xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision 63dc02bd)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38 
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 
44 #include "aacraid.h"
45 
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
48 #define	INQD_PDT_PROC	0x03	/* Processor device */
49 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
50 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
51 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
52 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
53 
54 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
55 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
56 
57 /*
58  *	Sense codes
59  */
60 
61 #define SENCODE_NO_SENSE			0x00
62 #define SENCODE_END_OF_DATA			0x00
63 #define SENCODE_BECOMING_READY			0x04
64 #define SENCODE_INIT_CMD_REQUIRED		0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
66 #define SENCODE_INVALID_COMMAND			0x20
67 #define SENCODE_LBA_OUT_OF_RANGE		0x21
68 #define SENCODE_INVALID_CDB_FIELD		0x24
69 #define SENCODE_LUN_NOT_SUPPORTED		0x25
70 #define SENCODE_INVALID_PARAM_FIELD		0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
72 #define SENCODE_PARAM_VALUE_INVALID		0x26
73 #define SENCODE_RESET_OCCURRED			0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
81 #define SENCODE_OVERLAPPED_COMMAND		0x4E
82 
83 /*
84  *	Additional sense codes
85  */
86 
87 #define ASENCODE_NO_SENSE			0x00
88 #define ASENCODE_END_OF_DATA			0x05
89 #define ASENCODE_BECOMING_READY			0x01
90 #define ASENCODE_INIT_CMD_REQUIRED		0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
92 #define ASENCODE_INVALID_COMMAND		0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
94 #define ASENCODE_INVALID_CDB_FIELD		0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
96 #define ASENCODE_INVALID_PARAM_FIELD		0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
98 #define ASENCODE_PARAM_VALUE_INVALID		0x02
99 #define ASENCODE_RESET_OCCURRED			0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
107 #define ASENCODE_OVERLAPPED_COMMAND		0x00
108 
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113 
114 /*------------------------------------------------------------------------------
115  *              S T R U C T S / T Y P E D E F S
116  *----------------------------------------------------------------------------*/
117 /* SCSI inquiry data */
118 struct inquiry_data {
119 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
120 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
121 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
122 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
123 	u8 inqd_len;	/* Additional length (n-4) */
124 	u8 inqd_pad1[2];/* Reserved - must be zero */
125 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
126 	u8 inqd_vid[8];	/* Vendor ID */
127 	u8 inqd_pid[16];/* Product ID */
128 	u8 inqd_prl[4];	/* Product Revision Level */
129 };
130 
131 /*
132  *              M O D U L E   G L O B A L S
133  */
134 
135 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
136 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
137 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
138 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
139 #ifdef AAC_DETAILED_STATUS_INFO
140 static char *aac_get_status_string(u32 status);
141 #endif
142 
143 /*
144  *	Non dasd selection is handled entirely in aachba now
145  */
146 
147 static int nondasd = -1;
148 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
149 static int dacmode = -1;
150 int aac_msi;
151 int aac_commit = -1;
152 int startup_timeout = 180;
153 int aif_timeout = 120;
154 int aac_sync_mode;  /* Only Sync. transfer - disabled */
155 
156 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
158 	" 0=off, 1=on");
159 module_param(nondasd, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
161 	" 0=off, 1=on");
162 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
164 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
165 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
166 	"\tbit 2 - Disable only if Battery is protecting Cache");
167 module_param(dacmode, int, S_IRUGO|S_IWUSR);
168 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
169 	" 0=off, 1=on");
170 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
171 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
172 	" adapter for foreign arrays.\n"
173 	"This is typically needed in systems that do not have a BIOS."
174 	" 0=off, 1=on");
175 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
176 MODULE_PARM_DESC(msi, "IRQ handling."
177 	" 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
178 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
179 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
180 	" adapter to have it's kernel up and\n"
181 	"running. This is typically adjusted for large systems that do not"
182 	" have a BIOS.");
183 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
184 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
185 	" applications to pick up AIFs before\n"
186 	"deregistering them. This is typically adjusted for heavily burdened"
187 	" systems.");
188 
189 int numacb = -1;
190 module_param(numacb, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
192 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
193 	" to use suggestion from Firmware.");
194 
195 int acbsize = -1;
196 module_param(acbsize, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
198 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
199 	" suggestion from Firmware.");
200 
201 int update_interval = 30 * 60;
202 module_param(update_interval, int, S_IRUGO|S_IWUSR);
203 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
204 	" updates issued to adapter.");
205 
206 int check_interval = 24 * 60 * 60;
207 module_param(check_interval, int, S_IRUGO|S_IWUSR);
208 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
209 	" checks.");
210 
211 int aac_check_reset = 1;
212 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
214 	" adapter. a value of -1 forces the reset to adapters programmed to"
215 	" ignore it.");
216 
217 int expose_physicals = -1;
218 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
219 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
220 	" -1=protect 0=off, 1=on");
221 
222 int aac_reset_devices;
223 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
224 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
225 
226 int aac_wwn = 1;
227 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
228 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
229 	"\t0 - Disable\n"
230 	"\t1 - Array Meta Data Signature (default)\n"
231 	"\t2 - Adapter Serial Number");
232 
233 
234 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
235 		struct fib *fibptr) {
236 	struct scsi_device *device;
237 
238 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
239 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
240 		aac_fib_complete(fibptr);
241 		aac_fib_free(fibptr);
242 		return 0;
243 	}
244 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
245 	device = scsicmd->device;
246 	if (unlikely(!device || !scsi_device_online(device))) {
247 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
248 		aac_fib_complete(fibptr);
249 		aac_fib_free(fibptr);
250 		return 0;
251 	}
252 	return 1;
253 }
254 
255 /**
256  *	aac_get_config_status	-	check the adapter configuration
257  *	@common: adapter to query
258  *
259  *	Query config status, and commit the configuration if needed.
260  */
261 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
262 {
263 	int status = 0;
264 	struct fib * fibptr;
265 
266 	if (!(fibptr = aac_fib_alloc(dev)))
267 		return -ENOMEM;
268 
269 	aac_fib_init(fibptr);
270 	{
271 		struct aac_get_config_status *dinfo;
272 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
273 
274 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
275 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
276 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
277 	}
278 
279 	status = aac_fib_send(ContainerCommand,
280 			    fibptr,
281 			    sizeof (struct aac_get_config_status),
282 			    FsaNormal,
283 			    1, 1,
284 			    NULL, NULL);
285 	if (status < 0) {
286 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
287 	} else {
288 		struct aac_get_config_status_resp *reply
289 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
290 		dprintk((KERN_WARNING
291 		  "aac_get_config_status: response=%d status=%d action=%d\n",
292 		  le32_to_cpu(reply->response),
293 		  le32_to_cpu(reply->status),
294 		  le32_to_cpu(reply->data.action)));
295 		if ((le32_to_cpu(reply->response) != ST_OK) ||
296 		     (le32_to_cpu(reply->status) != CT_OK) ||
297 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
298 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
299 			status = -EINVAL;
300 		}
301 	}
302 	/* Do not set XferState to zero unless receives a response from F/W */
303 	if (status >= 0)
304 		aac_fib_complete(fibptr);
305 
306 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
307 	if (status >= 0) {
308 		if ((aac_commit == 1) || commit_flag) {
309 			struct aac_commit_config * dinfo;
310 			aac_fib_init(fibptr);
311 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
312 
313 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
314 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
315 
316 			status = aac_fib_send(ContainerCommand,
317 				    fibptr,
318 				    sizeof (struct aac_commit_config),
319 				    FsaNormal,
320 				    1, 1,
321 				    NULL, NULL);
322 			/* Do not set XferState to zero unless
323 			 * receives a response from F/W */
324 			if (status >= 0)
325 				aac_fib_complete(fibptr);
326 		} else if (aac_commit == 0) {
327 			printk(KERN_WARNING
328 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
329 		}
330 	}
331 	/* FIB should be freed only after getting the response from the F/W */
332 	if (status != -ERESTARTSYS)
333 		aac_fib_free(fibptr);
334 	return status;
335 }
336 
337 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
338 {
339 	char inq_data;
340 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
341 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
342 		inq_data &= 0xdf;
343 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
344 	}
345 }
346 
347 /**
348  *	aac_get_containers	-	list containers
349  *	@common: adapter to probe
350  *
351  *	Make a list of all containers on this controller
352  */
353 int aac_get_containers(struct aac_dev *dev)
354 {
355 	struct fsa_dev_info *fsa_dev_ptr;
356 	u32 index;
357 	int status = 0;
358 	struct fib * fibptr;
359 	struct aac_get_container_count *dinfo;
360 	struct aac_get_container_count_resp *dresp;
361 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
362 
363 	if (!(fibptr = aac_fib_alloc(dev)))
364 		return -ENOMEM;
365 
366 	aac_fib_init(fibptr);
367 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
368 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
369 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
370 
371 	status = aac_fib_send(ContainerCommand,
372 		    fibptr,
373 		    sizeof (struct aac_get_container_count),
374 		    FsaNormal,
375 		    1, 1,
376 		    NULL, NULL);
377 	if (status >= 0) {
378 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
379 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
380 		aac_fib_complete(fibptr);
381 	}
382 	/* FIB should be freed only after getting the response from the F/W */
383 	if (status != -ERESTARTSYS)
384 		aac_fib_free(fibptr);
385 
386 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
387 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
388 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
389 			GFP_KERNEL);
390 	if (!fsa_dev_ptr)
391 		return -ENOMEM;
392 
393 	dev->fsa_dev = fsa_dev_ptr;
394 	dev->maximum_num_containers = maximum_num_containers;
395 
396 	for (index = 0; index < dev->maximum_num_containers; ) {
397 		fsa_dev_ptr[index].devname[0] = '\0';
398 
399 		status = aac_probe_container(dev, index);
400 
401 		if (status < 0) {
402 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
403 			break;
404 		}
405 
406 		/*
407 		 *	If there are no more containers, then stop asking.
408 		 */
409 		if (++index >= status)
410 			break;
411 	}
412 	return status;
413 }
414 
415 static void get_container_name_callback(void *context, struct fib * fibptr)
416 {
417 	struct aac_get_name_resp * get_name_reply;
418 	struct scsi_cmnd * scsicmd;
419 
420 	scsicmd = (struct scsi_cmnd *) context;
421 
422 	if (!aac_valid_context(scsicmd, fibptr))
423 		return;
424 
425 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
426 	BUG_ON(fibptr == NULL);
427 
428 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
429 	/* Failure is irrelevant, using default value instead */
430 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
431 	 && (get_name_reply->data[0] != '\0')) {
432 		char *sp = get_name_reply->data;
433 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
434 		while (*sp == ' ')
435 			++sp;
436 		if (*sp) {
437 			struct inquiry_data inq;
438 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
439 			int count = sizeof(d);
440 			char *dp = d;
441 			do {
442 				*dp++ = (*sp) ? *sp++ : ' ';
443 			} while (--count > 0);
444 
445 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
446 			memcpy(inq.inqd_pid, d, sizeof(d));
447 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
448 		}
449 	}
450 
451 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
452 
453 	aac_fib_complete(fibptr);
454 	aac_fib_free(fibptr);
455 	scsicmd->scsi_done(scsicmd);
456 }
457 
458 /**
459  *	aac_get_container_name	-	get container name, none blocking.
460  */
461 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
462 {
463 	int status;
464 	struct aac_get_name *dinfo;
465 	struct fib * cmd_fibcontext;
466 	struct aac_dev * dev;
467 
468 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
469 
470 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
471 		return -ENOMEM;
472 
473 	aac_fib_init(cmd_fibcontext);
474 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
475 
476 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
477 	dinfo->type = cpu_to_le32(CT_READ_NAME);
478 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
479 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
480 
481 	status = aac_fib_send(ContainerCommand,
482 		  cmd_fibcontext,
483 		  sizeof (struct aac_get_name),
484 		  FsaNormal,
485 		  0, 1,
486 		  (fib_callback)get_container_name_callback,
487 		  (void *) scsicmd);
488 
489 	/*
490 	 *	Check that the command queued to the controller
491 	 */
492 	if (status == -EINPROGRESS) {
493 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
494 		return 0;
495 	}
496 
497 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
498 	aac_fib_complete(cmd_fibcontext);
499 	aac_fib_free(cmd_fibcontext);
500 	return -1;
501 }
502 
503 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
504 {
505 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
506 
507 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
508 		return aac_scsi_cmd(scsicmd);
509 
510 	scsicmd->result = DID_NO_CONNECT << 16;
511 	scsicmd->scsi_done(scsicmd);
512 	return 0;
513 }
514 
515 static void _aac_probe_container2(void * context, struct fib * fibptr)
516 {
517 	struct fsa_dev_info *fsa_dev_ptr;
518 	int (*callback)(struct scsi_cmnd *);
519 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
520 
521 
522 	if (!aac_valid_context(scsicmd, fibptr))
523 		return;
524 
525 	scsicmd->SCp.Status = 0;
526 	fsa_dev_ptr = fibptr->dev->fsa_dev;
527 	if (fsa_dev_ptr) {
528 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
529 		fsa_dev_ptr += scmd_id(scsicmd);
530 
531 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
532 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
533 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
534 			fsa_dev_ptr->valid = 1;
535 			/* sense_key holds the current state of the spin-up */
536 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
537 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
538 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
539 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
540 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
541 			fsa_dev_ptr->size
542 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
543 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
544 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
545 		}
546 		if ((fsa_dev_ptr->valid & 1) == 0)
547 			fsa_dev_ptr->valid = 0;
548 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
549 	}
550 	aac_fib_complete(fibptr);
551 	aac_fib_free(fibptr);
552 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
553 	scsicmd->SCp.ptr = NULL;
554 	(*callback)(scsicmd);
555 	return;
556 }
557 
558 static void _aac_probe_container1(void * context, struct fib * fibptr)
559 {
560 	struct scsi_cmnd * scsicmd;
561 	struct aac_mount * dresp;
562 	struct aac_query_mount *dinfo;
563 	int status;
564 
565 	dresp = (struct aac_mount *) fib_data(fibptr);
566 	dresp->mnt[0].capacityhigh = 0;
567 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
568 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
569 		_aac_probe_container2(context, fibptr);
570 		return;
571 	}
572 	scsicmd = (struct scsi_cmnd *) context;
573 
574 	if (!aac_valid_context(scsicmd, fibptr))
575 		return;
576 
577 	aac_fib_init(fibptr);
578 
579 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
580 
581 	dinfo->command = cpu_to_le32(VM_NameServe64);
582 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
583 	dinfo->type = cpu_to_le32(FT_FILESYS);
584 
585 	status = aac_fib_send(ContainerCommand,
586 			  fibptr,
587 			  sizeof(struct aac_query_mount),
588 			  FsaNormal,
589 			  0, 1,
590 			  _aac_probe_container2,
591 			  (void *) scsicmd);
592 	/*
593 	 *	Check that the command queued to the controller
594 	 */
595 	if (status == -EINPROGRESS)
596 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
597 	else if (status < 0) {
598 		/* Inherit results from VM_NameServe, if any */
599 		dresp->status = cpu_to_le32(ST_OK);
600 		_aac_probe_container2(context, fibptr);
601 	}
602 }
603 
604 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
605 {
606 	struct fib * fibptr;
607 	int status = -ENOMEM;
608 
609 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
610 		struct aac_query_mount *dinfo;
611 
612 		aac_fib_init(fibptr);
613 
614 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
615 
616 		dinfo->command = cpu_to_le32(VM_NameServe);
617 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
618 		dinfo->type = cpu_to_le32(FT_FILESYS);
619 		scsicmd->SCp.ptr = (char *)callback;
620 
621 		status = aac_fib_send(ContainerCommand,
622 			  fibptr,
623 			  sizeof(struct aac_query_mount),
624 			  FsaNormal,
625 			  0, 1,
626 			  _aac_probe_container1,
627 			  (void *) scsicmd);
628 		/*
629 		 *	Check that the command queued to the controller
630 		 */
631 		if (status == -EINPROGRESS) {
632 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
633 			return 0;
634 		}
635 		if (status < 0) {
636 			scsicmd->SCp.ptr = NULL;
637 			aac_fib_complete(fibptr);
638 			aac_fib_free(fibptr);
639 		}
640 	}
641 	if (status < 0) {
642 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
643 		if (fsa_dev_ptr) {
644 			fsa_dev_ptr += scmd_id(scsicmd);
645 			if ((fsa_dev_ptr->valid & 1) == 0) {
646 				fsa_dev_ptr->valid = 0;
647 				return (*callback)(scsicmd);
648 			}
649 		}
650 	}
651 	return status;
652 }
653 
654 /**
655  *	aac_probe_container		-	query a logical volume
656  *	@dev: device to query
657  *	@cid: container identifier
658  *
659  *	Queries the controller about the given volume. The volume information
660  *	is updated in the struct fsa_dev_info structure rather than returned.
661  */
662 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
663 {
664 	scsicmd->device = NULL;
665 	return 0;
666 }
667 
668 int aac_probe_container(struct aac_dev *dev, int cid)
669 {
670 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
671 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
672 	int status;
673 
674 	if (!scsicmd || !scsidev) {
675 		kfree(scsicmd);
676 		kfree(scsidev);
677 		return -ENOMEM;
678 	}
679 	scsicmd->list.next = NULL;
680 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
681 
682 	scsicmd->device = scsidev;
683 	scsidev->sdev_state = 0;
684 	scsidev->id = cid;
685 	scsidev->host = dev->scsi_host_ptr;
686 
687 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
688 		while (scsicmd->device == scsidev)
689 			schedule();
690 	kfree(scsidev);
691 	status = scsicmd->SCp.Status;
692 	kfree(scsicmd);
693 	return status;
694 }
695 
696 /* Local Structure to set SCSI inquiry data strings */
697 struct scsi_inq {
698 	char vid[8];         /* Vendor ID */
699 	char pid[16];        /* Product ID */
700 	char prl[4];         /* Product Revision Level */
701 };
702 
703 /**
704  *	InqStrCopy	-	string merge
705  *	@a:	string to copy from
706  *	@b:	string to copy to
707  *
708  *	Copy a String from one location to another
709  *	without copying \0
710  */
711 
712 static void inqstrcpy(char *a, char *b)
713 {
714 
715 	while (*a != (char)0)
716 		*b++ = *a++;
717 }
718 
719 static char *container_types[] = {
720 	"None",
721 	"Volume",
722 	"Mirror",
723 	"Stripe",
724 	"RAID5",
725 	"SSRW",
726 	"SSRO",
727 	"Morph",
728 	"Legacy",
729 	"RAID4",
730 	"RAID10",
731 	"RAID00",
732 	"V-MIRRORS",
733 	"PSEUDO R4",
734 	"RAID50",
735 	"RAID5D",
736 	"RAID5D0",
737 	"RAID1E",
738 	"RAID6",
739 	"RAID60",
740 	"Unknown"
741 };
742 
743 char * get_container_type(unsigned tindex)
744 {
745 	if (tindex >= ARRAY_SIZE(container_types))
746 		tindex = ARRAY_SIZE(container_types) - 1;
747 	return container_types[tindex];
748 }
749 
750 /* Function: setinqstr
751  *
752  * Arguments: [1] pointer to void [1] int
753  *
754  * Purpose: Sets SCSI inquiry data strings for vendor, product
755  * and revision level. Allows strings to be set in platform dependent
756  * files instead of in OS dependent driver source.
757  */
758 
759 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
760 {
761 	struct scsi_inq *str;
762 
763 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
764 	memset(str, ' ', sizeof(*str));
765 
766 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
767 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
768 		int c;
769 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
770 			inqstrcpy("SMC", str->vid);
771 		else {
772 			c = sizeof(str->vid);
773 			while (*cp && *cp != ' ' && --c)
774 				++cp;
775 			c = *cp;
776 			*cp = '\0';
777 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
778 				   str->vid);
779 			*cp = c;
780 			while (*cp && *cp != ' ')
781 				++cp;
782 		}
783 		while (*cp == ' ')
784 			++cp;
785 		/* last six chars reserved for vol type */
786 		c = 0;
787 		if (strlen(cp) > sizeof(str->pid)) {
788 			c = cp[sizeof(str->pid)];
789 			cp[sizeof(str->pid)] = '\0';
790 		}
791 		inqstrcpy (cp, str->pid);
792 		if (c)
793 			cp[sizeof(str->pid)] = c;
794 	} else {
795 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
796 
797 		inqstrcpy (mp->vname, str->vid);
798 		/* last six chars reserved for vol type */
799 		inqstrcpy (mp->model, str->pid);
800 	}
801 
802 	if (tindex < ARRAY_SIZE(container_types)){
803 		char *findit = str->pid;
804 
805 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
806 		/* RAID is superfluous in the context of a RAID device */
807 		if (memcmp(findit-4, "RAID", 4) == 0)
808 			*(findit -= 4) = ' ';
809 		if (((findit - str->pid) + strlen(container_types[tindex]))
810 		 < (sizeof(str->pid) + sizeof(str->prl)))
811 			inqstrcpy (container_types[tindex], findit + 1);
812 	}
813 	inqstrcpy ("V1.0", str->prl);
814 }
815 
816 static void get_container_serial_callback(void *context, struct fib * fibptr)
817 {
818 	struct aac_get_serial_resp * get_serial_reply;
819 	struct scsi_cmnd * scsicmd;
820 
821 	BUG_ON(fibptr == NULL);
822 
823 	scsicmd = (struct scsi_cmnd *) context;
824 	if (!aac_valid_context(scsicmd, fibptr))
825 		return;
826 
827 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
828 	/* Failure is irrelevant, using default value instead */
829 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
830 		char sp[13];
831 		/* EVPD bit set */
832 		sp[0] = INQD_PDT_DA;
833 		sp[1] = scsicmd->cmnd[2];
834 		sp[2] = 0;
835 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
836 		  le32_to_cpu(get_serial_reply->uid));
837 		scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
838 	}
839 
840 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
841 
842 	aac_fib_complete(fibptr);
843 	aac_fib_free(fibptr);
844 	scsicmd->scsi_done(scsicmd);
845 }
846 
847 /**
848  *	aac_get_container_serial - get container serial, none blocking.
849  */
850 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
851 {
852 	int status;
853 	struct aac_get_serial *dinfo;
854 	struct fib * cmd_fibcontext;
855 	struct aac_dev * dev;
856 
857 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
858 
859 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
860 		return -ENOMEM;
861 
862 	aac_fib_init(cmd_fibcontext);
863 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
864 
865 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
866 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
867 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
868 
869 	status = aac_fib_send(ContainerCommand,
870 		  cmd_fibcontext,
871 		  sizeof (struct aac_get_serial),
872 		  FsaNormal,
873 		  0, 1,
874 		  (fib_callback) get_container_serial_callback,
875 		  (void *) scsicmd);
876 
877 	/*
878 	 *	Check that the command queued to the controller
879 	 */
880 	if (status == -EINPROGRESS) {
881 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
882 		return 0;
883 	}
884 
885 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
886 	aac_fib_complete(cmd_fibcontext);
887 	aac_fib_free(cmd_fibcontext);
888 	return -1;
889 }
890 
891 /* Function: setinqserial
892  *
893  * Arguments: [1] pointer to void [1] int
894  *
895  * Purpose: Sets SCSI Unit Serial number.
896  *          This is a fake. We should read a proper
897  *          serial number from the container. <SuSE>But
898  *          without docs it's quite hard to do it :-)
899  *          So this will have to do in the meantime.</SuSE>
900  */
901 
902 static int setinqserial(struct aac_dev *dev, void *data, int cid)
903 {
904 	/*
905 	 *	This breaks array migration.
906 	 */
907 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
908 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
909 }
910 
911 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
912 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
913 {
914 	u8 *sense_buf = (u8 *)sense_data;
915 	/* Sense data valid, err code 70h */
916 	sense_buf[0] = 0x70; /* No info field */
917 	sense_buf[1] = 0;	/* Segment number, always zero */
918 
919 	sense_buf[2] = sense_key;	/* Sense key */
920 
921 	sense_buf[12] = sense_code;	/* Additional sense code */
922 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
923 
924 	if (sense_key == ILLEGAL_REQUEST) {
925 		sense_buf[7] = 10;	/* Additional sense length */
926 
927 		sense_buf[15] = bit_pointer;
928 		/* Illegal parameter is in the parameter block */
929 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
930 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
931 		/* Illegal parameter is in the CDB block */
932 		sense_buf[16] = field_pointer >> 8;	/* MSB */
933 		sense_buf[17] = field_pointer;		/* LSB */
934 	} else
935 		sense_buf[7] = 6;	/* Additional sense length */
936 }
937 
938 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
939 {
940 	if (lba & 0xffffffff00000000LL) {
941 		int cid = scmd_id(cmd);
942 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
943 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
944 			SAM_STAT_CHECK_CONDITION;
945 		set_sense(&dev->fsa_dev[cid].sense_data,
946 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
947 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
948 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
949 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
950 			     SCSI_SENSE_BUFFERSIZE));
951 		cmd->scsi_done(cmd);
952 		return 1;
953 	}
954 	return 0;
955 }
956 
957 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
958 {
959 	return 0;
960 }
961 
962 static void io_callback(void *context, struct fib * fibptr);
963 
964 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
965 {
966 	u16 fibsize;
967 	struct aac_raw_io *readcmd;
968 	aac_fib_init(fib);
969 	readcmd = (struct aac_raw_io *) fib_data(fib);
970 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
971 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
972 	readcmd->count = cpu_to_le32(count<<9);
973 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
974 	readcmd->flags = cpu_to_le16(IO_TYPE_READ);
975 	readcmd->bpTotal = 0;
976 	readcmd->bpComplete = 0;
977 
978 	aac_build_sgraw(cmd, &readcmd->sg);
979 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
980 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
981 	/*
982 	 *	Now send the Fib to the adapter
983 	 */
984 	return aac_fib_send(ContainerRawIo,
985 			  fib,
986 			  fibsize,
987 			  FsaNormal,
988 			  0, 1,
989 			  (fib_callback) io_callback,
990 			  (void *) cmd);
991 }
992 
993 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
994 {
995 	u16 fibsize;
996 	struct aac_read64 *readcmd;
997 	aac_fib_init(fib);
998 	readcmd = (struct aac_read64 *) fib_data(fib);
999 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1000 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1001 	readcmd->sector_count = cpu_to_le16(count);
1002 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1003 	readcmd->pad   = 0;
1004 	readcmd->flags = 0;
1005 
1006 	aac_build_sg64(cmd, &readcmd->sg);
1007 	fibsize = sizeof(struct aac_read64) +
1008 		((le32_to_cpu(readcmd->sg.count) - 1) *
1009 		 sizeof (struct sgentry64));
1010 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1011 				sizeof(struct aac_fibhdr)));
1012 	/*
1013 	 *	Now send the Fib to the adapter
1014 	 */
1015 	return aac_fib_send(ContainerCommand64,
1016 			  fib,
1017 			  fibsize,
1018 			  FsaNormal,
1019 			  0, 1,
1020 			  (fib_callback) io_callback,
1021 			  (void *) cmd);
1022 }
1023 
1024 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1025 {
1026 	u16 fibsize;
1027 	struct aac_read *readcmd;
1028 	aac_fib_init(fib);
1029 	readcmd = (struct aac_read *) fib_data(fib);
1030 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1031 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1032 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1033 	readcmd->count = cpu_to_le32(count * 512);
1034 
1035 	aac_build_sg(cmd, &readcmd->sg);
1036 	fibsize = sizeof(struct aac_read) +
1037 			((le32_to_cpu(readcmd->sg.count) - 1) *
1038 			 sizeof (struct sgentry));
1039 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1040 				sizeof(struct aac_fibhdr)));
1041 	/*
1042 	 *	Now send the Fib to the adapter
1043 	 */
1044 	return aac_fib_send(ContainerCommand,
1045 			  fib,
1046 			  fibsize,
1047 			  FsaNormal,
1048 			  0, 1,
1049 			  (fib_callback) io_callback,
1050 			  (void *) cmd);
1051 }
1052 
1053 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1054 {
1055 	u16 fibsize;
1056 	struct aac_raw_io *writecmd;
1057 	aac_fib_init(fib);
1058 	writecmd = (struct aac_raw_io *) fib_data(fib);
1059 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1060 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1061 	writecmd->count = cpu_to_le32(count<<9);
1062 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1063 	writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1064 	  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1065 		cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1066 		cpu_to_le16(IO_TYPE_WRITE);
1067 	writecmd->bpTotal = 0;
1068 	writecmd->bpComplete = 0;
1069 
1070 	aac_build_sgraw(cmd, &writecmd->sg);
1071 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1072 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1073 	/*
1074 	 *	Now send the Fib to the adapter
1075 	 */
1076 	return aac_fib_send(ContainerRawIo,
1077 			  fib,
1078 			  fibsize,
1079 			  FsaNormal,
1080 			  0, 1,
1081 			  (fib_callback) io_callback,
1082 			  (void *) cmd);
1083 }
1084 
1085 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1086 {
1087 	u16 fibsize;
1088 	struct aac_write64 *writecmd;
1089 	aac_fib_init(fib);
1090 	writecmd = (struct aac_write64 *) fib_data(fib);
1091 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1092 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1093 	writecmd->sector_count = cpu_to_le16(count);
1094 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1095 	writecmd->pad	= 0;
1096 	writecmd->flags	= 0;
1097 
1098 	aac_build_sg64(cmd, &writecmd->sg);
1099 	fibsize = sizeof(struct aac_write64) +
1100 		((le32_to_cpu(writecmd->sg.count) - 1) *
1101 		 sizeof (struct sgentry64));
1102 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1103 				sizeof(struct aac_fibhdr)));
1104 	/*
1105 	 *	Now send the Fib to the adapter
1106 	 */
1107 	return aac_fib_send(ContainerCommand64,
1108 			  fib,
1109 			  fibsize,
1110 			  FsaNormal,
1111 			  0, 1,
1112 			  (fib_callback) io_callback,
1113 			  (void *) cmd);
1114 }
1115 
1116 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1117 {
1118 	u16 fibsize;
1119 	struct aac_write *writecmd;
1120 	aac_fib_init(fib);
1121 	writecmd = (struct aac_write *) fib_data(fib);
1122 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1123 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1124 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1125 	writecmd->count = cpu_to_le32(count * 512);
1126 	writecmd->sg.count = cpu_to_le32(1);
1127 	/* ->stable is not used - it did mean which type of write */
1128 
1129 	aac_build_sg(cmd, &writecmd->sg);
1130 	fibsize = sizeof(struct aac_write) +
1131 		((le32_to_cpu(writecmd->sg.count) - 1) *
1132 		 sizeof (struct sgentry));
1133 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1134 				sizeof(struct aac_fibhdr)));
1135 	/*
1136 	 *	Now send the Fib to the adapter
1137 	 */
1138 	return aac_fib_send(ContainerCommand,
1139 			  fib,
1140 			  fibsize,
1141 			  FsaNormal,
1142 			  0, 1,
1143 			  (fib_callback) io_callback,
1144 			  (void *) cmd);
1145 }
1146 
1147 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1148 {
1149 	struct aac_srb * srbcmd;
1150 	u32 flag;
1151 	u32 timeout;
1152 
1153 	aac_fib_init(fib);
1154 	switch(cmd->sc_data_direction){
1155 	case DMA_TO_DEVICE:
1156 		flag = SRB_DataOut;
1157 		break;
1158 	case DMA_BIDIRECTIONAL:
1159 		flag = SRB_DataIn | SRB_DataOut;
1160 		break;
1161 	case DMA_FROM_DEVICE:
1162 		flag = SRB_DataIn;
1163 		break;
1164 	case DMA_NONE:
1165 	default:	/* shuts up some versions of gcc */
1166 		flag = SRB_NoDataXfer;
1167 		break;
1168 	}
1169 
1170 	srbcmd = (struct aac_srb*) fib_data(fib);
1171 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1172 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1173 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1174 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1175 	srbcmd->flags    = cpu_to_le32(flag);
1176 	timeout = cmd->request->timeout/HZ;
1177 	if (timeout == 0)
1178 		timeout = 1;
1179 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1180 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1181 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1182 	return srbcmd;
1183 }
1184 
1185 static void aac_srb_callback(void *context, struct fib * fibptr);
1186 
1187 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1188 {
1189 	u16 fibsize;
1190 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1191 
1192 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1193 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1194 
1195 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1196 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1197 	/*
1198 	 *	Build Scatter/Gather list
1199 	 */
1200 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1201 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1202 		 sizeof (struct sgentry64));
1203 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1204 				sizeof(struct aac_fibhdr)));
1205 
1206 	/*
1207 	 *	Now send the Fib to the adapter
1208 	 */
1209 	return aac_fib_send(ScsiPortCommand64, fib,
1210 				fibsize, FsaNormal, 0, 1,
1211 				  (fib_callback) aac_srb_callback,
1212 				  (void *) cmd);
1213 }
1214 
1215 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1216 {
1217 	u16 fibsize;
1218 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1219 
1220 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1221 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1222 
1223 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1224 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1225 	/*
1226 	 *	Build Scatter/Gather list
1227 	 */
1228 	fibsize = sizeof (struct aac_srb) +
1229 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1230 		 sizeof (struct sgentry));
1231 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1232 				sizeof(struct aac_fibhdr)));
1233 
1234 	/*
1235 	 *	Now send the Fib to the adapter
1236 	 */
1237 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1238 				  (fib_callback) aac_srb_callback, (void *) cmd);
1239 }
1240 
1241 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1242 {
1243 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1244 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1245 		return FAILED;
1246 	return aac_scsi_32(fib, cmd);
1247 }
1248 
1249 int aac_get_adapter_info(struct aac_dev* dev)
1250 {
1251 	struct fib* fibptr;
1252 	int rcode;
1253 	u32 tmp;
1254 	struct aac_adapter_info *info;
1255 	struct aac_bus_info *command;
1256 	struct aac_bus_info_response *bus_info;
1257 
1258 	if (!(fibptr = aac_fib_alloc(dev)))
1259 		return -ENOMEM;
1260 
1261 	aac_fib_init(fibptr);
1262 	info = (struct aac_adapter_info *) fib_data(fibptr);
1263 	memset(info,0,sizeof(*info));
1264 
1265 	rcode = aac_fib_send(RequestAdapterInfo,
1266 			 fibptr,
1267 			 sizeof(*info),
1268 			 FsaNormal,
1269 			 -1, 1, /* First `interrupt' command uses special wait */
1270 			 NULL,
1271 			 NULL);
1272 
1273 	if (rcode < 0) {
1274 		/* FIB should be freed only after
1275 		 * getting the response from the F/W */
1276 		if (rcode != -ERESTARTSYS) {
1277 			aac_fib_complete(fibptr);
1278 			aac_fib_free(fibptr);
1279 		}
1280 		return rcode;
1281 	}
1282 	memcpy(&dev->adapter_info, info, sizeof(*info));
1283 
1284 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1285 		struct aac_supplement_adapter_info * sinfo;
1286 
1287 		aac_fib_init(fibptr);
1288 
1289 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1290 
1291 		memset(sinfo,0,sizeof(*sinfo));
1292 
1293 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1294 				 fibptr,
1295 				 sizeof(*sinfo),
1296 				 FsaNormal,
1297 				 1, 1,
1298 				 NULL,
1299 				 NULL);
1300 
1301 		if (rcode >= 0)
1302 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1303 		if (rcode == -ERESTARTSYS) {
1304 			fibptr = aac_fib_alloc(dev);
1305 			if (!fibptr)
1306 				return -ENOMEM;
1307 		}
1308 
1309 	}
1310 
1311 
1312 	/*
1313 	 * GetBusInfo
1314 	 */
1315 
1316 	aac_fib_init(fibptr);
1317 
1318 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1319 
1320 	memset(bus_info, 0, sizeof(*bus_info));
1321 
1322 	command = (struct aac_bus_info *)bus_info;
1323 
1324 	command->Command = cpu_to_le32(VM_Ioctl);
1325 	command->ObjType = cpu_to_le32(FT_DRIVE);
1326 	command->MethodId = cpu_to_le32(1);
1327 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1328 
1329 	rcode = aac_fib_send(ContainerCommand,
1330 			 fibptr,
1331 			 sizeof (*bus_info),
1332 			 FsaNormal,
1333 			 1, 1,
1334 			 NULL, NULL);
1335 
1336 	/* reasoned default */
1337 	dev->maximum_num_physicals = 16;
1338 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1339 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1340 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1341 	}
1342 
1343 	if (!dev->in_reset) {
1344 		char buffer[16];
1345 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1346 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1347 			dev->name,
1348 			dev->id,
1349 			tmp>>24,
1350 			(tmp>>16)&0xff,
1351 			tmp&0xff,
1352 			le32_to_cpu(dev->adapter_info.kernelbuild),
1353 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1354 			dev->supplement_adapter_info.BuildDate);
1355 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1356 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1357 			dev->name, dev->id,
1358 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1359 			le32_to_cpu(dev->adapter_info.monitorbuild));
1360 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1361 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1362 			dev->name, dev->id,
1363 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1364 			le32_to_cpu(dev->adapter_info.biosbuild));
1365 		buffer[0] = '\0';
1366 		if (aac_get_serial_number(
1367 		  shost_to_class(dev->scsi_host_ptr), buffer))
1368 			printk(KERN_INFO "%s%d: serial %s",
1369 			  dev->name, dev->id, buffer);
1370 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1371 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1372 			  dev->name, dev->id,
1373 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1374 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1375 		}
1376 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1377 		  (dev->supplement_adapter_info.SupportedOptions2 &
1378 		  AAC_OPTION_IGNORE_RESET))) {
1379 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1380 			  dev->name, dev->id);
1381 		}
1382 	}
1383 
1384 	dev->cache_protected = 0;
1385 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1386 		AAC_FEATURE_JBOD) != 0);
1387 	dev->nondasd_support = 0;
1388 	dev->raid_scsi_mode = 0;
1389 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1390 		dev->nondasd_support = 1;
1391 
1392 	/*
1393 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1394 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1395 	 * force nondasd support on. If we decide to allow the non-dasd flag
1396 	 * additional changes changes will have to be made to support
1397 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1398 	 * changed to support the new dev->raid_scsi_mode flag instead of
1399 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1400 	 * function aac_detect will have to be modified where it sets up the
1401 	 * max number of channels based on the aac->nondasd_support flag only.
1402 	 */
1403 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1404 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1405 		dev->nondasd_support = 1;
1406 		dev->raid_scsi_mode = 1;
1407 	}
1408 	if (dev->raid_scsi_mode != 0)
1409 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1410 				dev->name, dev->id);
1411 
1412 	if (nondasd != -1)
1413 		dev->nondasd_support = (nondasd!=0);
1414 	if (dev->nondasd_support && !dev->in_reset)
1415 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1416 
1417 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1418 		dev->needs_dac = 1;
1419 	dev->dac_support = 0;
1420 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1421 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1422 		if (!dev->in_reset)
1423 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1424 				dev->name, dev->id);
1425 		dev->dac_support = 1;
1426 	}
1427 
1428 	if(dacmode != -1) {
1429 		dev->dac_support = (dacmode!=0);
1430 	}
1431 
1432 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1433 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
1434 		& AAC_QUIRK_SCSI_32)) {
1435 		dev->nondasd_support = 0;
1436 		dev->jbod = 0;
1437 		expose_physicals = 0;
1438 	}
1439 
1440 	if(dev->dac_support != 0) {
1441 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1442 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1443 			if (!dev->in_reset)
1444 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1445 					dev->name, dev->id);
1446 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1447 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1448 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1449 				dev->name, dev->id);
1450 			dev->dac_support = 0;
1451 		} else {
1452 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1453 				dev->name, dev->id);
1454 			rcode = -ENOMEM;
1455 		}
1456 	}
1457 	/*
1458 	 * Deal with configuring for the individualized limits of each packet
1459 	 * interface.
1460 	 */
1461 	dev->a_ops.adapter_scsi = (dev->dac_support)
1462 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1463 				? aac_scsi_32_64
1464 				: aac_scsi_64)
1465 				: aac_scsi_32;
1466 	if (dev->raw_io_interface) {
1467 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1468 					? aac_bounds_64
1469 					: aac_bounds_32;
1470 		dev->a_ops.adapter_read = aac_read_raw_io;
1471 		dev->a_ops.adapter_write = aac_write_raw_io;
1472 	} else {
1473 		dev->a_ops.adapter_bounds = aac_bounds_32;
1474 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1475 			sizeof(struct aac_fibhdr) -
1476 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1477 				sizeof(struct sgentry);
1478 		if (dev->dac_support) {
1479 			dev->a_ops.adapter_read = aac_read_block64;
1480 			dev->a_ops.adapter_write = aac_write_block64;
1481 			/*
1482 			 * 38 scatter gather elements
1483 			 */
1484 			dev->scsi_host_ptr->sg_tablesize =
1485 				(dev->max_fib_size -
1486 				sizeof(struct aac_fibhdr) -
1487 				sizeof(struct aac_write64) +
1488 				sizeof(struct sgentry64)) /
1489 					sizeof(struct sgentry64);
1490 		} else {
1491 			dev->a_ops.adapter_read = aac_read_block;
1492 			dev->a_ops.adapter_write = aac_write_block;
1493 		}
1494 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1495 		if (dev->adapter_info.options & AAC_OPT_NEW_COMM_TYPE1)
1496 			dev->adapter_info.options |= AAC_OPT_NEW_COMM;
1497 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1498 			/*
1499 			 * Worst case size that could cause sg overflow when
1500 			 * we break up SG elements that are larger than 64KB.
1501 			 * Would be nice if we could tell the SCSI layer what
1502 			 * the maximum SG element size can be. Worst case is
1503 			 * (sg_tablesize-1) 4KB elements with one 64KB
1504 			 * element.
1505 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1506 			 */
1507 			dev->scsi_host_ptr->max_sectors =
1508 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1509 		}
1510 	}
1511 	/* FIB should be freed only after getting the response from the F/W */
1512 	if (rcode != -ERESTARTSYS) {
1513 		aac_fib_complete(fibptr);
1514 		aac_fib_free(fibptr);
1515 	}
1516 
1517 	return rcode;
1518 }
1519 
1520 
1521 static void io_callback(void *context, struct fib * fibptr)
1522 {
1523 	struct aac_dev *dev;
1524 	struct aac_read_reply *readreply;
1525 	struct scsi_cmnd *scsicmd;
1526 	u32 cid;
1527 
1528 	scsicmd = (struct scsi_cmnd *) context;
1529 
1530 	if (!aac_valid_context(scsicmd, fibptr))
1531 		return;
1532 
1533 	dev = fibptr->dev;
1534 	cid = scmd_id(scsicmd);
1535 
1536 	if (nblank(dprintk(x))) {
1537 		u64 lba;
1538 		switch (scsicmd->cmnd[0]) {
1539 		case WRITE_6:
1540 		case READ_6:
1541 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1542 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1543 			break;
1544 		case WRITE_16:
1545 		case READ_16:
1546 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1547 			      ((u64)scsicmd->cmnd[3] << 48) |
1548 			      ((u64)scsicmd->cmnd[4] << 40) |
1549 			      ((u64)scsicmd->cmnd[5] << 32) |
1550 			      ((u64)scsicmd->cmnd[6] << 24) |
1551 			      (scsicmd->cmnd[7] << 16) |
1552 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1553 			break;
1554 		case WRITE_12:
1555 		case READ_12:
1556 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1557 			      (scsicmd->cmnd[3] << 16) |
1558 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1559 			break;
1560 		default:
1561 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1562 			       (scsicmd->cmnd[3] << 16) |
1563 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1564 			break;
1565 		}
1566 		printk(KERN_DEBUG
1567 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1568 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1569 	}
1570 
1571 	BUG_ON(fibptr == NULL);
1572 
1573 	scsi_dma_unmap(scsicmd);
1574 
1575 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1576 	switch (le32_to_cpu(readreply->status)) {
1577 	case ST_OK:
1578 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1579 			SAM_STAT_GOOD;
1580 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1581 		break;
1582 	case ST_NOT_READY:
1583 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1584 			SAM_STAT_CHECK_CONDITION;
1585 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1586 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1587 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1588 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1589 			     SCSI_SENSE_BUFFERSIZE));
1590 		break;
1591 	default:
1592 #ifdef AAC_DETAILED_STATUS_INFO
1593 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1594 		  le32_to_cpu(readreply->status));
1595 #endif
1596 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1597 			SAM_STAT_CHECK_CONDITION;
1598 		set_sense(&dev->fsa_dev[cid].sense_data,
1599 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1600 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1601 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1602 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1603 			     SCSI_SENSE_BUFFERSIZE));
1604 		break;
1605 	}
1606 	aac_fib_complete(fibptr);
1607 	aac_fib_free(fibptr);
1608 
1609 	scsicmd->scsi_done(scsicmd);
1610 }
1611 
1612 static int aac_read(struct scsi_cmnd * scsicmd)
1613 {
1614 	u64 lba;
1615 	u32 count;
1616 	int status;
1617 	struct aac_dev *dev;
1618 	struct fib * cmd_fibcontext;
1619 	int cid;
1620 
1621 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1622 	/*
1623 	 *	Get block address and transfer length
1624 	 */
1625 	switch (scsicmd->cmnd[0]) {
1626 	case READ_6:
1627 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1628 
1629 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1630 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1631 		count = scsicmd->cmnd[4];
1632 
1633 		if (count == 0)
1634 			count = 256;
1635 		break;
1636 	case READ_16:
1637 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1638 
1639 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1640 			((u64)scsicmd->cmnd[3] << 48) |
1641 			((u64)scsicmd->cmnd[4] << 40) |
1642 			((u64)scsicmd->cmnd[5] << 32) |
1643 			((u64)scsicmd->cmnd[6] << 24) |
1644 			(scsicmd->cmnd[7] << 16) |
1645 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1646 		count = (scsicmd->cmnd[10] << 24) |
1647 			(scsicmd->cmnd[11] << 16) |
1648 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1649 		break;
1650 	case READ_12:
1651 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1652 
1653 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1654 			(scsicmd->cmnd[3] << 16) |
1655 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1656 		count = (scsicmd->cmnd[6] << 24) |
1657 			(scsicmd->cmnd[7] << 16) |
1658 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1659 		break;
1660 	default:
1661 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1662 
1663 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1664 			(scsicmd->cmnd[3] << 16) |
1665 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1666 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1667 		break;
1668 	}
1669 
1670 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1671 		cid = scmd_id(scsicmd);
1672 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1673 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1674 			SAM_STAT_CHECK_CONDITION;
1675 		set_sense(&dev->fsa_dev[cid].sense_data,
1676 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1677 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1678 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1679 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1680 			     SCSI_SENSE_BUFFERSIZE));
1681 		scsicmd->scsi_done(scsicmd);
1682 		return 1;
1683 	}
1684 
1685 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1686 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1687 	if (aac_adapter_bounds(dev,scsicmd,lba))
1688 		return 0;
1689 	/*
1690 	 *	Alocate and initialize a Fib
1691 	 */
1692 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1693 		printk(KERN_WARNING "aac_read: fib allocation failed\n");
1694 		return -1;
1695 	}
1696 
1697 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1698 
1699 	/*
1700 	 *	Check that the command queued to the controller
1701 	 */
1702 	if (status == -EINPROGRESS) {
1703 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1704 		return 0;
1705 	}
1706 
1707 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1708 	/*
1709 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1710 	 */
1711 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1712 	scsicmd->scsi_done(scsicmd);
1713 	aac_fib_complete(cmd_fibcontext);
1714 	aac_fib_free(cmd_fibcontext);
1715 	return 0;
1716 }
1717 
1718 static int aac_write(struct scsi_cmnd * scsicmd)
1719 {
1720 	u64 lba;
1721 	u32 count;
1722 	int fua;
1723 	int status;
1724 	struct aac_dev *dev;
1725 	struct fib * cmd_fibcontext;
1726 	int cid;
1727 
1728 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1729 	/*
1730 	 *	Get block address and transfer length
1731 	 */
1732 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1733 	{
1734 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1735 		count = scsicmd->cmnd[4];
1736 		if (count == 0)
1737 			count = 256;
1738 		fua = 0;
1739 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1740 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1741 
1742 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1743 			((u64)scsicmd->cmnd[3] << 48) |
1744 			((u64)scsicmd->cmnd[4] << 40) |
1745 			((u64)scsicmd->cmnd[5] << 32) |
1746 			((u64)scsicmd->cmnd[6] << 24) |
1747 			(scsicmd->cmnd[7] << 16) |
1748 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1749 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1750 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1751 		fua = scsicmd->cmnd[1] & 0x8;
1752 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1753 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1754 
1755 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1756 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1757 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1758 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1759 		fua = scsicmd->cmnd[1] & 0x8;
1760 	} else {
1761 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1762 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1763 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1764 		fua = scsicmd->cmnd[1] & 0x8;
1765 	}
1766 
1767 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1768 		cid = scmd_id(scsicmd);
1769 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1770 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1771 			SAM_STAT_CHECK_CONDITION;
1772 		set_sense(&dev->fsa_dev[cid].sense_data,
1773 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1774 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1775 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1776 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1777 			     SCSI_SENSE_BUFFERSIZE));
1778 		scsicmd->scsi_done(scsicmd);
1779 		return 1;
1780 	}
1781 
1782 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1783 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1784 	if (aac_adapter_bounds(dev,scsicmd,lba))
1785 		return 0;
1786 	/*
1787 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1788 	 */
1789 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1790 		/* FIB temporarily unavailable,not catastrophic failure */
1791 
1792 		/* scsicmd->result = DID_ERROR << 16;
1793 		 * scsicmd->scsi_done(scsicmd);
1794 		 * return 0;
1795 		 */
1796 		printk(KERN_WARNING "aac_write: fib allocation failed\n");
1797 		return -1;
1798 	}
1799 
1800 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1801 
1802 	/*
1803 	 *	Check that the command queued to the controller
1804 	 */
1805 	if (status == -EINPROGRESS) {
1806 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1807 		return 0;
1808 	}
1809 
1810 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1811 	/*
1812 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1813 	 */
1814 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1815 	scsicmd->scsi_done(scsicmd);
1816 
1817 	aac_fib_complete(cmd_fibcontext);
1818 	aac_fib_free(cmd_fibcontext);
1819 	return 0;
1820 }
1821 
1822 static void synchronize_callback(void *context, struct fib *fibptr)
1823 {
1824 	struct aac_synchronize_reply *synchronizereply;
1825 	struct scsi_cmnd *cmd;
1826 
1827 	cmd = context;
1828 
1829 	if (!aac_valid_context(cmd, fibptr))
1830 		return;
1831 
1832 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1833 				smp_processor_id(), jiffies));
1834 	BUG_ON(fibptr == NULL);
1835 
1836 
1837 	synchronizereply = fib_data(fibptr);
1838 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1839 		cmd->result = DID_OK << 16 |
1840 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1841 	else {
1842 		struct scsi_device *sdev = cmd->device;
1843 		struct aac_dev *dev = fibptr->dev;
1844 		u32 cid = sdev_id(sdev);
1845 		printk(KERN_WARNING
1846 		     "synchronize_callback: synchronize failed, status = %d\n",
1847 		     le32_to_cpu(synchronizereply->status));
1848 		cmd->result = DID_OK << 16 |
1849 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1850 		set_sense(&dev->fsa_dev[cid].sense_data,
1851 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1852 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1853 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1854 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1855 			     SCSI_SENSE_BUFFERSIZE));
1856 	}
1857 
1858 	aac_fib_complete(fibptr);
1859 	aac_fib_free(fibptr);
1860 	cmd->scsi_done(cmd);
1861 }
1862 
1863 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1864 {
1865 	int status;
1866 	struct fib *cmd_fibcontext;
1867 	struct aac_synchronize *synchronizecmd;
1868 	struct scsi_cmnd *cmd;
1869 	struct scsi_device *sdev = scsicmd->device;
1870 	int active = 0;
1871 	struct aac_dev *aac;
1872 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1873 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1874 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1875 	unsigned long flags;
1876 
1877 	/*
1878 	 * Wait for all outstanding queued commands to complete to this
1879 	 * specific target (block).
1880 	 */
1881 	spin_lock_irqsave(&sdev->list_lock, flags);
1882 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1883 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1884 			u64 cmnd_lba;
1885 			u32 cmnd_count;
1886 
1887 			if (cmd->cmnd[0] == WRITE_6) {
1888 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1889 					(cmd->cmnd[2] << 8) |
1890 					cmd->cmnd[3];
1891 				cmnd_count = cmd->cmnd[4];
1892 				if (cmnd_count == 0)
1893 					cmnd_count = 256;
1894 			} else if (cmd->cmnd[0] == WRITE_16) {
1895 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1896 					((u64)cmd->cmnd[3] << 48) |
1897 					((u64)cmd->cmnd[4] << 40) |
1898 					((u64)cmd->cmnd[5] << 32) |
1899 					((u64)cmd->cmnd[6] << 24) |
1900 					(cmd->cmnd[7] << 16) |
1901 					(cmd->cmnd[8] << 8) |
1902 					cmd->cmnd[9];
1903 				cmnd_count = (cmd->cmnd[10] << 24) |
1904 					(cmd->cmnd[11] << 16) |
1905 					(cmd->cmnd[12] << 8) |
1906 					cmd->cmnd[13];
1907 			} else if (cmd->cmnd[0] == WRITE_12) {
1908 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1909 					(cmd->cmnd[3] << 16) |
1910 					(cmd->cmnd[4] << 8) |
1911 					cmd->cmnd[5];
1912 				cmnd_count = (cmd->cmnd[6] << 24) |
1913 					(cmd->cmnd[7] << 16) |
1914 					(cmd->cmnd[8] << 8) |
1915 					cmd->cmnd[9];
1916 			} else if (cmd->cmnd[0] == WRITE_10) {
1917 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1918 					(cmd->cmnd[3] << 16) |
1919 					(cmd->cmnd[4] << 8) |
1920 					cmd->cmnd[5];
1921 				cmnd_count = (cmd->cmnd[7] << 8) |
1922 					cmd->cmnd[8];
1923 			} else
1924 				continue;
1925 			if (((cmnd_lba + cmnd_count) < lba) ||
1926 			  (count && ((lba + count) < cmnd_lba)))
1927 				continue;
1928 			++active;
1929 			break;
1930 		}
1931 
1932 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1933 
1934 	/*
1935 	 *	Yield the processor (requeue for later)
1936 	 */
1937 	if (active)
1938 		return SCSI_MLQUEUE_DEVICE_BUSY;
1939 
1940 	aac = (struct aac_dev *)sdev->host->hostdata;
1941 	if (aac->in_reset)
1942 		return SCSI_MLQUEUE_HOST_BUSY;
1943 
1944 	/*
1945 	 *	Allocate and initialize a Fib
1946 	 */
1947 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1948 		return SCSI_MLQUEUE_HOST_BUSY;
1949 
1950 	aac_fib_init(cmd_fibcontext);
1951 
1952 	synchronizecmd = fib_data(cmd_fibcontext);
1953 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1954 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1955 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1956 	synchronizecmd->count =
1957 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1958 
1959 	/*
1960 	 *	Now send the Fib to the adapter
1961 	 */
1962 	status = aac_fib_send(ContainerCommand,
1963 		  cmd_fibcontext,
1964 		  sizeof(struct aac_synchronize),
1965 		  FsaNormal,
1966 		  0, 1,
1967 		  (fib_callback)synchronize_callback,
1968 		  (void *)scsicmd);
1969 
1970 	/*
1971 	 *	Check that the command queued to the controller
1972 	 */
1973 	if (status == -EINPROGRESS) {
1974 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1975 		return 0;
1976 	}
1977 
1978 	printk(KERN_WARNING
1979 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1980 	aac_fib_complete(cmd_fibcontext);
1981 	aac_fib_free(cmd_fibcontext);
1982 	return SCSI_MLQUEUE_HOST_BUSY;
1983 }
1984 
1985 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1986 {
1987 	struct scsi_cmnd *scsicmd = context;
1988 
1989 	if (!aac_valid_context(scsicmd, fibptr))
1990 		return;
1991 
1992 	BUG_ON(fibptr == NULL);
1993 
1994 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1995 
1996 	aac_fib_complete(fibptr);
1997 	aac_fib_free(fibptr);
1998 	scsicmd->scsi_done(scsicmd);
1999 }
2000 
2001 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2002 {
2003 	int status;
2004 	struct fib *cmd_fibcontext;
2005 	struct aac_power_management *pmcmd;
2006 	struct scsi_device *sdev = scsicmd->device;
2007 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2008 
2009 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
2010 	      AAC_OPTION_POWER_MANAGEMENT)) {
2011 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2012 				  SAM_STAT_GOOD;
2013 		scsicmd->scsi_done(scsicmd);
2014 		return 0;
2015 	}
2016 
2017 	if (aac->in_reset)
2018 		return SCSI_MLQUEUE_HOST_BUSY;
2019 
2020 	/*
2021 	 *	Allocate and initialize a Fib
2022 	 */
2023 	cmd_fibcontext = aac_fib_alloc(aac);
2024 	if (!cmd_fibcontext)
2025 		return SCSI_MLQUEUE_HOST_BUSY;
2026 
2027 	aac_fib_init(cmd_fibcontext);
2028 
2029 	pmcmd = fib_data(cmd_fibcontext);
2030 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2031 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2032 	/* Eject bit ignored, not relevant */
2033 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2034 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2035 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2036 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2037 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2038 
2039 	/*
2040 	 *	Now send the Fib to the adapter
2041 	 */
2042 	status = aac_fib_send(ContainerCommand,
2043 		  cmd_fibcontext,
2044 		  sizeof(struct aac_power_management),
2045 		  FsaNormal,
2046 		  0, 1,
2047 		  (fib_callback)aac_start_stop_callback,
2048 		  (void *)scsicmd);
2049 
2050 	/*
2051 	 *	Check that the command queued to the controller
2052 	 */
2053 	if (status == -EINPROGRESS) {
2054 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2055 		return 0;
2056 	}
2057 
2058 	aac_fib_complete(cmd_fibcontext);
2059 	aac_fib_free(cmd_fibcontext);
2060 	return SCSI_MLQUEUE_HOST_BUSY;
2061 }
2062 
2063 /**
2064  *	aac_scsi_cmd()		-	Process SCSI command
2065  *	@scsicmd:		SCSI command block
2066  *
2067  *	Emulate a SCSI command and queue the required request for the
2068  *	aacraid firmware.
2069  */
2070 
2071 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2072 {
2073 	u32 cid;
2074 	struct Scsi_Host *host = scsicmd->device->host;
2075 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2076 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2077 
2078 	if (fsa_dev_ptr == NULL)
2079 		return -1;
2080 	/*
2081 	 *	If the bus, id or lun is out of range, return fail
2082 	 *	Test does not apply to ID 16, the pseudo id for the controller
2083 	 *	itself.
2084 	 */
2085 	cid = scmd_id(scsicmd);
2086 	if (cid != host->this_id) {
2087 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2088 			if((cid >= dev->maximum_num_containers) ||
2089 					(scsicmd->device->lun != 0)) {
2090 				scsicmd->result = DID_NO_CONNECT << 16;
2091 				scsicmd->scsi_done(scsicmd);
2092 				return 0;
2093 			}
2094 
2095 			/*
2096 			 *	If the target container doesn't exist, it may have
2097 			 *	been newly created
2098 			 */
2099 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2100 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2101 			   NOT_READY)) {
2102 				switch (scsicmd->cmnd[0]) {
2103 				case SERVICE_ACTION_IN:
2104 					if (!(dev->raw_io_interface) ||
2105 					    !(dev->raw_io_64) ||
2106 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2107 						break;
2108 				case INQUIRY:
2109 				case READ_CAPACITY:
2110 				case TEST_UNIT_READY:
2111 					if (dev->in_reset)
2112 						return -1;
2113 					return _aac_probe_container(scsicmd,
2114 							aac_probe_container_callback2);
2115 				default:
2116 					break;
2117 				}
2118 			}
2119 		} else {  /* check for physical non-dasd devices */
2120 			if (dev->nondasd_support || expose_physicals ||
2121 					dev->jbod) {
2122 				if (dev->in_reset)
2123 					return -1;
2124 				return aac_send_srb_fib(scsicmd);
2125 			} else {
2126 				scsicmd->result = DID_NO_CONNECT << 16;
2127 				scsicmd->scsi_done(scsicmd);
2128 				return 0;
2129 			}
2130 		}
2131 	}
2132 	/*
2133 	 * else Command for the controller itself
2134 	 */
2135 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2136 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2137 	{
2138 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2139 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2140 		set_sense(&dev->fsa_dev[cid].sense_data,
2141 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2142 		  ASENCODE_INVALID_COMMAND, 0, 0);
2143 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2144 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2145 			     SCSI_SENSE_BUFFERSIZE));
2146 		scsicmd->scsi_done(scsicmd);
2147 		return 0;
2148 	}
2149 
2150 
2151 	/* Handle commands here that don't really require going out to the adapter */
2152 	switch (scsicmd->cmnd[0]) {
2153 	case INQUIRY:
2154 	{
2155 		struct inquiry_data inq_data;
2156 
2157 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2158 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2159 
2160 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2161 			char *arr = (char *)&inq_data;
2162 
2163 			/* EVPD bit set */
2164 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2165 			  INQD_PDT_PROC : INQD_PDT_DA;
2166 			if (scsicmd->cmnd[2] == 0) {
2167 				/* supported vital product data pages */
2168 				arr[3] = 2;
2169 				arr[4] = 0x0;
2170 				arr[5] = 0x80;
2171 				arr[1] = scsicmd->cmnd[2];
2172 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2173 							 sizeof(inq_data));
2174 				scsicmd->result = DID_OK << 16 |
2175 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2176 			} else if (scsicmd->cmnd[2] == 0x80) {
2177 				/* unit serial number page */
2178 				arr[3] = setinqserial(dev, &arr[4],
2179 				  scmd_id(scsicmd));
2180 				arr[1] = scsicmd->cmnd[2];
2181 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2182 							 sizeof(inq_data));
2183 				if (aac_wwn != 2)
2184 					return aac_get_container_serial(
2185 						scsicmd);
2186 				/* SLES 10 SP1 special */
2187 				scsicmd->result = DID_OK << 16 |
2188 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2189 			} else {
2190 				/* vpd page not implemented */
2191 				scsicmd->result = DID_OK << 16 |
2192 				  COMMAND_COMPLETE << 8 |
2193 				  SAM_STAT_CHECK_CONDITION;
2194 				set_sense(&dev->fsa_dev[cid].sense_data,
2195 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2196 				  ASENCODE_NO_SENSE, 7, 2);
2197 				memcpy(scsicmd->sense_buffer,
2198 				  &dev->fsa_dev[cid].sense_data,
2199 				  min_t(size_t,
2200 					sizeof(dev->fsa_dev[cid].sense_data),
2201 					SCSI_SENSE_BUFFERSIZE));
2202 			}
2203 			scsicmd->scsi_done(scsicmd);
2204 			return 0;
2205 		}
2206 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2207 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2208 		inq_data.inqd_len = 31;
2209 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2210 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2211 		/*
2212 		 *	Set the Vendor, Product, and Revision Level
2213 		 *	see: <vendor>.c i.e. aac.c
2214 		 */
2215 		if (cid == host->this_id) {
2216 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2217 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2218 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2219 						 sizeof(inq_data));
2220 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2221 			scsicmd->scsi_done(scsicmd);
2222 			return 0;
2223 		}
2224 		if (dev->in_reset)
2225 			return -1;
2226 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2227 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2228 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2229 		return aac_get_container_name(scsicmd);
2230 	}
2231 	case SERVICE_ACTION_IN:
2232 		if (!(dev->raw_io_interface) ||
2233 		    !(dev->raw_io_64) ||
2234 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2235 			break;
2236 	{
2237 		u64 capacity;
2238 		char cp[13];
2239 		unsigned int alloc_len;
2240 
2241 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2242 		capacity = fsa_dev_ptr[cid].size - 1;
2243 		cp[0] = (capacity >> 56) & 0xff;
2244 		cp[1] = (capacity >> 48) & 0xff;
2245 		cp[2] = (capacity >> 40) & 0xff;
2246 		cp[3] = (capacity >> 32) & 0xff;
2247 		cp[4] = (capacity >> 24) & 0xff;
2248 		cp[5] = (capacity >> 16) & 0xff;
2249 		cp[6] = (capacity >> 8) & 0xff;
2250 		cp[7] = (capacity >> 0) & 0xff;
2251 		cp[8] = 0;
2252 		cp[9] = 0;
2253 		cp[10] = 2;
2254 		cp[11] = 0;
2255 		cp[12] = 0;
2256 
2257 		alloc_len = ((scsicmd->cmnd[10] << 24)
2258 			     + (scsicmd->cmnd[11] << 16)
2259 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2260 
2261 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2262 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2263 		if (alloc_len < scsi_bufflen(scsicmd))
2264 			scsi_set_resid(scsicmd,
2265 				       scsi_bufflen(scsicmd) - alloc_len);
2266 
2267 		/* Do not cache partition table for arrays */
2268 		scsicmd->device->removable = 1;
2269 
2270 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2271 		scsicmd->scsi_done(scsicmd);
2272 
2273 		return 0;
2274 	}
2275 
2276 	case READ_CAPACITY:
2277 	{
2278 		u32 capacity;
2279 		char cp[8];
2280 
2281 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2282 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2283 			capacity = fsa_dev_ptr[cid].size - 1;
2284 		else
2285 			capacity = (u32)-1;
2286 
2287 		cp[0] = (capacity >> 24) & 0xff;
2288 		cp[1] = (capacity >> 16) & 0xff;
2289 		cp[2] = (capacity >> 8) & 0xff;
2290 		cp[3] = (capacity >> 0) & 0xff;
2291 		cp[4] = 0;
2292 		cp[5] = 0;
2293 		cp[6] = 2;
2294 		cp[7] = 0;
2295 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2296 		/* Do not cache partition table for arrays */
2297 		scsicmd->device->removable = 1;
2298 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2299 		  SAM_STAT_GOOD;
2300 		scsicmd->scsi_done(scsicmd);
2301 
2302 		return 0;
2303 	}
2304 
2305 	case MODE_SENSE:
2306 	{
2307 		char mode_buf[7];
2308 		int mode_buf_length = 4;
2309 
2310 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2311 		mode_buf[0] = 3;	/* Mode data length */
2312 		mode_buf[1] = 0;	/* Medium type - default */
2313 		mode_buf[2] = 0;	/* Device-specific param,
2314 					   bit 8: 0/1 = write enabled/protected
2315 					   bit 4: 0/1 = FUA enabled */
2316 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2317 			mode_buf[2] = 0x10;
2318 		mode_buf[3] = 0;	/* Block descriptor length */
2319 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2320 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2321 			mode_buf[0] = 6;
2322 			mode_buf[4] = 8;
2323 			mode_buf[5] = 1;
2324 			mode_buf[6] = ((aac_cache & 6) == 2)
2325 				? 0 : 0x04; /* WCE */
2326 			mode_buf_length = 7;
2327 			if (mode_buf_length > scsicmd->cmnd[4])
2328 				mode_buf_length = scsicmd->cmnd[4];
2329 		}
2330 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2331 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2332 		scsicmd->scsi_done(scsicmd);
2333 
2334 		return 0;
2335 	}
2336 	case MODE_SENSE_10:
2337 	{
2338 		char mode_buf[11];
2339 		int mode_buf_length = 8;
2340 
2341 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2342 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2343 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2344 		mode_buf[2] = 0;	/* Medium type - default */
2345 		mode_buf[3] = 0;	/* Device-specific param,
2346 					   bit 8: 0/1 = write enabled/protected
2347 					   bit 4: 0/1 = FUA enabled */
2348 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2349 			mode_buf[3] = 0x10;
2350 		mode_buf[4] = 0;	/* reserved */
2351 		mode_buf[5] = 0;	/* reserved */
2352 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2353 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2354 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2355 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2356 			mode_buf[1] = 9;
2357 			mode_buf[8] = 8;
2358 			mode_buf[9] = 1;
2359 			mode_buf[10] = ((aac_cache & 6) == 2)
2360 				? 0 : 0x04; /* WCE */
2361 			mode_buf_length = 11;
2362 			if (mode_buf_length > scsicmd->cmnd[8])
2363 				mode_buf_length = scsicmd->cmnd[8];
2364 		}
2365 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2366 
2367 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2368 		scsicmd->scsi_done(scsicmd);
2369 
2370 		return 0;
2371 	}
2372 	case REQUEST_SENSE:
2373 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2374 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2375 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2376 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2377 		scsicmd->scsi_done(scsicmd);
2378 		return 0;
2379 
2380 	case ALLOW_MEDIUM_REMOVAL:
2381 		dprintk((KERN_DEBUG "LOCK command.\n"));
2382 		if (scsicmd->cmnd[4])
2383 			fsa_dev_ptr[cid].locked = 1;
2384 		else
2385 			fsa_dev_ptr[cid].locked = 0;
2386 
2387 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2388 		scsicmd->scsi_done(scsicmd);
2389 		return 0;
2390 	/*
2391 	 *	These commands are all No-Ops
2392 	 */
2393 	case TEST_UNIT_READY:
2394 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2395 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2396 				SAM_STAT_CHECK_CONDITION;
2397 			set_sense(&dev->fsa_dev[cid].sense_data,
2398 				  NOT_READY, SENCODE_BECOMING_READY,
2399 				  ASENCODE_BECOMING_READY, 0, 0);
2400 			memcpy(scsicmd->sense_buffer,
2401 			       &dev->fsa_dev[cid].sense_data,
2402 			       min_t(size_t,
2403 				     sizeof(dev->fsa_dev[cid].sense_data),
2404 				     SCSI_SENSE_BUFFERSIZE));
2405 			scsicmd->scsi_done(scsicmd);
2406 			return 0;
2407 		}
2408 		/* FALLTHRU */
2409 	case RESERVE:
2410 	case RELEASE:
2411 	case REZERO_UNIT:
2412 	case REASSIGN_BLOCKS:
2413 	case SEEK_10:
2414 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2415 		scsicmd->scsi_done(scsicmd);
2416 		return 0;
2417 
2418 	case START_STOP:
2419 		return aac_start_stop(scsicmd);
2420 	}
2421 
2422 	switch (scsicmd->cmnd[0])
2423 	{
2424 		case READ_6:
2425 		case READ_10:
2426 		case READ_12:
2427 		case READ_16:
2428 			if (dev->in_reset)
2429 				return -1;
2430 			/*
2431 			 *	Hack to keep track of ordinal number of the device that
2432 			 *	corresponds to a container. Needed to convert
2433 			 *	containers to /dev/sd device names
2434 			 */
2435 
2436 			if (scsicmd->request->rq_disk)
2437 				strlcpy(fsa_dev_ptr[cid].devname,
2438 				scsicmd->request->rq_disk->disk_name,
2439 				min(sizeof(fsa_dev_ptr[cid].devname),
2440 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2441 
2442 			return aac_read(scsicmd);
2443 
2444 		case WRITE_6:
2445 		case WRITE_10:
2446 		case WRITE_12:
2447 		case WRITE_16:
2448 			if (dev->in_reset)
2449 				return -1;
2450 			return aac_write(scsicmd);
2451 
2452 		case SYNCHRONIZE_CACHE:
2453 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2454 				scsicmd->result = DID_OK << 16 |
2455 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2456 				scsicmd->scsi_done(scsicmd);
2457 				return 0;
2458 			}
2459 			/* Issue FIB to tell Firmware to flush it's cache */
2460 			if ((aac_cache & 6) != 2)
2461 				return aac_synchronize(scsicmd);
2462 			/* FALLTHRU */
2463 		default:
2464 			/*
2465 			 *	Unhandled commands
2466 			 */
2467 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2468 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2469 			set_sense(&dev->fsa_dev[cid].sense_data,
2470 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2471 			  ASENCODE_INVALID_COMMAND, 0, 0);
2472 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2473 				min_t(size_t,
2474 				      sizeof(dev->fsa_dev[cid].sense_data),
2475 				      SCSI_SENSE_BUFFERSIZE));
2476 			scsicmd->scsi_done(scsicmd);
2477 			return 0;
2478 	}
2479 }
2480 
2481 static int query_disk(struct aac_dev *dev, void __user *arg)
2482 {
2483 	struct aac_query_disk qd;
2484 	struct fsa_dev_info *fsa_dev_ptr;
2485 
2486 	fsa_dev_ptr = dev->fsa_dev;
2487 	if (!fsa_dev_ptr)
2488 		return -EBUSY;
2489 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2490 		return -EFAULT;
2491 	if (qd.cnum == -1)
2492 		qd.cnum = qd.id;
2493 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2494 	{
2495 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2496 			return -EINVAL;
2497 		qd.instance = dev->scsi_host_ptr->host_no;
2498 		qd.bus = 0;
2499 		qd.id = CONTAINER_TO_ID(qd.cnum);
2500 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2501 	}
2502 	else return -EINVAL;
2503 
2504 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2505 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2506 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2507 
2508 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2509 		qd.unmapped = 1;
2510 	else
2511 		qd.unmapped = 0;
2512 
2513 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2514 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2515 
2516 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2517 		return -EFAULT;
2518 	return 0;
2519 }
2520 
2521 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2522 {
2523 	struct aac_delete_disk dd;
2524 	struct fsa_dev_info *fsa_dev_ptr;
2525 
2526 	fsa_dev_ptr = dev->fsa_dev;
2527 	if (!fsa_dev_ptr)
2528 		return -EBUSY;
2529 
2530 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2531 		return -EFAULT;
2532 
2533 	if (dd.cnum >= dev->maximum_num_containers)
2534 		return -EINVAL;
2535 	/*
2536 	 *	Mark this container as being deleted.
2537 	 */
2538 	fsa_dev_ptr[dd.cnum].deleted = 1;
2539 	/*
2540 	 *	Mark the container as no longer valid
2541 	 */
2542 	fsa_dev_ptr[dd.cnum].valid = 0;
2543 	return 0;
2544 }
2545 
2546 static int delete_disk(struct aac_dev *dev, void __user *arg)
2547 {
2548 	struct aac_delete_disk dd;
2549 	struct fsa_dev_info *fsa_dev_ptr;
2550 
2551 	fsa_dev_ptr = dev->fsa_dev;
2552 	if (!fsa_dev_ptr)
2553 		return -EBUSY;
2554 
2555 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2556 		return -EFAULT;
2557 
2558 	if (dd.cnum >= dev->maximum_num_containers)
2559 		return -EINVAL;
2560 	/*
2561 	 *	If the container is locked, it can not be deleted by the API.
2562 	 */
2563 	if (fsa_dev_ptr[dd.cnum].locked)
2564 		return -EBUSY;
2565 	else {
2566 		/*
2567 		 *	Mark the container as no longer being valid.
2568 		 */
2569 		fsa_dev_ptr[dd.cnum].valid = 0;
2570 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2571 		return 0;
2572 	}
2573 }
2574 
2575 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2576 {
2577 	switch (cmd) {
2578 	case FSACTL_QUERY_DISK:
2579 		return query_disk(dev, arg);
2580 	case FSACTL_DELETE_DISK:
2581 		return delete_disk(dev, arg);
2582 	case FSACTL_FORCE_DELETE_DISK:
2583 		return force_delete_disk(dev, arg);
2584 	case FSACTL_GET_CONTAINERS:
2585 		return aac_get_containers(dev);
2586 	default:
2587 		return -ENOTTY;
2588 	}
2589 }
2590 
2591 /**
2592  *
2593  * aac_srb_callback
2594  * @context: the context set in the fib - here it is scsi cmd
2595  * @fibptr: pointer to the fib
2596  *
2597  * Handles the completion of a scsi command to a non dasd device
2598  *
2599  */
2600 
2601 static void aac_srb_callback(void *context, struct fib * fibptr)
2602 {
2603 	struct aac_dev *dev;
2604 	struct aac_srb_reply *srbreply;
2605 	struct scsi_cmnd *scsicmd;
2606 
2607 	scsicmd = (struct scsi_cmnd *) context;
2608 
2609 	if (!aac_valid_context(scsicmd, fibptr))
2610 		return;
2611 
2612 	BUG_ON(fibptr == NULL);
2613 
2614 	dev = fibptr->dev;
2615 
2616 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2617 
2618 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2619 	/*
2620 	 *	Calculate resid for sg
2621 	 */
2622 
2623 	scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2624 		       - le32_to_cpu(srbreply->data_xfer_length));
2625 
2626 	scsi_dma_unmap(scsicmd);
2627 
2628 	/* expose physical device if expose_physicald flag is on */
2629 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2630 	  && expose_physicals > 0)
2631 		aac_expose_phy_device(scsicmd);
2632 
2633 	/*
2634 	 * First check the fib status
2635 	 */
2636 
2637 	if (le32_to_cpu(srbreply->status) != ST_OK){
2638 		int len;
2639 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2640 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2641 			    SCSI_SENSE_BUFFERSIZE);
2642 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2643 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2644 	}
2645 
2646 	/*
2647 	 * Next check the srb status
2648 	 */
2649 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2650 	case SRB_STATUS_ERROR_RECOVERY:
2651 	case SRB_STATUS_PENDING:
2652 	case SRB_STATUS_SUCCESS:
2653 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2654 		break;
2655 	case SRB_STATUS_DATA_OVERRUN:
2656 		switch(scsicmd->cmnd[0]){
2657 		case  READ_6:
2658 		case  WRITE_6:
2659 		case  READ_10:
2660 		case  WRITE_10:
2661 		case  READ_12:
2662 		case  WRITE_12:
2663 		case  READ_16:
2664 		case  WRITE_16:
2665 			if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2666 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2667 			} else {
2668 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2669 			}
2670 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2671 			break;
2672 		case INQUIRY: {
2673 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2674 			break;
2675 		}
2676 		default:
2677 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2678 			break;
2679 		}
2680 		break;
2681 	case SRB_STATUS_ABORTED:
2682 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2683 		break;
2684 	case SRB_STATUS_ABORT_FAILED:
2685 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2686 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2687 		break;
2688 	case SRB_STATUS_PARITY_ERROR:
2689 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2690 		break;
2691 	case SRB_STATUS_NO_DEVICE:
2692 	case SRB_STATUS_INVALID_PATH_ID:
2693 	case SRB_STATUS_INVALID_TARGET_ID:
2694 	case SRB_STATUS_INVALID_LUN:
2695 	case SRB_STATUS_SELECTION_TIMEOUT:
2696 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2697 		break;
2698 
2699 	case SRB_STATUS_COMMAND_TIMEOUT:
2700 	case SRB_STATUS_TIMEOUT:
2701 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2702 		break;
2703 
2704 	case SRB_STATUS_BUSY:
2705 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2706 		break;
2707 
2708 	case SRB_STATUS_BUS_RESET:
2709 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2710 		break;
2711 
2712 	case SRB_STATUS_MESSAGE_REJECTED:
2713 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2714 		break;
2715 	case SRB_STATUS_REQUEST_FLUSHED:
2716 	case SRB_STATUS_ERROR:
2717 	case SRB_STATUS_INVALID_REQUEST:
2718 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2719 	case SRB_STATUS_NO_HBA:
2720 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2721 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2722 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2723 	case SRB_STATUS_DELAYED_RETRY:
2724 	case SRB_STATUS_BAD_FUNCTION:
2725 	case SRB_STATUS_NOT_STARTED:
2726 	case SRB_STATUS_NOT_IN_USE:
2727 	case SRB_STATUS_FORCE_ABORT:
2728 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2729 	default:
2730 #ifdef AAC_DETAILED_STATUS_INFO
2731 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2732 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2733 			aac_get_status_string(
2734 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2735 			scsicmd->cmnd[0],
2736 			le32_to_cpu(srbreply->scsi_status));
2737 #endif
2738 		if ((scsicmd->cmnd[0] == ATA_12)
2739 		  || (scsicmd->cmnd[0] == ATA_16)) {
2740 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
2741 				scsicmd->result = DID_OK << 16
2742 						| COMMAND_COMPLETE << 8;
2743 				break;
2744 			} else {
2745 				scsicmd->result = DID_ERROR << 16
2746 						| COMMAND_COMPLETE << 8;
2747 				break;
2748 			}
2749 		} else {
2750 			scsicmd->result = DID_ERROR << 16
2751 					| COMMAND_COMPLETE << 8;
2752 			break;
2753 		}
2754 	}
2755 	if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2756 		int len;
2757 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2758 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2759 			    SCSI_SENSE_BUFFERSIZE);
2760 #ifdef AAC_DETAILED_STATUS_INFO
2761 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2762 					le32_to_cpu(srbreply->status), len);
2763 #endif
2764 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2765 	}
2766 	/*
2767 	 * OR in the scsi status (already shifted up a bit)
2768 	 */
2769 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2770 
2771 	aac_fib_complete(fibptr);
2772 	aac_fib_free(fibptr);
2773 	scsicmd->scsi_done(scsicmd);
2774 }
2775 
2776 /**
2777  *
2778  * aac_send_scb_fib
2779  * @scsicmd: the scsi command block
2780  *
2781  * This routine will form a FIB and fill in the aac_srb from the
2782  * scsicmd passed in.
2783  */
2784 
2785 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2786 {
2787 	struct fib* cmd_fibcontext;
2788 	struct aac_dev* dev;
2789 	int status;
2790 
2791 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2792 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2793 			scsicmd->device->lun > 7) {
2794 		scsicmd->result = DID_NO_CONNECT << 16;
2795 		scsicmd->scsi_done(scsicmd);
2796 		return 0;
2797 	}
2798 
2799 	/*
2800 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2801 	 */
2802 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2803 		return -1;
2804 	}
2805 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2806 
2807 	/*
2808 	 *	Check that the command queued to the controller
2809 	 */
2810 	if (status == -EINPROGRESS) {
2811 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2812 		return 0;
2813 	}
2814 
2815 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2816 	aac_fib_complete(cmd_fibcontext);
2817 	aac_fib_free(cmd_fibcontext);
2818 
2819 	return -1;
2820 }
2821 
2822 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2823 {
2824 	struct aac_dev *dev;
2825 	unsigned long byte_count = 0;
2826 	int nseg;
2827 
2828 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2829 	// Get rid of old data
2830 	psg->count = 0;
2831 	psg->sg[0].addr = 0;
2832 	psg->sg[0].count = 0;
2833 
2834 	nseg = scsi_dma_map(scsicmd);
2835 	BUG_ON(nseg < 0);
2836 	if (nseg) {
2837 		struct scatterlist *sg;
2838 		int i;
2839 
2840 		psg->count = cpu_to_le32(nseg);
2841 
2842 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2843 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2844 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2845 			byte_count += sg_dma_len(sg);
2846 		}
2847 		/* hba wants the size to be exact */
2848 		if (byte_count > scsi_bufflen(scsicmd)) {
2849 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2850 				(byte_count - scsi_bufflen(scsicmd));
2851 			psg->sg[i-1].count = cpu_to_le32(temp);
2852 			byte_count = scsi_bufflen(scsicmd);
2853 		}
2854 		/* Check for command underflow */
2855 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2856 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2857 					byte_count, scsicmd->underflow);
2858 		}
2859 	}
2860 	return byte_count;
2861 }
2862 
2863 
2864 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2865 {
2866 	struct aac_dev *dev;
2867 	unsigned long byte_count = 0;
2868 	u64 addr;
2869 	int nseg;
2870 
2871 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2872 	// Get rid of old data
2873 	psg->count = 0;
2874 	psg->sg[0].addr[0] = 0;
2875 	psg->sg[0].addr[1] = 0;
2876 	psg->sg[0].count = 0;
2877 
2878 	nseg = scsi_dma_map(scsicmd);
2879 	BUG_ON(nseg < 0);
2880 	if (nseg) {
2881 		struct scatterlist *sg;
2882 		int i;
2883 
2884 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2885 			int count = sg_dma_len(sg);
2886 			addr = sg_dma_address(sg);
2887 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2888 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2889 			psg->sg[i].count = cpu_to_le32(count);
2890 			byte_count += count;
2891 		}
2892 		psg->count = cpu_to_le32(nseg);
2893 		/* hba wants the size to be exact */
2894 		if (byte_count > scsi_bufflen(scsicmd)) {
2895 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2896 				(byte_count - scsi_bufflen(scsicmd));
2897 			psg->sg[i-1].count = cpu_to_le32(temp);
2898 			byte_count = scsi_bufflen(scsicmd);
2899 		}
2900 		/* Check for command underflow */
2901 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2902 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2903 					byte_count, scsicmd->underflow);
2904 		}
2905 	}
2906 	return byte_count;
2907 }
2908 
2909 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2910 {
2911 	unsigned long byte_count = 0;
2912 	int nseg;
2913 
2914 	// Get rid of old data
2915 	psg->count = 0;
2916 	psg->sg[0].next = 0;
2917 	psg->sg[0].prev = 0;
2918 	psg->sg[0].addr[0] = 0;
2919 	psg->sg[0].addr[1] = 0;
2920 	psg->sg[0].count = 0;
2921 	psg->sg[0].flags = 0;
2922 
2923 	nseg = scsi_dma_map(scsicmd);
2924 	BUG_ON(nseg < 0);
2925 	if (nseg) {
2926 		struct scatterlist *sg;
2927 		int i;
2928 
2929 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2930 			int count = sg_dma_len(sg);
2931 			u64 addr = sg_dma_address(sg);
2932 			psg->sg[i].next = 0;
2933 			psg->sg[i].prev = 0;
2934 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2935 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2936 			psg->sg[i].count = cpu_to_le32(count);
2937 			psg->sg[i].flags = 0;
2938 			byte_count += count;
2939 		}
2940 		psg->count = cpu_to_le32(nseg);
2941 		/* hba wants the size to be exact */
2942 		if (byte_count > scsi_bufflen(scsicmd)) {
2943 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2944 				(byte_count - scsi_bufflen(scsicmd));
2945 			psg->sg[i-1].count = cpu_to_le32(temp);
2946 			byte_count = scsi_bufflen(scsicmd);
2947 		}
2948 		/* Check for command underflow */
2949 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2950 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2951 					byte_count, scsicmd->underflow);
2952 		}
2953 	}
2954 	return byte_count;
2955 }
2956 
2957 #ifdef AAC_DETAILED_STATUS_INFO
2958 
2959 struct aac_srb_status_info {
2960 	u32	status;
2961 	char	*str;
2962 };
2963 
2964 
2965 static struct aac_srb_status_info srb_status_info[] = {
2966 	{ SRB_STATUS_PENDING,		"Pending Status"},
2967 	{ SRB_STATUS_SUCCESS,		"Success"},
2968 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2969 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2970 	{ SRB_STATUS_ERROR,		"Error Event"},
2971 	{ SRB_STATUS_BUSY,		"Device Busy"},
2972 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2973 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2974 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2975 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2976 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2977 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2978 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2979 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2980 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2981 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2982 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2983 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2984 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2985 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2986 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2987 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2988 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2989 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2990 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2991 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2992 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2993 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2994 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2995 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2996 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2997 	{ 0xff,				"Unknown Error"}
2998 };
2999 
3000 char *aac_get_status_string(u32 status)
3001 {
3002 	int i;
3003 
3004 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3005 		if (srb_status_info[i].status == status)
3006 			return srb_status_info[i].str;
3007 
3008 	return "Bad Status Code";
3009 }
3010 
3011 #endif
3012