xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision 64c70b1c)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141 
142 /*
143  *	Non dasd selection is handled entirely in aachba now
144  */
145 
146 static int nondasd = -1;
147 static int dacmode = -1;
148 
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152 
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
155 module_param(dacmode, int, S_IRUGO|S_IWUSR);
156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
157 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
163 
164 int numacb = -1;
165 module_param(numacb, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
167 
168 int acbsize = -1;
169 module_param(acbsize, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
171 
172 int expose_physicals = -1;
173 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
175 
176 int aac_reset_devices = 0;
177 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
179 
180 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
181 		struct fib *fibptr) {
182 	struct scsi_device *device;
183 
184 	if (unlikely(!scsicmd || !scsicmd->scsi_done )) {
185 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"))
186 ;
187                 aac_fib_complete(fibptr);
188                 aac_fib_free(fibptr);
189                 return 0;
190         }
191 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
192 	device = scsicmd->device;
193 	if (unlikely(!device || !scsi_device_online(device))) {
194 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
195 		aac_fib_complete(fibptr);
196 		aac_fib_free(fibptr);
197 		return 0;
198 	}
199 	return 1;
200 }
201 
202 /**
203  *	aac_get_config_status	-	check the adapter configuration
204  *	@common: adapter to query
205  *
206  *	Query config status, and commit the configuration if needed.
207  */
208 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
209 {
210 	int status = 0;
211 	struct fib * fibptr;
212 
213 	if (!(fibptr = aac_fib_alloc(dev)))
214 		return -ENOMEM;
215 
216 	aac_fib_init(fibptr);
217 	{
218 		struct aac_get_config_status *dinfo;
219 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
220 
221 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
222 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
223 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
224 	}
225 
226 	status = aac_fib_send(ContainerCommand,
227 			    fibptr,
228 			    sizeof (struct aac_get_config_status),
229 			    FsaNormal,
230 			    1, 1,
231 			    NULL, NULL);
232 	if (status < 0 ) {
233 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
234 	} else {
235 		struct aac_get_config_status_resp *reply
236 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
237 		dprintk((KERN_WARNING
238 		  "aac_get_config_status: response=%d status=%d action=%d\n",
239 		  le32_to_cpu(reply->response),
240 		  le32_to_cpu(reply->status),
241 		  le32_to_cpu(reply->data.action)));
242 		if ((le32_to_cpu(reply->response) != ST_OK) ||
243 		     (le32_to_cpu(reply->status) != CT_OK) ||
244 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
245 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
246 			status = -EINVAL;
247 		}
248 	}
249 	aac_fib_complete(fibptr);
250 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
251 	if (status >= 0) {
252 		if ((aac_commit == 1) || commit_flag) {
253 			struct aac_commit_config * dinfo;
254 			aac_fib_init(fibptr);
255 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
256 
257 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
258 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
259 
260 			status = aac_fib_send(ContainerCommand,
261 				    fibptr,
262 				    sizeof (struct aac_commit_config),
263 				    FsaNormal,
264 				    1, 1,
265 				    NULL, NULL);
266 			aac_fib_complete(fibptr);
267 		} else if (aac_commit == 0) {
268 			printk(KERN_WARNING
269 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
270 		}
271 	}
272 	aac_fib_free(fibptr);
273 	return status;
274 }
275 
276 /**
277  *	aac_get_containers	-	list containers
278  *	@common: adapter to probe
279  *
280  *	Make a list of all containers on this controller
281  */
282 int aac_get_containers(struct aac_dev *dev)
283 {
284 	struct fsa_dev_info *fsa_dev_ptr;
285 	u32 index;
286 	int status = 0;
287 	struct fib * fibptr;
288 	struct aac_get_container_count *dinfo;
289 	struct aac_get_container_count_resp *dresp;
290 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
291 
292 	if (!(fibptr = aac_fib_alloc(dev)))
293 		return -ENOMEM;
294 
295 	aac_fib_init(fibptr);
296 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
297 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
298 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
299 
300 	status = aac_fib_send(ContainerCommand,
301 		    fibptr,
302 		    sizeof (struct aac_get_container_count),
303 		    FsaNormal,
304 		    1, 1,
305 		    NULL, NULL);
306 	if (status >= 0) {
307 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
308 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
309 		aac_fib_complete(fibptr);
310 	}
311 	aac_fib_free(fibptr);
312 
313 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
314 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
315 	fsa_dev_ptr =  kmalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
316 			GFP_KERNEL);
317 	if (!fsa_dev_ptr)
318 		return -ENOMEM;
319 	memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
320 
321 	dev->fsa_dev = fsa_dev_ptr;
322 	dev->maximum_num_containers = maximum_num_containers;
323 
324 	for (index = 0; index < dev->maximum_num_containers; ) {
325 		fsa_dev_ptr[index].devname[0] = '\0';
326 
327 		status = aac_probe_container(dev, index);
328 
329 		if (status < 0) {
330 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
331 			break;
332 		}
333 
334 		/*
335 		 *	If there are no more containers, then stop asking.
336 		 */
337 		if (++index >= status)
338 			break;
339 	}
340 	return status;
341 }
342 
343 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
344 {
345 	void *buf;
346 	int transfer_len;
347 	struct scatterlist *sg = scsicmd->request_buffer;
348 
349 	if (scsicmd->use_sg) {
350 		buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
351 		transfer_len = min(sg->length, len + offset);
352 	} else {
353 		buf = scsicmd->request_buffer;
354 		transfer_len = min(scsicmd->request_bufflen, len + offset);
355 	}
356 	transfer_len -= offset;
357 	if (buf && transfer_len > 0)
358 		memcpy(buf + offset, data, transfer_len);
359 
360 	if (scsicmd->use_sg)
361 		kunmap_atomic(buf - sg->offset, KM_IRQ0);
362 
363 }
364 
365 static void get_container_name_callback(void *context, struct fib * fibptr)
366 {
367 	struct aac_get_name_resp * get_name_reply;
368 	struct scsi_cmnd * scsicmd;
369 
370 	scsicmd = (struct scsi_cmnd *) context;
371 
372 	if (!aac_valid_context(scsicmd, fibptr))
373 		return;
374 
375 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
376 	BUG_ON(fibptr == NULL);
377 
378 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
379 	/* Failure is irrelevant, using default value instead */
380 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
381 	 && (get_name_reply->data[0] != '\0')) {
382 		char *sp = get_name_reply->data;
383 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
384 		while (*sp == ' ')
385 			++sp;
386 		if (*sp) {
387 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
388 			int count = sizeof(d);
389 			char *dp = d;
390 			do {
391 				*dp++ = (*sp) ? *sp++ : ' ';
392 			} while (--count > 0);
393 			aac_internal_transfer(scsicmd, d,
394 			  offsetof(struct inquiry_data, inqd_pid), sizeof(d));
395 		}
396 	}
397 
398 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
399 
400 	aac_fib_complete(fibptr);
401 	aac_fib_free(fibptr);
402 	scsicmd->scsi_done(scsicmd);
403 }
404 
405 /**
406  *	aac_get_container_name	-	get container name, none blocking.
407  */
408 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
409 {
410 	int status;
411 	struct aac_get_name *dinfo;
412 	struct fib * cmd_fibcontext;
413 	struct aac_dev * dev;
414 
415 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
416 
417 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
418 		return -ENOMEM;
419 
420 	aac_fib_init(cmd_fibcontext);
421 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
422 
423 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
424 	dinfo->type = cpu_to_le32(CT_READ_NAME);
425 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
426 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
427 
428 	status = aac_fib_send(ContainerCommand,
429 		  cmd_fibcontext,
430 		  sizeof (struct aac_get_name),
431 		  FsaNormal,
432 		  0, 1,
433 		  (fib_callback) get_container_name_callback,
434 		  (void *) scsicmd);
435 
436 	/*
437 	 *	Check that the command queued to the controller
438 	 */
439 	if (status == -EINPROGRESS) {
440 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
441 		return 0;
442 	}
443 
444 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
445 	aac_fib_complete(cmd_fibcontext);
446 	aac_fib_free(cmd_fibcontext);
447 	return -1;
448 }
449 
450 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
451 {
452 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
453 
454 	if (fsa_dev_ptr[scmd_id(scsicmd)].valid)
455 		return aac_scsi_cmd(scsicmd);
456 
457 	scsicmd->result = DID_NO_CONNECT << 16;
458 	scsicmd->scsi_done(scsicmd);
459 	return 0;
460 }
461 
462 static int _aac_probe_container2(void * context, struct fib * fibptr)
463 {
464 	struct fsa_dev_info *fsa_dev_ptr;
465 	int (*callback)(struct scsi_cmnd *);
466 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
467 
468 	if (!aac_valid_context(scsicmd, fibptr))
469 		return 0;
470 
471 	fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
472 
473 	scsicmd->SCp.Status = 0;
474 	if (fsa_dev_ptr) {
475 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
476 		fsa_dev_ptr += scmd_id(scsicmd);
477 
478 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
479 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
480 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
481 			fsa_dev_ptr->valid = 1;
482 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
483 			fsa_dev_ptr->size
484 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
485 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
486 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
487 		}
488 		if ((fsa_dev_ptr->valid & 1) == 0)
489 			fsa_dev_ptr->valid = 0;
490 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
491 	}
492 	aac_fib_complete(fibptr);
493 	aac_fib_free(fibptr);
494 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
495 	scsicmd->SCp.ptr = NULL;
496 	return (*callback)(scsicmd);
497 }
498 
499 static int _aac_probe_container1(void * context, struct fib * fibptr)
500 {
501 	struct scsi_cmnd * scsicmd;
502 	struct aac_mount * dresp;
503 	struct aac_query_mount *dinfo;
504 	int status;
505 
506 	dresp = (struct aac_mount *) fib_data(fibptr);
507 	dresp->mnt[0].capacityhigh = 0;
508 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
509 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE))
510 		return _aac_probe_container2(context, fibptr);
511 	scsicmd = (struct scsi_cmnd *) context;
512 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
513 
514 	if (!aac_valid_context(scsicmd, fibptr))
515 		return 0;
516 
517 	aac_fib_init(fibptr);
518 
519 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
520 
521 	dinfo->command = cpu_to_le32(VM_NameServe64);
522 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
523 	dinfo->type = cpu_to_le32(FT_FILESYS);
524 
525 	status = aac_fib_send(ContainerCommand,
526 			  fibptr,
527 			  sizeof(struct aac_query_mount),
528 			  FsaNormal,
529 			  0, 1,
530 			  (fib_callback) _aac_probe_container2,
531 			  (void *) scsicmd);
532 	/*
533 	 *	Check that the command queued to the controller
534 	 */
535 	if (status == -EINPROGRESS) {
536 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
537 		return 0;
538 	}
539 	if (status < 0) {
540 		/* Inherit results from VM_NameServe, if any */
541 		dresp->status = cpu_to_le32(ST_OK);
542 		return _aac_probe_container2(context, fibptr);
543 	}
544 	return 0;
545 }
546 
547 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
548 {
549 	struct fib * fibptr;
550 	int status = -ENOMEM;
551 
552 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
553 		struct aac_query_mount *dinfo;
554 
555 		aac_fib_init(fibptr);
556 
557 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
558 
559 		dinfo->command = cpu_to_le32(VM_NameServe);
560 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
561 		dinfo->type = cpu_to_le32(FT_FILESYS);
562 		scsicmd->SCp.ptr = (char *)callback;
563 
564 		status = aac_fib_send(ContainerCommand,
565 			  fibptr,
566 			  sizeof(struct aac_query_mount),
567 			  FsaNormal,
568 			  0, 1,
569 			  (fib_callback) _aac_probe_container1,
570 			  (void *) scsicmd);
571 		/*
572 		 *	Check that the command queued to the controller
573 		 */
574 		if (status == -EINPROGRESS) {
575 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
576 			return 0;
577 		}
578 		if (status < 0) {
579 			scsicmd->SCp.ptr = NULL;
580 			aac_fib_complete(fibptr);
581 			aac_fib_free(fibptr);
582 		}
583 	}
584 	if (status < 0) {
585 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
586 		if (fsa_dev_ptr) {
587 			fsa_dev_ptr += scmd_id(scsicmd);
588 			if ((fsa_dev_ptr->valid & 1) == 0) {
589 				fsa_dev_ptr->valid = 0;
590 				return (*callback)(scsicmd);
591 			}
592 		}
593 	}
594 	return status;
595 }
596 
597 /**
598  *	aac_probe_container		-	query a logical volume
599  *	@dev: device to query
600  *	@cid: container identifier
601  *
602  *	Queries the controller about the given volume. The volume information
603  *	is updated in the struct fsa_dev_info structure rather than returned.
604  */
605 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
606 {
607 	scsicmd->device = NULL;
608 	return 0;
609 }
610 
611 int aac_probe_container(struct aac_dev *dev, int cid)
612 {
613 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
614 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
615 	int status;
616 
617 	if (!scsicmd || !scsidev) {
618 		kfree(scsicmd);
619 		kfree(scsidev);
620 		return -ENOMEM;
621 	}
622 	scsicmd->list.next = NULL;
623 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))_aac_probe_container1;
624 
625 	scsicmd->device = scsidev;
626 	scsidev->sdev_state = 0;
627 	scsidev->id = cid;
628 	scsidev->host = dev->scsi_host_ptr;
629 
630 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
631 		while (scsicmd->device == scsidev)
632 			schedule();
633 	kfree(scsidev);
634 	status = scsicmd->SCp.Status;
635 	kfree(scsicmd);
636 	return status;
637 }
638 
639 /* Local Structure to set SCSI inquiry data strings */
640 struct scsi_inq {
641 	char vid[8];         /* Vendor ID */
642 	char pid[16];        /* Product ID */
643 	char prl[4];         /* Product Revision Level */
644 };
645 
646 /**
647  *	InqStrCopy	-	string merge
648  *	@a:	string to copy from
649  *	@b:	string to copy to
650  *
651  * 	Copy a String from one location to another
652  *	without copying \0
653  */
654 
655 static void inqstrcpy(char *a, char *b)
656 {
657 
658 	while(*a != (char)0)
659 		*b++ = *a++;
660 }
661 
662 static char *container_types[] = {
663         "None",
664         "Volume",
665         "Mirror",
666         "Stripe",
667         "RAID5",
668         "SSRW",
669         "SSRO",
670         "Morph",
671         "Legacy",
672         "RAID4",
673         "RAID10",
674         "RAID00",
675         "V-MIRRORS",
676         "PSEUDO R4",
677 	"RAID50",
678 	"RAID5D",
679 	"RAID5D0",
680 	"RAID1E",
681 	"RAID6",
682 	"RAID60",
683         "Unknown"
684 };
685 
686 
687 
688 /* Function: setinqstr
689  *
690  * Arguments: [1] pointer to void [1] int
691  *
692  * Purpose: Sets SCSI inquiry data strings for vendor, product
693  * and revision level. Allows strings to be set in platform dependant
694  * files instead of in OS dependant driver source.
695  */
696 
697 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
698 {
699 	struct scsi_inq *str;
700 
701 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
702 	memset(str, ' ', sizeof(*str));
703 
704 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
705 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
706 		int c = sizeof(str->vid);
707 		while (*cp && *cp != ' ' && --c)
708 			++cp;
709 		c = *cp;
710 		*cp = '\0';
711 		inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
712 		  str->vid);
713 		*cp = c;
714 		while (*cp && *cp != ' ')
715 			++cp;
716 		while (*cp == ' ')
717 			++cp;
718 		/* last six chars reserved for vol type */
719 		c = 0;
720 		if (strlen(cp) > sizeof(str->pid)) {
721 			c = cp[sizeof(str->pid)];
722 			cp[sizeof(str->pid)] = '\0';
723 		}
724 		inqstrcpy (cp, str->pid);
725 		if (c)
726 			cp[sizeof(str->pid)] = c;
727 	} else {
728 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
729 
730 		inqstrcpy (mp->vname, str->vid);
731 		/* last six chars reserved for vol type */
732 		inqstrcpy (mp->model, str->pid);
733 	}
734 
735 	if (tindex < ARRAY_SIZE(container_types)){
736 		char *findit = str->pid;
737 
738 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
739 		/* RAID is superfluous in the context of a RAID device */
740 		if (memcmp(findit-4, "RAID", 4) == 0)
741 			*(findit -= 4) = ' ';
742 		if (((findit - str->pid) + strlen(container_types[tindex]))
743 		 < (sizeof(str->pid) + sizeof(str->prl)))
744 			inqstrcpy (container_types[tindex], findit + 1);
745 	}
746 	inqstrcpy ("V1.0", str->prl);
747 }
748 
749 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
750 		      u8 a_sense_code, u8 incorrect_length,
751 		      u8 bit_pointer, u16 field_pointer,
752 		      u32 residue)
753 {
754 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
755 	sense_buf[1] = 0;	/* Segment number, always zero */
756 
757 	if (incorrect_length) {
758 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
759 		sense_buf[3] = BYTE3(residue);
760 		sense_buf[4] = BYTE2(residue);
761 		sense_buf[5] = BYTE1(residue);
762 		sense_buf[6] = BYTE0(residue);
763 	} else
764 		sense_buf[2] = sense_key;	/* Sense key */
765 
766 	if (sense_key == ILLEGAL_REQUEST)
767 		sense_buf[7] = 10;	/* Additional sense length */
768 	else
769 		sense_buf[7] = 6;	/* Additional sense length */
770 
771 	sense_buf[12] = sense_code;	/* Additional sense code */
772 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
773 	if (sense_key == ILLEGAL_REQUEST) {
774 		sense_buf[15] = 0;
775 
776 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
777 			sense_buf[15] = 0x80;/* Std sense key specific field */
778 		/* Illegal parameter is in the parameter block */
779 
780 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
781 			sense_buf[15] = 0xc0;/* Std sense key specific field */
782 		/* Illegal parameter is in the CDB block */
783 		sense_buf[15] |= bit_pointer;
784 		sense_buf[16] = field_pointer >> 8;	/* MSB */
785 		sense_buf[17] = field_pointer;		/* LSB */
786 	}
787 }
788 
789 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
790 {
791 	if (lba & 0xffffffff00000000LL) {
792 		int cid = scmd_id(cmd);
793 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
794 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
795 			SAM_STAT_CHECK_CONDITION;
796 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
797 			    HARDWARE_ERROR,
798 			    SENCODE_INTERNAL_TARGET_FAILURE,
799 			    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
800 			    0, 0);
801 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
802 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
803 		    ? sizeof(cmd->sense_buffer)
804 		    : sizeof(dev->fsa_dev[cid].sense_data));
805 		cmd->scsi_done(cmd);
806 		return 1;
807 	}
808 	return 0;
809 }
810 
811 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
812 {
813 	return 0;
814 }
815 
816 static void io_callback(void *context, struct fib * fibptr);
817 
818 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
819 {
820 	u16 fibsize;
821 	struct aac_raw_io *readcmd;
822 	aac_fib_init(fib);
823 	readcmd = (struct aac_raw_io *) fib_data(fib);
824 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
825 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
826 	readcmd->count = cpu_to_le32(count<<9);
827 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
828 	readcmd->flags = cpu_to_le16(1);
829 	readcmd->bpTotal = 0;
830 	readcmd->bpComplete = 0;
831 
832 	aac_build_sgraw(cmd, &readcmd->sg);
833 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
834 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
835 	/*
836 	 *	Now send the Fib to the adapter
837 	 */
838 	return aac_fib_send(ContainerRawIo,
839 			  fib,
840 			  fibsize,
841 			  FsaNormal,
842 			  0, 1,
843 			  (fib_callback) io_callback,
844 			  (void *) cmd);
845 }
846 
847 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
848 {
849 	u16 fibsize;
850 	struct aac_read64 *readcmd;
851 	aac_fib_init(fib);
852 	readcmd = (struct aac_read64 *) fib_data(fib);
853 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
854 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
855 	readcmd->sector_count = cpu_to_le16(count);
856 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
857 	readcmd->pad   = 0;
858 	readcmd->flags = 0;
859 
860 	aac_build_sg64(cmd, &readcmd->sg);
861 	fibsize = sizeof(struct aac_read64) +
862 		((le32_to_cpu(readcmd->sg.count) - 1) *
863 		 sizeof (struct sgentry64));
864 	BUG_ON (fibsize > (fib->dev->max_fib_size -
865 				sizeof(struct aac_fibhdr)));
866 	/*
867 	 *	Now send the Fib to the adapter
868 	 */
869 	return aac_fib_send(ContainerCommand64,
870 			  fib,
871 			  fibsize,
872 			  FsaNormal,
873 			  0, 1,
874 			  (fib_callback) io_callback,
875 			  (void *) cmd);
876 }
877 
878 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
879 {
880 	u16 fibsize;
881 	struct aac_read *readcmd;
882 	aac_fib_init(fib);
883 	readcmd = (struct aac_read *) fib_data(fib);
884 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
885 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
886 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
887 	readcmd->count = cpu_to_le32(count * 512);
888 
889 	aac_build_sg(cmd, &readcmd->sg);
890 	fibsize = sizeof(struct aac_read) +
891 			((le32_to_cpu(readcmd->sg.count) - 1) *
892 			 sizeof (struct sgentry));
893 	BUG_ON (fibsize > (fib->dev->max_fib_size -
894 				sizeof(struct aac_fibhdr)));
895 	/*
896 	 *	Now send the Fib to the adapter
897 	 */
898 	return aac_fib_send(ContainerCommand,
899 			  fib,
900 			  fibsize,
901 			  FsaNormal,
902 			  0, 1,
903 			  (fib_callback) io_callback,
904 			  (void *) cmd);
905 }
906 
907 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
908 {
909 	u16 fibsize;
910 	struct aac_raw_io *writecmd;
911 	aac_fib_init(fib);
912 	writecmd = (struct aac_raw_io *) fib_data(fib);
913 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
914 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
915 	writecmd->count = cpu_to_le32(count<<9);
916 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
917 	writecmd->flags = 0;
918 	writecmd->bpTotal = 0;
919 	writecmd->bpComplete = 0;
920 
921 	aac_build_sgraw(cmd, &writecmd->sg);
922 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
923 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
924 	/*
925 	 *	Now send the Fib to the adapter
926 	 */
927 	return aac_fib_send(ContainerRawIo,
928 			  fib,
929 			  fibsize,
930 			  FsaNormal,
931 			  0, 1,
932 			  (fib_callback) io_callback,
933 			  (void *) cmd);
934 }
935 
936 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
937 {
938 	u16 fibsize;
939 	struct aac_write64 *writecmd;
940 	aac_fib_init(fib);
941 	writecmd = (struct aac_write64 *) fib_data(fib);
942 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
943 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
944 	writecmd->sector_count = cpu_to_le16(count);
945 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
946 	writecmd->pad	= 0;
947 	writecmd->flags	= 0;
948 
949 	aac_build_sg64(cmd, &writecmd->sg);
950 	fibsize = sizeof(struct aac_write64) +
951 		((le32_to_cpu(writecmd->sg.count) - 1) *
952 		 sizeof (struct sgentry64));
953 	BUG_ON (fibsize > (fib->dev->max_fib_size -
954 				sizeof(struct aac_fibhdr)));
955 	/*
956 	 *	Now send the Fib to the adapter
957 	 */
958 	return aac_fib_send(ContainerCommand64,
959 			  fib,
960 			  fibsize,
961 			  FsaNormal,
962 			  0, 1,
963 			  (fib_callback) io_callback,
964 			  (void *) cmd);
965 }
966 
967 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
968 {
969 	u16 fibsize;
970 	struct aac_write *writecmd;
971 	aac_fib_init(fib);
972 	writecmd = (struct aac_write *) fib_data(fib);
973 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
974 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
975 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
976 	writecmd->count = cpu_to_le32(count * 512);
977 	writecmd->sg.count = cpu_to_le32(1);
978 	/* ->stable is not used - it did mean which type of write */
979 
980 	aac_build_sg(cmd, &writecmd->sg);
981 	fibsize = sizeof(struct aac_write) +
982 		((le32_to_cpu(writecmd->sg.count) - 1) *
983 		 sizeof (struct sgentry));
984 	BUG_ON (fibsize > (fib->dev->max_fib_size -
985 				sizeof(struct aac_fibhdr)));
986 	/*
987 	 *	Now send the Fib to the adapter
988 	 */
989 	return aac_fib_send(ContainerCommand,
990 			  fib,
991 			  fibsize,
992 			  FsaNormal,
993 			  0, 1,
994 			  (fib_callback) io_callback,
995 			  (void *) cmd);
996 }
997 
998 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
999 {
1000 	struct aac_srb * srbcmd;
1001 	u32 flag;
1002 	u32 timeout;
1003 
1004 	aac_fib_init(fib);
1005 	switch(cmd->sc_data_direction){
1006 	case DMA_TO_DEVICE:
1007 		flag = SRB_DataOut;
1008 		break;
1009 	case DMA_BIDIRECTIONAL:
1010 		flag = SRB_DataIn | SRB_DataOut;
1011 		break;
1012 	case DMA_FROM_DEVICE:
1013 		flag = SRB_DataIn;
1014 		break;
1015 	case DMA_NONE:
1016 	default:	/* shuts up some versions of gcc */
1017 		flag = SRB_NoDataXfer;
1018 		break;
1019 	}
1020 
1021 	srbcmd = (struct aac_srb*) fib_data(fib);
1022 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1023 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1024 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1025 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1026 	srbcmd->flags    = cpu_to_le32(flag);
1027 	timeout = cmd->timeout_per_command/HZ;
1028 	if (timeout == 0)
1029 		timeout = 1;
1030 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1031 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1032 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1033 	return srbcmd;
1034 }
1035 
1036 static void aac_srb_callback(void *context, struct fib * fibptr);
1037 
1038 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1039 {
1040 	u16 fibsize;
1041 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1042 
1043 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1044 	srbcmd->count = cpu_to_le32(cmd->request_bufflen);
1045 
1046 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1047 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1048 	/*
1049 	 *	Build Scatter/Gather list
1050 	 */
1051 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1052 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1053 		 sizeof (struct sgentry64));
1054 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1055 				sizeof(struct aac_fibhdr)));
1056 
1057 	/*
1058 	 *	Now send the Fib to the adapter
1059 	 */
1060 	return aac_fib_send(ScsiPortCommand64, fib,
1061 				fibsize, FsaNormal, 0, 1,
1062 				  (fib_callback) aac_srb_callback,
1063 				  (void *) cmd);
1064 }
1065 
1066 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1067 {
1068 	u16 fibsize;
1069 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1070 
1071 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1072 	srbcmd->count = cpu_to_le32(cmd->request_bufflen);
1073 
1074 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1075 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1076 	/*
1077 	 *	Build Scatter/Gather list
1078 	 */
1079 	fibsize = sizeof (struct aac_srb) +
1080 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1081 		 sizeof (struct sgentry));
1082 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1083 				sizeof(struct aac_fibhdr)));
1084 
1085 	/*
1086 	 *	Now send the Fib to the adapter
1087 	 */
1088 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1089 				  (fib_callback) aac_srb_callback, (void *) cmd);
1090 }
1091 
1092 int aac_get_adapter_info(struct aac_dev* dev)
1093 {
1094 	struct fib* fibptr;
1095 	int rcode;
1096 	u32 tmp;
1097 	struct aac_adapter_info *info;
1098 	struct aac_bus_info *command;
1099 	struct aac_bus_info_response *bus_info;
1100 
1101 	if (!(fibptr = aac_fib_alloc(dev)))
1102 		return -ENOMEM;
1103 
1104 	aac_fib_init(fibptr);
1105 	info = (struct aac_adapter_info *) fib_data(fibptr);
1106 	memset(info,0,sizeof(*info));
1107 
1108 	rcode = aac_fib_send(RequestAdapterInfo,
1109 			 fibptr,
1110 			 sizeof(*info),
1111 			 FsaNormal,
1112 			 -1, 1, /* First `interrupt' command uses special wait */
1113 			 NULL,
1114 			 NULL);
1115 
1116 	if (rcode < 0) {
1117 		aac_fib_complete(fibptr);
1118 		aac_fib_free(fibptr);
1119 		return rcode;
1120 	}
1121 	memcpy(&dev->adapter_info, info, sizeof(*info));
1122 
1123 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1124 		struct aac_supplement_adapter_info * info;
1125 
1126 		aac_fib_init(fibptr);
1127 
1128 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1129 
1130 		memset(info,0,sizeof(*info));
1131 
1132 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1133 				 fibptr,
1134 				 sizeof(*info),
1135 				 FsaNormal,
1136 				 1, 1,
1137 				 NULL,
1138 				 NULL);
1139 
1140 		if (rcode >= 0)
1141 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1142 	}
1143 
1144 
1145 	/*
1146 	 * GetBusInfo
1147 	 */
1148 
1149 	aac_fib_init(fibptr);
1150 
1151 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1152 
1153 	memset(bus_info, 0, sizeof(*bus_info));
1154 
1155 	command = (struct aac_bus_info *)bus_info;
1156 
1157 	command->Command = cpu_to_le32(VM_Ioctl);
1158 	command->ObjType = cpu_to_le32(FT_DRIVE);
1159 	command->MethodId = cpu_to_le32(1);
1160 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1161 
1162 	rcode = aac_fib_send(ContainerCommand,
1163 			 fibptr,
1164 			 sizeof (*bus_info),
1165 			 FsaNormal,
1166 			 1, 1,
1167 			 NULL, NULL);
1168 
1169 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1170 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1171 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1172 	}
1173 
1174 	if (!dev->in_reset) {
1175 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1176 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1177 			dev->name,
1178 			dev->id,
1179 			tmp>>24,
1180 			(tmp>>16)&0xff,
1181 			tmp&0xff,
1182 			le32_to_cpu(dev->adapter_info.kernelbuild),
1183 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1184 			dev->supplement_adapter_info.BuildDate);
1185 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1186 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1187 			dev->name, dev->id,
1188 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1189 			le32_to_cpu(dev->adapter_info.monitorbuild));
1190 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1191 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1192 			dev->name, dev->id,
1193 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1194 			le32_to_cpu(dev->adapter_info.biosbuild));
1195 		if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1196 			printk(KERN_INFO "%s%d: serial %x\n",
1197 				dev->name, dev->id,
1198 				le32_to_cpu(dev->adapter_info.serial[0]));
1199 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1200 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1201 			  dev->name, dev->id,
1202 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1203 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1204 		}
1205 	}
1206 
1207 	dev->nondasd_support = 0;
1208 	dev->raid_scsi_mode = 0;
1209 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
1210 		dev->nondasd_support = 1;
1211 	}
1212 
1213 	/*
1214 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1215 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1216 	 * force nondasd support on. If we decide to allow the non-dasd flag
1217 	 * additional changes changes will have to be made to support
1218 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1219 	 * changed to support the new dev->raid_scsi_mode flag instead of
1220 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1221 	 * function aac_detect will have to be modified where it sets up the
1222 	 * max number of channels based on the aac->nondasd_support flag only.
1223 	 */
1224 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1225 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1226 		dev->nondasd_support = 1;
1227 		dev->raid_scsi_mode = 1;
1228 	}
1229 	if (dev->raid_scsi_mode != 0)
1230 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1231 				dev->name, dev->id);
1232 
1233 	if(nondasd != -1) {
1234 		dev->nondasd_support = (nondasd!=0);
1235 	}
1236 	if(dev->nondasd_support != 0){
1237 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1238 	}
1239 
1240 	dev->dac_support = 0;
1241 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1242 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1243 		dev->dac_support = 1;
1244 	}
1245 
1246 	if(dacmode != -1) {
1247 		dev->dac_support = (dacmode!=0);
1248 	}
1249 	if(dev->dac_support != 0) {
1250 		if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1251 			!pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1252 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1253 				dev->name, dev->id);
1254 		} else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1255 			!pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1256 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1257 				dev->name, dev->id);
1258 			dev->dac_support = 0;
1259 		} else {
1260 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1261 				dev->name, dev->id);
1262 			rcode = -ENOMEM;
1263 		}
1264 	}
1265 	/*
1266 	 * Deal with configuring for the individualized limits of each packet
1267 	 * interface.
1268 	 */
1269 	dev->a_ops.adapter_scsi = (dev->dac_support)
1270 				? aac_scsi_64
1271 				: aac_scsi_32;
1272 	if (dev->raw_io_interface) {
1273 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1274 					? aac_bounds_64
1275 					: aac_bounds_32;
1276 		dev->a_ops.adapter_read = aac_read_raw_io;
1277 		dev->a_ops.adapter_write = aac_write_raw_io;
1278 	} else {
1279 		dev->a_ops.adapter_bounds = aac_bounds_32;
1280 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1281 			sizeof(struct aac_fibhdr) -
1282 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1283 				sizeof(struct sgentry);
1284 		if (dev->dac_support) {
1285 			dev->a_ops.adapter_read = aac_read_block64;
1286 			dev->a_ops.adapter_write = aac_write_block64;
1287 			/*
1288 			 * 38 scatter gather elements
1289 			 */
1290 			dev->scsi_host_ptr->sg_tablesize =
1291 				(dev->max_fib_size -
1292 				sizeof(struct aac_fibhdr) -
1293 				sizeof(struct aac_write64) +
1294 				sizeof(struct sgentry64)) /
1295 					sizeof(struct sgentry64);
1296 		} else {
1297 			dev->a_ops.adapter_read = aac_read_block;
1298 			dev->a_ops.adapter_write = aac_write_block;
1299 		}
1300 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1301 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1302 			/*
1303 			 * Worst case size that could cause sg overflow when
1304 			 * we break up SG elements that are larger than 64KB.
1305 			 * Would be nice if we could tell the SCSI layer what
1306 			 * the maximum SG element size can be. Worst case is
1307 			 * (sg_tablesize-1) 4KB elements with one 64KB
1308 			 * element.
1309 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1310 			 */
1311 			dev->scsi_host_ptr->max_sectors =
1312 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1313 		}
1314 	}
1315 
1316 	aac_fib_complete(fibptr);
1317 	aac_fib_free(fibptr);
1318 
1319 	return rcode;
1320 }
1321 
1322 
1323 static void io_callback(void *context, struct fib * fibptr)
1324 {
1325 	struct aac_dev *dev;
1326 	struct aac_read_reply *readreply;
1327 	struct scsi_cmnd *scsicmd;
1328 	u32 cid;
1329 
1330 	scsicmd = (struct scsi_cmnd *) context;
1331 
1332 	if (!aac_valid_context(scsicmd, fibptr))
1333 		return;
1334 
1335 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1336 	cid = scmd_id(scsicmd);
1337 
1338 	if (nblank(dprintk(x))) {
1339 		u64 lba;
1340 		switch (scsicmd->cmnd[0]) {
1341 		case WRITE_6:
1342 		case READ_6:
1343 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1344 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1345 			break;
1346 		case WRITE_16:
1347 		case READ_16:
1348 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1349 			      ((u64)scsicmd->cmnd[3] << 48) |
1350 			      ((u64)scsicmd->cmnd[4] << 40) |
1351 			      ((u64)scsicmd->cmnd[5] << 32) |
1352 			      ((u64)scsicmd->cmnd[6] << 24) |
1353 			      (scsicmd->cmnd[7] << 16) |
1354 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1355 			break;
1356 		case WRITE_12:
1357 		case READ_12:
1358 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1359 			      (scsicmd->cmnd[3] << 16) |
1360 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1361 			break;
1362 		default:
1363 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1364 			       (scsicmd->cmnd[3] << 16) |
1365 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1366 			break;
1367 		}
1368 		printk(KERN_DEBUG
1369 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1370 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1371 	}
1372 
1373 	BUG_ON(fibptr == NULL);
1374 
1375 	if(scsicmd->use_sg)
1376 		pci_unmap_sg(dev->pdev,
1377 			(struct scatterlist *)scsicmd->request_buffer,
1378 			scsicmd->use_sg,
1379 			scsicmd->sc_data_direction);
1380 	else if(scsicmd->request_bufflen)
1381 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
1382 				 scsicmd->request_bufflen,
1383 				 scsicmd->sc_data_direction);
1384 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1385 	if (le32_to_cpu(readreply->status) == ST_OK)
1386 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1387 	else {
1388 #ifdef AAC_DETAILED_STATUS_INFO
1389 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1390 		  le32_to_cpu(readreply->status));
1391 #endif
1392 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1393 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1394 				    HARDWARE_ERROR,
1395 				    SENCODE_INTERNAL_TARGET_FAILURE,
1396 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1397 				    0, 0);
1398 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1399 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1400 		    ? sizeof(scsicmd->sense_buffer)
1401 		    : sizeof(dev->fsa_dev[cid].sense_data));
1402 	}
1403 	aac_fib_complete(fibptr);
1404 	aac_fib_free(fibptr);
1405 
1406 	scsicmd->scsi_done(scsicmd);
1407 }
1408 
1409 static int aac_read(struct scsi_cmnd * scsicmd)
1410 {
1411 	u64 lba;
1412 	u32 count;
1413 	int status;
1414 	struct aac_dev *dev;
1415 	struct fib * cmd_fibcontext;
1416 
1417 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1418 	/*
1419 	 *	Get block address and transfer length
1420 	 */
1421 	switch (scsicmd->cmnd[0]) {
1422 	case READ_6:
1423 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1424 
1425 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1426 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1427 		count = scsicmd->cmnd[4];
1428 
1429 		if (count == 0)
1430 			count = 256;
1431 		break;
1432 	case READ_16:
1433 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1434 
1435 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1436 		 	((u64)scsicmd->cmnd[3] << 48) |
1437 			((u64)scsicmd->cmnd[4] << 40) |
1438 			((u64)scsicmd->cmnd[5] << 32) |
1439 			((u64)scsicmd->cmnd[6] << 24) |
1440 			(scsicmd->cmnd[7] << 16) |
1441 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1442 		count = (scsicmd->cmnd[10] << 24) |
1443 			(scsicmd->cmnd[11] << 16) |
1444 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1445 		break;
1446 	case READ_12:
1447 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1448 
1449 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1450 			(scsicmd->cmnd[3] << 16) |
1451 		    	(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1452 		count = (scsicmd->cmnd[6] << 24) |
1453 			(scsicmd->cmnd[7] << 16) |
1454 		      	(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1455 		break;
1456 	default:
1457 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1458 
1459 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1460 			(scsicmd->cmnd[3] << 16) |
1461 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1462 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1463 		break;
1464 	}
1465 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1466 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1467 	if (aac_adapter_bounds(dev,scsicmd,lba))
1468 		return 0;
1469 	/*
1470 	 *	Alocate and initialize a Fib
1471 	 */
1472 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1473 		return -1;
1474 	}
1475 
1476 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1477 
1478 	/*
1479 	 *	Check that the command queued to the controller
1480 	 */
1481 	if (status == -EINPROGRESS) {
1482 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1483 		return 0;
1484 	}
1485 
1486 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1487 	/*
1488 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1489 	 */
1490 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1491 	scsicmd->scsi_done(scsicmd);
1492 	aac_fib_complete(cmd_fibcontext);
1493 	aac_fib_free(cmd_fibcontext);
1494 	return 0;
1495 }
1496 
1497 static int aac_write(struct scsi_cmnd * scsicmd)
1498 {
1499 	u64 lba;
1500 	u32 count;
1501 	int status;
1502 	struct aac_dev *dev;
1503 	struct fib * cmd_fibcontext;
1504 
1505 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1506 	/*
1507 	 *	Get block address and transfer length
1508 	 */
1509 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1510 	{
1511 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1512 		count = scsicmd->cmnd[4];
1513 		if (count == 0)
1514 			count = 256;
1515 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1516 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1517 
1518 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1519 			((u64)scsicmd->cmnd[3] << 48) |
1520 			((u64)scsicmd->cmnd[4] << 40) |
1521 			((u64)scsicmd->cmnd[5] << 32) |
1522 			((u64)scsicmd->cmnd[6] << 24) |
1523 			(scsicmd->cmnd[7] << 16) |
1524 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1525 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1526 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1527 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1528 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1529 
1530 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1531 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1532 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1533 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1534 	} else {
1535 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1536 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1537 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1538 	}
1539 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1540 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1541 	if (aac_adapter_bounds(dev,scsicmd,lba))
1542 		return 0;
1543 	/*
1544 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1545 	 */
1546 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1547 		scsicmd->result = DID_ERROR << 16;
1548 		scsicmd->scsi_done(scsicmd);
1549 		return 0;
1550 	}
1551 
1552 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count);
1553 
1554 	/*
1555 	 *	Check that the command queued to the controller
1556 	 */
1557 	if (status == -EINPROGRESS) {
1558 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1559 		return 0;
1560 	}
1561 
1562 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1563 	/*
1564 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1565 	 */
1566 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1567 	scsicmd->scsi_done(scsicmd);
1568 
1569 	aac_fib_complete(cmd_fibcontext);
1570 	aac_fib_free(cmd_fibcontext);
1571 	return 0;
1572 }
1573 
1574 static void synchronize_callback(void *context, struct fib *fibptr)
1575 {
1576 	struct aac_synchronize_reply *synchronizereply;
1577 	struct scsi_cmnd *cmd;
1578 
1579 	cmd = context;
1580 
1581 	if (!aac_valid_context(cmd, fibptr))
1582 		return;
1583 
1584 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1585 				smp_processor_id(), jiffies));
1586 	BUG_ON(fibptr == NULL);
1587 
1588 
1589 	synchronizereply = fib_data(fibptr);
1590 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1591 		cmd->result = DID_OK << 16 |
1592 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1593 	else {
1594 		struct scsi_device *sdev = cmd->device;
1595 		struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1596 		u32 cid = sdev_id(sdev);
1597 		printk(KERN_WARNING
1598 		     "synchronize_callback: synchronize failed, status = %d\n",
1599 		     le32_to_cpu(synchronizereply->status));
1600 		cmd->result = DID_OK << 16 |
1601 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1602 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1603 				    HARDWARE_ERROR,
1604 				    SENCODE_INTERNAL_TARGET_FAILURE,
1605 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1606 				    0, 0);
1607 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1608 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1609 			  sizeof(cmd->sense_buffer)));
1610 	}
1611 
1612 	aac_fib_complete(fibptr);
1613 	aac_fib_free(fibptr);
1614 	cmd->scsi_done(cmd);
1615 }
1616 
1617 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1618 {
1619 	int status;
1620 	struct fib *cmd_fibcontext;
1621 	struct aac_synchronize *synchronizecmd;
1622 	struct scsi_cmnd *cmd;
1623 	struct scsi_device *sdev = scsicmd->device;
1624 	int active = 0;
1625 	struct aac_dev *aac;
1626 	unsigned long flags;
1627 
1628 	/*
1629 	 * Wait for all outstanding queued commands to complete to this
1630 	 * specific target (block).
1631 	 */
1632 	spin_lock_irqsave(&sdev->list_lock, flags);
1633 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1634 		if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1635 			++active;
1636 			break;
1637 		}
1638 
1639 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1640 
1641 	/*
1642 	 *	Yield the processor (requeue for later)
1643 	 */
1644 	if (active)
1645 		return SCSI_MLQUEUE_DEVICE_BUSY;
1646 
1647 	aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1648 	if (aac->in_reset)
1649 		return SCSI_MLQUEUE_HOST_BUSY;
1650 
1651 	/*
1652 	 *	Allocate and initialize a Fib
1653 	 */
1654 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1655 		return SCSI_MLQUEUE_HOST_BUSY;
1656 
1657 	aac_fib_init(cmd_fibcontext);
1658 
1659 	synchronizecmd = fib_data(cmd_fibcontext);
1660 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1661 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1662 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1663 	synchronizecmd->count =
1664 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1665 
1666 	/*
1667 	 *	Now send the Fib to the adapter
1668 	 */
1669 	status = aac_fib_send(ContainerCommand,
1670 		  cmd_fibcontext,
1671 		  sizeof(struct aac_synchronize),
1672 		  FsaNormal,
1673 		  0, 1,
1674 		  (fib_callback)synchronize_callback,
1675 		  (void *)scsicmd);
1676 
1677 	/*
1678 	 *	Check that the command queued to the controller
1679 	 */
1680 	if (status == -EINPROGRESS) {
1681 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1682 		return 0;
1683 	}
1684 
1685 	printk(KERN_WARNING
1686 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1687 	aac_fib_complete(cmd_fibcontext);
1688 	aac_fib_free(cmd_fibcontext);
1689 	return SCSI_MLQUEUE_HOST_BUSY;
1690 }
1691 
1692 /**
1693  *	aac_scsi_cmd()		-	Process SCSI command
1694  *	@scsicmd:		SCSI command block
1695  *
1696  *	Emulate a SCSI command and queue the required request for the
1697  *	aacraid firmware.
1698  */
1699 
1700 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1701 {
1702 	u32 cid = 0;
1703 	struct Scsi_Host *host = scsicmd->device->host;
1704 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1705 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1706 
1707 	if (fsa_dev_ptr == NULL)
1708 		return -1;
1709 	/*
1710 	 *	If the bus, id or lun is out of range, return fail
1711 	 *	Test does not apply to ID 16, the pseudo id for the controller
1712 	 *	itself.
1713 	 */
1714 	if (scmd_id(scsicmd) != host->this_id) {
1715 		if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) {
1716 			if((scmd_id(scsicmd) >= dev->maximum_num_containers) ||
1717 					(scsicmd->device->lun != 0)) {
1718 				scsicmd->result = DID_NO_CONNECT << 16;
1719 				scsicmd->scsi_done(scsicmd);
1720 				return 0;
1721 			}
1722 			cid = scmd_id(scsicmd);
1723 
1724 			/*
1725 			 *	If the target container doesn't exist, it may have
1726 			 *	been newly created
1727 			 */
1728 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1729 				switch (scsicmd->cmnd[0]) {
1730 				case SERVICE_ACTION_IN:
1731 					if (!(dev->raw_io_interface) ||
1732 					    !(dev->raw_io_64) ||
1733 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1734 						break;
1735 				case INQUIRY:
1736 				case READ_CAPACITY:
1737 				case TEST_UNIT_READY:
1738 					if (dev->in_reset)
1739 						return -1;
1740 					return _aac_probe_container(scsicmd,
1741 							aac_probe_container_callback2);
1742 				default:
1743 					break;
1744 				}
1745 			}
1746 		} else {  /* check for physical non-dasd devices */
1747 			if ((dev->nondasd_support == 1) || expose_physicals) {
1748 				if (dev->in_reset)
1749 					return -1;
1750 				return aac_send_srb_fib(scsicmd);
1751 			} else {
1752 				scsicmd->result = DID_NO_CONNECT << 16;
1753 				scsicmd->scsi_done(scsicmd);
1754 				return 0;
1755 			}
1756 		}
1757 	}
1758 	/*
1759 	 * else Command for the controller itself
1760 	 */
1761 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1762 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1763 	{
1764 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1765 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1766 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1767 			    ILLEGAL_REQUEST,
1768 			    SENCODE_INVALID_COMMAND,
1769 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1770 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1771 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1772 		    ? sizeof(scsicmd->sense_buffer)
1773 		    : sizeof(dev->fsa_dev[cid].sense_data));
1774 		scsicmd->scsi_done(scsicmd);
1775 		return 0;
1776 	}
1777 
1778 
1779 	/* Handle commands here that don't really require going out to the adapter */
1780 	switch (scsicmd->cmnd[0]) {
1781 	case INQUIRY:
1782 	{
1783 		struct inquiry_data inq_data;
1784 
1785 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd)));
1786 		memset(&inq_data, 0, sizeof (struct inquiry_data));
1787 
1788 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
1789 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1790 		inq_data.inqd_len = 31;
1791 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1792 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1793 		/*
1794 		 *	Set the Vendor, Product, and Revision Level
1795 		 *	see: <vendor>.c i.e. aac.c
1796 		 */
1797 		if (scmd_id(scsicmd) == host->this_id) {
1798 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1799 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1800 			aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1801 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1802 			scsicmd->scsi_done(scsicmd);
1803 			return 0;
1804 		}
1805 		if (dev->in_reset)
1806 			return -1;
1807 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1808 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1809 		aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1810 		return aac_get_container_name(scsicmd);
1811 	}
1812 	case SERVICE_ACTION_IN:
1813 		if (!(dev->raw_io_interface) ||
1814 		    !(dev->raw_io_64) ||
1815 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1816 			break;
1817 	{
1818 		u64 capacity;
1819 		char cp[13];
1820 
1821 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1822 		capacity = fsa_dev_ptr[cid].size - 1;
1823 		cp[0] = (capacity >> 56) & 0xff;
1824 		cp[1] = (capacity >> 48) & 0xff;
1825 		cp[2] = (capacity >> 40) & 0xff;
1826 		cp[3] = (capacity >> 32) & 0xff;
1827 		cp[4] = (capacity >> 24) & 0xff;
1828 		cp[5] = (capacity >> 16) & 0xff;
1829 		cp[6] = (capacity >> 8) & 0xff;
1830 		cp[7] = (capacity >> 0) & 0xff;
1831 		cp[8] = 0;
1832 		cp[9] = 0;
1833 		cp[10] = 2;
1834 		cp[11] = 0;
1835 		cp[12] = 0;
1836 		aac_internal_transfer(scsicmd, cp, 0,
1837 		  min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1838 		if (sizeof(cp) < scsicmd->cmnd[13]) {
1839 			unsigned int len, offset = sizeof(cp);
1840 
1841 			memset(cp, 0, offset);
1842 			do {
1843 				len = min_t(size_t, scsicmd->cmnd[13] - offset,
1844 						sizeof(cp));
1845 				aac_internal_transfer(scsicmd, cp, offset, len);
1846 			} while ((offset += len) < scsicmd->cmnd[13]);
1847 		}
1848 
1849 		/* Do not cache partition table for arrays */
1850 		scsicmd->device->removable = 1;
1851 
1852 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1853 		scsicmd->scsi_done(scsicmd);
1854 
1855 		return 0;
1856 	}
1857 
1858 	case READ_CAPACITY:
1859 	{
1860 		u32 capacity;
1861 		char cp[8];
1862 
1863 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1864 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1865 			capacity = fsa_dev_ptr[cid].size - 1;
1866 		else
1867 			capacity = (u32)-1;
1868 
1869 		cp[0] = (capacity >> 24) & 0xff;
1870 		cp[1] = (capacity >> 16) & 0xff;
1871 		cp[2] = (capacity >> 8) & 0xff;
1872 		cp[3] = (capacity >> 0) & 0xff;
1873 		cp[4] = 0;
1874 		cp[5] = 0;
1875 		cp[6] = 2;
1876 		cp[7] = 0;
1877 		aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1878 		/* Do not cache partition table for arrays */
1879 		scsicmd->device->removable = 1;
1880 
1881 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1882 		scsicmd->scsi_done(scsicmd);
1883 
1884 		return 0;
1885 	}
1886 
1887 	case MODE_SENSE:
1888 	{
1889 		char mode_buf[4];
1890 
1891 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1892 		mode_buf[0] = 3;	/* Mode data length */
1893 		mode_buf[1] = 0;	/* Medium type - default */
1894 		mode_buf[2] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1895 		mode_buf[3] = 0;	/* Block descriptor length */
1896 
1897 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1898 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1899 		scsicmd->scsi_done(scsicmd);
1900 
1901 		return 0;
1902 	}
1903 	case MODE_SENSE_10:
1904 	{
1905 		char mode_buf[8];
1906 
1907 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1908 		mode_buf[0] = 0;	/* Mode data length (MSB) */
1909 		mode_buf[1] = 6;	/* Mode data length (LSB) */
1910 		mode_buf[2] = 0;	/* Medium type - default */
1911 		mode_buf[3] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1912 		mode_buf[4] = 0;	/* reserved */
1913 		mode_buf[5] = 0;	/* reserved */
1914 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
1915 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
1916 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1917 
1918 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1919 		scsicmd->scsi_done(scsicmd);
1920 
1921 		return 0;
1922 	}
1923 	case REQUEST_SENSE:
1924 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1925 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1926 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1927 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1928 		scsicmd->scsi_done(scsicmd);
1929 		return 0;
1930 
1931 	case ALLOW_MEDIUM_REMOVAL:
1932 		dprintk((KERN_DEBUG "LOCK command.\n"));
1933 		if (scsicmd->cmnd[4])
1934 			fsa_dev_ptr[cid].locked = 1;
1935 		else
1936 			fsa_dev_ptr[cid].locked = 0;
1937 
1938 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1939 		scsicmd->scsi_done(scsicmd);
1940 		return 0;
1941 	/*
1942 	 *	These commands are all No-Ops
1943 	 */
1944 	case TEST_UNIT_READY:
1945 	case RESERVE:
1946 	case RELEASE:
1947 	case REZERO_UNIT:
1948 	case REASSIGN_BLOCKS:
1949 	case SEEK_10:
1950 	case START_STOP:
1951 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1952 		scsicmd->scsi_done(scsicmd);
1953 		return 0;
1954 	}
1955 
1956 	switch (scsicmd->cmnd[0])
1957 	{
1958 		case READ_6:
1959 		case READ_10:
1960 		case READ_12:
1961 		case READ_16:
1962 			if (dev->in_reset)
1963 				return -1;
1964 			/*
1965 			 *	Hack to keep track of ordinal number of the device that
1966 			 *	corresponds to a container. Needed to convert
1967 			 *	containers to /dev/sd device names
1968 			 */
1969 
1970 			if (scsicmd->request->rq_disk)
1971 				strlcpy(fsa_dev_ptr[cid].devname,
1972 				scsicmd->request->rq_disk->disk_name,
1973 			  	min(sizeof(fsa_dev_ptr[cid].devname),
1974 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1975 
1976 			return aac_read(scsicmd);
1977 
1978 		case WRITE_6:
1979 		case WRITE_10:
1980 		case WRITE_12:
1981 		case WRITE_16:
1982 			if (dev->in_reset)
1983 				return -1;
1984 			return aac_write(scsicmd);
1985 
1986 		case SYNCHRONIZE_CACHE:
1987 			/* Issue FIB to tell Firmware to flush it's cache */
1988 			return aac_synchronize(scsicmd);
1989 
1990 		default:
1991 			/*
1992 			 *	Unhandled commands
1993 			 */
1994 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1995 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1996 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1997 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1998 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1999 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2000 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
2001 			    ? sizeof(scsicmd->sense_buffer)
2002 			    : sizeof(dev->fsa_dev[cid].sense_data));
2003 			scsicmd->scsi_done(scsicmd);
2004 			return 0;
2005 	}
2006 }
2007 
2008 static int query_disk(struct aac_dev *dev, void __user *arg)
2009 {
2010 	struct aac_query_disk qd;
2011 	struct fsa_dev_info *fsa_dev_ptr;
2012 
2013 	fsa_dev_ptr = dev->fsa_dev;
2014 	if (!fsa_dev_ptr)
2015 		return -EBUSY;
2016 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2017 		return -EFAULT;
2018 	if (qd.cnum == -1)
2019 		qd.cnum = qd.id;
2020 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2021 	{
2022 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2023 			return -EINVAL;
2024 		qd.instance = dev->scsi_host_ptr->host_no;
2025 		qd.bus = 0;
2026 		qd.id = CONTAINER_TO_ID(qd.cnum);
2027 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2028 	}
2029 	else return -EINVAL;
2030 
2031 	qd.valid = fsa_dev_ptr[qd.cnum].valid;
2032 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2033 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2034 
2035 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2036 		qd.unmapped = 1;
2037 	else
2038 		qd.unmapped = 0;
2039 
2040 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2041 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2042 
2043 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2044 		return -EFAULT;
2045 	return 0;
2046 }
2047 
2048 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2049 {
2050 	struct aac_delete_disk dd;
2051 	struct fsa_dev_info *fsa_dev_ptr;
2052 
2053 	fsa_dev_ptr = dev->fsa_dev;
2054 	if (!fsa_dev_ptr)
2055 		return -EBUSY;
2056 
2057 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2058 		return -EFAULT;
2059 
2060 	if (dd.cnum >= dev->maximum_num_containers)
2061 		return -EINVAL;
2062 	/*
2063 	 *	Mark this container as being deleted.
2064 	 */
2065 	fsa_dev_ptr[dd.cnum].deleted = 1;
2066 	/*
2067 	 *	Mark the container as no longer valid
2068 	 */
2069 	fsa_dev_ptr[dd.cnum].valid = 0;
2070 	return 0;
2071 }
2072 
2073 static int delete_disk(struct aac_dev *dev, void __user *arg)
2074 {
2075 	struct aac_delete_disk dd;
2076 	struct fsa_dev_info *fsa_dev_ptr;
2077 
2078 	fsa_dev_ptr = dev->fsa_dev;
2079 	if (!fsa_dev_ptr)
2080 		return -EBUSY;
2081 
2082 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2083 		return -EFAULT;
2084 
2085 	if (dd.cnum >= dev->maximum_num_containers)
2086 		return -EINVAL;
2087 	/*
2088 	 *	If the container is locked, it can not be deleted by the API.
2089 	 */
2090 	if (fsa_dev_ptr[dd.cnum].locked)
2091 		return -EBUSY;
2092 	else {
2093 		/*
2094 		 *	Mark the container as no longer being valid.
2095 		 */
2096 		fsa_dev_ptr[dd.cnum].valid = 0;
2097 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2098 		return 0;
2099 	}
2100 }
2101 
2102 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2103 {
2104 	switch (cmd) {
2105 	case FSACTL_QUERY_DISK:
2106 		return query_disk(dev, arg);
2107 	case FSACTL_DELETE_DISK:
2108 		return delete_disk(dev, arg);
2109 	case FSACTL_FORCE_DELETE_DISK:
2110 		return force_delete_disk(dev, arg);
2111 	case FSACTL_GET_CONTAINERS:
2112 		return aac_get_containers(dev);
2113 	default:
2114 		return -ENOTTY;
2115 	}
2116 }
2117 
2118 /**
2119  *
2120  * aac_srb_callback
2121  * @context: the context set in the fib - here it is scsi cmd
2122  * @fibptr: pointer to the fib
2123  *
2124  * Handles the completion of a scsi command to a non dasd device
2125  *
2126  */
2127 
2128 static void aac_srb_callback(void *context, struct fib * fibptr)
2129 {
2130 	struct aac_dev *dev;
2131 	struct aac_srb_reply *srbreply;
2132 	struct scsi_cmnd *scsicmd;
2133 
2134 	scsicmd = (struct scsi_cmnd *) context;
2135 
2136 	if (!aac_valid_context(scsicmd, fibptr))
2137 		return;
2138 
2139 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2140 
2141 	BUG_ON(fibptr == NULL);
2142 
2143 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2144 
2145 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2146 	/*
2147 	 *	Calculate resid for sg
2148 	 */
2149 
2150 	scsicmd->resid = scsicmd->request_bufflen -
2151 		le32_to_cpu(srbreply->data_xfer_length);
2152 
2153 	if(scsicmd->use_sg)
2154 		pci_unmap_sg(dev->pdev,
2155 			(struct scatterlist *)scsicmd->request_buffer,
2156 			scsicmd->use_sg,
2157 			scsicmd->sc_data_direction);
2158 	else if(scsicmd->request_bufflen)
2159 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
2160 			scsicmd->sc_data_direction);
2161 
2162 	/*
2163 	 * First check the fib status
2164 	 */
2165 
2166 	if (le32_to_cpu(srbreply->status) != ST_OK){
2167 		int len;
2168 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2169 		len = (le32_to_cpu(srbreply->sense_data_size) >
2170 				sizeof(scsicmd->sense_buffer)) ?
2171 				sizeof(scsicmd->sense_buffer) :
2172 				le32_to_cpu(srbreply->sense_data_size);
2173 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2174 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2175 	}
2176 
2177 	/*
2178 	 * Next check the srb status
2179 	 */
2180 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2181 	case SRB_STATUS_ERROR_RECOVERY:
2182 	case SRB_STATUS_PENDING:
2183 	case SRB_STATUS_SUCCESS:
2184 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2185 		break;
2186 	case SRB_STATUS_DATA_OVERRUN:
2187 		switch(scsicmd->cmnd[0]){
2188 		case  READ_6:
2189 		case  WRITE_6:
2190 		case  READ_10:
2191 		case  WRITE_10:
2192 		case  READ_12:
2193 		case  WRITE_12:
2194 		case  READ_16:
2195 		case  WRITE_16:
2196 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2197 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2198 			} else {
2199 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2200 			}
2201 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2202 			break;
2203 		case INQUIRY: {
2204 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2205 			break;
2206 		}
2207 		default:
2208 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2209 			break;
2210 		}
2211 		break;
2212 	case SRB_STATUS_ABORTED:
2213 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2214 		break;
2215 	case SRB_STATUS_ABORT_FAILED:
2216 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2217 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2218 		break;
2219 	case SRB_STATUS_PARITY_ERROR:
2220 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2221 		break;
2222 	case SRB_STATUS_NO_DEVICE:
2223 	case SRB_STATUS_INVALID_PATH_ID:
2224 	case SRB_STATUS_INVALID_TARGET_ID:
2225 	case SRB_STATUS_INVALID_LUN:
2226 	case SRB_STATUS_SELECTION_TIMEOUT:
2227 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2228 		break;
2229 
2230 	case SRB_STATUS_COMMAND_TIMEOUT:
2231 	case SRB_STATUS_TIMEOUT:
2232 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2233 		break;
2234 
2235 	case SRB_STATUS_BUSY:
2236 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2237 		break;
2238 
2239 	case SRB_STATUS_BUS_RESET:
2240 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2241 		break;
2242 
2243 	case SRB_STATUS_MESSAGE_REJECTED:
2244 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2245 		break;
2246 	case SRB_STATUS_REQUEST_FLUSHED:
2247 	case SRB_STATUS_ERROR:
2248 	case SRB_STATUS_INVALID_REQUEST:
2249 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2250 	case SRB_STATUS_NO_HBA:
2251 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2252 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2253 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2254 	case SRB_STATUS_DELAYED_RETRY:
2255 	case SRB_STATUS_BAD_FUNCTION:
2256 	case SRB_STATUS_NOT_STARTED:
2257 	case SRB_STATUS_NOT_IN_USE:
2258 	case SRB_STATUS_FORCE_ABORT:
2259 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2260 	default:
2261 #ifdef AAC_DETAILED_STATUS_INFO
2262 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2263 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2264 			aac_get_status_string(
2265 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2266 			scsicmd->cmnd[0],
2267 			le32_to_cpu(srbreply->scsi_status));
2268 #endif
2269 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2270 		break;
2271 	}
2272 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
2273 		int len;
2274 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2275 		len = (le32_to_cpu(srbreply->sense_data_size) >
2276 				sizeof(scsicmd->sense_buffer)) ?
2277 				sizeof(scsicmd->sense_buffer) :
2278 				le32_to_cpu(srbreply->sense_data_size);
2279 #ifdef AAC_DETAILED_STATUS_INFO
2280 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2281 					le32_to_cpu(srbreply->status), len);
2282 #endif
2283 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2284 
2285 	}
2286 	/*
2287 	 * OR in the scsi status (already shifted up a bit)
2288 	 */
2289 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2290 
2291 	aac_fib_complete(fibptr);
2292 	aac_fib_free(fibptr);
2293 	scsicmd->scsi_done(scsicmd);
2294 }
2295 
2296 /**
2297  *
2298  * aac_send_scb_fib
2299  * @scsicmd: the scsi command block
2300  *
2301  * This routine will form a FIB and fill in the aac_srb from the
2302  * scsicmd passed in.
2303  */
2304 
2305 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2306 {
2307 	struct fib* cmd_fibcontext;
2308 	struct aac_dev* dev;
2309 	int status;
2310 
2311 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2312 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2313 			scsicmd->device->lun > 7) {
2314 		scsicmd->result = DID_NO_CONNECT << 16;
2315 		scsicmd->scsi_done(scsicmd);
2316 		return 0;
2317 	}
2318 
2319 	/*
2320 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2321 	 */
2322 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2323 		return -1;
2324 	}
2325 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2326 
2327 	/*
2328 	 *	Check that the command queued to the controller
2329 	 */
2330 	if (status == -EINPROGRESS) {
2331 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2332 		return 0;
2333 	}
2334 
2335 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2336 	aac_fib_complete(cmd_fibcontext);
2337 	aac_fib_free(cmd_fibcontext);
2338 
2339 	return -1;
2340 }
2341 
2342 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2343 {
2344 	struct aac_dev *dev;
2345 	unsigned long byte_count = 0;
2346 
2347 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2348 	// Get rid of old data
2349 	psg->count = 0;
2350 	psg->sg[0].addr = 0;
2351 	psg->sg[0].count = 0;
2352 	if (scsicmd->use_sg) {
2353 		struct scatterlist *sg;
2354 		int i;
2355 		int sg_count;
2356 		sg = (struct scatterlist *) scsicmd->request_buffer;
2357 
2358 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2359 			scsicmd->sc_data_direction);
2360 		psg->count = cpu_to_le32(sg_count);
2361 
2362 		for (i = 0; i < sg_count; i++) {
2363 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2364 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2365 			byte_count += sg_dma_len(sg);
2366 			sg++;
2367 		}
2368 		/* hba wants the size to be exact */
2369 		if(byte_count > scsicmd->request_bufflen){
2370 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2371 				(byte_count - scsicmd->request_bufflen);
2372 			psg->sg[i-1].count = cpu_to_le32(temp);
2373 			byte_count = scsicmd->request_bufflen;
2374 		}
2375 		/* Check for command underflow */
2376 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2377 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2378 					byte_count, scsicmd->underflow);
2379 		}
2380 	}
2381 	else if(scsicmd->request_bufflen) {
2382 		u32 addr;
2383 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2384 				scsicmd->request_buffer,
2385 				scsicmd->request_bufflen,
2386 				scsicmd->sc_data_direction);
2387 		addr = scsicmd->SCp.dma_handle;
2388 		psg->count = cpu_to_le32(1);
2389 		psg->sg[0].addr = cpu_to_le32(addr);
2390 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2391 		byte_count = scsicmd->request_bufflen;
2392 	}
2393 	return byte_count;
2394 }
2395 
2396 
2397 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2398 {
2399 	struct aac_dev *dev;
2400 	unsigned long byte_count = 0;
2401 	u64 addr;
2402 
2403 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2404 	// Get rid of old data
2405 	psg->count = 0;
2406 	psg->sg[0].addr[0] = 0;
2407 	psg->sg[0].addr[1] = 0;
2408 	psg->sg[0].count = 0;
2409 	if (scsicmd->use_sg) {
2410 		struct scatterlist *sg;
2411 		int i;
2412 		int sg_count;
2413 		sg = (struct scatterlist *) scsicmd->request_buffer;
2414 
2415 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2416 			scsicmd->sc_data_direction);
2417 
2418 		for (i = 0; i < sg_count; i++) {
2419 			int count = sg_dma_len(sg);
2420 			addr = sg_dma_address(sg);
2421 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2422 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2423 			psg->sg[i].count = cpu_to_le32(count);
2424 			byte_count += count;
2425 			sg++;
2426 		}
2427 		psg->count = cpu_to_le32(sg_count);
2428 		/* hba wants the size to be exact */
2429 		if(byte_count > scsicmd->request_bufflen){
2430 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2431 				(byte_count - scsicmd->request_bufflen);
2432 			psg->sg[i-1].count = cpu_to_le32(temp);
2433 			byte_count = scsicmd->request_bufflen;
2434 		}
2435 		/* Check for command underflow */
2436 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2437 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2438 					byte_count, scsicmd->underflow);
2439 		}
2440 	}
2441 	else if(scsicmd->request_bufflen) {
2442 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2443 				scsicmd->request_buffer,
2444 				scsicmd->request_bufflen,
2445 				scsicmd->sc_data_direction);
2446 		addr = scsicmd->SCp.dma_handle;
2447 		psg->count = cpu_to_le32(1);
2448 		psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2449 		psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2450 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2451 		byte_count = scsicmd->request_bufflen;
2452 	}
2453 	return byte_count;
2454 }
2455 
2456 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2457 {
2458 	struct Scsi_Host *host = scsicmd->device->host;
2459 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2460 	unsigned long byte_count = 0;
2461 
2462 	// Get rid of old data
2463 	psg->count = 0;
2464 	psg->sg[0].next = 0;
2465 	psg->sg[0].prev = 0;
2466 	psg->sg[0].addr[0] = 0;
2467 	psg->sg[0].addr[1] = 0;
2468 	psg->sg[0].count = 0;
2469 	psg->sg[0].flags = 0;
2470 	if (scsicmd->use_sg) {
2471 		struct scatterlist *sg;
2472 		int i;
2473 		int sg_count;
2474 		sg = (struct scatterlist *) scsicmd->request_buffer;
2475 
2476 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2477 			scsicmd->sc_data_direction);
2478 
2479 		for (i = 0; i < sg_count; i++) {
2480 			int count = sg_dma_len(sg);
2481 			u64 addr = sg_dma_address(sg);
2482 			psg->sg[i].next = 0;
2483 			psg->sg[i].prev = 0;
2484 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2485 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2486 			psg->sg[i].count = cpu_to_le32(count);
2487 			psg->sg[i].flags = 0;
2488 			byte_count += count;
2489 			sg++;
2490 		}
2491 		psg->count = cpu_to_le32(sg_count);
2492 		/* hba wants the size to be exact */
2493 		if(byte_count > scsicmd->request_bufflen){
2494 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2495 				(byte_count - scsicmd->request_bufflen);
2496 			psg->sg[i-1].count = cpu_to_le32(temp);
2497 			byte_count = scsicmd->request_bufflen;
2498 		}
2499 		/* Check for command underflow */
2500 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2501 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2502 					byte_count, scsicmd->underflow);
2503 		}
2504 	}
2505 	else if(scsicmd->request_bufflen) {
2506 		int count;
2507 		u64 addr;
2508 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2509 				scsicmd->request_buffer,
2510 				scsicmd->request_bufflen,
2511 				scsicmd->sc_data_direction);
2512 		addr = scsicmd->SCp.dma_handle;
2513 		count = scsicmd->request_bufflen;
2514 		psg->count = cpu_to_le32(1);
2515 		psg->sg[0].next = 0;
2516 		psg->sg[0].prev = 0;
2517 		psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2518 		psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2519 		psg->sg[0].count = cpu_to_le32(count);
2520 		psg->sg[0].flags = 0;
2521 		byte_count = scsicmd->request_bufflen;
2522 	}
2523 	return byte_count;
2524 }
2525 
2526 #ifdef AAC_DETAILED_STATUS_INFO
2527 
2528 struct aac_srb_status_info {
2529 	u32	status;
2530 	char	*str;
2531 };
2532 
2533 
2534 static struct aac_srb_status_info srb_status_info[] = {
2535 	{ SRB_STATUS_PENDING,		"Pending Status"},
2536 	{ SRB_STATUS_SUCCESS,		"Success"},
2537 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2538 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2539 	{ SRB_STATUS_ERROR,		"Error Event"},
2540 	{ SRB_STATUS_BUSY,		"Device Busy"},
2541 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2542 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2543 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2544 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2545 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2546 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2547 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2548 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2549 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2550 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2551 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2552 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2553 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2554 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2555 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2556 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2557 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2558 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2559 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2560 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2561 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2562 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2563 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2564     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2565 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2566 	{ 0xff,				"Unknown Error"}
2567 };
2568 
2569 char *aac_get_status_string(u32 status)
2570 {
2571 	int i;
2572 
2573 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2574 		if (srb_status_info[i].status == status)
2575 			return srb_status_info[i].str;
2576 
2577 	return "Bad Status Code";
2578 }
2579 
2580 #endif
2581