xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  aachba.c
28  *
29  * Abstract: Contains Interfaces to manage IOs.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
44 
45 #include <asm/unaligned.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51 
52 #include "aacraid.h"
53 
54 /* values for inqd_pdt: Peripheral device type in plain English */
55 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
56 #define	INQD_PDT_PROC	0x03	/* Processor device */
57 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
58 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
59 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
60 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
61 
62 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
63 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
64 
65 /*
66  *	Sense codes
67  */
68 
69 #define SENCODE_NO_SENSE			0x00
70 #define SENCODE_END_OF_DATA			0x00
71 #define SENCODE_BECOMING_READY			0x04
72 #define SENCODE_INIT_CMD_REQUIRED		0x04
73 #define SENCODE_UNRECOVERED_READ_ERROR		0x11
74 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
75 #define SENCODE_INVALID_COMMAND			0x20
76 #define SENCODE_LBA_OUT_OF_RANGE		0x21
77 #define SENCODE_INVALID_CDB_FIELD		0x24
78 #define SENCODE_LUN_NOT_SUPPORTED		0x25
79 #define SENCODE_INVALID_PARAM_FIELD		0x26
80 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
81 #define SENCODE_PARAM_VALUE_INVALID		0x26
82 #define SENCODE_RESET_OCCURRED			0x29
83 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
84 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
85 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
86 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
87 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
88 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
89 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
90 #define SENCODE_OVERLAPPED_COMMAND		0x4E
91 
92 /*
93  *	Additional sense codes
94  */
95 
96 #define ASENCODE_NO_SENSE			0x00
97 #define ASENCODE_END_OF_DATA			0x05
98 #define ASENCODE_BECOMING_READY			0x01
99 #define ASENCODE_INIT_CMD_REQUIRED		0x02
100 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
101 #define ASENCODE_INVALID_COMMAND		0x00
102 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
103 #define ASENCODE_INVALID_CDB_FIELD		0x00
104 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
105 #define ASENCODE_INVALID_PARAM_FIELD		0x00
106 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
107 #define ASENCODE_PARAM_VALUE_INVALID		0x02
108 #define ASENCODE_RESET_OCCURRED			0x00
109 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
110 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
111 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
112 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
113 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
114 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
115 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
116 #define ASENCODE_OVERLAPPED_COMMAND		0x00
117 
118 #define BYTE0(x) (unsigned char)(x)
119 #define BYTE1(x) (unsigned char)((x) >> 8)
120 #define BYTE2(x) (unsigned char)((x) >> 16)
121 #define BYTE3(x) (unsigned char)((x) >> 24)
122 
123 /* MODE_SENSE data format */
124 typedef struct {
125 	struct {
126 		u8	data_length;
127 		u8	med_type;
128 		u8	dev_par;
129 		u8	bd_length;
130 	} __attribute__((packed)) hd;
131 	struct {
132 		u8	dens_code;
133 		u8	block_count[3];
134 		u8	reserved;
135 		u8	block_length[3];
136 	} __attribute__((packed)) bd;
137 		u8	mpc_buf[3];
138 } __attribute__((packed)) aac_modep_data;
139 
140 /* MODE_SENSE_10 data format */
141 typedef struct {
142 	struct {
143 		u8	data_length[2];
144 		u8	med_type;
145 		u8	dev_par;
146 		u8	rsrvd[2];
147 		u8	bd_length[2];
148 	} __attribute__((packed)) hd;
149 	struct {
150 		u8	dens_code;
151 		u8	block_count[3];
152 		u8	reserved;
153 		u8	block_length[3];
154 	} __attribute__((packed)) bd;
155 		u8	mpc_buf[3];
156 } __attribute__((packed)) aac_modep10_data;
157 
158 /*------------------------------------------------------------------------------
159  *              S T R U C T S / T Y P E D E F S
160  *----------------------------------------------------------------------------*/
161 /* SCSI inquiry data */
162 struct inquiry_data {
163 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
164 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
165 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
166 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
167 	u8 inqd_len;	/* Additional length (n-4) */
168 	u8 inqd_pad1[2];/* Reserved - must be zero */
169 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
170 	u8 inqd_vid[8];	/* Vendor ID */
171 	u8 inqd_pid[16];/* Product ID */
172 	u8 inqd_prl[4];	/* Product Revision Level */
173 };
174 
175 /* Added for VPD 0x83 */
176 struct  tvpd_id_descriptor_type_1 {
177 	u8 codeset:4;		/* VPD_CODE_SET */
178 	u8 reserved:4;
179 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
180 	u8 reserved2:4;
181 	u8 reserved3;
182 	u8 identifierlength;
183 	u8 venid[8];
184 	u8 productid[16];
185 	u8 serialnumber[8];	/* SN in ASCII */
186 
187 };
188 
189 struct tvpd_id_descriptor_type_2 {
190 	u8 codeset:4;		/* VPD_CODE_SET */
191 	u8 reserved:4;
192 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
193 	u8 reserved2:4;
194 	u8 reserved3;
195 	u8 identifierlength;
196 	struct teu64id {
197 		u32 Serial;
198 		 /* The serial number supposed to be 40 bits,
199 		  * bit we only support 32, so make the last byte zero. */
200 		u8 reserved;
201 		u8 venid[3];
202 	} eu64id;
203 
204 };
205 
206 struct tvpd_id_descriptor_type_3 {
207 	u8 codeset : 4;          /* VPD_CODE_SET */
208 	u8 reserved : 4;
209 	u8 identifiertype : 4;   /* VPD_IDENTIFIER_TYPE */
210 	u8 reserved2 : 4;
211 	u8 reserved3;
212 	u8 identifierlength;
213 	u8 Identifier[16];
214 };
215 
216 struct tvpd_page83 {
217 	u8 DeviceType:5;
218 	u8 DeviceTypeQualifier:3;
219 	u8 PageCode;
220 	u8 reserved;
221 	u8 PageLength;
222 	struct tvpd_id_descriptor_type_1 type1;
223 	struct tvpd_id_descriptor_type_2 type2;
224 	struct tvpd_id_descriptor_type_3 type3;
225 };
226 
227 /*
228  *              M O D U L E   G L O B A L S
229  */
230 
231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
235 				struct aac_raw_io2 *rio2, int sg_max);
236 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
237 				struct aac_hba_cmd_req *hbacmd,
238 				int sg_max, u64 sg_address);
239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
240 				int pages, int nseg, int nseg_new);
241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
243 #ifdef AAC_DETAILED_STATUS_INFO
244 static char *aac_get_status_string(u32 status);
245 #endif
246 
247 /*
248  *	Non dasd selection is handled entirely in aachba now
249  */
250 
251 static int nondasd = -1;
252 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
253 static int dacmode = -1;
254 int aac_msi;
255 int aac_commit = -1;
256 int startup_timeout = 180;
257 int aif_timeout = 120;
258 int aac_sync_mode;  /* Only Sync. transfer - disabled */
259 int aac_convert_sgl = 1;	/* convert non-conformable s/g list - enabled */
260 
261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
263 	" 0=off, 1=on");
264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
266 	" 0=off, 1=on");
267 module_param(nondasd, int, S_IRUGO|S_IWUSR);
268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
269 	" 0=off, 1=on");
270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
272 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
273 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
274 	"\tbit 2 - Disable only if Battery is protecting Cache");
275 module_param(dacmode, int, S_IRUGO|S_IWUSR);
276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
277 	" 0=off, 1=on");
278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
280 	" adapter for foreign arrays.\n"
281 	"This is typically needed in systems that do not have a BIOS."
282 	" 0=off, 1=on");
283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
284 MODULE_PARM_DESC(msi, "IRQ handling."
285 	" 0=PIC(default), 1=MSI, 2=MSI-X)");
286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
288 	" adapter to have it's kernel up and\n"
289 	"running. This is typically adjusted for large systems that do not"
290 	" have a BIOS.");
291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
293 	" applications to pick up AIFs before\n"
294 	"deregistering them. This is typically adjusted for heavily burdened"
295 	" systems.");
296 
297 int aac_fib_dump;
298 module_param(aac_fib_dump, int, 0644);
299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
300 
301 int numacb = -1;
302 module_param(numacb, int, S_IRUGO|S_IWUSR);
303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
304 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
305 	" to use suggestion from Firmware.");
306 
307 int acbsize = -1;
308 module_param(acbsize, int, S_IRUGO|S_IWUSR);
309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
310 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
311 	" suggestion from Firmware.");
312 
313 int update_interval = 30 * 60;
314 module_param(update_interval, int, S_IRUGO|S_IWUSR);
315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
316 	" updates issued to adapter.");
317 
318 int check_interval = 60;
319 module_param(check_interval, int, S_IRUGO|S_IWUSR);
320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
321 	" checks.");
322 
323 int aac_check_reset = 1;
324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
326 	" adapter. a value of -1 forces the reset to adapters programmed to"
327 	" ignore it.");
328 
329 int expose_physicals = -1;
330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
332 	" -1=protect 0=off, 1=on");
333 
334 int aac_reset_devices;
335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
337 
338 int aac_wwn = 1;
339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
341 	"\t0 - Disable\n"
342 	"\t1 - Array Meta Data Signature (default)\n"
343 	"\t2 - Adapter Serial Number");
344 
345 
346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
347 		struct fib *fibptr) {
348 	struct scsi_device *device;
349 
350 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
351 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
352 		aac_fib_complete(fibptr);
353 		return 0;
354 	}
355 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
356 	device = scsicmd->device;
357 	if (unlikely(!device)) {
358 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
359 		aac_fib_complete(fibptr);
360 		return 0;
361 	}
362 	return 1;
363 }
364 
365 /**
366  *	aac_get_config_status	-	check the adapter configuration
367  *	@common: adapter to query
368  *
369  *	Query config status, and commit the configuration if needed.
370  */
371 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
372 {
373 	int status = 0;
374 	struct fib * fibptr;
375 
376 	if (!(fibptr = aac_fib_alloc(dev)))
377 		return -ENOMEM;
378 
379 	aac_fib_init(fibptr);
380 	{
381 		struct aac_get_config_status *dinfo;
382 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
383 
384 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
385 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
386 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
387 	}
388 
389 	status = aac_fib_send(ContainerCommand,
390 			    fibptr,
391 			    sizeof (struct aac_get_config_status),
392 			    FsaNormal,
393 			    1, 1,
394 			    NULL, NULL);
395 	if (status < 0) {
396 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
397 	} else {
398 		struct aac_get_config_status_resp *reply
399 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
400 		dprintk((KERN_WARNING
401 		  "aac_get_config_status: response=%d status=%d action=%d\n",
402 		  le32_to_cpu(reply->response),
403 		  le32_to_cpu(reply->status),
404 		  le32_to_cpu(reply->data.action)));
405 		if ((le32_to_cpu(reply->response) != ST_OK) ||
406 		     (le32_to_cpu(reply->status) != CT_OK) ||
407 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
408 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
409 			status = -EINVAL;
410 		}
411 	}
412 	/* Do not set XferState to zero unless receives a response from F/W */
413 	if (status >= 0)
414 		aac_fib_complete(fibptr);
415 
416 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
417 	if (status >= 0) {
418 		if ((aac_commit == 1) || commit_flag) {
419 			struct aac_commit_config * dinfo;
420 			aac_fib_init(fibptr);
421 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
422 
423 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
424 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
425 
426 			status = aac_fib_send(ContainerCommand,
427 				    fibptr,
428 				    sizeof (struct aac_commit_config),
429 				    FsaNormal,
430 				    1, 1,
431 				    NULL, NULL);
432 			/* Do not set XferState to zero unless
433 			 * receives a response from F/W */
434 			if (status >= 0)
435 				aac_fib_complete(fibptr);
436 		} else if (aac_commit == 0) {
437 			printk(KERN_WARNING
438 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
439 		}
440 	}
441 	/* FIB should be freed only after getting the response from the F/W */
442 	if (status != -ERESTARTSYS)
443 		aac_fib_free(fibptr);
444 	return status;
445 }
446 
447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
448 {
449 	char inq_data;
450 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
451 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
452 		inq_data &= 0xdf;
453 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
454 	}
455 }
456 
457 /**
458  *	aac_get_containers	-	list containers
459  *	@common: adapter to probe
460  *
461  *	Make a list of all containers on this controller
462  */
463 int aac_get_containers(struct aac_dev *dev)
464 {
465 	struct fsa_dev_info *fsa_dev_ptr;
466 	u32 index;
467 	int status = 0;
468 	struct fib * fibptr;
469 	struct aac_get_container_count *dinfo;
470 	struct aac_get_container_count_resp *dresp;
471 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
472 
473 	if (!(fibptr = aac_fib_alloc(dev)))
474 		return -ENOMEM;
475 
476 	aac_fib_init(fibptr);
477 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
478 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
479 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
480 
481 	status = aac_fib_send(ContainerCommand,
482 		    fibptr,
483 		    sizeof (struct aac_get_container_count),
484 		    FsaNormal,
485 		    1, 1,
486 		    NULL, NULL);
487 	if (status >= 0) {
488 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
489 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
490 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
491 		    AAC_OPTION_SUPPORTED_240_VOLUMES) {
492 			maximum_num_containers =
493 				le32_to_cpu(dresp->MaxSimpleVolumes);
494 		}
495 		aac_fib_complete(fibptr);
496 	}
497 	/* FIB should be freed only after getting the response from the F/W */
498 	if (status != -ERESTARTSYS)
499 		aac_fib_free(fibptr);
500 
501 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
502 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
503 	if (dev->fsa_dev == NULL ||
504 		dev->maximum_num_containers != maximum_num_containers) {
505 
506 		fsa_dev_ptr = dev->fsa_dev;
507 
508 		dev->fsa_dev = kcalloc(maximum_num_containers,
509 					sizeof(*fsa_dev_ptr), GFP_KERNEL);
510 
511 		kfree(fsa_dev_ptr);
512 		fsa_dev_ptr = NULL;
513 
514 
515 		if (!dev->fsa_dev)
516 			return -ENOMEM;
517 
518 		dev->maximum_num_containers = maximum_num_containers;
519 	}
520 	for (index = 0; index < dev->maximum_num_containers; index++) {
521 		dev->fsa_dev[index].devname[0] = '\0';
522 		dev->fsa_dev[index].valid = 0;
523 
524 		status = aac_probe_container(dev, index);
525 
526 		if (status < 0) {
527 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
528 			break;
529 		}
530 	}
531 	return status;
532 }
533 
534 static void get_container_name_callback(void *context, struct fib * fibptr)
535 {
536 	struct aac_get_name_resp * get_name_reply;
537 	struct scsi_cmnd * scsicmd;
538 
539 	scsicmd = (struct scsi_cmnd *) context;
540 
541 	if (!aac_valid_context(scsicmd, fibptr))
542 		return;
543 
544 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
545 	BUG_ON(fibptr == NULL);
546 
547 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
548 	/* Failure is irrelevant, using default value instead */
549 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
550 	 && (get_name_reply->data[0] != '\0')) {
551 		char *sp = get_name_reply->data;
552 		int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
553 
554 		sp[data_size - 1] = '\0';
555 		while (*sp == ' ')
556 			++sp;
557 		if (*sp) {
558 			struct inquiry_data inq;
559 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
560 			int count = sizeof(d);
561 			char *dp = d;
562 			do {
563 				*dp++ = (*sp) ? *sp++ : ' ';
564 			} while (--count > 0);
565 
566 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
567 			memcpy(inq.inqd_pid, d, sizeof(d));
568 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
569 		}
570 	}
571 
572 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
573 
574 	aac_fib_complete(fibptr);
575 	scsicmd->scsi_done(scsicmd);
576 }
577 
578 /**
579  *	aac_get_container_name	-	get container name, none blocking.
580  */
581 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
582 {
583 	int status;
584 	int data_size;
585 	struct aac_get_name *dinfo;
586 	struct fib * cmd_fibcontext;
587 	struct aac_dev * dev;
588 
589 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
590 
591 	data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
592 
593 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
594 
595 	aac_fib_init(cmd_fibcontext);
596 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
597 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
598 
599 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
600 	dinfo->type = cpu_to_le32(CT_READ_NAME);
601 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
602 	dinfo->count = cpu_to_le32(data_size - 1);
603 
604 	status = aac_fib_send(ContainerCommand,
605 		  cmd_fibcontext,
606 		  sizeof(struct aac_get_name_resp),
607 		  FsaNormal,
608 		  0, 1,
609 		  (fib_callback)get_container_name_callback,
610 		  (void *) scsicmd);
611 
612 	/*
613 	 *	Check that the command queued to the controller
614 	 */
615 	if (status == -EINPROGRESS)
616 		return 0;
617 
618 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
619 	aac_fib_complete(cmd_fibcontext);
620 	return -1;
621 }
622 
623 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
624 {
625 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
626 
627 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
628 		return aac_scsi_cmd(scsicmd);
629 
630 	scsicmd->result = DID_NO_CONNECT << 16;
631 	scsicmd->scsi_done(scsicmd);
632 	return 0;
633 }
634 
635 static void _aac_probe_container2(void * context, struct fib * fibptr)
636 {
637 	struct fsa_dev_info *fsa_dev_ptr;
638 	int (*callback)(struct scsi_cmnd *);
639 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
640 	int i;
641 
642 
643 	if (!aac_valid_context(scsicmd, fibptr))
644 		return;
645 
646 	scsicmd->SCp.Status = 0;
647 	fsa_dev_ptr = fibptr->dev->fsa_dev;
648 	if (fsa_dev_ptr) {
649 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
650 		__le32 sup_options2;
651 
652 		fsa_dev_ptr += scmd_id(scsicmd);
653 		sup_options2 =
654 			fibptr->dev->supplement_adapter_info.supported_options2;
655 
656 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
657 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
658 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
659 			if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
660 				dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
661 				fsa_dev_ptr->block_size = 0x200;
662 			} else {
663 				fsa_dev_ptr->block_size =
664 					le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
665 			}
666 			for (i = 0; i < 16; i++)
667 				fsa_dev_ptr->identifier[i] =
668 					dresp->mnt[0].fileinfo.bdevinfo
669 								.identifier[i];
670 			fsa_dev_ptr->valid = 1;
671 			/* sense_key holds the current state of the spin-up */
672 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
673 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
674 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
675 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
676 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
677 			fsa_dev_ptr->size
678 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
679 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
680 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
681 		}
682 		if ((fsa_dev_ptr->valid & 1) == 0)
683 			fsa_dev_ptr->valid = 0;
684 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
685 	}
686 	aac_fib_complete(fibptr);
687 	aac_fib_free(fibptr);
688 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
689 	scsicmd->SCp.ptr = NULL;
690 	(*callback)(scsicmd);
691 	return;
692 }
693 
694 static void _aac_probe_container1(void * context, struct fib * fibptr)
695 {
696 	struct scsi_cmnd * scsicmd;
697 	struct aac_mount * dresp;
698 	struct aac_query_mount *dinfo;
699 	int status;
700 
701 	dresp = (struct aac_mount *) fib_data(fibptr);
702 	if (!aac_supports_2T(fibptr->dev)) {
703 		dresp->mnt[0].capacityhigh = 0;
704 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
705 			(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
706 			_aac_probe_container2(context, fibptr);
707 			return;
708 		}
709 	}
710 	scsicmd = (struct scsi_cmnd *) context;
711 
712 	if (!aac_valid_context(scsicmd, fibptr))
713 		return;
714 
715 	aac_fib_init(fibptr);
716 
717 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
718 
719 	if (fibptr->dev->supplement_adapter_info.supported_options2 &
720 	    AAC_OPTION_VARIABLE_BLOCK_SIZE)
721 		dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
722 	else
723 		dinfo->command = cpu_to_le32(VM_NameServe64);
724 
725 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
726 	dinfo->type = cpu_to_le32(FT_FILESYS);
727 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
728 
729 	status = aac_fib_send(ContainerCommand,
730 			  fibptr,
731 			  sizeof(struct aac_query_mount),
732 			  FsaNormal,
733 			  0, 1,
734 			  _aac_probe_container2,
735 			  (void *) scsicmd);
736 	/*
737 	 *	Check that the command queued to the controller
738 	 */
739 	if (status < 0 && status != -EINPROGRESS) {
740 		/* Inherit results from VM_NameServe, if any */
741 		dresp->status = cpu_to_le32(ST_OK);
742 		_aac_probe_container2(context, fibptr);
743 	}
744 }
745 
746 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
747 {
748 	struct fib * fibptr;
749 	int status = -ENOMEM;
750 
751 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
752 		struct aac_query_mount *dinfo;
753 
754 		aac_fib_init(fibptr);
755 
756 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
757 
758 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
759 		    AAC_OPTION_VARIABLE_BLOCK_SIZE)
760 			dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
761 		else
762 			dinfo->command = cpu_to_le32(VM_NameServe);
763 
764 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
765 		dinfo->type = cpu_to_le32(FT_FILESYS);
766 		scsicmd->SCp.ptr = (char *)callback;
767 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
768 
769 		status = aac_fib_send(ContainerCommand,
770 			  fibptr,
771 			  sizeof(struct aac_query_mount),
772 			  FsaNormal,
773 			  0, 1,
774 			  _aac_probe_container1,
775 			  (void *) scsicmd);
776 		/*
777 		 *	Check that the command queued to the controller
778 		 */
779 		if (status == -EINPROGRESS)
780 			return 0;
781 
782 		if (status < 0) {
783 			scsicmd->SCp.ptr = NULL;
784 			aac_fib_complete(fibptr);
785 			aac_fib_free(fibptr);
786 		}
787 	}
788 	if (status < 0) {
789 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
790 		if (fsa_dev_ptr) {
791 			fsa_dev_ptr += scmd_id(scsicmd);
792 			if ((fsa_dev_ptr->valid & 1) == 0) {
793 				fsa_dev_ptr->valid = 0;
794 				return (*callback)(scsicmd);
795 			}
796 		}
797 	}
798 	return status;
799 }
800 
801 /**
802  *	aac_probe_container		-	query a logical volume
803  *	@dev: device to query
804  *	@cid: container identifier
805  *
806  *	Queries the controller about the given volume. The volume information
807  *	is updated in the struct fsa_dev_info structure rather than returned.
808  */
809 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
810 {
811 	scsicmd->device = NULL;
812 	return 0;
813 }
814 
815 int aac_probe_container(struct aac_dev *dev, int cid)
816 {
817 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
818 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
819 	int status;
820 
821 	if (!scsicmd || !scsidev) {
822 		kfree(scsicmd);
823 		kfree(scsidev);
824 		return -ENOMEM;
825 	}
826 	scsicmd->list.next = NULL;
827 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
828 
829 	scsicmd->device = scsidev;
830 	scsidev->sdev_state = 0;
831 	scsidev->id = cid;
832 	scsidev->host = dev->scsi_host_ptr;
833 
834 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
835 		while (scsicmd->device == scsidev)
836 			schedule();
837 	kfree(scsidev);
838 	status = scsicmd->SCp.Status;
839 	kfree(scsicmd);
840 	return status;
841 }
842 
843 /* Local Structure to set SCSI inquiry data strings */
844 struct scsi_inq {
845 	char vid[8];         /* Vendor ID */
846 	char pid[16];        /* Product ID */
847 	char prl[4];         /* Product Revision Level */
848 };
849 
850 /**
851  *	InqStrCopy	-	string merge
852  *	@a:	string to copy from
853  *	@b:	string to copy to
854  *
855  *	Copy a String from one location to another
856  *	without copying \0
857  */
858 
859 static void inqstrcpy(char *a, char *b)
860 {
861 
862 	while (*a != (char)0)
863 		*b++ = *a++;
864 }
865 
866 static char *container_types[] = {
867 	"None",
868 	"Volume",
869 	"Mirror",
870 	"Stripe",
871 	"RAID5",
872 	"SSRW",
873 	"SSRO",
874 	"Morph",
875 	"Legacy",
876 	"RAID4",
877 	"RAID10",
878 	"RAID00",
879 	"V-MIRRORS",
880 	"PSEUDO R4",
881 	"RAID50",
882 	"RAID5D",
883 	"RAID5D0",
884 	"RAID1E",
885 	"RAID6",
886 	"RAID60",
887 	"Unknown"
888 };
889 
890 char * get_container_type(unsigned tindex)
891 {
892 	if (tindex >= ARRAY_SIZE(container_types))
893 		tindex = ARRAY_SIZE(container_types) - 1;
894 	return container_types[tindex];
895 }
896 
897 /* Function: setinqstr
898  *
899  * Arguments: [1] pointer to void [1] int
900  *
901  * Purpose: Sets SCSI inquiry data strings for vendor, product
902  * and revision level. Allows strings to be set in platform dependent
903  * files instead of in OS dependent driver source.
904  */
905 
906 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
907 {
908 	struct scsi_inq *str;
909 	struct aac_supplement_adapter_info *sup_adap_info;
910 
911 	sup_adap_info = &dev->supplement_adapter_info;
912 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
913 	memset(str, ' ', sizeof(*str));
914 
915 	if (sup_adap_info->adapter_type_text[0]) {
916 		int c;
917 		char *cp;
918 		char *cname = kmemdup(sup_adap_info->adapter_type_text,
919 				sizeof(sup_adap_info->adapter_type_text),
920 								GFP_ATOMIC);
921 		if (!cname)
922 			return;
923 
924 		cp = cname;
925 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
926 			inqstrcpy("SMC", str->vid);
927 		else {
928 			c = sizeof(str->vid);
929 			while (*cp && *cp != ' ' && --c)
930 				++cp;
931 			c = *cp;
932 			*cp = '\0';
933 			inqstrcpy(cname, str->vid);
934 			*cp = c;
935 			while (*cp && *cp != ' ')
936 				++cp;
937 		}
938 		while (*cp == ' ')
939 			++cp;
940 		/* last six chars reserved for vol type */
941 		if (strlen(cp) > sizeof(str->pid))
942 			cp[sizeof(str->pid)] = '\0';
943 		inqstrcpy (cp, str->pid);
944 
945 		kfree(cname);
946 	} else {
947 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
948 
949 		inqstrcpy (mp->vname, str->vid);
950 		/* last six chars reserved for vol type */
951 		inqstrcpy (mp->model, str->pid);
952 	}
953 
954 	if (tindex < ARRAY_SIZE(container_types)){
955 		char *findit = str->pid;
956 
957 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
958 		/* RAID is superfluous in the context of a RAID device */
959 		if (memcmp(findit-4, "RAID", 4) == 0)
960 			*(findit -= 4) = ' ';
961 		if (((findit - str->pid) + strlen(container_types[tindex]))
962 		 < (sizeof(str->pid) + sizeof(str->prl)))
963 			inqstrcpy (container_types[tindex], findit + 1);
964 	}
965 	inqstrcpy ("V1.0", str->prl);
966 }
967 
968 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
969 		struct aac_dev *dev, struct scsi_cmnd *scsicmd)
970 {
971 	int container;
972 
973 	vpdpage83data->type3.codeset = 1;
974 	vpdpage83data->type3.identifiertype = 3;
975 	vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
976 			- 4;
977 
978 	for (container = 0; container < dev->maximum_num_containers;
979 			container++) {
980 
981 		if (scmd_id(scsicmd) == container) {
982 			memcpy(vpdpage83data->type3.Identifier,
983 					dev->fsa_dev[container].identifier,
984 					16);
985 			break;
986 		}
987 	}
988 }
989 
990 static void get_container_serial_callback(void *context, struct fib * fibptr)
991 {
992 	struct aac_get_serial_resp * get_serial_reply;
993 	struct scsi_cmnd * scsicmd;
994 
995 	BUG_ON(fibptr == NULL);
996 
997 	scsicmd = (struct scsi_cmnd *) context;
998 	if (!aac_valid_context(scsicmd, fibptr))
999 		return;
1000 
1001 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
1002 	/* Failure is irrelevant, using default value instead */
1003 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1004 		/*Check to see if it's for VPD 0x83 or 0x80 */
1005 		if (scsicmd->cmnd[2] == 0x83) {
1006 			/* vpd page 0x83 - Device Identification Page */
1007 			struct aac_dev *dev;
1008 			int i;
1009 			struct tvpd_page83 vpdpage83data;
1010 
1011 			dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1012 
1013 			memset(((u8 *)&vpdpage83data), 0,
1014 			       sizeof(vpdpage83data));
1015 
1016 			/* DIRECT_ACCESS_DEVIC */
1017 			vpdpage83data.DeviceType = 0;
1018 			/* DEVICE_CONNECTED */
1019 			vpdpage83data.DeviceTypeQualifier = 0;
1020 			/* VPD_DEVICE_IDENTIFIERS */
1021 			vpdpage83data.PageCode = 0x83;
1022 			vpdpage83data.reserved = 0;
1023 			vpdpage83data.PageLength =
1024 				sizeof(vpdpage83data.type1) +
1025 				sizeof(vpdpage83data.type2);
1026 
1027 			/* VPD 83 Type 3 is not supported for ARC */
1028 			if (dev->sa_firmware)
1029 				vpdpage83data.PageLength +=
1030 				sizeof(vpdpage83data.type3);
1031 
1032 			/* T10 Vendor Identifier Field Format */
1033 			/* VpdcodesetAscii */
1034 			vpdpage83data.type1.codeset = 2;
1035 			/* VpdIdentifierTypeVendorId */
1036 			vpdpage83data.type1.identifiertype = 1;
1037 			vpdpage83data.type1.identifierlength =
1038 				sizeof(vpdpage83data.type1) - 4;
1039 
1040 			/* "ADAPTEC " for adaptec */
1041 			memcpy(vpdpage83data.type1.venid,
1042 				"ADAPTEC ",
1043 				sizeof(vpdpage83data.type1.venid));
1044 			memcpy(vpdpage83data.type1.productid,
1045 				"ARRAY           ",
1046 				sizeof(
1047 				vpdpage83data.type1.productid));
1048 
1049 			/* Convert to ascii based serial number.
1050 			 * The LSB is the the end.
1051 			 */
1052 			for (i = 0; i < 8; i++) {
1053 				u8 temp =
1054 					(u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1055 				if (temp  > 0x9) {
1056 					vpdpage83data.type1.serialnumber[i] =
1057 							'A' + (temp - 0xA);
1058 				} else {
1059 					vpdpage83data.type1.serialnumber[i] =
1060 							'0' + temp;
1061 				}
1062 			}
1063 
1064 			/* VpdCodeSetBinary */
1065 			vpdpage83data.type2.codeset = 1;
1066 			/* VpdidentifiertypeEUI64 */
1067 			vpdpage83data.type2.identifiertype = 2;
1068 			vpdpage83data.type2.identifierlength =
1069 				sizeof(vpdpage83data.type2) - 4;
1070 
1071 			vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1072 			vpdpage83data.type2.eu64id.venid[1] = 0;
1073 			vpdpage83data.type2.eu64id.venid[2] = 0;
1074 
1075 			vpdpage83data.type2.eu64id.Serial =
1076 							get_serial_reply->uid;
1077 			vpdpage83data.type2.eu64id.reserved = 0;
1078 
1079 			/*
1080 			 * VpdIdentifierTypeFCPHName
1081 			 * VPD 0x83 Type 3 not supported for ARC
1082 			 */
1083 			if (dev->sa_firmware) {
1084 				build_vpd83_type3(&vpdpage83data,
1085 						dev, scsicmd);
1086 			}
1087 
1088 			/* Move the inquiry data to the response buffer. */
1089 			scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1090 						 sizeof(vpdpage83data));
1091 		} else {
1092 			/* It must be for VPD 0x80 */
1093 			char sp[13];
1094 			/* EVPD bit set */
1095 			sp[0] = INQD_PDT_DA;
1096 			sp[1] = scsicmd->cmnd[2];
1097 			sp[2] = 0;
1098 			sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1099 				le32_to_cpu(get_serial_reply->uid));
1100 			scsi_sg_copy_from_buffer(scsicmd, sp,
1101 						 sizeof(sp));
1102 		}
1103 	}
1104 
1105 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1106 
1107 	aac_fib_complete(fibptr);
1108 	scsicmd->scsi_done(scsicmd);
1109 }
1110 
1111 /**
1112  *	aac_get_container_serial - get container serial, none blocking.
1113  */
1114 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1115 {
1116 	int status;
1117 	struct aac_get_serial *dinfo;
1118 	struct fib * cmd_fibcontext;
1119 	struct aac_dev * dev;
1120 
1121 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1122 
1123 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1124 
1125 	aac_fib_init(cmd_fibcontext);
1126 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1127 
1128 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
1129 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1130 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1131 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1132 
1133 	status = aac_fib_send(ContainerCommand,
1134 		  cmd_fibcontext,
1135 		  sizeof(struct aac_get_serial_resp),
1136 		  FsaNormal,
1137 		  0, 1,
1138 		  (fib_callback) get_container_serial_callback,
1139 		  (void *) scsicmd);
1140 
1141 	/*
1142 	 *	Check that the command queued to the controller
1143 	 */
1144 	if (status == -EINPROGRESS)
1145 		return 0;
1146 
1147 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1148 	aac_fib_complete(cmd_fibcontext);
1149 	return -1;
1150 }
1151 
1152 /* Function: setinqserial
1153  *
1154  * Arguments: [1] pointer to void [1] int
1155  *
1156  * Purpose: Sets SCSI Unit Serial number.
1157  *          This is a fake. We should read a proper
1158  *          serial number from the container. <SuSE>But
1159  *          without docs it's quite hard to do it :-)
1160  *          So this will have to do in the meantime.</SuSE>
1161  */
1162 
1163 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1164 {
1165 	/*
1166 	 *	This breaks array migration.
1167 	 */
1168 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1169 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
1170 }
1171 
1172 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1173 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1174 {
1175 	u8 *sense_buf = (u8 *)sense_data;
1176 	/* Sense data valid, err code 70h */
1177 	sense_buf[0] = 0x70; /* No info field */
1178 	sense_buf[1] = 0;	/* Segment number, always zero */
1179 
1180 	sense_buf[2] = sense_key;	/* Sense key */
1181 
1182 	sense_buf[12] = sense_code;	/* Additional sense code */
1183 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
1184 
1185 	if (sense_key == ILLEGAL_REQUEST) {
1186 		sense_buf[7] = 10;	/* Additional sense length */
1187 
1188 		sense_buf[15] = bit_pointer;
1189 		/* Illegal parameter is in the parameter block */
1190 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
1191 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
1192 		/* Illegal parameter is in the CDB block */
1193 		sense_buf[16] = field_pointer >> 8;	/* MSB */
1194 		sense_buf[17] = field_pointer;		/* LSB */
1195 	} else
1196 		sense_buf[7] = 6;	/* Additional sense length */
1197 }
1198 
1199 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1200 {
1201 	if (lba & 0xffffffff00000000LL) {
1202 		int cid = scmd_id(cmd);
1203 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1204 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1205 			SAM_STAT_CHECK_CONDITION;
1206 		set_sense(&dev->fsa_dev[cid].sense_data,
1207 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1208 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1209 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1210 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1211 			     SCSI_SENSE_BUFFERSIZE));
1212 		cmd->scsi_done(cmd);
1213 		return 1;
1214 	}
1215 	return 0;
1216 }
1217 
1218 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1219 {
1220 	return 0;
1221 }
1222 
1223 static void io_callback(void *context, struct fib * fibptr);
1224 
1225 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1226 {
1227 	struct aac_dev *dev = fib->dev;
1228 	u16 fibsize, command;
1229 	long ret;
1230 
1231 	aac_fib_init(fib);
1232 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1233 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1234 		!dev->sync_mode) {
1235 		struct aac_raw_io2 *readcmd2;
1236 		readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1237 		memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1238 		readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1239 		readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1240 		readcmd2->byteCount = cpu_to_le32(count *
1241 			dev->fsa_dev[scmd_id(cmd)].block_size);
1242 		readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1243 		readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1244 		ret = aac_build_sgraw2(cmd, readcmd2,
1245 				dev->scsi_host_ptr->sg_tablesize);
1246 		if (ret < 0)
1247 			return ret;
1248 		command = ContainerRawIo2;
1249 		fibsize = sizeof(struct aac_raw_io2) +
1250 			((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1251 	} else {
1252 		struct aac_raw_io *readcmd;
1253 		readcmd = (struct aac_raw_io *) fib_data(fib);
1254 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1255 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1256 		readcmd->count = cpu_to_le32(count *
1257 			dev->fsa_dev[scmd_id(cmd)].block_size);
1258 		readcmd->cid = cpu_to_le16(scmd_id(cmd));
1259 		readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1260 		readcmd->bpTotal = 0;
1261 		readcmd->bpComplete = 0;
1262 		ret = aac_build_sgraw(cmd, &readcmd->sg);
1263 		if (ret < 0)
1264 			return ret;
1265 		command = ContainerRawIo;
1266 		fibsize = sizeof(struct aac_raw_io) +
1267 			((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1268 	}
1269 
1270 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1271 	/*
1272 	 *	Now send the Fib to the adapter
1273 	 */
1274 	return aac_fib_send(command,
1275 			  fib,
1276 			  fibsize,
1277 			  FsaNormal,
1278 			  0, 1,
1279 			  (fib_callback) io_callback,
1280 			  (void *) cmd);
1281 }
1282 
1283 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1284 {
1285 	u16 fibsize;
1286 	struct aac_read64 *readcmd;
1287 	long ret;
1288 
1289 	aac_fib_init(fib);
1290 	readcmd = (struct aac_read64 *) fib_data(fib);
1291 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1292 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1293 	readcmd->sector_count = cpu_to_le16(count);
1294 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1295 	readcmd->pad   = 0;
1296 	readcmd->flags = 0;
1297 
1298 	ret = aac_build_sg64(cmd, &readcmd->sg);
1299 	if (ret < 0)
1300 		return ret;
1301 	fibsize = sizeof(struct aac_read64) +
1302 		((le32_to_cpu(readcmd->sg.count) - 1) *
1303 		 sizeof (struct sgentry64));
1304 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1305 				sizeof(struct aac_fibhdr)));
1306 	/*
1307 	 *	Now send the Fib to the adapter
1308 	 */
1309 	return aac_fib_send(ContainerCommand64,
1310 			  fib,
1311 			  fibsize,
1312 			  FsaNormal,
1313 			  0, 1,
1314 			  (fib_callback) io_callback,
1315 			  (void *) cmd);
1316 }
1317 
1318 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1319 {
1320 	u16 fibsize;
1321 	struct aac_read *readcmd;
1322 	struct aac_dev *dev = fib->dev;
1323 	long ret;
1324 
1325 	aac_fib_init(fib);
1326 	readcmd = (struct aac_read *) fib_data(fib);
1327 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1328 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1329 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1330 	readcmd->count = cpu_to_le32(count *
1331 		dev->fsa_dev[scmd_id(cmd)].block_size);
1332 
1333 	ret = aac_build_sg(cmd, &readcmd->sg);
1334 	if (ret < 0)
1335 		return ret;
1336 	fibsize = sizeof(struct aac_read) +
1337 			((le32_to_cpu(readcmd->sg.count) - 1) *
1338 			 sizeof (struct sgentry));
1339 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1340 				sizeof(struct aac_fibhdr)));
1341 	/*
1342 	 *	Now send the Fib to the adapter
1343 	 */
1344 	return aac_fib_send(ContainerCommand,
1345 			  fib,
1346 			  fibsize,
1347 			  FsaNormal,
1348 			  0, 1,
1349 			  (fib_callback) io_callback,
1350 			  (void *) cmd);
1351 }
1352 
1353 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1354 {
1355 	struct aac_dev *dev = fib->dev;
1356 	u16 fibsize, command;
1357 	long ret;
1358 
1359 	aac_fib_init(fib);
1360 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1361 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1362 		!dev->sync_mode) {
1363 		struct aac_raw_io2 *writecmd2;
1364 		writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1365 		memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1366 		writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1367 		writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1368 		writecmd2->byteCount = cpu_to_le32(count *
1369 			dev->fsa_dev[scmd_id(cmd)].block_size);
1370 		writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1371 		writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1372 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1373 			cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1374 			cpu_to_le16(RIO2_IO_TYPE_WRITE);
1375 		ret = aac_build_sgraw2(cmd, writecmd2,
1376 				dev->scsi_host_ptr->sg_tablesize);
1377 		if (ret < 0)
1378 			return ret;
1379 		command = ContainerRawIo2;
1380 		fibsize = sizeof(struct aac_raw_io2) +
1381 			((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1382 	} else {
1383 		struct aac_raw_io *writecmd;
1384 		writecmd = (struct aac_raw_io *) fib_data(fib);
1385 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1386 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1387 		writecmd->count = cpu_to_le32(count *
1388 			dev->fsa_dev[scmd_id(cmd)].block_size);
1389 		writecmd->cid = cpu_to_le16(scmd_id(cmd));
1390 		writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1391 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1392 			cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1393 			cpu_to_le16(RIO_TYPE_WRITE);
1394 		writecmd->bpTotal = 0;
1395 		writecmd->bpComplete = 0;
1396 		ret = aac_build_sgraw(cmd, &writecmd->sg);
1397 		if (ret < 0)
1398 			return ret;
1399 		command = ContainerRawIo;
1400 		fibsize = sizeof(struct aac_raw_io) +
1401 			((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1402 	}
1403 
1404 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1405 	/*
1406 	 *	Now send the Fib to the adapter
1407 	 */
1408 	return aac_fib_send(command,
1409 			  fib,
1410 			  fibsize,
1411 			  FsaNormal,
1412 			  0, 1,
1413 			  (fib_callback) io_callback,
1414 			  (void *) cmd);
1415 }
1416 
1417 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1418 {
1419 	u16 fibsize;
1420 	struct aac_write64 *writecmd;
1421 	long ret;
1422 
1423 	aac_fib_init(fib);
1424 	writecmd = (struct aac_write64 *) fib_data(fib);
1425 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1426 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1427 	writecmd->sector_count = cpu_to_le16(count);
1428 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1429 	writecmd->pad	= 0;
1430 	writecmd->flags	= 0;
1431 
1432 	ret = aac_build_sg64(cmd, &writecmd->sg);
1433 	if (ret < 0)
1434 		return ret;
1435 	fibsize = sizeof(struct aac_write64) +
1436 		((le32_to_cpu(writecmd->sg.count) - 1) *
1437 		 sizeof (struct sgentry64));
1438 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1439 				sizeof(struct aac_fibhdr)));
1440 	/*
1441 	 *	Now send the Fib to the adapter
1442 	 */
1443 	return aac_fib_send(ContainerCommand64,
1444 			  fib,
1445 			  fibsize,
1446 			  FsaNormal,
1447 			  0, 1,
1448 			  (fib_callback) io_callback,
1449 			  (void *) cmd);
1450 }
1451 
1452 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1453 {
1454 	u16 fibsize;
1455 	struct aac_write *writecmd;
1456 	struct aac_dev *dev = fib->dev;
1457 	long ret;
1458 
1459 	aac_fib_init(fib);
1460 	writecmd = (struct aac_write *) fib_data(fib);
1461 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1462 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1463 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1464 	writecmd->count = cpu_to_le32(count *
1465 		dev->fsa_dev[scmd_id(cmd)].block_size);
1466 	writecmd->sg.count = cpu_to_le32(1);
1467 	/* ->stable is not used - it did mean which type of write */
1468 
1469 	ret = aac_build_sg(cmd, &writecmd->sg);
1470 	if (ret < 0)
1471 		return ret;
1472 	fibsize = sizeof(struct aac_write) +
1473 		((le32_to_cpu(writecmd->sg.count) - 1) *
1474 		 sizeof (struct sgentry));
1475 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1476 				sizeof(struct aac_fibhdr)));
1477 	/*
1478 	 *	Now send the Fib to the adapter
1479 	 */
1480 	return aac_fib_send(ContainerCommand,
1481 			  fib,
1482 			  fibsize,
1483 			  FsaNormal,
1484 			  0, 1,
1485 			  (fib_callback) io_callback,
1486 			  (void *) cmd);
1487 }
1488 
1489 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1490 {
1491 	struct aac_srb * srbcmd;
1492 	u32 flag;
1493 	u32 timeout;
1494 
1495 	aac_fib_init(fib);
1496 	switch(cmd->sc_data_direction){
1497 	case DMA_TO_DEVICE:
1498 		flag = SRB_DataOut;
1499 		break;
1500 	case DMA_BIDIRECTIONAL:
1501 		flag = SRB_DataIn | SRB_DataOut;
1502 		break;
1503 	case DMA_FROM_DEVICE:
1504 		flag = SRB_DataIn;
1505 		break;
1506 	case DMA_NONE:
1507 	default:	/* shuts up some versions of gcc */
1508 		flag = SRB_NoDataXfer;
1509 		break;
1510 	}
1511 
1512 	srbcmd = (struct aac_srb*) fib_data(fib);
1513 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1514 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1515 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1516 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1517 	srbcmd->flags    = cpu_to_le32(flag);
1518 	timeout = cmd->request->timeout/HZ;
1519 	if (timeout == 0)
1520 		timeout = 1;
1521 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1522 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1523 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1524 	return srbcmd;
1525 }
1526 
1527 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1528 							struct scsi_cmnd *cmd)
1529 {
1530 	struct aac_hba_cmd_req *hbacmd;
1531 	struct aac_dev *dev;
1532 	int bus, target;
1533 	u64 address;
1534 
1535 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1536 
1537 	hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1538 	memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
1539 	/* iu_type is a parameter of aac_hba_send */
1540 	switch (cmd->sc_data_direction) {
1541 	case DMA_TO_DEVICE:
1542 		hbacmd->byte1 = 2;
1543 		break;
1544 	case DMA_FROM_DEVICE:
1545 	case DMA_BIDIRECTIONAL:
1546 		hbacmd->byte1 = 1;
1547 		break;
1548 	case DMA_NONE:
1549 	default:
1550 		break;
1551 	}
1552 	hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1553 
1554 	bus = aac_logical_to_phys(scmd_channel(cmd));
1555 	target = scmd_id(cmd);
1556 	hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1557 
1558 	/* we fill in reply_qid later in aac_src_deliver_message */
1559 	/* we fill in iu_type, request_id later in aac_hba_send */
1560 	/* we fill in emb_data_desc_count later in aac_build_sghba */
1561 
1562 	memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1563 	hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1564 
1565 	address = (u64)fib->hw_error_pa;
1566 	hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1567 	hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1568 	hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1569 
1570 	return hbacmd;
1571 }
1572 
1573 static void aac_srb_callback(void *context, struct fib * fibptr);
1574 
1575 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1576 {
1577 	u16 fibsize;
1578 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1579 	long ret;
1580 
1581 	ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1582 	if (ret < 0)
1583 		return ret;
1584 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1585 
1586 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1587 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1588 	/*
1589 	 *	Build Scatter/Gather list
1590 	 */
1591 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1592 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1593 		 sizeof (struct sgentry64));
1594 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1595 				sizeof(struct aac_fibhdr)));
1596 
1597 	/*
1598 	 *	Now send the Fib to the adapter
1599 	 */
1600 	return aac_fib_send(ScsiPortCommand64, fib,
1601 				fibsize, FsaNormal, 0, 1,
1602 				  (fib_callback) aac_srb_callback,
1603 				  (void *) cmd);
1604 }
1605 
1606 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1607 {
1608 	u16 fibsize;
1609 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1610 	long ret;
1611 
1612 	ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1613 	if (ret < 0)
1614 		return ret;
1615 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1616 
1617 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1618 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1619 	/*
1620 	 *	Build Scatter/Gather list
1621 	 */
1622 	fibsize = sizeof (struct aac_srb) +
1623 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1624 		 sizeof (struct sgentry));
1625 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1626 				sizeof(struct aac_fibhdr)));
1627 
1628 	/*
1629 	 *	Now send the Fib to the adapter
1630 	 */
1631 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1632 				  (fib_callback) aac_srb_callback, (void *) cmd);
1633 }
1634 
1635 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1636 {
1637 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1638 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1639 		return FAILED;
1640 	return aac_scsi_32(fib, cmd);
1641 }
1642 
1643 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1644 {
1645 	struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1646 	struct aac_dev *dev;
1647 	long ret;
1648 
1649 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1650 
1651 	ret = aac_build_sghba(cmd, hbacmd,
1652 		dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1653 	if (ret < 0)
1654 		return ret;
1655 
1656 	/*
1657 	 *	Now send the HBA command to the adapter
1658 	 */
1659 	fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1660 		sizeof(struct aac_hba_sgl);
1661 
1662 	return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1663 				  (fib_callback) aac_hba_callback,
1664 				  (void *) cmd);
1665 }
1666 
1667 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1668 	struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1669 {
1670 	struct fib	*fibptr;
1671 	dma_addr_t	addr;
1672 	int		rcode;
1673 	int		fibsize;
1674 	struct aac_srb	*srb;
1675 	struct aac_srb_reply *srb_reply;
1676 	struct sgmap64	*sg64;
1677 	u32 vbus;
1678 	u32 vid;
1679 
1680 	if (!dev->sa_firmware)
1681 		return 0;
1682 
1683 	/* allocate FIB */
1684 	fibptr = aac_fib_alloc(dev);
1685 	if (!fibptr)
1686 		return -ENOMEM;
1687 
1688 	aac_fib_init(fibptr);
1689 	fibptr->hw_fib_va->header.XferState &=
1690 		~cpu_to_le32(FastResponseCapable);
1691 
1692 	fibsize  = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1693 						sizeof(struct sgentry64);
1694 
1695 	/* allocate DMA buffer for response */
1696 	addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1697 							DMA_BIDIRECTIONAL);
1698 	if (dma_mapping_error(&dev->pdev->dev, addr)) {
1699 		rcode = -ENOMEM;
1700 		goto fib_error;
1701 	}
1702 
1703 	srb = fib_data(fibptr);
1704 	memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1705 
1706 	vbus = (u32)le16_to_cpu(
1707 			dev->supplement_adapter_info.virt_device_bus);
1708 	vid  = (u32)le16_to_cpu(
1709 			dev->supplement_adapter_info.virt_device_target);
1710 
1711 	/* set the common request fields */
1712 	srb->channel		= cpu_to_le32(vbus);
1713 	srb->id			= cpu_to_le32(vid);
1714 	srb->lun		= 0;
1715 	srb->function		= cpu_to_le32(SRBF_ExecuteScsi);
1716 	srb->timeout		= 0;
1717 	srb->retry_limit	= 0;
1718 	srb->cdb_size		= cpu_to_le32(16);
1719 	srb->count		= cpu_to_le32(xfer_len);
1720 
1721 	sg64 = (struct sgmap64 *)&srb->sg;
1722 	sg64->count		= cpu_to_le32(1);
1723 	sg64->sg[0].addr[1]	= cpu_to_le32(upper_32_bits(addr));
1724 	sg64->sg[0].addr[0]	= cpu_to_le32(lower_32_bits(addr));
1725 	sg64->sg[0].count	= cpu_to_le32(xfer_len);
1726 
1727 	/*
1728 	 * Copy the updated data for other dumping or other usage if needed
1729 	 */
1730 	memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1731 
1732 	/* issue request to the controller */
1733 	rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1734 					1, 1, NULL, NULL);
1735 
1736 	if (rcode == -ERESTARTSYS)
1737 		rcode = -ERESTART;
1738 
1739 	if (unlikely(rcode < 0))
1740 		goto bmic_error;
1741 
1742 	srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1743 	memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1744 
1745 bmic_error:
1746 	dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1747 fib_error:
1748 	aac_fib_complete(fibptr);
1749 	aac_fib_free(fibptr);
1750 	return rcode;
1751 }
1752 
1753 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1754 {
1755 
1756 	struct aac_ciss_identify_pd *identify_resp;
1757 
1758 	if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1759 		return;
1760 
1761 	identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1762 	if (identify_resp == NULL) {
1763 		dev->hba_map[bus][target].qd_limit = 32;
1764 		return;
1765 	}
1766 
1767 	if (identify_resp->current_queue_depth_limit <= 0 ||
1768 		identify_resp->current_queue_depth_limit > 255)
1769 		dev->hba_map[bus][target].qd_limit = 32;
1770 	else
1771 		dev->hba_map[bus][target].qd_limit =
1772 			identify_resp->current_queue_depth_limit;
1773 }
1774 
1775 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1776 	struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1777 {
1778 	int rcode = -ENOMEM;
1779 	int datasize;
1780 	struct aac_srb_unit srbu;
1781 	struct aac_srb *srbcmd;
1782 	struct aac_ciss_identify_pd *identify_reply;
1783 
1784 	datasize = sizeof(struct aac_ciss_identify_pd);
1785 	identify_reply = kmalloc(datasize, GFP_KERNEL);
1786 	if (!identify_reply)
1787 		goto out;
1788 
1789 	memset(&srbu, 0, sizeof(struct aac_srb_unit));
1790 
1791 	srbcmd = &srbu.srb;
1792 	srbcmd->flags	= cpu_to_le32(SRB_DataIn);
1793 	srbcmd->cdb[0]	= 0x26;
1794 	srbcmd->cdb[2]	= (u8)((AAC_MAX_LUN + target) & 0x00FF);
1795 	srbcmd->cdb[6]	= CISS_IDENTIFY_PHYSICAL_DEVICE;
1796 
1797 	rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1798 	if (unlikely(rcode < 0))
1799 		goto mem_free_all;
1800 
1801 	*identify_resp = identify_reply;
1802 
1803 out:
1804 	return rcode;
1805 mem_free_all:
1806 	kfree(identify_reply);
1807 	goto out;
1808 }
1809 
1810 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1811 {
1812 	kfree(dev->safw_phys_luns);
1813 	dev->safw_phys_luns = NULL;
1814 }
1815 
1816 /**
1817  *	aac_get_safw_ciss_luns()	Process topology change
1818  *	@dev:		aac_dev structure
1819  *
1820  *	Execute a CISS REPORT PHYS LUNS and process the results into
1821  *	the current hba_map.
1822  */
1823 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1824 {
1825 	int rcode = -ENOMEM;
1826 	int datasize;
1827 	struct aac_srb *srbcmd;
1828 	struct aac_srb_unit srbu;
1829 	struct aac_ciss_phys_luns_resp *phys_luns;
1830 
1831 	datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1832 		(AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1833 	phys_luns = kmalloc(datasize, GFP_KERNEL);
1834 	if (phys_luns == NULL)
1835 		goto out;
1836 
1837 	memset(&srbu, 0, sizeof(struct aac_srb_unit));
1838 
1839 	srbcmd = &srbu.srb;
1840 	srbcmd->flags	= cpu_to_le32(SRB_DataIn);
1841 	srbcmd->cdb[0]	= CISS_REPORT_PHYSICAL_LUNS;
1842 	srbcmd->cdb[1]	= 2; /* extended reporting */
1843 	srbcmd->cdb[8]	= (u8)(datasize >> 8);
1844 	srbcmd->cdb[9]	= (u8)(datasize);
1845 
1846 	rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1847 	if (unlikely(rcode < 0))
1848 		goto mem_free_all;
1849 
1850 	if (phys_luns->resp_flag != 2) {
1851 		rcode = -ENOMSG;
1852 		goto mem_free_all;
1853 	}
1854 
1855 	dev->safw_phys_luns = phys_luns;
1856 
1857 out:
1858 	return rcode;
1859 mem_free_all:
1860 	kfree(phys_luns);
1861 	goto out;
1862 }
1863 
1864 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1865 {
1866 	return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1867 }
1868 
1869 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1870 {
1871 	return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1872 }
1873 
1874 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1875 {
1876 	return dev->safw_phys_luns->lun[lun].level2[0];
1877 }
1878 
1879 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1880 {
1881 	return dev->safw_phys_luns->lun[lun].bus >> 6;
1882 }
1883 
1884 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1885 {
1886 	return dev->safw_phys_luns->lun[lun].node_ident[9];
1887 }
1888 
1889 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1890 {
1891 	return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1892 }
1893 
1894 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1895 {
1896 	return dev->safw_phys_luns->lun[lun].node_ident[8];
1897 }
1898 
1899 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1900 						int bus, int target)
1901 {
1902 	kfree(dev->hba_map[bus][target].safw_identify_resp);
1903 	dev->hba_map[bus][target].safw_identify_resp = NULL;
1904 }
1905 
1906 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1907 	int lun_count)
1908 {
1909 	int luns;
1910 	int i;
1911 	u32 bus;
1912 	u32 target;
1913 
1914 	luns = aac_get_safw_phys_lun_count(dev);
1915 
1916 	if (luns < lun_count)
1917 		lun_count = luns;
1918 	else if (lun_count < 0)
1919 		lun_count = luns;
1920 
1921 	for (i = 0; i < lun_count; i++) {
1922 		bus = aac_get_safw_phys_bus(dev, i);
1923 		target = aac_get_safw_phys_target(dev, i);
1924 
1925 		aac_free_safw_identify_resp(dev, bus, target);
1926 	}
1927 }
1928 
1929 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1930 {
1931 	int i;
1932 	int rcode = 0;
1933 	u32 lun_count;
1934 	u32 bus;
1935 	u32 target;
1936 	struct aac_ciss_identify_pd *identify_resp = NULL;
1937 
1938 	lun_count = aac_get_safw_phys_lun_count(dev);
1939 
1940 	for (i = 0; i < lun_count; ++i) {
1941 
1942 		bus = aac_get_safw_phys_bus(dev, i);
1943 		target = aac_get_safw_phys_target(dev, i);
1944 
1945 		rcode = aac_issue_safw_bmic_identify(dev,
1946 						&identify_resp, bus, target);
1947 
1948 		if (unlikely(rcode < 0))
1949 			goto free_identify_resp;
1950 
1951 		dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1952 	}
1953 
1954 out:
1955 	return rcode;
1956 free_identify_resp:
1957 	aac_free_safw_all_identify_resp(dev, i);
1958 	goto out;
1959 }
1960 
1961 /**
1962  *	aac_set_safw_attr_all_targets-	update current hba map with data from FW
1963  *	@dev:	aac_dev structure
1964  *	@phys_luns: FW information from report phys luns
1965  *	@rescan: Indicates scan type
1966  *
1967  *	Update our hba map with the information gathered from the FW
1968  */
1969 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1970 {
1971 	/* ok and extended reporting */
1972 	u32 lun_count, nexus;
1973 	u32 i, bus, target;
1974 	u8 expose_flag, attribs;
1975 
1976 	lun_count = aac_get_safw_phys_lun_count(dev);
1977 
1978 	dev->scan_counter++;
1979 
1980 	for (i = 0; i < lun_count; ++i) {
1981 
1982 		bus = aac_get_safw_phys_bus(dev, i);
1983 		target = aac_get_safw_phys_target(dev, i);
1984 		expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1985 		attribs = aac_get_safw_phys_attribs(dev, i);
1986 		nexus = aac_get_safw_phys_nexus(dev, i);
1987 
1988 		if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1989 			continue;
1990 
1991 		if (expose_flag != 0) {
1992 			dev->hba_map[bus][target].devtype =
1993 				AAC_DEVTYPE_RAID_MEMBER;
1994 			continue;
1995 		}
1996 
1997 		if (nexus != 0 && (attribs & 8)) {
1998 			dev->hba_map[bus][target].devtype =
1999 				AAC_DEVTYPE_NATIVE_RAW;
2000 			dev->hba_map[bus][target].rmw_nexus =
2001 					nexus;
2002 		} else
2003 			dev->hba_map[bus][target].devtype =
2004 				AAC_DEVTYPE_ARC_RAW;
2005 
2006 		dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2007 
2008 		aac_set_safw_target_qd(dev, bus, target);
2009 	}
2010 }
2011 
2012 static int aac_setup_safw_targets(struct aac_dev *dev)
2013 {
2014 	int rcode = 0;
2015 
2016 	rcode = aac_get_containers(dev);
2017 	if (unlikely(rcode < 0))
2018 		goto out;
2019 
2020 	rcode = aac_get_safw_ciss_luns(dev);
2021 	if (unlikely(rcode < 0))
2022 		goto out;
2023 
2024 	rcode = aac_get_safw_attr_all_targets(dev);
2025 	if (unlikely(rcode < 0))
2026 		goto free_ciss_luns;
2027 
2028 	aac_set_safw_attr_all_targets(dev);
2029 
2030 	aac_free_safw_all_identify_resp(dev, -1);
2031 free_ciss_luns:
2032 	aac_free_safw_ciss_luns(dev);
2033 out:
2034 	return rcode;
2035 }
2036 
2037 int aac_setup_safw_adapter(struct aac_dev *dev)
2038 {
2039 	return aac_setup_safw_targets(dev);
2040 }
2041 
2042 int aac_get_adapter_info(struct aac_dev* dev)
2043 {
2044 	struct fib* fibptr;
2045 	int rcode;
2046 	u32 tmp, bus, target;
2047 	struct aac_adapter_info *info;
2048 	struct aac_bus_info *command;
2049 	struct aac_bus_info_response *bus_info;
2050 
2051 	if (!(fibptr = aac_fib_alloc(dev)))
2052 		return -ENOMEM;
2053 
2054 	aac_fib_init(fibptr);
2055 	info = (struct aac_adapter_info *) fib_data(fibptr);
2056 	memset(info,0,sizeof(*info));
2057 
2058 	rcode = aac_fib_send(RequestAdapterInfo,
2059 			 fibptr,
2060 			 sizeof(*info),
2061 			 FsaNormal,
2062 			 -1, 1, /* First `interrupt' command uses special wait */
2063 			 NULL,
2064 			 NULL);
2065 
2066 	if (rcode < 0) {
2067 		/* FIB should be freed only after
2068 		 * getting the response from the F/W */
2069 		if (rcode != -ERESTARTSYS) {
2070 			aac_fib_complete(fibptr);
2071 			aac_fib_free(fibptr);
2072 		}
2073 		return rcode;
2074 	}
2075 	memcpy(&dev->adapter_info, info, sizeof(*info));
2076 
2077 	dev->supplement_adapter_info.virt_device_bus = 0xffff;
2078 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2079 		struct aac_supplement_adapter_info * sinfo;
2080 
2081 		aac_fib_init(fibptr);
2082 
2083 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2084 
2085 		memset(sinfo,0,sizeof(*sinfo));
2086 
2087 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
2088 				 fibptr,
2089 				 sizeof(*sinfo),
2090 				 FsaNormal,
2091 				 1, 1,
2092 				 NULL,
2093 				 NULL);
2094 
2095 		if (rcode >= 0)
2096 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2097 		if (rcode == -ERESTARTSYS) {
2098 			fibptr = aac_fib_alloc(dev);
2099 			if (!fibptr)
2100 				return -ENOMEM;
2101 		}
2102 
2103 	}
2104 
2105 	/* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2106 	for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2107 		for (target = 0; target < AAC_MAX_TARGETS; target++) {
2108 			dev->hba_map[bus][target].devtype = 0;
2109 			dev->hba_map[bus][target].qd_limit = 0;
2110 		}
2111 	}
2112 
2113 	/*
2114 	 * GetBusInfo
2115 	 */
2116 
2117 	aac_fib_init(fibptr);
2118 
2119 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2120 
2121 	memset(bus_info, 0, sizeof(*bus_info));
2122 
2123 	command = (struct aac_bus_info *)bus_info;
2124 
2125 	command->Command = cpu_to_le32(VM_Ioctl);
2126 	command->ObjType = cpu_to_le32(FT_DRIVE);
2127 	command->MethodId = cpu_to_le32(1);
2128 	command->CtlCmd = cpu_to_le32(GetBusInfo);
2129 
2130 	rcode = aac_fib_send(ContainerCommand,
2131 			 fibptr,
2132 			 sizeof (*bus_info),
2133 			 FsaNormal,
2134 			 1, 1,
2135 			 NULL, NULL);
2136 
2137 	/* reasoned default */
2138 	dev->maximum_num_physicals = 16;
2139 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2140 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2141 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2142 	}
2143 
2144 	if (!dev->in_reset) {
2145 		char buffer[16];
2146 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2147 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2148 			dev->name,
2149 			dev->id,
2150 			tmp>>24,
2151 			(tmp>>16)&0xff,
2152 			tmp&0xff,
2153 			le32_to_cpu(dev->adapter_info.kernelbuild),
2154 			(int)sizeof(dev->supplement_adapter_info.build_date),
2155 			dev->supplement_adapter_info.build_date);
2156 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2157 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2158 			dev->name, dev->id,
2159 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2160 			le32_to_cpu(dev->adapter_info.monitorbuild));
2161 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
2162 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2163 			dev->name, dev->id,
2164 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2165 			le32_to_cpu(dev->adapter_info.biosbuild));
2166 		buffer[0] = '\0';
2167 		if (aac_get_serial_number(
2168 		  shost_to_class(dev->scsi_host_ptr), buffer))
2169 			printk(KERN_INFO "%s%d: serial %s",
2170 			  dev->name, dev->id, buffer);
2171 		if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2172 			printk(KERN_INFO "%s%d: TSID %.*s\n",
2173 			  dev->name, dev->id,
2174 			  (int)sizeof(dev->supplement_adapter_info
2175 							.vpd_info.tsid),
2176 				dev->supplement_adapter_info.vpd_info.tsid);
2177 		}
2178 		if (!aac_check_reset || ((aac_check_reset == 1) &&
2179 		  (dev->supplement_adapter_info.supported_options2 &
2180 		  AAC_OPTION_IGNORE_RESET))) {
2181 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2182 			  dev->name, dev->id);
2183 		}
2184 	}
2185 
2186 	dev->cache_protected = 0;
2187 	dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2188 		AAC_FEATURE_JBOD) != 0);
2189 	dev->nondasd_support = 0;
2190 	dev->raid_scsi_mode = 0;
2191 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
2192 		dev->nondasd_support = 1;
2193 
2194 	/*
2195 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2196 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2197 	 * force nondasd support on. If we decide to allow the non-dasd flag
2198 	 * additional changes changes will have to be made to support
2199 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
2200 	 * changed to support the new dev->raid_scsi_mode flag instead of
2201 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2202 	 * function aac_detect will have to be modified where it sets up the
2203 	 * max number of channels based on the aac->nondasd_support flag only.
2204 	 */
2205 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2206 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2207 		dev->nondasd_support = 1;
2208 		dev->raid_scsi_mode = 1;
2209 	}
2210 	if (dev->raid_scsi_mode != 0)
2211 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2212 				dev->name, dev->id);
2213 
2214 	if (nondasd != -1)
2215 		dev->nondasd_support = (nondasd!=0);
2216 	if (dev->nondasd_support && !dev->in_reset)
2217 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2218 
2219 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2220 		dev->needs_dac = 1;
2221 	dev->dac_support = 0;
2222 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2223 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2224 		if (!dev->in_reset)
2225 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2226 				dev->name, dev->id);
2227 		dev->dac_support = 1;
2228 	}
2229 
2230 	if(dacmode != -1) {
2231 		dev->dac_support = (dacmode!=0);
2232 	}
2233 
2234 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2235 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
2236 		& AAC_QUIRK_SCSI_32)) {
2237 		dev->nondasd_support = 0;
2238 		dev->jbod = 0;
2239 		expose_physicals = 0;
2240 	}
2241 
2242 	if (dev->dac_support) {
2243 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2244 			if (!dev->in_reset)
2245 				dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2246 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2247 			dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2248 			dev->dac_support = 0;
2249 		} else {
2250 			dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2251 			rcode = -ENOMEM;
2252 		}
2253 	}
2254 	/*
2255 	 * Deal with configuring for the individualized limits of each packet
2256 	 * interface.
2257 	 */
2258 	dev->a_ops.adapter_scsi = (dev->dac_support)
2259 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2260 				? aac_scsi_32_64
2261 				: aac_scsi_64)
2262 				: aac_scsi_32;
2263 	if (dev->raw_io_interface) {
2264 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
2265 					? aac_bounds_64
2266 					: aac_bounds_32;
2267 		dev->a_ops.adapter_read = aac_read_raw_io;
2268 		dev->a_ops.adapter_write = aac_write_raw_io;
2269 	} else {
2270 		dev->a_ops.adapter_bounds = aac_bounds_32;
2271 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2272 			sizeof(struct aac_fibhdr) -
2273 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
2274 				sizeof(struct sgentry);
2275 		if (dev->dac_support) {
2276 			dev->a_ops.adapter_read = aac_read_block64;
2277 			dev->a_ops.adapter_write = aac_write_block64;
2278 			/*
2279 			 * 38 scatter gather elements
2280 			 */
2281 			dev->scsi_host_ptr->sg_tablesize =
2282 				(dev->max_fib_size -
2283 				sizeof(struct aac_fibhdr) -
2284 				sizeof(struct aac_write64) +
2285 				sizeof(struct sgentry64)) /
2286 					sizeof(struct sgentry64);
2287 		} else {
2288 			dev->a_ops.adapter_read = aac_read_block;
2289 			dev->a_ops.adapter_write = aac_write_block;
2290 		}
2291 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2292 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2293 			/*
2294 			 * Worst case size that could cause sg overflow when
2295 			 * we break up SG elements that are larger than 64KB.
2296 			 * Would be nice if we could tell the SCSI layer what
2297 			 * the maximum SG element size can be. Worst case is
2298 			 * (sg_tablesize-1) 4KB elements with one 64KB
2299 			 * element.
2300 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
2301 			 */
2302 			dev->scsi_host_ptr->max_sectors =
2303 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2304 		}
2305 	}
2306 	if (!dev->sync_mode && dev->sa_firmware &&
2307 		dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2308 		dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2309 			HBA_MAX_SG_SEPARATE;
2310 
2311 	/* FIB should be freed only after getting the response from the F/W */
2312 	if (rcode != -ERESTARTSYS) {
2313 		aac_fib_complete(fibptr);
2314 		aac_fib_free(fibptr);
2315 	}
2316 
2317 	return rcode;
2318 }
2319 
2320 
2321 static void io_callback(void *context, struct fib * fibptr)
2322 {
2323 	struct aac_dev *dev;
2324 	struct aac_read_reply *readreply;
2325 	struct scsi_cmnd *scsicmd;
2326 	u32 cid;
2327 
2328 	scsicmd = (struct scsi_cmnd *) context;
2329 
2330 	if (!aac_valid_context(scsicmd, fibptr))
2331 		return;
2332 
2333 	dev = fibptr->dev;
2334 	cid = scmd_id(scsicmd);
2335 
2336 	if (nblank(dprintk(x))) {
2337 		u64 lba;
2338 		switch (scsicmd->cmnd[0]) {
2339 		case WRITE_6:
2340 		case READ_6:
2341 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2342 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2343 			break;
2344 		case WRITE_16:
2345 		case READ_16:
2346 			lba = ((u64)scsicmd->cmnd[2] << 56) |
2347 			      ((u64)scsicmd->cmnd[3] << 48) |
2348 			      ((u64)scsicmd->cmnd[4] << 40) |
2349 			      ((u64)scsicmd->cmnd[5] << 32) |
2350 			      ((u64)scsicmd->cmnd[6] << 24) |
2351 			      (scsicmd->cmnd[7] << 16) |
2352 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2353 			break;
2354 		case WRITE_12:
2355 		case READ_12:
2356 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2357 			      (scsicmd->cmnd[3] << 16) |
2358 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2359 			break;
2360 		default:
2361 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2362 			       (scsicmd->cmnd[3] << 16) |
2363 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2364 			break;
2365 		}
2366 		printk(KERN_DEBUG
2367 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2368 		  smp_processor_id(), (unsigned long long)lba, jiffies);
2369 	}
2370 
2371 	BUG_ON(fibptr == NULL);
2372 
2373 	scsi_dma_unmap(scsicmd);
2374 
2375 	readreply = (struct aac_read_reply *)fib_data(fibptr);
2376 	switch (le32_to_cpu(readreply->status)) {
2377 	case ST_OK:
2378 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2379 			SAM_STAT_GOOD;
2380 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2381 		break;
2382 	case ST_NOT_READY:
2383 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2384 			SAM_STAT_CHECK_CONDITION;
2385 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2386 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2387 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2388 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2389 			     SCSI_SENSE_BUFFERSIZE));
2390 		break;
2391 	case ST_MEDERR:
2392 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2393 			SAM_STAT_CHECK_CONDITION;
2394 		set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2395 		  SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2396 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2397 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2398 			     SCSI_SENSE_BUFFERSIZE));
2399 		break;
2400 	default:
2401 #ifdef AAC_DETAILED_STATUS_INFO
2402 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2403 		  le32_to_cpu(readreply->status));
2404 #endif
2405 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2406 			SAM_STAT_CHECK_CONDITION;
2407 		set_sense(&dev->fsa_dev[cid].sense_data,
2408 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2409 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2410 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2411 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2412 			     SCSI_SENSE_BUFFERSIZE));
2413 		break;
2414 	}
2415 	aac_fib_complete(fibptr);
2416 
2417 	scsicmd->scsi_done(scsicmd);
2418 }
2419 
2420 static int aac_read(struct scsi_cmnd * scsicmd)
2421 {
2422 	u64 lba;
2423 	u32 count;
2424 	int status;
2425 	struct aac_dev *dev;
2426 	struct fib * cmd_fibcontext;
2427 	int cid;
2428 
2429 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2430 	/*
2431 	 *	Get block address and transfer length
2432 	 */
2433 	switch (scsicmd->cmnd[0]) {
2434 	case READ_6:
2435 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2436 
2437 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2438 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2439 		count = scsicmd->cmnd[4];
2440 
2441 		if (count == 0)
2442 			count = 256;
2443 		break;
2444 	case READ_16:
2445 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2446 
2447 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2448 			((u64)scsicmd->cmnd[3] << 48) |
2449 			((u64)scsicmd->cmnd[4] << 40) |
2450 			((u64)scsicmd->cmnd[5] << 32) |
2451 			((u64)scsicmd->cmnd[6] << 24) |
2452 			(scsicmd->cmnd[7] << 16) |
2453 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2454 		count = (scsicmd->cmnd[10] << 24) |
2455 			(scsicmd->cmnd[11] << 16) |
2456 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2457 		break;
2458 	case READ_12:
2459 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2460 
2461 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2462 			(scsicmd->cmnd[3] << 16) |
2463 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2464 		count = (scsicmd->cmnd[6] << 24) |
2465 			(scsicmd->cmnd[7] << 16) |
2466 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2467 		break;
2468 	default:
2469 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2470 
2471 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2472 			(scsicmd->cmnd[3] << 16) |
2473 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2474 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2475 		break;
2476 	}
2477 
2478 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2479 		cid = scmd_id(scsicmd);
2480 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2481 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2482 			SAM_STAT_CHECK_CONDITION;
2483 		set_sense(&dev->fsa_dev[cid].sense_data,
2484 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2485 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2486 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2487 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2488 			     SCSI_SENSE_BUFFERSIZE));
2489 		scsicmd->scsi_done(scsicmd);
2490 		return 1;
2491 	}
2492 
2493 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2494 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2495 	if (aac_adapter_bounds(dev,scsicmd,lba))
2496 		return 0;
2497 	/*
2498 	 *	Alocate and initialize a Fib
2499 	 */
2500 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2501 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2502 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2503 
2504 	/*
2505 	 *	Check that the command queued to the controller
2506 	 */
2507 	if (status == -EINPROGRESS)
2508 		return 0;
2509 
2510 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2511 	/*
2512 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2513 	 */
2514 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2515 	scsicmd->scsi_done(scsicmd);
2516 	aac_fib_complete(cmd_fibcontext);
2517 	aac_fib_free(cmd_fibcontext);
2518 	return 0;
2519 }
2520 
2521 static int aac_write(struct scsi_cmnd * scsicmd)
2522 {
2523 	u64 lba;
2524 	u32 count;
2525 	int fua;
2526 	int status;
2527 	struct aac_dev *dev;
2528 	struct fib * cmd_fibcontext;
2529 	int cid;
2530 
2531 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2532 	/*
2533 	 *	Get block address and transfer length
2534 	 */
2535 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
2536 	{
2537 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2538 		count = scsicmd->cmnd[4];
2539 		if (count == 0)
2540 			count = 256;
2541 		fua = 0;
2542 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2543 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2544 
2545 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2546 			((u64)scsicmd->cmnd[3] << 48) |
2547 			((u64)scsicmd->cmnd[4] << 40) |
2548 			((u64)scsicmd->cmnd[5] << 32) |
2549 			((u64)scsicmd->cmnd[6] << 24) |
2550 			(scsicmd->cmnd[7] << 16) |
2551 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2552 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2553 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2554 		fua = scsicmd->cmnd[1] & 0x8;
2555 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2556 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2557 
2558 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2559 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2560 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2561 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2562 		fua = scsicmd->cmnd[1] & 0x8;
2563 	} else {
2564 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2565 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2566 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2567 		fua = scsicmd->cmnd[1] & 0x8;
2568 	}
2569 
2570 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2571 		cid = scmd_id(scsicmd);
2572 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2573 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2574 			SAM_STAT_CHECK_CONDITION;
2575 		set_sense(&dev->fsa_dev[cid].sense_data,
2576 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2577 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2578 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2579 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2580 			     SCSI_SENSE_BUFFERSIZE));
2581 		scsicmd->scsi_done(scsicmd);
2582 		return 1;
2583 	}
2584 
2585 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2586 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2587 	if (aac_adapter_bounds(dev,scsicmd,lba))
2588 		return 0;
2589 	/*
2590 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2591 	 */
2592 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2593 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2594 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2595 
2596 	/*
2597 	 *	Check that the command queued to the controller
2598 	 */
2599 	if (status == -EINPROGRESS)
2600 		return 0;
2601 
2602 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2603 	/*
2604 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2605 	 */
2606 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2607 	scsicmd->scsi_done(scsicmd);
2608 
2609 	aac_fib_complete(cmd_fibcontext);
2610 	aac_fib_free(cmd_fibcontext);
2611 	return 0;
2612 }
2613 
2614 static void synchronize_callback(void *context, struct fib *fibptr)
2615 {
2616 	struct aac_synchronize_reply *synchronizereply;
2617 	struct scsi_cmnd *cmd;
2618 
2619 	cmd = context;
2620 
2621 	if (!aac_valid_context(cmd, fibptr))
2622 		return;
2623 
2624 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2625 				smp_processor_id(), jiffies));
2626 	BUG_ON(fibptr == NULL);
2627 
2628 
2629 	synchronizereply = fib_data(fibptr);
2630 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
2631 		cmd->result = DID_OK << 16 |
2632 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2633 	else {
2634 		struct scsi_device *sdev = cmd->device;
2635 		struct aac_dev *dev = fibptr->dev;
2636 		u32 cid = sdev_id(sdev);
2637 		printk(KERN_WARNING
2638 		     "synchronize_callback: synchronize failed, status = %d\n",
2639 		     le32_to_cpu(synchronizereply->status));
2640 		cmd->result = DID_OK << 16 |
2641 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2642 		set_sense(&dev->fsa_dev[cid].sense_data,
2643 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2644 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2645 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2646 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2647 			     SCSI_SENSE_BUFFERSIZE));
2648 	}
2649 
2650 	aac_fib_complete(fibptr);
2651 	aac_fib_free(fibptr);
2652 	cmd->scsi_done(cmd);
2653 }
2654 
2655 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2656 {
2657 	int status;
2658 	struct fib *cmd_fibcontext;
2659 	struct aac_synchronize *synchronizecmd;
2660 	struct scsi_cmnd *cmd;
2661 	struct scsi_device *sdev = scsicmd->device;
2662 	int active = 0;
2663 	struct aac_dev *aac;
2664 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2665 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2666 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2667 	unsigned long flags;
2668 
2669 	/*
2670 	 * Wait for all outstanding queued commands to complete to this
2671 	 * specific target (block).
2672 	 */
2673 	spin_lock_irqsave(&sdev->list_lock, flags);
2674 	list_for_each_entry(cmd, &sdev->cmd_list, list)
2675 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2676 			u64 cmnd_lba;
2677 			u32 cmnd_count;
2678 
2679 			if (cmd->cmnd[0] == WRITE_6) {
2680 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2681 					(cmd->cmnd[2] << 8) |
2682 					cmd->cmnd[3];
2683 				cmnd_count = cmd->cmnd[4];
2684 				if (cmnd_count == 0)
2685 					cmnd_count = 256;
2686 			} else if (cmd->cmnd[0] == WRITE_16) {
2687 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2688 					((u64)cmd->cmnd[3] << 48) |
2689 					((u64)cmd->cmnd[4] << 40) |
2690 					((u64)cmd->cmnd[5] << 32) |
2691 					((u64)cmd->cmnd[6] << 24) |
2692 					(cmd->cmnd[7] << 16) |
2693 					(cmd->cmnd[8] << 8) |
2694 					cmd->cmnd[9];
2695 				cmnd_count = (cmd->cmnd[10] << 24) |
2696 					(cmd->cmnd[11] << 16) |
2697 					(cmd->cmnd[12] << 8) |
2698 					cmd->cmnd[13];
2699 			} else if (cmd->cmnd[0] == WRITE_12) {
2700 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2701 					(cmd->cmnd[3] << 16) |
2702 					(cmd->cmnd[4] << 8) |
2703 					cmd->cmnd[5];
2704 				cmnd_count = (cmd->cmnd[6] << 24) |
2705 					(cmd->cmnd[7] << 16) |
2706 					(cmd->cmnd[8] << 8) |
2707 					cmd->cmnd[9];
2708 			} else if (cmd->cmnd[0] == WRITE_10) {
2709 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2710 					(cmd->cmnd[3] << 16) |
2711 					(cmd->cmnd[4] << 8) |
2712 					cmd->cmnd[5];
2713 				cmnd_count = (cmd->cmnd[7] << 8) |
2714 					cmd->cmnd[8];
2715 			} else
2716 				continue;
2717 			if (((cmnd_lba + cmnd_count) < lba) ||
2718 			  (count && ((lba + count) < cmnd_lba)))
2719 				continue;
2720 			++active;
2721 			break;
2722 		}
2723 
2724 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2725 
2726 	/*
2727 	 *	Yield the processor (requeue for later)
2728 	 */
2729 	if (active)
2730 		return SCSI_MLQUEUE_DEVICE_BUSY;
2731 
2732 	aac = (struct aac_dev *)sdev->host->hostdata;
2733 	if (aac->in_reset)
2734 		return SCSI_MLQUEUE_HOST_BUSY;
2735 
2736 	/*
2737 	 *	Allocate and initialize a Fib
2738 	 */
2739 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2740 		return SCSI_MLQUEUE_HOST_BUSY;
2741 
2742 	aac_fib_init(cmd_fibcontext);
2743 
2744 	synchronizecmd = fib_data(cmd_fibcontext);
2745 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2746 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2747 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2748 	synchronizecmd->count =
2749 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2750 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2751 
2752 	/*
2753 	 *	Now send the Fib to the adapter
2754 	 */
2755 	status = aac_fib_send(ContainerCommand,
2756 		  cmd_fibcontext,
2757 		  sizeof(struct aac_synchronize),
2758 		  FsaNormal,
2759 		  0, 1,
2760 		  (fib_callback)synchronize_callback,
2761 		  (void *)scsicmd);
2762 
2763 	/*
2764 	 *	Check that the command queued to the controller
2765 	 */
2766 	if (status == -EINPROGRESS)
2767 		return 0;
2768 
2769 	printk(KERN_WARNING
2770 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2771 	aac_fib_complete(cmd_fibcontext);
2772 	aac_fib_free(cmd_fibcontext);
2773 	return SCSI_MLQUEUE_HOST_BUSY;
2774 }
2775 
2776 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2777 {
2778 	struct scsi_cmnd *scsicmd = context;
2779 
2780 	if (!aac_valid_context(scsicmd, fibptr))
2781 		return;
2782 
2783 	BUG_ON(fibptr == NULL);
2784 
2785 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2786 
2787 	aac_fib_complete(fibptr);
2788 	aac_fib_free(fibptr);
2789 	scsicmd->scsi_done(scsicmd);
2790 }
2791 
2792 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2793 {
2794 	int status;
2795 	struct fib *cmd_fibcontext;
2796 	struct aac_power_management *pmcmd;
2797 	struct scsi_device *sdev = scsicmd->device;
2798 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2799 
2800 	if (!(aac->supplement_adapter_info.supported_options2 &
2801 	      AAC_OPTION_POWER_MANAGEMENT)) {
2802 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2803 				  SAM_STAT_GOOD;
2804 		scsicmd->scsi_done(scsicmd);
2805 		return 0;
2806 	}
2807 
2808 	if (aac->in_reset)
2809 		return SCSI_MLQUEUE_HOST_BUSY;
2810 
2811 	/*
2812 	 *	Allocate and initialize a Fib
2813 	 */
2814 	cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2815 
2816 	aac_fib_init(cmd_fibcontext);
2817 
2818 	pmcmd = fib_data(cmd_fibcontext);
2819 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2820 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2821 	/* Eject bit ignored, not relevant */
2822 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2823 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2824 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2825 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2826 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2827 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2828 
2829 	/*
2830 	 *	Now send the Fib to the adapter
2831 	 */
2832 	status = aac_fib_send(ContainerCommand,
2833 		  cmd_fibcontext,
2834 		  sizeof(struct aac_power_management),
2835 		  FsaNormal,
2836 		  0, 1,
2837 		  (fib_callback)aac_start_stop_callback,
2838 		  (void *)scsicmd);
2839 
2840 	/*
2841 	 *	Check that the command queued to the controller
2842 	 */
2843 	if (status == -EINPROGRESS)
2844 		return 0;
2845 
2846 	aac_fib_complete(cmd_fibcontext);
2847 	aac_fib_free(cmd_fibcontext);
2848 	return SCSI_MLQUEUE_HOST_BUSY;
2849 }
2850 
2851 /**
2852  *	aac_scsi_cmd()		-	Process SCSI command
2853  *	@scsicmd:		SCSI command block
2854  *
2855  *	Emulate a SCSI command and queue the required request for the
2856  *	aacraid firmware.
2857  */
2858 
2859 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2860 {
2861 	u32 cid, bus;
2862 	struct Scsi_Host *host = scsicmd->device->host;
2863 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2864 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2865 
2866 	if (fsa_dev_ptr == NULL)
2867 		return -1;
2868 	/*
2869 	 *	If the bus, id or lun is out of range, return fail
2870 	 *	Test does not apply to ID 16, the pseudo id for the controller
2871 	 *	itself.
2872 	 */
2873 	cid = scmd_id(scsicmd);
2874 	if (cid != host->this_id) {
2875 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2876 			if((cid >= dev->maximum_num_containers) ||
2877 					(scsicmd->device->lun != 0)) {
2878 				scsicmd->result = DID_NO_CONNECT << 16;
2879 				goto scsi_done_ret;
2880 			}
2881 
2882 			/*
2883 			 *	If the target container doesn't exist, it may have
2884 			 *	been newly created
2885 			 */
2886 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2887 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2888 			   NOT_READY)) {
2889 				switch (scsicmd->cmnd[0]) {
2890 				case SERVICE_ACTION_IN_16:
2891 					if (!(dev->raw_io_interface) ||
2892 					    !(dev->raw_io_64) ||
2893 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2894 						break;
2895 				case INQUIRY:
2896 				case READ_CAPACITY:
2897 				case TEST_UNIT_READY:
2898 					if (dev->in_reset)
2899 						return -1;
2900 					return _aac_probe_container(scsicmd,
2901 							aac_probe_container_callback2);
2902 				default:
2903 					break;
2904 				}
2905 			}
2906 		} else {  /* check for physical non-dasd devices */
2907 			bus = aac_logical_to_phys(scmd_channel(scsicmd));
2908 
2909 			if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2910 				dev->hba_map[bus][cid].devtype
2911 					== AAC_DEVTYPE_NATIVE_RAW) {
2912 				if (dev->in_reset)
2913 					return -1;
2914 				return aac_send_hba_fib(scsicmd);
2915 			} else if (dev->nondasd_support || expose_physicals ||
2916 				dev->jbod) {
2917 				if (dev->in_reset)
2918 					return -1;
2919 				return aac_send_srb_fib(scsicmd);
2920 			} else {
2921 				scsicmd->result = DID_NO_CONNECT << 16;
2922 				goto scsi_done_ret;
2923 			}
2924 		}
2925 	}
2926 	/*
2927 	 * else Command for the controller itself
2928 	 */
2929 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2930 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2931 	{
2932 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2933 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2934 		set_sense(&dev->fsa_dev[cid].sense_data,
2935 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2936 		  ASENCODE_INVALID_COMMAND, 0, 0);
2937 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2938 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2939 			     SCSI_SENSE_BUFFERSIZE));
2940 		goto scsi_done_ret;
2941 	}
2942 
2943 	switch (scsicmd->cmnd[0]) {
2944 	case READ_6:
2945 	case READ_10:
2946 	case READ_12:
2947 	case READ_16:
2948 		if (dev->in_reset)
2949 			return -1;
2950 		return aac_read(scsicmd);
2951 
2952 	case WRITE_6:
2953 	case WRITE_10:
2954 	case WRITE_12:
2955 	case WRITE_16:
2956 		if (dev->in_reset)
2957 			return -1;
2958 		return aac_write(scsicmd);
2959 
2960 	case SYNCHRONIZE_CACHE:
2961 		if (((aac_cache & 6) == 6) && dev->cache_protected) {
2962 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2963 					  SAM_STAT_GOOD;
2964 			break;
2965 		}
2966 		/* Issue FIB to tell Firmware to flush it's cache */
2967 		if ((aac_cache & 6) != 2)
2968 			return aac_synchronize(scsicmd);
2969 	case INQUIRY:
2970 	{
2971 		struct inquiry_data inq_data;
2972 
2973 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2974 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2975 
2976 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2977 			char *arr = (char *)&inq_data;
2978 
2979 			/* EVPD bit set */
2980 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2981 			  INQD_PDT_PROC : INQD_PDT_DA;
2982 			if (scsicmd->cmnd[2] == 0) {
2983 				/* supported vital product data pages */
2984 				arr[3] = 3;
2985 				arr[4] = 0x0;
2986 				arr[5] = 0x80;
2987 				arr[6] = 0x83;
2988 				arr[1] = scsicmd->cmnd[2];
2989 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2990 							 sizeof(inq_data));
2991 				scsicmd->result = DID_OK << 16 |
2992 						  COMMAND_COMPLETE << 8 |
2993 						  SAM_STAT_GOOD;
2994 			} else if (scsicmd->cmnd[2] == 0x80) {
2995 				/* unit serial number page */
2996 				arr[3] = setinqserial(dev, &arr[4],
2997 				  scmd_id(scsicmd));
2998 				arr[1] = scsicmd->cmnd[2];
2999 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3000 							 sizeof(inq_data));
3001 				if (aac_wwn != 2)
3002 					return aac_get_container_serial(
3003 						scsicmd);
3004 				scsicmd->result = DID_OK << 16 |
3005 						  COMMAND_COMPLETE << 8 |
3006 						  SAM_STAT_GOOD;
3007 			} else if (scsicmd->cmnd[2] == 0x83) {
3008 				/* vpd page 0x83 - Device Identification Page */
3009 				char *sno = (char *)&inq_data;
3010 				sno[3] = setinqserial(dev, &sno[4],
3011 						      scmd_id(scsicmd));
3012 				if (aac_wwn != 2)
3013 					return aac_get_container_serial(
3014 						scsicmd);
3015 				scsicmd->result = DID_OK << 16 |
3016 						  COMMAND_COMPLETE << 8 |
3017 						  SAM_STAT_GOOD;
3018 			} else {
3019 				/* vpd page not implemented */
3020 				scsicmd->result = DID_OK << 16 |
3021 				  COMMAND_COMPLETE << 8 |
3022 				  SAM_STAT_CHECK_CONDITION;
3023 				set_sense(&dev->fsa_dev[cid].sense_data,
3024 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
3025 				  ASENCODE_NO_SENSE, 7, 2);
3026 				memcpy(scsicmd->sense_buffer,
3027 				  &dev->fsa_dev[cid].sense_data,
3028 				  min_t(size_t,
3029 					sizeof(dev->fsa_dev[cid].sense_data),
3030 					SCSI_SENSE_BUFFERSIZE));
3031 			}
3032 			break;
3033 		}
3034 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
3035 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
3036 		inq_data.inqd_len = 31;
3037 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
3038 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
3039 		/*
3040 		 *	Set the Vendor, Product, and Revision Level
3041 		 *	see: <vendor>.c i.e. aac.c
3042 		 */
3043 		if (cid == host->this_id) {
3044 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
3045 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
3046 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3047 						 sizeof(inq_data));
3048 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3049 					  SAM_STAT_GOOD;
3050 			break;
3051 		}
3052 		if (dev->in_reset)
3053 			return -1;
3054 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
3055 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
3056 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
3057 		return aac_get_container_name(scsicmd);
3058 	}
3059 	case SERVICE_ACTION_IN_16:
3060 		if (!(dev->raw_io_interface) ||
3061 		    !(dev->raw_io_64) ||
3062 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
3063 			break;
3064 	{
3065 		u64 capacity;
3066 		char cp[13];
3067 		unsigned int alloc_len;
3068 
3069 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
3070 		capacity = fsa_dev_ptr[cid].size - 1;
3071 		cp[0] = (capacity >> 56) & 0xff;
3072 		cp[1] = (capacity >> 48) & 0xff;
3073 		cp[2] = (capacity >> 40) & 0xff;
3074 		cp[3] = (capacity >> 32) & 0xff;
3075 		cp[4] = (capacity >> 24) & 0xff;
3076 		cp[5] = (capacity >> 16) & 0xff;
3077 		cp[6] = (capacity >> 8) & 0xff;
3078 		cp[7] = (capacity >> 0) & 0xff;
3079 		cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3080 		cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3081 		cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3082 		cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3083 		cp[12] = 0;
3084 
3085 		alloc_len = ((scsicmd->cmnd[10] << 24)
3086 			     + (scsicmd->cmnd[11] << 16)
3087 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3088 
3089 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3090 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3091 		if (alloc_len < scsi_bufflen(scsicmd))
3092 			scsi_set_resid(scsicmd,
3093 				       scsi_bufflen(scsicmd) - alloc_len);
3094 
3095 		/* Do not cache partition table for arrays */
3096 		scsicmd->device->removable = 1;
3097 
3098 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3099 				  SAM_STAT_GOOD;
3100 		break;
3101 	}
3102 
3103 	case READ_CAPACITY:
3104 	{
3105 		u32 capacity;
3106 		char cp[8];
3107 
3108 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3109 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3110 			capacity = fsa_dev_ptr[cid].size - 1;
3111 		else
3112 			capacity = (u32)-1;
3113 
3114 		cp[0] = (capacity >> 24) & 0xff;
3115 		cp[1] = (capacity >> 16) & 0xff;
3116 		cp[2] = (capacity >> 8) & 0xff;
3117 		cp[3] = (capacity >> 0) & 0xff;
3118 		cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3119 		cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3120 		cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3121 		cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3122 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3123 		/* Do not cache partition table for arrays */
3124 		scsicmd->device->removable = 1;
3125 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3126 				  SAM_STAT_GOOD;
3127 		break;
3128 	}
3129 
3130 	case MODE_SENSE:
3131 	{
3132 		int mode_buf_length = 4;
3133 		u32 capacity;
3134 		aac_modep_data mpd;
3135 
3136 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3137 			capacity = fsa_dev_ptr[cid].size - 1;
3138 		else
3139 			capacity = (u32)-1;
3140 
3141 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3142 		memset((char *)&mpd, 0, sizeof(aac_modep_data));
3143 
3144 		/* Mode data length */
3145 		mpd.hd.data_length = sizeof(mpd.hd) - 1;
3146 		/* Medium type - default */
3147 		mpd.hd.med_type = 0;
3148 		/* Device-specific param,
3149 		   bit 8: 0/1 = write enabled/protected
3150 		   bit 4: 0/1 = FUA enabled */
3151 		mpd.hd.dev_par = 0;
3152 
3153 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3154 			mpd.hd.dev_par = 0x10;
3155 		if (scsicmd->cmnd[1] & 0x8)
3156 			mpd.hd.bd_length = 0;	/* Block descriptor length */
3157 		else {
3158 			mpd.hd.bd_length = sizeof(mpd.bd);
3159 			mpd.hd.data_length += mpd.hd.bd_length;
3160 			mpd.bd.block_length[0] =
3161 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3162 			mpd.bd.block_length[1] =
3163 				(fsa_dev_ptr[cid].block_size >> 8) &  0xff;
3164 			mpd.bd.block_length[2] =
3165 				fsa_dev_ptr[cid].block_size  & 0xff;
3166 
3167 			mpd.mpc_buf[0] = scsicmd->cmnd[2];
3168 			if (scsicmd->cmnd[2] == 0x1C) {
3169 				/* page length */
3170 				mpd.mpc_buf[1] = 0xa;
3171 				/* Mode data length */
3172 				mpd.hd.data_length = 23;
3173 			} else {
3174 				/* Mode data length */
3175 				mpd.hd.data_length = 15;
3176 			}
3177 
3178 			if (capacity > 0xffffff) {
3179 				mpd.bd.block_count[0] = 0xff;
3180 				mpd.bd.block_count[1] = 0xff;
3181 				mpd.bd.block_count[2] = 0xff;
3182 			} else {
3183 				mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3184 				mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3185 				mpd.bd.block_count[2] = capacity  & 0xff;
3186 			}
3187 		}
3188 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3189 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3190 			mpd.hd.data_length += 3;
3191 			mpd.mpc_buf[0] = 8;
3192 			mpd.mpc_buf[1] = 1;
3193 			mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3194 				? 0 : 0x04; /* WCE */
3195 			mode_buf_length = sizeof(mpd);
3196 		}
3197 
3198 		if (mode_buf_length > scsicmd->cmnd[4])
3199 			mode_buf_length = scsicmd->cmnd[4];
3200 		else
3201 			mode_buf_length = sizeof(mpd);
3202 		scsi_sg_copy_from_buffer(scsicmd,
3203 					 (char *)&mpd,
3204 					 mode_buf_length);
3205 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3206 				  SAM_STAT_GOOD;
3207 		break;
3208 	}
3209 	case MODE_SENSE_10:
3210 	{
3211 		u32 capacity;
3212 		int mode_buf_length = 8;
3213 		aac_modep10_data mpd10;
3214 
3215 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3216 			capacity = fsa_dev_ptr[cid].size - 1;
3217 		else
3218 			capacity = (u32)-1;
3219 
3220 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3221 		memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3222 		/* Mode data length (MSB) */
3223 		mpd10.hd.data_length[0] = 0;
3224 		/* Mode data length (LSB) */
3225 		mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3226 		/* Medium type - default */
3227 		mpd10.hd.med_type = 0;
3228 		/* Device-specific param,
3229 		   bit 8: 0/1 = write enabled/protected
3230 		   bit 4: 0/1 = FUA enabled */
3231 		mpd10.hd.dev_par = 0;
3232 
3233 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3234 			mpd10.hd.dev_par = 0x10;
3235 		mpd10.hd.rsrvd[0] = 0;	/* reserved */
3236 		mpd10.hd.rsrvd[1] = 0;	/* reserved */
3237 		if (scsicmd->cmnd[1] & 0x8) {
3238 			/* Block descriptor length (MSB) */
3239 			mpd10.hd.bd_length[0] = 0;
3240 			/* Block descriptor length (LSB) */
3241 			mpd10.hd.bd_length[1] = 0;
3242 		} else {
3243 			mpd10.hd.bd_length[0] = 0;
3244 			mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3245 
3246 			mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3247 
3248 			mpd10.bd.block_length[0] =
3249 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3250 			mpd10.bd.block_length[1] =
3251 				(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3252 			mpd10.bd.block_length[2] =
3253 				fsa_dev_ptr[cid].block_size  & 0xff;
3254 
3255 			if (capacity > 0xffffff) {
3256 				mpd10.bd.block_count[0] = 0xff;
3257 				mpd10.bd.block_count[1] = 0xff;
3258 				mpd10.bd.block_count[2] = 0xff;
3259 			} else {
3260 				mpd10.bd.block_count[0] =
3261 					(capacity >> 16) & 0xff;
3262 				mpd10.bd.block_count[1] =
3263 					(capacity >> 8) & 0xff;
3264 				mpd10.bd.block_count[2] =
3265 					capacity  & 0xff;
3266 			}
3267 		}
3268 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3269 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3270 			mpd10.hd.data_length[1] += 3;
3271 			mpd10.mpc_buf[0] = 8;
3272 			mpd10.mpc_buf[1] = 1;
3273 			mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3274 				? 0 : 0x04; /* WCE */
3275 			mode_buf_length = sizeof(mpd10);
3276 			if (mode_buf_length > scsicmd->cmnd[8])
3277 				mode_buf_length = scsicmd->cmnd[8];
3278 		}
3279 		scsi_sg_copy_from_buffer(scsicmd,
3280 					 (char *)&mpd10,
3281 					 mode_buf_length);
3282 
3283 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3284 				  SAM_STAT_GOOD;
3285 		break;
3286 	}
3287 	case REQUEST_SENSE:
3288 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3289 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3290 				sizeof(struct sense_data));
3291 		memset(&dev->fsa_dev[cid].sense_data, 0,
3292 				sizeof(struct sense_data));
3293 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3294 				  SAM_STAT_GOOD;
3295 		break;
3296 
3297 	case ALLOW_MEDIUM_REMOVAL:
3298 		dprintk((KERN_DEBUG "LOCK command.\n"));
3299 		if (scsicmd->cmnd[4])
3300 			fsa_dev_ptr[cid].locked = 1;
3301 		else
3302 			fsa_dev_ptr[cid].locked = 0;
3303 
3304 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3305 				  SAM_STAT_GOOD;
3306 		break;
3307 	/*
3308 	 *	These commands are all No-Ops
3309 	 */
3310 	case TEST_UNIT_READY:
3311 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3312 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3313 				SAM_STAT_CHECK_CONDITION;
3314 			set_sense(&dev->fsa_dev[cid].sense_data,
3315 				  NOT_READY, SENCODE_BECOMING_READY,
3316 				  ASENCODE_BECOMING_READY, 0, 0);
3317 			memcpy(scsicmd->sense_buffer,
3318 			       &dev->fsa_dev[cid].sense_data,
3319 			       min_t(size_t,
3320 				     sizeof(dev->fsa_dev[cid].sense_data),
3321 				     SCSI_SENSE_BUFFERSIZE));
3322 		break;
3323 		}
3324 	case RESERVE:
3325 	case RELEASE:
3326 	case REZERO_UNIT:
3327 	case REASSIGN_BLOCKS:
3328 	case SEEK_10:
3329 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3330 				  SAM_STAT_GOOD;
3331 		break;
3332 
3333 	case START_STOP:
3334 		return aac_start_stop(scsicmd);
3335 
3336 	/* FALLTHRU */
3337 	default:
3338 	/*
3339 	 *	Unhandled commands
3340 	 */
3341 		dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3342 				scsicmd->cmnd[0]));
3343 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3344 				SAM_STAT_CHECK_CONDITION;
3345 		set_sense(&dev->fsa_dev[cid].sense_data,
3346 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3347 			  ASENCODE_INVALID_COMMAND, 0, 0);
3348 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3349 				min_t(size_t,
3350 				      sizeof(dev->fsa_dev[cid].sense_data),
3351 				      SCSI_SENSE_BUFFERSIZE));
3352 	}
3353 
3354 scsi_done_ret:
3355 
3356 	scsicmd->scsi_done(scsicmd);
3357 	return 0;
3358 }
3359 
3360 static int query_disk(struct aac_dev *dev, void __user *arg)
3361 {
3362 	struct aac_query_disk qd;
3363 	struct fsa_dev_info *fsa_dev_ptr;
3364 
3365 	fsa_dev_ptr = dev->fsa_dev;
3366 	if (!fsa_dev_ptr)
3367 		return -EBUSY;
3368 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3369 		return -EFAULT;
3370 	if (qd.cnum == -1) {
3371 		if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3372 			return -EINVAL;
3373 		qd.cnum = qd.id;
3374 	} else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3375 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3376 			return -EINVAL;
3377 		qd.instance = dev->scsi_host_ptr->host_no;
3378 		qd.bus = 0;
3379 		qd.id = CONTAINER_TO_ID(qd.cnum);
3380 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
3381 	}
3382 	else return -EINVAL;
3383 
3384 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3385 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
3386 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3387 
3388 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3389 		qd.unmapped = 1;
3390 	else
3391 		qd.unmapped = 0;
3392 
3393 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3394 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3395 
3396 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3397 		return -EFAULT;
3398 	return 0;
3399 }
3400 
3401 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3402 {
3403 	struct aac_delete_disk dd;
3404 	struct fsa_dev_info *fsa_dev_ptr;
3405 
3406 	fsa_dev_ptr = dev->fsa_dev;
3407 	if (!fsa_dev_ptr)
3408 		return -EBUSY;
3409 
3410 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3411 		return -EFAULT;
3412 
3413 	if (dd.cnum >= dev->maximum_num_containers)
3414 		return -EINVAL;
3415 	/*
3416 	 *	Mark this container as being deleted.
3417 	 */
3418 	fsa_dev_ptr[dd.cnum].deleted = 1;
3419 	/*
3420 	 *	Mark the container as no longer valid
3421 	 */
3422 	fsa_dev_ptr[dd.cnum].valid = 0;
3423 	return 0;
3424 }
3425 
3426 static int delete_disk(struct aac_dev *dev, void __user *arg)
3427 {
3428 	struct aac_delete_disk dd;
3429 	struct fsa_dev_info *fsa_dev_ptr;
3430 
3431 	fsa_dev_ptr = dev->fsa_dev;
3432 	if (!fsa_dev_ptr)
3433 		return -EBUSY;
3434 
3435 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3436 		return -EFAULT;
3437 
3438 	if (dd.cnum >= dev->maximum_num_containers)
3439 		return -EINVAL;
3440 	/*
3441 	 *	If the container is locked, it can not be deleted by the API.
3442 	 */
3443 	if (fsa_dev_ptr[dd.cnum].locked)
3444 		return -EBUSY;
3445 	else {
3446 		/*
3447 		 *	Mark the container as no longer being valid.
3448 		 */
3449 		fsa_dev_ptr[dd.cnum].valid = 0;
3450 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3451 		return 0;
3452 	}
3453 }
3454 
3455 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3456 {
3457 	switch (cmd) {
3458 	case FSACTL_QUERY_DISK:
3459 		return query_disk(dev, arg);
3460 	case FSACTL_DELETE_DISK:
3461 		return delete_disk(dev, arg);
3462 	case FSACTL_FORCE_DELETE_DISK:
3463 		return force_delete_disk(dev, arg);
3464 	case FSACTL_GET_CONTAINERS:
3465 		return aac_get_containers(dev);
3466 	default:
3467 		return -ENOTTY;
3468 	}
3469 }
3470 
3471 /**
3472  *
3473  * aac_srb_callback
3474  * @context: the context set in the fib - here it is scsi cmd
3475  * @fibptr: pointer to the fib
3476  *
3477  * Handles the completion of a scsi command to a non dasd device
3478  *
3479  */
3480 
3481 static void aac_srb_callback(void *context, struct fib * fibptr)
3482 {
3483 	struct aac_dev *dev;
3484 	struct aac_srb_reply *srbreply;
3485 	struct scsi_cmnd *scsicmd;
3486 
3487 	scsicmd = (struct scsi_cmnd *) context;
3488 
3489 	if (!aac_valid_context(scsicmd, fibptr))
3490 		return;
3491 
3492 	BUG_ON(fibptr == NULL);
3493 
3494 	dev = fibptr->dev;
3495 
3496 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3497 
3498 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
3499 
3500 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3501 		/* fast response */
3502 		srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3503 		srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3504 	} else {
3505 		/*
3506 		 *	Calculate resid for sg
3507 		 */
3508 		scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3509 				   - le32_to_cpu(srbreply->data_xfer_length));
3510 	}
3511 
3512 
3513 	scsi_dma_unmap(scsicmd);
3514 
3515 	/* expose physical device if expose_physicald flag is on */
3516 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3517 	  && expose_physicals > 0)
3518 		aac_expose_phy_device(scsicmd);
3519 
3520 	/*
3521 	 * First check the fib status
3522 	 */
3523 
3524 	if (le32_to_cpu(srbreply->status) != ST_OK) {
3525 		int len;
3526 
3527 		pr_warn("aac_srb_callback: srb failed, status = %d\n",
3528 				le32_to_cpu(srbreply->status));
3529 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3530 			    SCSI_SENSE_BUFFERSIZE);
3531 		scsicmd->result = DID_ERROR << 16
3532 				| COMMAND_COMPLETE << 8
3533 				| SAM_STAT_CHECK_CONDITION;
3534 		memcpy(scsicmd->sense_buffer,
3535 				srbreply->sense_data, len);
3536 	}
3537 
3538 	/*
3539 	 * Next check the srb status
3540 	 */
3541 	switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3542 	case SRB_STATUS_ERROR_RECOVERY:
3543 	case SRB_STATUS_PENDING:
3544 	case SRB_STATUS_SUCCESS:
3545 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3546 		break;
3547 	case SRB_STATUS_DATA_OVERRUN:
3548 		switch (scsicmd->cmnd[0]) {
3549 		case  READ_6:
3550 		case  WRITE_6:
3551 		case  READ_10:
3552 		case  WRITE_10:
3553 		case  READ_12:
3554 		case  WRITE_12:
3555 		case  READ_16:
3556 		case  WRITE_16:
3557 			if (le32_to_cpu(srbreply->data_xfer_length)
3558 						< scsicmd->underflow)
3559 				pr_warn("aacraid: SCSI CMD underflow\n");
3560 			else
3561 				pr_warn("aacraid: SCSI CMD Data Overrun\n");
3562 			scsicmd->result = DID_ERROR << 16
3563 					| COMMAND_COMPLETE << 8;
3564 			break;
3565 		case INQUIRY:
3566 			scsicmd->result = DID_OK << 16
3567 					| COMMAND_COMPLETE << 8;
3568 			break;
3569 		default:
3570 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3571 			break;
3572 		}
3573 		break;
3574 	case SRB_STATUS_ABORTED:
3575 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3576 		break;
3577 	case SRB_STATUS_ABORT_FAILED:
3578 		/*
3579 		 * Not sure about this one - but assuming the
3580 		 * hba was trying to abort for some reason
3581 		 */
3582 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3583 		break;
3584 	case SRB_STATUS_PARITY_ERROR:
3585 		scsicmd->result = DID_PARITY << 16
3586 				| MSG_PARITY_ERROR << 8;
3587 		break;
3588 	case SRB_STATUS_NO_DEVICE:
3589 	case SRB_STATUS_INVALID_PATH_ID:
3590 	case SRB_STATUS_INVALID_TARGET_ID:
3591 	case SRB_STATUS_INVALID_LUN:
3592 	case SRB_STATUS_SELECTION_TIMEOUT:
3593 		scsicmd->result = DID_NO_CONNECT << 16
3594 				| COMMAND_COMPLETE << 8;
3595 		break;
3596 
3597 	case SRB_STATUS_COMMAND_TIMEOUT:
3598 	case SRB_STATUS_TIMEOUT:
3599 		scsicmd->result = DID_TIME_OUT << 16
3600 				| COMMAND_COMPLETE << 8;
3601 		break;
3602 
3603 	case SRB_STATUS_BUSY:
3604 		scsicmd->result = DID_BUS_BUSY << 16
3605 				| COMMAND_COMPLETE << 8;
3606 		break;
3607 
3608 	case SRB_STATUS_BUS_RESET:
3609 		scsicmd->result = DID_RESET << 16
3610 				| COMMAND_COMPLETE << 8;
3611 		break;
3612 
3613 	case SRB_STATUS_MESSAGE_REJECTED:
3614 		scsicmd->result = DID_ERROR << 16
3615 				| MESSAGE_REJECT << 8;
3616 		break;
3617 	case SRB_STATUS_REQUEST_FLUSHED:
3618 	case SRB_STATUS_ERROR:
3619 	case SRB_STATUS_INVALID_REQUEST:
3620 	case SRB_STATUS_REQUEST_SENSE_FAILED:
3621 	case SRB_STATUS_NO_HBA:
3622 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
3623 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3624 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3625 	case SRB_STATUS_DELAYED_RETRY:
3626 	case SRB_STATUS_BAD_FUNCTION:
3627 	case SRB_STATUS_NOT_STARTED:
3628 	case SRB_STATUS_NOT_IN_USE:
3629 	case SRB_STATUS_FORCE_ABORT:
3630 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3631 	default:
3632 #ifdef AAC_DETAILED_STATUS_INFO
3633 		pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3634 			le32_to_cpu(srbreply->srb_status) & 0x3F,
3635 			aac_get_status_string(
3636 				le32_to_cpu(srbreply->srb_status) & 0x3F),
3637 			scsicmd->cmnd[0],
3638 			le32_to_cpu(srbreply->scsi_status));
3639 #endif
3640 		/*
3641 		 * When the CC bit is SET by the host in ATA pass thru CDB,
3642 		 *  driver is supposed to return DID_OK
3643 		 *
3644 		 * When the CC bit is RESET by the host, driver should
3645 		 *  return DID_ERROR
3646 		 */
3647 		if ((scsicmd->cmnd[0] == ATA_12)
3648 			|| (scsicmd->cmnd[0] == ATA_16)) {
3649 
3650 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
3651 				scsicmd->result = DID_OK << 16
3652 					| COMMAND_COMPLETE << 8;
3653 			break;
3654 			} else {
3655 				scsicmd->result = DID_ERROR << 16
3656 					| COMMAND_COMPLETE << 8;
3657 			break;
3658 			}
3659 		} else {
3660 			scsicmd->result = DID_ERROR << 16
3661 				| COMMAND_COMPLETE << 8;
3662 			break;
3663 		}
3664 	}
3665 	if (le32_to_cpu(srbreply->scsi_status)
3666 			== SAM_STAT_CHECK_CONDITION) {
3667 		int len;
3668 
3669 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3670 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3671 			    SCSI_SENSE_BUFFERSIZE);
3672 #ifdef AAC_DETAILED_STATUS_INFO
3673 		pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3674 					le32_to_cpu(srbreply->status), len);
3675 #endif
3676 		memcpy(scsicmd->sense_buffer,
3677 				srbreply->sense_data, len);
3678 	}
3679 
3680 	/*
3681 	 * OR in the scsi status (already shifted up a bit)
3682 	 */
3683 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3684 
3685 	aac_fib_complete(fibptr);
3686 	scsicmd->scsi_done(scsicmd);
3687 }
3688 
3689 static void hba_resp_task_complete(struct aac_dev *dev,
3690 					struct scsi_cmnd *scsicmd,
3691 					struct aac_hba_resp *err) {
3692 
3693 	scsicmd->result = err->status;
3694 	/* set residual count */
3695 	scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3696 
3697 	switch (err->status) {
3698 	case SAM_STAT_GOOD:
3699 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3700 		break;
3701 	case SAM_STAT_CHECK_CONDITION:
3702 	{
3703 		int len;
3704 
3705 		len = min_t(u8, err->sense_response_data_len,
3706 			SCSI_SENSE_BUFFERSIZE);
3707 		if (len)
3708 			memcpy(scsicmd->sense_buffer,
3709 				err->sense_response_buf, len);
3710 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3711 		break;
3712 	}
3713 	case SAM_STAT_BUSY:
3714 		scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3715 		break;
3716 	case SAM_STAT_TASK_ABORTED:
3717 		scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3718 		break;
3719 	case SAM_STAT_RESERVATION_CONFLICT:
3720 	case SAM_STAT_TASK_SET_FULL:
3721 	default:
3722 		scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3723 		break;
3724 	}
3725 }
3726 
3727 static void hba_resp_task_failure(struct aac_dev *dev,
3728 					struct scsi_cmnd *scsicmd,
3729 					struct aac_hba_resp *err)
3730 {
3731 	switch (err->status) {
3732 	case HBA_RESP_STAT_HBAMODE_DISABLED:
3733 	{
3734 		u32 bus, cid;
3735 
3736 		bus = aac_logical_to_phys(scmd_channel(scsicmd));
3737 		cid = scmd_id(scsicmd);
3738 		if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3739 			dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3740 			dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3741 		}
3742 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3743 		break;
3744 	}
3745 	case HBA_RESP_STAT_IO_ERROR:
3746 	case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3747 		scsicmd->result = DID_OK << 16 |
3748 			COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3749 		break;
3750 	case HBA_RESP_STAT_IO_ABORTED:
3751 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3752 		break;
3753 	case HBA_RESP_STAT_INVALID_DEVICE:
3754 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3755 		break;
3756 	case HBA_RESP_STAT_UNDERRUN:
3757 		/* UNDERRUN is OK */
3758 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3759 		break;
3760 	case HBA_RESP_STAT_OVERRUN:
3761 	default:
3762 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3763 		break;
3764 	}
3765 }
3766 
3767 /**
3768  *
3769  * aac_hba_callback
3770  * @context: the context set in the fib - here it is scsi cmd
3771  * @fibptr: pointer to the fib
3772  *
3773  * Handles the completion of a native HBA scsi command
3774  *
3775  */
3776 void aac_hba_callback(void *context, struct fib *fibptr)
3777 {
3778 	struct aac_dev *dev;
3779 	struct scsi_cmnd *scsicmd;
3780 
3781 	struct aac_hba_resp *err =
3782 			&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3783 
3784 	scsicmd = (struct scsi_cmnd *) context;
3785 
3786 	if (!aac_valid_context(scsicmd, fibptr))
3787 		return;
3788 
3789 	WARN_ON(fibptr == NULL);
3790 	dev = fibptr->dev;
3791 
3792 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3793 		scsi_dma_unmap(scsicmd);
3794 
3795 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3796 		/* fast response */
3797 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3798 		goto out;
3799 	}
3800 
3801 	switch (err->service_response) {
3802 	case HBA_RESP_SVCRES_TASK_COMPLETE:
3803 		hba_resp_task_complete(dev, scsicmd, err);
3804 		break;
3805 	case HBA_RESP_SVCRES_FAILURE:
3806 		hba_resp_task_failure(dev, scsicmd, err);
3807 		break;
3808 	case HBA_RESP_SVCRES_TMF_REJECTED:
3809 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3810 		break;
3811 	case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3812 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3813 		break;
3814 	case HBA_RESP_SVCRES_TMF_COMPLETE:
3815 	case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3816 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3817 		break;
3818 	default:
3819 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3820 		break;
3821 	}
3822 
3823 out:
3824 	aac_fib_complete(fibptr);
3825 
3826 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3827 		scsicmd->SCp.sent_command = 1;
3828 	else
3829 		scsicmd->scsi_done(scsicmd);
3830 }
3831 
3832 /**
3833  *
3834  * aac_send_srb_fib
3835  * @scsicmd: the scsi command block
3836  *
3837  * This routine will form a FIB and fill in the aac_srb from the
3838  * scsicmd passed in.
3839  */
3840 
3841 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3842 {
3843 	struct fib* cmd_fibcontext;
3844 	struct aac_dev* dev;
3845 	int status;
3846 
3847 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3848 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3849 			scsicmd->device->lun > 7) {
3850 		scsicmd->result = DID_NO_CONNECT << 16;
3851 		scsicmd->scsi_done(scsicmd);
3852 		return 0;
3853 	}
3854 
3855 	/*
3856 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3857 	 */
3858 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3859 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3860 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3861 
3862 	/*
3863 	 *	Check that the command queued to the controller
3864 	 */
3865 	if (status == -EINPROGRESS)
3866 		return 0;
3867 
3868 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3869 	aac_fib_complete(cmd_fibcontext);
3870 	aac_fib_free(cmd_fibcontext);
3871 
3872 	return -1;
3873 }
3874 
3875 /**
3876  *
3877  * aac_send_hba_fib
3878  * @scsicmd: the scsi command block
3879  *
3880  * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3881  * scsicmd passed in.
3882  */
3883 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3884 {
3885 	struct fib *cmd_fibcontext;
3886 	struct aac_dev *dev;
3887 	int status;
3888 
3889 	dev = shost_priv(scsicmd->device->host);
3890 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3891 			scsicmd->device->lun > AAC_MAX_LUN - 1) {
3892 		scsicmd->result = DID_NO_CONNECT << 16;
3893 		scsicmd->scsi_done(scsicmd);
3894 		return 0;
3895 	}
3896 
3897 	/*
3898 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3899 	 */
3900 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3901 	if (!cmd_fibcontext)
3902 		return -1;
3903 
3904 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3905 	status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3906 
3907 	/*
3908 	 *	Check that the command queued to the controller
3909 	 */
3910 	if (status == -EINPROGRESS)
3911 		return 0;
3912 
3913 	pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3914 		status);
3915 	aac_fib_complete(cmd_fibcontext);
3916 	aac_fib_free(cmd_fibcontext);
3917 
3918 	return -1;
3919 }
3920 
3921 
3922 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3923 {
3924 	struct aac_dev *dev;
3925 	unsigned long byte_count = 0;
3926 	int nseg;
3927 	struct scatterlist *sg;
3928 	int i;
3929 
3930 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3931 	// Get rid of old data
3932 	psg->count = 0;
3933 	psg->sg[0].addr = 0;
3934 	psg->sg[0].count = 0;
3935 
3936 	nseg = scsi_dma_map(scsicmd);
3937 	if (nseg <= 0)
3938 		return nseg;
3939 
3940 	psg->count = cpu_to_le32(nseg);
3941 
3942 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3943 		psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3944 		psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3945 		byte_count += sg_dma_len(sg);
3946 	}
3947 	/* hba wants the size to be exact */
3948 	if (byte_count > scsi_bufflen(scsicmd)) {
3949 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3950 			(byte_count - scsi_bufflen(scsicmd));
3951 		psg->sg[i-1].count = cpu_to_le32(temp);
3952 		byte_count = scsi_bufflen(scsicmd);
3953 	}
3954 	/* Check for command underflow */
3955 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3956 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3957 		       byte_count, scsicmd->underflow);
3958 	}
3959 
3960 	return byte_count;
3961 }
3962 
3963 
3964 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3965 {
3966 	struct aac_dev *dev;
3967 	unsigned long byte_count = 0;
3968 	u64 addr;
3969 	int nseg;
3970 	struct scatterlist *sg;
3971 	int i;
3972 
3973 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3974 	// Get rid of old data
3975 	psg->count = 0;
3976 	psg->sg[0].addr[0] = 0;
3977 	psg->sg[0].addr[1] = 0;
3978 	psg->sg[0].count = 0;
3979 
3980 	nseg = scsi_dma_map(scsicmd);
3981 	if (nseg <= 0)
3982 		return nseg;
3983 
3984 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3985 		int count = sg_dma_len(sg);
3986 		addr = sg_dma_address(sg);
3987 		psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3988 		psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3989 		psg->sg[i].count = cpu_to_le32(count);
3990 		byte_count += count;
3991 	}
3992 	psg->count = cpu_to_le32(nseg);
3993 	/* hba wants the size to be exact */
3994 	if (byte_count > scsi_bufflen(scsicmd)) {
3995 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3996 			(byte_count - scsi_bufflen(scsicmd));
3997 		psg->sg[i-1].count = cpu_to_le32(temp);
3998 		byte_count = scsi_bufflen(scsicmd);
3999 	}
4000 	/* Check for command underflow */
4001 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4002 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4003 		       byte_count, scsicmd->underflow);
4004 	}
4005 
4006 	return byte_count;
4007 }
4008 
4009 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
4010 {
4011 	unsigned long byte_count = 0;
4012 	int nseg;
4013 	struct scatterlist *sg;
4014 	int i;
4015 
4016 	// Get rid of old data
4017 	psg->count = 0;
4018 	psg->sg[0].next = 0;
4019 	psg->sg[0].prev = 0;
4020 	psg->sg[0].addr[0] = 0;
4021 	psg->sg[0].addr[1] = 0;
4022 	psg->sg[0].count = 0;
4023 	psg->sg[0].flags = 0;
4024 
4025 	nseg = scsi_dma_map(scsicmd);
4026 	if (nseg <= 0)
4027 		return nseg;
4028 
4029 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4030 		int count = sg_dma_len(sg);
4031 		u64 addr = sg_dma_address(sg);
4032 		psg->sg[i].next = 0;
4033 		psg->sg[i].prev = 0;
4034 		psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
4035 		psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
4036 		psg->sg[i].count = cpu_to_le32(count);
4037 		psg->sg[i].flags = 0;
4038 		byte_count += count;
4039 	}
4040 	psg->count = cpu_to_le32(nseg);
4041 	/* hba wants the size to be exact */
4042 	if (byte_count > scsi_bufflen(scsicmd)) {
4043 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
4044 			(byte_count - scsi_bufflen(scsicmd));
4045 		psg->sg[i-1].count = cpu_to_le32(temp);
4046 		byte_count = scsi_bufflen(scsicmd);
4047 	}
4048 	/* Check for command underflow */
4049 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4050 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4051 		       byte_count, scsicmd->underflow);
4052 	}
4053 
4054 	return byte_count;
4055 }
4056 
4057 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
4058 				struct aac_raw_io2 *rio2, int sg_max)
4059 {
4060 	unsigned long byte_count = 0;
4061 	int nseg;
4062 	struct scatterlist *sg;
4063 	int i, conformable = 0;
4064 	u32 min_size = PAGE_SIZE, cur_size;
4065 
4066 	nseg = scsi_dma_map(scsicmd);
4067 	if (nseg <= 0)
4068 		return nseg;
4069 
4070 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4071 		int count = sg_dma_len(sg);
4072 		u64 addr = sg_dma_address(sg);
4073 
4074 		BUG_ON(i >= sg_max);
4075 		rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
4076 		rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
4077 		cur_size = cpu_to_le32(count);
4078 		rio2->sge[i].length = cur_size;
4079 		rio2->sge[i].flags = 0;
4080 		if (i == 0) {
4081 			conformable = 1;
4082 			rio2->sgeFirstSize = cur_size;
4083 		} else if (i == 1) {
4084 			rio2->sgeNominalSize = cur_size;
4085 			min_size = cur_size;
4086 		} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4087 			conformable = 0;
4088 			if (cur_size < min_size)
4089 				min_size = cur_size;
4090 		}
4091 		byte_count += count;
4092 	}
4093 
4094 	/* hba wants the size to be exact */
4095 	if (byte_count > scsi_bufflen(scsicmd)) {
4096 		u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4097 			(byte_count - scsi_bufflen(scsicmd));
4098 		rio2->sge[i-1].length = cpu_to_le32(temp);
4099 		byte_count = scsi_bufflen(scsicmd);
4100 	}
4101 
4102 	rio2->sgeCnt = cpu_to_le32(nseg);
4103 	rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4104 	/* not conformable: evaluate required sg elements */
4105 	if (!conformable) {
4106 		int j, nseg_new = nseg, err_found;
4107 		for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4108 			err_found = 0;
4109 			nseg_new = 2;
4110 			for (j = 1; j < nseg - 1; ++j) {
4111 				if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4112 					err_found = 1;
4113 					break;
4114 				}
4115 				nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4116 			}
4117 			if (!err_found)
4118 				break;
4119 		}
4120 		if (i > 0 && nseg_new <= sg_max) {
4121 			int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4122 
4123 			if (ret < 0)
4124 				return ret;
4125 		}
4126 	} else
4127 		rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4128 
4129 	/* Check for command underflow */
4130 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4131 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4132 		       byte_count, scsicmd->underflow);
4133 	}
4134 
4135 	return byte_count;
4136 }
4137 
4138 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4139 {
4140 	struct sge_ieee1212 *sge;
4141 	int i, j, pos;
4142 	u32 addr_low;
4143 
4144 	if (aac_convert_sgl == 0)
4145 		return 0;
4146 
4147 	sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC);
4148 	if (sge == NULL)
4149 		return -ENOMEM;
4150 
4151 	for (i = 1, pos = 1; i < nseg-1; ++i) {
4152 		for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4153 			addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4154 			sge[pos].addrLow = addr_low;
4155 			sge[pos].addrHigh = rio2->sge[i].addrHigh;
4156 			if (addr_low < rio2->sge[i].addrLow)
4157 				sge[pos].addrHigh++;
4158 			sge[pos].length = pages * PAGE_SIZE;
4159 			sge[pos].flags = 0;
4160 			pos++;
4161 		}
4162 	}
4163 	sge[pos] = rio2->sge[nseg-1];
4164 	memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4165 
4166 	kfree(sge);
4167 	rio2->sgeCnt = cpu_to_le32(nseg_new);
4168 	rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4169 	rio2->sgeNominalSize = pages * PAGE_SIZE;
4170 	return 0;
4171 }
4172 
4173 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4174 			struct aac_hba_cmd_req *hbacmd,
4175 			int sg_max,
4176 			u64 sg_address)
4177 {
4178 	unsigned long byte_count = 0;
4179 	int nseg;
4180 	struct scatterlist *sg;
4181 	int i;
4182 	u32 cur_size;
4183 	struct aac_hba_sgl *sge;
4184 
4185 	nseg = scsi_dma_map(scsicmd);
4186 	if (nseg <= 0) {
4187 		byte_count = nseg;
4188 		goto out;
4189 	}
4190 
4191 	if (nseg > HBA_MAX_SG_EMBEDDED)
4192 		sge = &hbacmd->sge[2];
4193 	else
4194 		sge = &hbacmd->sge[0];
4195 
4196 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4197 		int count = sg_dma_len(sg);
4198 		u64 addr = sg_dma_address(sg);
4199 
4200 		WARN_ON(i >= sg_max);
4201 		sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4202 		sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4203 		cur_size = cpu_to_le32(count);
4204 		sge->len = cur_size;
4205 		sge->flags = 0;
4206 		byte_count += count;
4207 		sge++;
4208 	}
4209 
4210 	sge--;
4211 	/* hba wants the size to be exact */
4212 	if (byte_count > scsi_bufflen(scsicmd)) {
4213 		u32 temp;
4214 
4215 		temp = le32_to_cpu(sge->len) - byte_count
4216 						- scsi_bufflen(scsicmd);
4217 		sge->len = cpu_to_le32(temp);
4218 		byte_count = scsi_bufflen(scsicmd);
4219 	}
4220 
4221 	if (nseg <= HBA_MAX_SG_EMBEDDED) {
4222 		hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4223 		sge->flags = cpu_to_le32(0x40000000);
4224 	} else {
4225 		/* not embedded */
4226 		hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4227 		hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4228 		hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4229 		hbacmd->sge[0].addr_lo =
4230 			cpu_to_le32((u32)(sg_address & 0xffffffff));
4231 	}
4232 
4233 	/* Check for command underflow */
4234 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4235 		pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4236 				byte_count, scsicmd->underflow);
4237 	}
4238 out:
4239 	return byte_count;
4240 }
4241 
4242 #ifdef AAC_DETAILED_STATUS_INFO
4243 
4244 struct aac_srb_status_info {
4245 	u32	status;
4246 	char	*str;
4247 };
4248 
4249 
4250 static struct aac_srb_status_info srb_status_info[] = {
4251 	{ SRB_STATUS_PENDING,		"Pending Status"},
4252 	{ SRB_STATUS_SUCCESS,		"Success"},
4253 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
4254 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
4255 	{ SRB_STATUS_ERROR,		"Error Event"},
4256 	{ SRB_STATUS_BUSY,		"Device Busy"},
4257 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
4258 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
4259 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
4260 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
4261 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
4262 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
4263 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
4264 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
4265 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
4266 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4267 	{ SRB_STATUS_NO_HBA,		"No HBA"},
4268 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
4269 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4270 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4271 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4272 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
4273 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
4274 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
4275 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
4276 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
4277 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
4278 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
4279 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
4280 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
4281 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4282 	{ 0xff,				"Unknown Error"}
4283 };
4284 
4285 char *aac_get_status_string(u32 status)
4286 {
4287 	int i;
4288 
4289 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4290 		if (srb_status_info[i].status == status)
4291 			return srb_status_info[i].str;
4292 
4293 	return "Bad Status Code";
4294 }
4295 
4296 #endif
4297