scsicmd->device->lun != 0)) {
2010 				scsicmd->result = DID_NO_CONNECT << 16;
2011 				scsicmd->scsi_done(scsicmd);
2012 				return 0;
2013 			}
2014 
2015 			/*
2016 			 *	If the target container doesn't exist, it may have
2017 			 *	been newly created
2018 			 */
2019 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2020 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2021 			   NOT_READY)) {
2022 				switch (scsicmd->cmnd[0]) {
2023 				case SERVICE_ACTION_IN:
2024 					if (!(dev->raw_io_interface) ||
2025 					    !(dev->raw_io_64) ||
2026 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2027 						break;
2028 				case INQUIRY:
2029 				case READ_CAPACITY:
2030 				case TEST_UNIT_READY:
2031 					if (dev->in_reset)
2032 						return -1;
2033 					return _aac_probe_container(scsicmd,
2034 							aac_probe_container_callback2);
2035 				default:
2036 					break;
2037 				}
2038 			}
2039 		} else {  /* check for physical non-dasd devices */
2040 			if (dev->nondasd_support || expose_physicals ||
2041 					dev->jbod) {
2042 				if (dev->in_reset)
2043 					return -1;
2044 				return aac_send_srb_fib(scsicmd);
2045 			} else {
2046 				scsicmd->result = DID_NO_CONNECT << 16;
2047 				scsicmd->scsi_done(scsicmd);
2048 				return 0;
2049 			}
2050 		}
2051 	}
2052 	/*
2053 	 * else Command for the controller itself
2054 	 */
2055 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2056 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2057 	{
2058 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2059 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2060 		set_sense(&dev->fsa_dev[cid].sense_data,
2061 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2062 		  ASENCODE_INVALID_COMMAND, 0, 0);
2063 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2064 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2065 			     SCSI_SENSE_BUFFERSIZE));
2066 		scsicmd->scsi_done(scsicmd);
2067 		return 0;
2068 	}
2069 
2070 
2071 	/* Handle commands here that don't really require going out to the adapter */
2072 	switch (scsicmd->cmnd[0]) {
2073 	case INQUIRY:
2074 	{
2075 		struct inquiry_data inq_data;
2076 
2077 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2078 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2079 
2080 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2081 			char *arr = (char *)&inq_data;
2082 
2083 			/* EVPD bit set */
2084 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2085 			  INQD_PDT_PROC : INQD_PDT_DA;
2086 			if (scsicmd->cmnd[2] == 0) {
2087 				/* supported vital product data pages */
2088 				arr[3] = 2;
2089 				arr[4] = 0x0;
2090 				arr[5] = 0x80;
2091 				arr[1] = scsicmd->cmnd[2];
2092 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2093 							 sizeof(inq_data));
2094 				scsicmd->result = DID_OK << 16 |
2095 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2096 			} else if (scsicmd->cmnd[2] == 0x80) {
2097 				/* unit serial number page */
2098 				arr[3] = setinqserial(dev, &arr[4],
2099 				  scmd_id(scsicmd));
2100 				arr[1] = scsicmd->cmnd[2];
2101 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2102 							 sizeof(inq_data));
2103 				if (aac_wwn != 2)
2104 					return aac_get_container_serial(
2105 						scsicmd);
2106 				/* SLES 10 SP1 special */
2107 				scsicmd->result = DID_OK << 16 |
2108 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2109 			} else {
2110 				/* vpd page not implemented */
2111 				scsicmd->result = DID_OK << 16 |
2112 				  COMMAND_COMPLETE << 8 |
2113 				  SAM_STAT_CHECK_CONDITION;
2114 				set_sense(&dev->fsa_dev[cid].sense_data,
2115 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2116 				  ASENCODE_NO_SENSE, 7, 2);
2117 				memcpy(scsicmd->sense_buffer,
2118 				  &dev->fsa_dev[cid].sense_data,
2119 				  min_t(size_t,
2120 					sizeof(dev->fsa_dev[cid].sense_data),
2121 					SCSI_SENSE_BUFFERSIZE));
2122 			}
2123 			scsicmd->scsi_done(scsicmd);
2124 			return 0;
2125 		}
2126 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2127 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2128 		inq_data.inqd_len = 31;
2129 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2130 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2131 		/*
2132 		 *	Set the Vendor, Product, and Revision Level
2133 		 *	see: <vendor>.c i.e. aac.c
2134 		 */
2135 		if (cid == host->this_id) {
2136 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2137 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2138 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2139 						 sizeof(inq_data));
2140 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2141 			scsicmd->scsi_done(scsicmd);
2142 			return 0;
2143 		}
2144 		if (dev->in_reset)
2145 			return -1;
2146 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2147 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2148 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2149 		return aac_get_container_name(scsicmd);
2150 	}
2151 	case SERVICE_ACTION_IN:
2152 		if (!(dev->raw_io_interface) ||
2153 		    !(dev->raw_io_64) ||
2154 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2155 			break;
2156 	{
2157 		u64 capacity;
2158 		char cp[13];
2159 		unsigned int alloc_len;
2160 
2161 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2162 		capacity = fsa_dev_ptr[cid].size - 1;
2163 		cp[0] = (capacity >> 56) & 0xff;
2164 		cp[1] = (capacity >> 48) & 0xff;
2165 		cp[2] = (capacity >> 40) & 0xff;
2166 		cp[3] = (capacity >> 32) & 0xff;
2167 		cp[4] = (capacity >> 24) & 0xff;
2168 		cp[5] = (capacity >> 16) & 0xff;
2169 		cp[6] = (capacity >> 8) & 0xff;
2170 		cp[7] = (capacity >> 0) & 0xff;
2171 		cp[8] = 0;
2172 		cp[9] = 0;
2173 		cp[10] = 2;
2174 		cp[11] = 0;
2175 		cp[12] = 0;
2176 
2177 		alloc_len = ((scsicmd->cmnd[10] << 24)
2178 			     + (scsicmd->cmnd[11] << 16)
2179 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2180 
2181 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2182 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2183 		if (alloc_len < scsi_bufflen(scsicmd))
2184 			scsi_set_resid(scsicmd,
2185 				       scsi_bufflen(scsicmd) - alloc_len);
2186 
2187 		/* Do not cache partition table for arrays */
2188 		scsicmd->device->removable = 1;
2189 
2190 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2191 		scsicmd->scsi_done(scsicmd);
2192 
2193 		return 0;
2194 	}
2195 
2196 	case READ_CAPACITY:
2197 	{
2198 		u32 capacity;
2199 		char cp[8];
2200 
2201 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2202 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2203 			capacity = fsa_dev_ptr[cid].size - 1;
2204 		else
2205 			capacity = (u32)-1;
2206 
2207 		cp[0] = (capacity >> 24) & 0xff;
2208 		cp[1] = (capacity >> 16) & 0xff;
2209 		cp[2] = (capacity >> 8) & 0xff;
2210 		cp[3] = (capacity >> 0) & 0xff;
2211 		cp[4] = 0;
2212 		cp[5] = 0;
2213 		cp[6] = 2;
2214 		cp[7] = 0;
2215 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2216 		/* Do not cache partition table for arrays */
2217 		scsicmd->device->removable = 1;
2218 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2219 		  SAM_STAT_GOOD;
2220 		scsicmd->scsi_done(scsicmd);
2221 
2222 		return 0;
2223 	}
2224 
2225 	case MODE_SENSE:
2226 	{
2227 		char mode_buf[7];
2228 		int mode_buf_length = 4;
2229 
2230 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2231 		mode_buf[0] = 3;	/* Mode data length */
2232 		mode_buf[1] = 0;	/* Medium type - default */
2233 		mode_buf[2] = 0;	/* Device-specific param,
2234 					   bit 8: 0/1 = write enabled/protected
2235 					   bit 4: 0/1 = FUA enabled */
2236 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2237 			mode_buf[2] = 0x10;
2238 		mode_buf[3] = 0;	/* Block descriptor length */
2239 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2240 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2241 			mode_buf[0] = 6;
2242 			mode_buf[4] = 8;
2243 			mode_buf[5] = 1;
2244 			mode_buf[6] = ((aac_cache & 6) == 2)
2245 				? 0 : 0x04; /* WCE */
2246 			mode_buf_length = 7;
2247 			if (mode_buf_length > scsicmd->cmnd[4])
2248 				mode_buf_length = scsicmd->cmnd[4];
2249 		}
2250 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2251 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2252 		scsicmd->scsi_done(scsicmd);
2253 
2254 		return 0;
2255 	}
2256 	case MODE_SENSE_10:
2257 	{
2258 		char mode_buf[11];
2259 		int mode_buf_length = 8;
2260 
2261 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2262 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2263 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2264 		mode_buf[2] = 0;	/* Medium type - default */
2265 		mode_buf[3] = 0;	/* Device-specific param,
2266 					   bit 8: 0/1 = write enabled/protected
2267 					   bit 4: 0/1 = FUA enabled */
2268 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2269 			mode_buf[3] = 0x10;
2270 		mode_buf[4] = 0;	/* reserved */
2271 		mode_buf[5] = 0;	/* reserved */
2272 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2273 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2274 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2275 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2276 			mode_buf[1] = 9;
2277 			mode_buf[8] = 8;
2278 			mode_buf[9] = 1;
2279 			mode_buf[10] = ((aac_cache & 6) == 2)
2280 				? 0 : 0x04; /* WCE */
2281 			mode_buf_length = 11;
2282 			if (mode_buf_length > scsicmd->cmnd[8])
2283 				mode_buf_length = scsicmd->cmnd[8];
2284 		}
2285 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2286 
2287 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2288 		scsicmd->scsi_done(scsicmd);
2289 
2290 		return 0;
2291 	}
2292 	case REQUEST_SENSE:
2293 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2294 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2295 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2296 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2297 		scsicmd->scsi_done(scsicmd);
2298 		return 0;
2299 
2300 	case ALLOW_MEDIUM_REMOVAL:
2301 		dprintk((KERN_DEBUG "LOCK command.\n"));
2302 		if (scsicmd->cmnd[4])
2303 			fsa_dev_ptr[cid].locked = 1;
2304 		else
2305 			fsa_dev_ptr[cid].locked = 0;
2306 
2307 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2308 		scsicmd->scsi_done(scsicmd);
2309 		return 0;
2310 	/*
2311 	 *	These commands are all No-Ops
2312 	 */
2313 	case TEST_UNIT_READY:
2314 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2315 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2316 				SAM_STAT_CHECK_CONDITION;
2317 			set_sense(&dev->fsa_dev[cid].sense_data,
2318 				  NOT_READY, SENCODE_BECOMING_READY,
2319 				  ASENCODE_BECOMING_READY, 0, 0);
2320 			memcpy(scsicmd->sense_buffer,
2321 			       &dev->fsa_dev[cid].sense_data,
2322 			       min_t(size_t,
2323 				     sizeof(dev->fsa_dev[cid].sense_data),
2324 				     SCSI_SENSE_BUFFERSIZE));
2325 			scsicmd->scsi_done(scsicmd);
2326 			return 0;
2327 		}
2328 		/* FALLTHRU */
2329 	case RESERVE:
2330 	case RELEASE:
2331 	case REZERO_UNIT:
2332 	case REASSIGN_BLOCKS:
2333 	case SEEK_10:
2334 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2335 		scsicmd->scsi_done(scsicmd);
2336 		return 0;
2337 
2338 	case START_STOP:
2339 		return aac_start_stop(scsicmd);
2340 	}
2341 
2342 	switch (scsicmd->cmnd[0])
2343 	{
2344 		case READ_6:
2345 		case READ_10:
2346 		case READ_12:
2347 		case READ_16:
2348 			if (dev->in_reset)
2349 				return -1;
2350 			/*
2351 			 *	Hack to keep track of ordinal number of the device that
2352 			 *	corresponds to a container. Needed to convert
2353 			 *	containers to /dev/sd device names
2354 			 */
2355 
2356 			if (scsicmd->request->rq_disk)
2357 				strlcpy(fsa_dev_ptr[cid].devname,
2358 				scsicmd->request->rq_disk->disk_name,
2359 				min(sizeof(fsa_dev_ptr[cid].devname),
2360 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2361 
2362 			return aac_read(scsicmd);
2363 
2364 		case WRITE_6:
2365 		case WRITE_10:
2366 		case WRITE_12:
2367 		case WRITE_16:
2368 			if (dev->in_reset)
2369 				return -1;
2370 			return aac_write(scsicmd);
2371 
2372 		case SYNCHRONIZE_CACHE:
2373 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2374 				scsicmd->result = DID_OK << 16 |
2375 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2376 				scsicmd->scsi_done(scsicmd);
2377 				return 0;
2378 			}
2379 			/* Issue FIB to tell Firmware to flush it's cache */
2380 			if ((aac_cache & 6) != 2)
2381 				return aac_synchronize(scsicmd);
2382 			/* FALLTHRU */
2383 		default:
2384 			/*
2385 			 *	Unhandled commands
2386 			 */
2387 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2388 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2389 			set_sense(&dev->fsa_dev[cid].sense_data,
2390 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2391 			  ASENCODE_INVALID_COMMAND, 0, 0);
2392 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2393 				min_t(size_t,
2394 				      sizeof(dev->fsa_dev[cid].sense_data),
2395 				      SCSI_SENSE_BUFFERSIZE));
2396 			scsicmd->scsi_done(scsicmd);
2397 			return 0;
2398 	}
2399 }
2400 
2401 static int query_disk(struct aac_dev *dev, void __user *arg)
2402 {
2403 	struct aac_query_disk qd;
2404 	struct fsa_dev_info *fsa_dev_ptr;
2405 
2406 	fsa_dev_ptr = dev->fsa_dev;
2407 	if (!fsa_dev_ptr)
2408 		return -EBUSY;
2409 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2410 		return -EFAULT;
2411 	if (qd.cnum == -1)
2412 		qd.cnum = qd.id;
2413 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2414 	{
2415 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2416 			return -EINVAL;
2417 		qd.instance = dev->scsi_host_ptr->host_no;
2418 		qd.bus = 0;
2419 		qd.id = CONTAINER_TO_ID(qd.cnum);
2420 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2421 	}
2422 	else return -EINVAL;
2423 
2424 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2425 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2426 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2427 
2428 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2429 		qd.unmapped = 1;
2430 	else
2431 		qd.unmapped = 0;
2432 
2433 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2434 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2435 
2436 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2437 		return -EFAULT;
2438 	return 0;
2439 }
2440 
2441 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2442 {
2443 	struct aac_delete_disk dd;
2444 	struct fsa_dev_info *fsa_dev_ptr;
2445 
2446 	fsa_dev_ptr = dev->fsa_dev;
2447 	if (!fsa_dev_ptr)
2448 		return -EBUSY;
2449 
2450 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2451 		return -EFAULT;
2452 
2453 	if (dd.cnum >= dev->maximum_num_containers)
2454 		return -EINVAL;
2455 	/*
2456 	 *	Mark this container as being deleted.
2457 	 */
2458 	fsa_dev_ptr[dd.cnum].deleted = 1;
2459 	/*
2460 	 *	Mark the container as no longer valid
2461 	 */
2462 	fsa_dev_ptr[dd.cnum].valid = 0;
2463 	return 0;
2464 }
2465 
2466 static int delete_disk(struct aac_dev *dev, void __user *arg)
2467 {
2468 	struct aac_delete_disk dd;
2469 	struct fsa_dev_info *fsa_dev_ptr;
2470 
2471 	fsa_dev_ptr = dev->fsa_dev;
2472 	if (!fsa_dev_ptr)
2473 		return -EBUSY;
2474 
2475 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2476 		return -EFAULT;
2477 
2478 	if (dd.cnum >= dev->maximum_num_containers)
2479 		return -EINVAL;
2480 	/*
2481 	 *	If the container is locked, it can not be deleted by the API.
2482 	 */
2483 	if (fsa_dev_ptr[dd.cnum].locked)
2484 		return -EBUSY;
2485 	else {
2486 		/*
2487 		 *	Mark the container as no longer being valid.
2488 		 */
2489 		fsa_dev_ptr[dd.cnum].valid = 0;
2490 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2491 		return 0;
2492 	}
2493 }
2494 
2495 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2496 {
2497 	switch (cmd) {
2498 	case FSACTL_QUERY_DISK:
2499 		return query_disk(dev, arg);
2500 	case FSACTL_DELETE_DISK:
2501 		return delete_disk(dev, arg);
2502 	case FSACTL_FORCE_DELETE_DISK:
2503 		return force_delete_disk(dev, arg);
2504 	case FSACTL_GET_CONTAINERS:
2505 		return aac_get_containers(dev);
2506 	default:
2507 		return -ENOTTY;
2508 	}
2509 }
2510 
2511 /**
2512  *
2513  * aac_srb_callback
2514  * @context: the context set in the fib - here it is scsi cmd
2515  * @fibptr: pointer to the fib
2516  *
2517  * Handles the completion of a scsi command to a non dasd device
2518  *
2519  */
2520 
2521 static void aac_srb_callback(void *context, struct fib * fibptr)
2522 {
2523 	struct aac_dev *dev;
2524 	struct aac_srb_reply *srbreply;
2525 	struct scsi_cmnd *scsicmd;
2526 
2527 	scsicmd = (struct scsi_cmnd *) context;
2528 
2529 	if (!aac_valid_context(scsicmd, fibptr))
2530 		return;
2531 
2532 	BUG_ON(fibptr == NULL);
2533 
2534 	dev = fibptr->dev;
2535 
2536 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2537 
2538 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2539 	/*
2540 	 *	Calculate resid for sg
2541 	 */
2542 
2543 	scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2544 		       - le32_to_cpu(srbreply->data_xfer_length));
2545 
2546 	scsi_dma_unmap(scsicmd);
2547 
2548 	/*
2549 	 * First check the fib status
2550 	 */
2551 
2552 	if (le32_to_cpu(srbreply->status) != ST_OK){
2553 		int len;
2554 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2555 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2556 			    SCSI_SENSE_BUFFERSIZE);
2557 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2558 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2559 	}
2560 
2561 	/*
2562 	 * Next check the srb status
2563 	 */
2564 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2565 	case SRB_STATUS_ERROR_RECOVERY:
2566 	case SRB_STATUS_PENDING:
2567 	case SRB_STATUS_SUCCESS:
2568 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2569 		break;
2570 	case SRB_STATUS_DATA_OVERRUN:
2571 		switch(scsicmd->cmnd[0]){
2572 		case  READ_6:
2573 		case  WRITE_6:
2574 		case  READ_10:
2575 		case  WRITE_10:
2576 		case  READ_12:
2577 		case  WRITE_12:
2578 		case  READ_16:
2579 		case  WRITE_16:
2580 			if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2581 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2582 			} else {
2583 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2584 			}
2585 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2586 			break;
2587 		case INQUIRY: {
2588 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2589 			break;
2590 		}
2591 		default:
2592 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2593 			break;
2594 		}
2595 		break;
2596 	case SRB_STATUS_ABORTED:
2597 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2598 		break;
2599 	case SRB_STATUS_ABORT_FAILED:
2600 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2601 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2602 		break;
2603 	case SRB_STATUS_PARITY_ERROR:
2604 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2605 		break;
2606 	case SRB_STATUS_NO_DEVICE:
2607 	case SRB_STATUS_INVALID_PATH_ID:
2608 	case SRB_STATUS_INVALID_TARGET_ID:
2609 	case SRB_STATUS_INVALID_LUN:
2610 	case SRB_STATUS_SELECTION_TIMEOUT:
2611 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2612 		break;
2613 
2614 	case SRB_STATUS_COMMAND_TIMEOUT:
2615 	case SRB_STATUS_TIMEOUT:
2616 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2617 		break;
2618 
2619 	case SRB_STATUS_BUSY:
2620 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2621 		break;
2622 
2623 	case SRB_STATUS_BUS_RESET:
2624 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2625 		break;
2626 
2627 	case SRB_STATUS_MESSAGE_REJECTED:
2628 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2629 		break;
2630 	case SRB_STATUS_REQUEST_FLUSHED:
2631 	case SRB_STATUS_ERROR:
2632 	case SRB_STATUS_INVALID_REQUEST:
2633 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2634 	case SRB_STATUS_NO_HBA:
2635 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2636 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2637 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2638 	case SRB_STATUS_DELAYED_RETRY:
2639 	case SRB_STATUS_BAD_FUNCTION:
2640 	case SRB_STATUS_NOT_STARTED:
2641 	case SRB_STATUS_NOT_IN_USE:
2642 	case SRB_STATUS_FORCE_ABORT:
2643 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2644 	default:
2645 #ifdef AAC_DETAILED_STATUS_INFO
2646 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2647 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2648 			aac_get_status_string(
2649 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2650 			scsicmd->cmnd[0],
2651 			le32_to_cpu(srbreply->scsi_status));
2652 #endif
2653 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2654 		break;
2655 	}
2656 	if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2657 		int len;
2658 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2659 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2660 			    SCSI_SENSE_BUFFERSIZE);
2661 #ifdef AAC_DETAILED_STATUS_INFO
2662 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2663 					le32_to_cpu(srbreply->status), len);
2664 #endif
2665 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2666 	}
2667 	/*
2668 	 * OR in the scsi status (already shifted up a bit)
2669 	 */
2670 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2671 
2672 	aac_fib_complete(fibptr);
2673 	aac_fib_free(fibptr);
2674 	scsicmd->scsi_done(scsicmd);
2675 }
2676 
2677 /**
2678  *
2679  * aac_send_scb_fib
2680  * @scsicmd: the scsi command block
2681  *
2682  * This routine will form a FIB and fill in the aac_srb from the
2683  * scsicmd passed in.
2684  */
2685 
2686 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2687 {
2688 	struct fib* cmd_fibcontext;
2689 	struct aac_dev* dev;
2690 	int status;
2691 
2692 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2693 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2694 			scsicmd->device->lun > 7) {
2695 		scsicmd->result = DID_NO_CONNECT << 16;
2696 		scsicmd->scsi_done(scsicmd);
2697 		return 0;
2698 	}
2699 
2700 	/*
2701 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2702 	 */
2703 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2704 		return -1;
2705 	}
2706 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2707 
2708 	/*
2709 	 *	Check that the command queued to the controller
2710 	 */
2711 	if (status == -EINPROGRESS) {
2712 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2713 		return 0;
2714 	}
2715 
2716 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2717 	aac_fib_complete(cmd_fibcontext);
2718 	aac_fib_free(cmd_fibcontext);
2719 
2720 	return -1;
2721 }
2722 
2723 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2724 {
2725 	struct aac_dev *dev;
2726 	unsigned long byte_count = 0;
2727 	int nseg;
2728 
2729 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2730 	// Get rid of old data
2731 	psg->count = 0;
2732 	psg->sg[0].addr = 0;
2733 	psg->sg[0].count = 0;
2734 
2735 	nseg = scsi_dma_map(scsicmd);
2736 	BUG_ON(nseg < 0);
2737 	if (nseg) {
2738 		struct scatterlist *sg;
2739 		int i;
2740 
2741 		psg->count = cpu_to_le32(nseg);
2742 
2743 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2744 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2745 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2746 			byte_count += sg_dma_len(sg);
2747 		}
2748 		/* hba wants the size to be exact */
2749 		if (byte_count > scsi_bufflen(scsicmd)) {
2750 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2751 				(byte_count - scsi_bufflen(scsicmd));
2752 			psg->sg[i-1].count = cpu_to_le32(temp);
2753 			byte_count = scsi_bufflen(scsicmd);
2754 		}
2755 		/* Check for command underflow */
2756 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2757 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2758 					byte_count, scsicmd->underflow);
2759 		}
2760 	}
2761 	return byte_count;
2762 }
2763 
2764 
2765 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2766 {
2767 	struct aac_dev *dev;
2768 	unsigned long byte_count = 0;
2769 	u64 addr;
2770 	int nseg;
2771 
2772 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2773 	// Get rid of old data
2774 	psg->count = 0;
2775 	psg->sg[0].addr[0] = 0;
2776 	psg->sg[0].addr[1] = 0;
2777 	psg->sg[0].count = 0;
2778 
2779 	nseg = scsi_dma_map(scsicmd);
2780 	BUG_ON(nseg < 0);
2781 	if (nseg) {
2782 		struct scatterlist *sg;
2783 		int i;
2784 
2785 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2786 			int count = sg_dma_len(sg);
2787 			addr = sg_dma_address(sg);
2788 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2789 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2790 			psg->sg[i].count = cpu_to_le32(count);
2791 			byte_count += count;
2792 		}
2793 		psg->count = cpu_to_le32(nseg);
2794 		/* hba wants the size to be exact */
2795 		if (byte_count > scsi_bufflen(scsicmd)) {
2796 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2797 				(byte_count - scsi_bufflen(scsicmd));
2798 			psg->sg[i-1].count = cpu_to_le32(temp);
2799 			byte_count = scsi_bufflen(scsicmd);
2800 		}
2801 		/* Check for command underflow */
2802 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2803 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2804 					byte_count, scsicmd->underflow);
2805 		}
2806 	}
2807 	return byte_count;
2808 }
2809 
2810 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2811 {
2812 	unsigned long byte_count = 0;
2813 	int nseg;
2814 
2815 	// Get rid of old data
2816 	psg->count = 0;
2817 	psg->sg[0].next = 0;
2818 	psg->sg[0].prev = 0;
2819 	psg->sg[0].addr[0] = 0;
2820 	psg->sg[0].addr[1] = 0;
2821 	psg->sg[0].count = 0;
2822 	psg->sg[0].flags = 0;
2823 
2824 	nseg = scsi_dma_map(scsicmd);
2825 	BUG_ON(nseg < 0);
2826 	if (nseg) {
2827 		struct scatterlist *sg;
2828 		int i;
2829 
2830 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2831 			int count = sg_dma_len(sg);
2832 			u64 addr = sg_dma_address(sg);
2833 			psg->sg[i].next = 0;
2834 			psg->sg[i].prev = 0;
2835 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2836 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2837 			psg->sg[i].count = cpu_to_le32(count);
2838 			psg->sg[i].flags = 0;
2839 			byte_count += count;
2840 		}
2841 		psg->count = cpu_to_le32(nseg);
2842 		/* hba wants the size to be exact */
2843 		if (byte_count > scsi_bufflen(scsicmd)) {
2844 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2845 				(byte_count - scsi_bufflen(scsicmd));
2846 			psg->sg[i-1].count = cpu_to_le32(temp);
2847 			byte_count = scsi_bufflen(scsicmd);
2848 		}
2849 		/* Check for command underflow */
2850 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2851 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2852 					byte_count, scsicmd->underflow);
2853 		}
2854 	}
2855 	return byte_count;
2856 }
2857 
2858 #ifdef AAC_DETAILED_STATUS_INFO
2859 
2860 struct aac_srb_status_info {
2861 	u32	status;
2862 	char	*str;
2863 };
2864 
2865 
2866 static struct aac_srb_status_info srb_status_info[] = {
2867 	{ SRB_STATUS_PENDING,		"Pending Status"},
2868 	{ SRB_STATUS_SUCCESS,		"Success"},
2869 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2870 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2871 	{ SRB_STATUS_ERROR,		"Error Event"},
2872 	{ SRB_STATUS_BUSY,		"Device Busy"},
2873 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2874 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2875 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2876 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2877 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2878 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2879 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2880 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2881 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2882 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2883 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2884 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2885 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2886 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2887 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2888 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2889 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2890 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2891 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2892 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2893 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2894 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2895 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2896 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2897 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2898 	{ 0xff,				"Unknown Error"}
2899 };
2900 
2901 char *aac_get_status_string(u32 status)
2902 {
2903 	int i;
2904 
2905 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2906 		if (srb_status_info[i].status == status)
2907 			return srb_status_info[i].str;
2908 
2909 	return "Bad Status Code";
2910 }
2911 
2912 #endif
2913