1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/module.h> 29 30 #include <asm/unaligned.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 37 #include "aacraid.h" 38 39 /* values for inqd_pdt: Peripheral device type in plain English */ 40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 41 #define INQD_PDT_PROC 0x03 /* Processor device */ 42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 46 47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 49 50 /* 51 * Sense codes 52 */ 53 54 #define SENCODE_NO_SENSE 0x00 55 #define SENCODE_END_OF_DATA 0x00 56 #define SENCODE_BECOMING_READY 0x04 57 #define SENCODE_INIT_CMD_REQUIRED 0x04 58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 60 #define SENCODE_INVALID_COMMAND 0x20 61 #define SENCODE_LBA_OUT_OF_RANGE 0x21 62 #define SENCODE_INVALID_CDB_FIELD 0x24 63 #define SENCODE_LUN_NOT_SUPPORTED 0x25 64 #define SENCODE_INVALID_PARAM_FIELD 0x26 65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 66 #define SENCODE_PARAM_VALUE_INVALID 0x26 67 #define SENCODE_RESET_OCCURRED 0x29 68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 75 #define SENCODE_OVERLAPPED_COMMAND 0x4E 76 77 /* 78 * Additional sense codes 79 */ 80 81 #define ASENCODE_NO_SENSE 0x00 82 #define ASENCODE_END_OF_DATA 0x05 83 #define ASENCODE_BECOMING_READY 0x01 84 #define ASENCODE_INIT_CMD_REQUIRED 0x02 85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 86 #define ASENCODE_INVALID_COMMAND 0x00 87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 88 #define ASENCODE_INVALID_CDB_FIELD 0x00 89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 90 #define ASENCODE_INVALID_PARAM_FIELD 0x00 91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 92 #define ASENCODE_PARAM_VALUE_INVALID 0x02 93 #define ASENCODE_RESET_OCCURRED 0x00 94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 101 #define ASENCODE_OVERLAPPED_COMMAND 0x00 102 103 #define BYTE0(x) (unsigned char)(x) 104 #define BYTE1(x) (unsigned char)((x) >> 8) 105 #define BYTE2(x) (unsigned char)((x) >> 16) 106 #define BYTE3(x) (unsigned char)((x) >> 24) 107 108 /* MODE_SENSE data format */ 109 typedef struct { 110 struct { 111 u8 data_length; 112 u8 med_type; 113 u8 dev_par; 114 u8 bd_length; 115 } __attribute__((packed)) hd; 116 struct { 117 u8 dens_code; 118 u8 block_count[3]; 119 u8 reserved; 120 u8 block_length[3]; 121 } __attribute__((packed)) bd; 122 u8 mpc_buf[3]; 123 } __attribute__((packed)) aac_modep_data; 124 125 /* MODE_SENSE_10 data format */ 126 typedef struct { 127 struct { 128 u8 data_length[2]; 129 u8 med_type; 130 u8 dev_par; 131 u8 rsrvd[2]; 132 u8 bd_length[2]; 133 } __attribute__((packed)) hd; 134 struct { 135 u8 dens_code; 136 u8 block_count[3]; 137 u8 reserved; 138 u8 block_length[3]; 139 } __attribute__((packed)) bd; 140 u8 mpc_buf[3]; 141 } __attribute__((packed)) aac_modep10_data; 142 143 /*------------------------------------------------------------------------------ 144 * S T R U C T S / T Y P E D E F S 145 *----------------------------------------------------------------------------*/ 146 /* SCSI inquiry data */ 147 struct inquiry_data { 148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 149 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 152 u8 inqd_len; /* Additional length (n-4) */ 153 u8 inqd_pad1[2];/* Reserved - must be zero */ 154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 155 u8 inqd_vid[8]; /* Vendor ID */ 156 u8 inqd_pid[16];/* Product ID */ 157 u8 inqd_prl[4]; /* Product Revision Level */ 158 }; 159 160 /* Added for VPD 0x83 */ 161 struct tvpd_id_descriptor_type_1 { 162 u8 codeset:4; /* VPD_CODE_SET */ 163 u8 reserved:4; 164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 165 u8 reserved2:4; 166 u8 reserved3; 167 u8 identifierlength; 168 u8 venid[8]; 169 u8 productid[16]; 170 u8 serialnumber[8]; /* SN in ASCII */ 171 172 }; 173 174 struct tvpd_id_descriptor_type_2 { 175 u8 codeset:4; /* VPD_CODE_SET */ 176 u8 reserved:4; 177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 178 u8 reserved2:4; 179 u8 reserved3; 180 u8 identifierlength; 181 struct teu64id { 182 u32 Serial; 183 /* The serial number supposed to be 40 bits, 184 * bit we only support 32, so make the last byte zero. */ 185 u8 reserved; 186 u8 venid[3]; 187 } eu64id; 188 189 }; 190 191 struct tvpd_id_descriptor_type_3 { 192 u8 codeset : 4; /* VPD_CODE_SET */ 193 u8 reserved : 4; 194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 195 u8 reserved2 : 4; 196 u8 reserved3; 197 u8 identifierlength; 198 u8 Identifier[16]; 199 }; 200 201 struct tvpd_page83 { 202 u8 DeviceType:5; 203 u8 DeviceTypeQualifier:3; 204 u8 PageCode; 205 u8 reserved; 206 u8 PageLength; 207 struct tvpd_id_descriptor_type_1 type1; 208 struct tvpd_id_descriptor_type_2 type2; 209 struct tvpd_id_descriptor_type_3 type3; 210 }; 211 212 /* 213 * M O D U L E G L O B A L S 214 */ 215 216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 220 struct aac_raw_io2 *rio2, int sg_max); 221 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 222 struct aac_hba_cmd_req *hbacmd, 223 int sg_max, u64 sg_address); 224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 225 int pages, int nseg, int nseg_new); 226 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 227 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 228 #ifdef AAC_DETAILED_STATUS_INFO 229 static char *aac_get_status_string(u32 status); 230 #endif 231 232 /* 233 * Non dasd selection is handled entirely in aachba now 234 */ 235 236 static int nondasd = -1; 237 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 238 static int dacmode = -1; 239 int aac_msi; 240 int aac_commit = -1; 241 int startup_timeout = 180; 242 int aif_timeout = 120; 243 int aac_sync_mode; /* Only Sync. transfer - disabled */ 244 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 245 246 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 247 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 248 " 0=off, 1=on"); 249 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 250 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 251 " 0=off, 1=on"); 252 module_param(nondasd, int, S_IRUGO|S_IWUSR); 253 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 254 " 0=off, 1=on"); 255 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 256 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 257 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 258 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 259 "\tbit 2 - Disable only if Battery is protecting Cache"); 260 module_param(dacmode, int, S_IRUGO|S_IWUSR); 261 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 262 " 0=off, 1=on"); 263 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 264 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 265 " adapter for foreign arrays.\n" 266 "This is typically needed in systems that do not have a BIOS." 267 " 0=off, 1=on"); 268 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 269 MODULE_PARM_DESC(msi, "IRQ handling." 270 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 271 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 272 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 273 " adapter to have it's kernel up and\n" 274 "running. This is typically adjusted for large systems that do not" 275 " have a BIOS."); 276 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 277 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 278 " applications to pick up AIFs before\n" 279 "deregistering them. This is typically adjusted for heavily burdened" 280 " systems."); 281 282 int aac_fib_dump; 283 module_param(aac_fib_dump, int, 0644); 284 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 285 286 int numacb = -1; 287 module_param(numacb, int, S_IRUGO|S_IWUSR); 288 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 289 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 290 " to use suggestion from Firmware."); 291 292 static int acbsize = -1; 293 module_param(acbsize, int, S_IRUGO|S_IWUSR); 294 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 295 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 296 " suggestion from Firmware."); 297 298 int update_interval = 30 * 60; 299 module_param(update_interval, int, S_IRUGO|S_IWUSR); 300 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 301 " updates issued to adapter."); 302 303 int check_interval = 60; 304 module_param(check_interval, int, S_IRUGO|S_IWUSR); 305 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 306 " checks."); 307 308 int aac_check_reset = 1; 309 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 310 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 311 " adapter. a value of -1 forces the reset to adapters programmed to" 312 " ignore it."); 313 314 int expose_physicals = -1; 315 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 316 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 317 " -1=protect 0=off, 1=on"); 318 319 int aac_reset_devices; 320 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 321 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 322 323 static int aac_wwn = 1; 324 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 325 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 326 "\t0 - Disable\n" 327 "\t1 - Array Meta Data Signature (default)\n" 328 "\t2 - Adapter Serial Number"); 329 330 331 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 332 struct fib *fibptr) { 333 struct scsi_device *device; 334 335 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 336 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 337 aac_fib_complete(fibptr); 338 return 0; 339 } 340 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 341 device = scsicmd->device; 342 if (unlikely(!device)) { 343 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 344 aac_fib_complete(fibptr); 345 return 0; 346 } 347 return 1; 348 } 349 350 /** 351 * aac_get_config_status - check the adapter configuration 352 * @dev: aac driver data 353 * @commit_flag: force sending CT_COMMIT_CONFIG 354 * 355 * Query config status, and commit the configuration if needed. 356 */ 357 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 358 { 359 int status = 0; 360 struct fib * fibptr; 361 362 if (!(fibptr = aac_fib_alloc(dev))) 363 return -ENOMEM; 364 365 aac_fib_init(fibptr); 366 { 367 struct aac_get_config_status *dinfo; 368 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 369 370 dinfo->command = cpu_to_le32(VM_ContainerConfig); 371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 373 } 374 375 status = aac_fib_send(ContainerCommand, 376 fibptr, 377 sizeof (struct aac_get_config_status), 378 FsaNormal, 379 1, 1, 380 NULL, NULL); 381 if (status < 0) { 382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 383 } else { 384 struct aac_get_config_status_resp *reply 385 = (struct aac_get_config_status_resp *) fib_data(fibptr); 386 dprintk((KERN_WARNING 387 "aac_get_config_status: response=%d status=%d action=%d\n", 388 le32_to_cpu(reply->response), 389 le32_to_cpu(reply->status), 390 le32_to_cpu(reply->data.action))); 391 if ((le32_to_cpu(reply->response) != ST_OK) || 392 (le32_to_cpu(reply->status) != CT_OK) || 393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 395 status = -EINVAL; 396 } 397 } 398 /* Do not set XferState to zero unless receives a response from F/W */ 399 if (status >= 0) 400 aac_fib_complete(fibptr); 401 402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 403 if (status >= 0) { 404 if ((aac_commit == 1) || commit_flag) { 405 struct aac_commit_config * dinfo; 406 aac_fib_init(fibptr); 407 dinfo = (struct aac_commit_config *) fib_data(fibptr); 408 409 dinfo->command = cpu_to_le32(VM_ContainerConfig); 410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 411 412 status = aac_fib_send(ContainerCommand, 413 fibptr, 414 sizeof (struct aac_commit_config), 415 FsaNormal, 416 1, 1, 417 NULL, NULL); 418 /* Do not set XferState to zero unless 419 * receives a response from F/W */ 420 if (status >= 0) 421 aac_fib_complete(fibptr); 422 } else if (aac_commit == 0) { 423 printk(KERN_WARNING 424 "aac_get_config_status: Foreign device configurations are being ignored\n"); 425 } 426 } 427 /* FIB should be freed only after getting the response from the F/W */ 428 if (status != -ERESTARTSYS) 429 aac_fib_free(fibptr); 430 return status; 431 } 432 433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 434 { 435 char inq_data; 436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 438 inq_data &= 0xdf; 439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 440 } 441 } 442 443 /** 444 * aac_get_containers - list containers 445 * @dev: aac driver data 446 * 447 * Make a list of all containers on this controller 448 */ 449 int aac_get_containers(struct aac_dev *dev) 450 { 451 struct fsa_dev_info *fsa_dev_ptr; 452 u32 index; 453 int status = 0; 454 struct fib * fibptr; 455 struct aac_get_container_count *dinfo; 456 struct aac_get_container_count_resp *dresp; 457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 458 459 if (!(fibptr = aac_fib_alloc(dev))) 460 return -ENOMEM; 461 462 aac_fib_init(fibptr); 463 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 464 dinfo->command = cpu_to_le32(VM_ContainerConfig); 465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 466 467 status = aac_fib_send(ContainerCommand, 468 fibptr, 469 sizeof (struct aac_get_container_count), 470 FsaNormal, 471 1, 1, 472 NULL, NULL); 473 if (status >= 0) { 474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 476 if (fibptr->dev->supplement_adapter_info.supported_options2 & 477 AAC_OPTION_SUPPORTED_240_VOLUMES) { 478 maximum_num_containers = 479 le32_to_cpu(dresp->MaxSimpleVolumes); 480 } 481 aac_fib_complete(fibptr); 482 } 483 /* FIB should be freed only after getting the response from the F/W */ 484 if (status != -ERESTARTSYS) 485 aac_fib_free(fibptr); 486 487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 489 if (dev->fsa_dev == NULL || 490 dev->maximum_num_containers != maximum_num_containers) { 491 492 fsa_dev_ptr = dev->fsa_dev; 493 494 dev->fsa_dev = kcalloc(maximum_num_containers, 495 sizeof(*fsa_dev_ptr), GFP_KERNEL); 496 497 kfree(fsa_dev_ptr); 498 fsa_dev_ptr = NULL; 499 500 501 if (!dev->fsa_dev) 502 return -ENOMEM; 503 504 dev->maximum_num_containers = maximum_num_containers; 505 } 506 for (index = 0; index < dev->maximum_num_containers; index++) { 507 dev->fsa_dev[index].devname[0] = '\0'; 508 dev->fsa_dev[index].valid = 0; 509 510 status = aac_probe_container(dev, index); 511 512 if (status < 0) { 513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 514 break; 515 } 516 } 517 return status; 518 } 519 520 static void get_container_name_callback(void *context, struct fib * fibptr) 521 { 522 struct aac_get_name_resp * get_name_reply; 523 struct scsi_cmnd * scsicmd; 524 525 scsicmd = (struct scsi_cmnd *) context; 526 527 if (!aac_valid_context(scsicmd, fibptr)) 528 return; 529 530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 531 BUG_ON(fibptr == NULL); 532 533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 534 /* Failure is irrelevant, using default value instead */ 535 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 536 && (get_name_reply->data[0] != '\0')) { 537 char *sp = get_name_reply->data; 538 int data_size = sizeof_field(struct aac_get_name_resp, data); 539 540 sp[data_size - 1] = '\0'; 541 while (*sp == ' ') 542 ++sp; 543 if (*sp) { 544 struct inquiry_data inq; 545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 546 int count = sizeof(d); 547 char *dp = d; 548 do { 549 *dp++ = (*sp) ? *sp++ : ' '; 550 } while (--count > 0); 551 552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 553 memcpy(inq.inqd_pid, d, sizeof(d)); 554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 555 } 556 } 557 558 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 559 560 aac_fib_complete(fibptr); 561 scsicmd->scsi_done(scsicmd); 562 } 563 564 /* 565 * aac_get_container_name - get container name, none blocking. 566 */ 567 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 568 { 569 int status; 570 int data_size; 571 struct aac_get_name *dinfo; 572 struct fib * cmd_fibcontext; 573 struct aac_dev * dev; 574 575 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 576 577 data_size = sizeof_field(struct aac_get_name_resp, data); 578 579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 580 581 aac_fib_init(cmd_fibcontext); 582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 584 585 dinfo->command = cpu_to_le32(VM_ContainerConfig); 586 dinfo->type = cpu_to_le32(CT_READ_NAME); 587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 588 dinfo->count = cpu_to_le32(data_size - 1); 589 590 status = aac_fib_send(ContainerCommand, 591 cmd_fibcontext, 592 sizeof(struct aac_get_name_resp), 593 FsaNormal, 594 0, 1, 595 (fib_callback)get_container_name_callback, 596 (void *) scsicmd); 597 598 /* 599 * Check that the command queued to the controller 600 */ 601 if (status == -EINPROGRESS) 602 return 0; 603 604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 605 aac_fib_complete(cmd_fibcontext); 606 return -1; 607 } 608 609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 610 { 611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 612 613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 614 return aac_scsi_cmd(scsicmd); 615 616 scsicmd->result = DID_NO_CONNECT << 16; 617 scsicmd->scsi_done(scsicmd); 618 return 0; 619 } 620 621 static void _aac_probe_container2(void * context, struct fib * fibptr) 622 { 623 struct fsa_dev_info *fsa_dev_ptr; 624 int (*callback)(struct scsi_cmnd *); 625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 626 int i; 627 628 629 if (!aac_valid_context(scsicmd, fibptr)) 630 return; 631 632 scsicmd->SCp.Status = 0; 633 fsa_dev_ptr = fibptr->dev->fsa_dev; 634 if (fsa_dev_ptr) { 635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 636 __le32 sup_options2; 637 638 fsa_dev_ptr += scmd_id(scsicmd); 639 sup_options2 = 640 fibptr->dev->supplement_adapter_info.supported_options2; 641 642 if ((le32_to_cpu(dresp->status) == ST_OK) && 643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 647 fsa_dev_ptr->block_size = 0x200; 648 } else { 649 fsa_dev_ptr->block_size = 650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 651 } 652 for (i = 0; i < 16; i++) 653 fsa_dev_ptr->identifier[i] = 654 dresp->mnt[0].fileinfo.bdevinfo 655 .identifier[i]; 656 fsa_dev_ptr->valid = 1; 657 /* sense_key holds the current state of the spin-up */ 658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 659 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 663 fsa_dev_ptr->size 664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 667 } 668 if ((fsa_dev_ptr->valid & 1) == 0) 669 fsa_dev_ptr->valid = 0; 670 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 671 } 672 aac_fib_complete(fibptr); 673 aac_fib_free(fibptr); 674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 675 scsicmd->SCp.ptr = NULL; 676 (*callback)(scsicmd); 677 return; 678 } 679 680 static void _aac_probe_container1(void * context, struct fib * fibptr) 681 { 682 struct scsi_cmnd * scsicmd; 683 struct aac_mount * dresp; 684 struct aac_query_mount *dinfo; 685 int status; 686 687 dresp = (struct aac_mount *) fib_data(fibptr); 688 if (!aac_supports_2T(fibptr->dev)) { 689 dresp->mnt[0].capacityhigh = 0; 690 if ((le32_to_cpu(dresp->status) == ST_OK) && 691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 692 _aac_probe_container2(context, fibptr); 693 return; 694 } 695 } 696 scsicmd = (struct scsi_cmnd *) context; 697 698 if (!aac_valid_context(scsicmd, fibptr)) 699 return; 700 701 aac_fib_init(fibptr); 702 703 dinfo = (struct aac_query_mount *)fib_data(fibptr); 704 705 if (fibptr->dev->supplement_adapter_info.supported_options2 & 706 AAC_OPTION_VARIABLE_BLOCK_SIZE) 707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 708 else 709 dinfo->command = cpu_to_le32(VM_NameServe64); 710 711 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 712 dinfo->type = cpu_to_le32(FT_FILESYS); 713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 714 715 status = aac_fib_send(ContainerCommand, 716 fibptr, 717 sizeof(struct aac_query_mount), 718 FsaNormal, 719 0, 1, 720 _aac_probe_container2, 721 (void *) scsicmd); 722 /* 723 * Check that the command queued to the controller 724 */ 725 if (status < 0 && status != -EINPROGRESS) { 726 /* Inherit results from VM_NameServe, if any */ 727 dresp->status = cpu_to_le32(ST_OK); 728 _aac_probe_container2(context, fibptr); 729 } 730 } 731 732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 733 { 734 struct fib * fibptr; 735 int status = -ENOMEM; 736 737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 738 struct aac_query_mount *dinfo; 739 740 aac_fib_init(fibptr); 741 742 dinfo = (struct aac_query_mount *)fib_data(fibptr); 743 744 if (fibptr->dev->supplement_adapter_info.supported_options2 & 745 AAC_OPTION_VARIABLE_BLOCK_SIZE) 746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 747 else 748 dinfo->command = cpu_to_le32(VM_NameServe); 749 750 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 751 dinfo->type = cpu_to_le32(FT_FILESYS); 752 scsicmd->SCp.ptr = (char *)callback; 753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 754 755 status = aac_fib_send(ContainerCommand, 756 fibptr, 757 sizeof(struct aac_query_mount), 758 FsaNormal, 759 0, 1, 760 _aac_probe_container1, 761 (void *) scsicmd); 762 /* 763 * Check that the command queued to the controller 764 */ 765 if (status == -EINPROGRESS) 766 return 0; 767 768 if (status < 0) { 769 scsicmd->SCp.ptr = NULL; 770 aac_fib_complete(fibptr); 771 aac_fib_free(fibptr); 772 } 773 } 774 if (status < 0) { 775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 776 if (fsa_dev_ptr) { 777 fsa_dev_ptr += scmd_id(scsicmd); 778 if ((fsa_dev_ptr->valid & 1) == 0) { 779 fsa_dev_ptr->valid = 0; 780 return (*callback)(scsicmd); 781 } 782 } 783 } 784 return status; 785 } 786 787 /** 788 * aac_probe_container_callback1 - query a logical volume 789 * @scsicmd: the scsi command block 790 * 791 * Queries the controller about the given volume. The volume information 792 * is updated in the struct fsa_dev_info structure rather than returned. 793 */ 794 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 795 { 796 scsicmd->device = NULL; 797 return 0; 798 } 799 800 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 801 { 802 aac_probe_container_callback1(scsi_cmnd); 803 } 804 805 int aac_probe_container(struct aac_dev *dev, int cid) 806 { 807 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 808 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 809 int status; 810 811 if (!scsicmd || !scsidev) { 812 kfree(scsicmd); 813 kfree(scsidev); 814 return -ENOMEM; 815 } 816 scsicmd->scsi_done = aac_probe_container_scsi_done; 817 818 scsicmd->device = scsidev; 819 scsidev->sdev_state = 0; 820 scsidev->id = cid; 821 scsidev->host = dev->scsi_host_ptr; 822 823 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 824 while (scsicmd->device == scsidev) 825 schedule(); 826 kfree(scsidev); 827 status = scsicmd->SCp.Status; 828 kfree(scsicmd); 829 return status; 830 } 831 832 /* Local Structure to set SCSI inquiry data strings */ 833 struct scsi_inq { 834 char vid[8]; /* Vendor ID */ 835 char pid[16]; /* Product ID */ 836 char prl[4]; /* Product Revision Level */ 837 }; 838 839 /** 840 * inqstrcpy - string merge 841 * @a: string to copy from 842 * @b: string to copy to 843 * 844 * Copy a String from one location to another 845 * without copying \0 846 */ 847 848 static void inqstrcpy(char *a, char *b) 849 { 850 851 while (*a != (char)0) 852 *b++ = *a++; 853 } 854 855 static char *container_types[] = { 856 "None", 857 "Volume", 858 "Mirror", 859 "Stripe", 860 "RAID5", 861 "SSRW", 862 "SSRO", 863 "Morph", 864 "Legacy", 865 "RAID4", 866 "RAID10", 867 "RAID00", 868 "V-MIRRORS", 869 "PSEUDO R4", 870 "RAID50", 871 "RAID5D", 872 "RAID5D0", 873 "RAID1E", 874 "RAID6", 875 "RAID60", 876 "Unknown" 877 }; 878 879 char * get_container_type(unsigned tindex) 880 { 881 if (tindex >= ARRAY_SIZE(container_types)) 882 tindex = ARRAY_SIZE(container_types) - 1; 883 return container_types[tindex]; 884 } 885 886 /* Function: setinqstr 887 * 888 * Arguments: [1] pointer to void [1] int 889 * 890 * Purpose: Sets SCSI inquiry data strings for vendor, product 891 * and revision level. Allows strings to be set in platform dependent 892 * files instead of in OS dependent driver source. 893 */ 894 895 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 896 { 897 struct scsi_inq *str; 898 struct aac_supplement_adapter_info *sup_adap_info; 899 900 sup_adap_info = &dev->supplement_adapter_info; 901 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 902 memset(str, ' ', sizeof(*str)); 903 904 if (sup_adap_info->adapter_type_text[0]) { 905 int c; 906 char *cp; 907 char *cname = kmemdup(sup_adap_info->adapter_type_text, 908 sizeof(sup_adap_info->adapter_type_text), 909 GFP_ATOMIC); 910 if (!cname) 911 return; 912 913 cp = cname; 914 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 915 inqstrcpy("SMC", str->vid); 916 else { 917 c = sizeof(str->vid); 918 while (*cp && *cp != ' ' && --c) 919 ++cp; 920 c = *cp; 921 *cp = '\0'; 922 inqstrcpy(cname, str->vid); 923 *cp = c; 924 while (*cp && *cp != ' ') 925 ++cp; 926 } 927 while (*cp == ' ') 928 ++cp; 929 /* last six chars reserved for vol type */ 930 if (strlen(cp) > sizeof(str->pid)) 931 cp[sizeof(str->pid)] = '\0'; 932 inqstrcpy (cp, str->pid); 933 934 kfree(cname); 935 } else { 936 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 937 938 inqstrcpy (mp->vname, str->vid); 939 /* last six chars reserved for vol type */ 940 inqstrcpy (mp->model, str->pid); 941 } 942 943 if (tindex < ARRAY_SIZE(container_types)){ 944 char *findit = str->pid; 945 946 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 947 /* RAID is superfluous in the context of a RAID device */ 948 if (memcmp(findit-4, "RAID", 4) == 0) 949 *(findit -= 4) = ' '; 950 if (((findit - str->pid) + strlen(container_types[tindex])) 951 < (sizeof(str->pid) + sizeof(str->prl))) 952 inqstrcpy (container_types[tindex], findit + 1); 953 } 954 inqstrcpy ("V1.0", str->prl); 955 } 956 957 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 958 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 959 { 960 int container; 961 962 vpdpage83data->type3.codeset = 1; 963 vpdpage83data->type3.identifiertype = 3; 964 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 965 - 4; 966 967 for (container = 0; container < dev->maximum_num_containers; 968 container++) { 969 970 if (scmd_id(scsicmd) == container) { 971 memcpy(vpdpage83data->type3.Identifier, 972 dev->fsa_dev[container].identifier, 973 16); 974 break; 975 } 976 } 977 } 978 979 static void get_container_serial_callback(void *context, struct fib * fibptr) 980 { 981 struct aac_get_serial_resp * get_serial_reply; 982 struct scsi_cmnd * scsicmd; 983 984 BUG_ON(fibptr == NULL); 985 986 scsicmd = (struct scsi_cmnd *) context; 987 if (!aac_valid_context(scsicmd, fibptr)) 988 return; 989 990 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 991 /* Failure is irrelevant, using default value instead */ 992 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 993 /*Check to see if it's for VPD 0x83 or 0x80 */ 994 if (scsicmd->cmnd[2] == 0x83) { 995 /* vpd page 0x83 - Device Identification Page */ 996 struct aac_dev *dev; 997 int i; 998 struct tvpd_page83 vpdpage83data; 999 1000 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1001 1002 memset(((u8 *)&vpdpage83data), 0, 1003 sizeof(vpdpage83data)); 1004 1005 /* DIRECT_ACCESS_DEVIC */ 1006 vpdpage83data.DeviceType = 0; 1007 /* DEVICE_CONNECTED */ 1008 vpdpage83data.DeviceTypeQualifier = 0; 1009 /* VPD_DEVICE_IDENTIFIERS */ 1010 vpdpage83data.PageCode = 0x83; 1011 vpdpage83data.reserved = 0; 1012 vpdpage83data.PageLength = 1013 sizeof(vpdpage83data.type1) + 1014 sizeof(vpdpage83data.type2); 1015 1016 /* VPD 83 Type 3 is not supported for ARC */ 1017 if (dev->sa_firmware) 1018 vpdpage83data.PageLength += 1019 sizeof(vpdpage83data.type3); 1020 1021 /* T10 Vendor Identifier Field Format */ 1022 /* VpdcodesetAscii */ 1023 vpdpage83data.type1.codeset = 2; 1024 /* VpdIdentifierTypeVendorId */ 1025 vpdpage83data.type1.identifiertype = 1; 1026 vpdpage83data.type1.identifierlength = 1027 sizeof(vpdpage83data.type1) - 4; 1028 1029 /* "ADAPTEC " for adaptec */ 1030 memcpy(vpdpage83data.type1.venid, 1031 "ADAPTEC ", 1032 sizeof(vpdpage83data.type1.venid)); 1033 memcpy(vpdpage83data.type1.productid, 1034 "ARRAY ", 1035 sizeof( 1036 vpdpage83data.type1.productid)); 1037 1038 /* Convert to ascii based serial number. 1039 * The LSB is the the end. 1040 */ 1041 for (i = 0; i < 8; i++) { 1042 u8 temp = 1043 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1044 if (temp > 0x9) { 1045 vpdpage83data.type1.serialnumber[i] = 1046 'A' + (temp - 0xA); 1047 } else { 1048 vpdpage83data.type1.serialnumber[i] = 1049 '0' + temp; 1050 } 1051 } 1052 1053 /* VpdCodeSetBinary */ 1054 vpdpage83data.type2.codeset = 1; 1055 /* VpdidentifiertypeEUI64 */ 1056 vpdpage83data.type2.identifiertype = 2; 1057 vpdpage83data.type2.identifierlength = 1058 sizeof(vpdpage83data.type2) - 4; 1059 1060 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1061 vpdpage83data.type2.eu64id.venid[1] = 0; 1062 vpdpage83data.type2.eu64id.venid[2] = 0; 1063 1064 vpdpage83data.type2.eu64id.Serial = 1065 get_serial_reply->uid; 1066 vpdpage83data.type2.eu64id.reserved = 0; 1067 1068 /* 1069 * VpdIdentifierTypeFCPHName 1070 * VPD 0x83 Type 3 not supported for ARC 1071 */ 1072 if (dev->sa_firmware) { 1073 build_vpd83_type3(&vpdpage83data, 1074 dev, scsicmd); 1075 } 1076 1077 /* Move the inquiry data to the response buffer. */ 1078 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1079 sizeof(vpdpage83data)); 1080 } else { 1081 /* It must be for VPD 0x80 */ 1082 char sp[13]; 1083 /* EVPD bit set */ 1084 sp[0] = INQD_PDT_DA; 1085 sp[1] = scsicmd->cmnd[2]; 1086 sp[2] = 0; 1087 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1088 le32_to_cpu(get_serial_reply->uid)); 1089 scsi_sg_copy_from_buffer(scsicmd, sp, 1090 sizeof(sp)); 1091 } 1092 } 1093 1094 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 1095 1096 aac_fib_complete(fibptr); 1097 scsicmd->scsi_done(scsicmd); 1098 } 1099 1100 /* 1101 * aac_get_container_serial - get container serial, none blocking. 1102 */ 1103 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1104 { 1105 int status; 1106 struct aac_get_serial *dinfo; 1107 struct fib * cmd_fibcontext; 1108 struct aac_dev * dev; 1109 1110 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1111 1112 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1113 1114 aac_fib_init(cmd_fibcontext); 1115 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1116 1117 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1118 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1119 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1120 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1121 1122 status = aac_fib_send(ContainerCommand, 1123 cmd_fibcontext, 1124 sizeof(struct aac_get_serial_resp), 1125 FsaNormal, 1126 0, 1, 1127 (fib_callback) get_container_serial_callback, 1128 (void *) scsicmd); 1129 1130 /* 1131 * Check that the command queued to the controller 1132 */ 1133 if (status == -EINPROGRESS) 1134 return 0; 1135 1136 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1137 aac_fib_complete(cmd_fibcontext); 1138 return -1; 1139 } 1140 1141 /* Function: setinqserial 1142 * 1143 * Arguments: [1] pointer to void [1] int 1144 * 1145 * Purpose: Sets SCSI Unit Serial number. 1146 * This is a fake. We should read a proper 1147 * serial number from the container. <SuSE>But 1148 * without docs it's quite hard to do it :-) 1149 * So this will have to do in the meantime.</SuSE> 1150 */ 1151 1152 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1153 { 1154 /* 1155 * This breaks array migration. 1156 */ 1157 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1158 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1159 } 1160 1161 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1162 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1163 { 1164 u8 *sense_buf = (u8 *)sense_data; 1165 /* Sense data valid, err code 70h */ 1166 sense_buf[0] = 0x70; /* No info field */ 1167 sense_buf[1] = 0; /* Segment number, always zero */ 1168 1169 sense_buf[2] = sense_key; /* Sense key */ 1170 1171 sense_buf[12] = sense_code; /* Additional sense code */ 1172 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1173 1174 if (sense_key == ILLEGAL_REQUEST) { 1175 sense_buf[7] = 10; /* Additional sense length */ 1176 1177 sense_buf[15] = bit_pointer; 1178 /* Illegal parameter is in the parameter block */ 1179 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1180 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1181 /* Illegal parameter is in the CDB block */ 1182 sense_buf[16] = field_pointer >> 8; /* MSB */ 1183 sense_buf[17] = field_pointer; /* LSB */ 1184 } else 1185 sense_buf[7] = 6; /* Additional sense length */ 1186 } 1187 1188 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1189 { 1190 if (lba & 0xffffffff00000000LL) { 1191 int cid = scmd_id(cmd); 1192 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1193 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 1194 set_sense(&dev->fsa_dev[cid].sense_data, 1195 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1196 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1197 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1198 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1199 SCSI_SENSE_BUFFERSIZE)); 1200 cmd->scsi_done(cmd); 1201 return 1; 1202 } 1203 return 0; 1204 } 1205 1206 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1207 { 1208 return 0; 1209 } 1210 1211 static void io_callback(void *context, struct fib * fibptr); 1212 1213 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1214 { 1215 struct aac_dev *dev = fib->dev; 1216 u16 fibsize, command; 1217 long ret; 1218 1219 aac_fib_init(fib); 1220 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1221 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1222 !dev->sync_mode) { 1223 struct aac_raw_io2 *readcmd2; 1224 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1225 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1226 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1227 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1228 readcmd2->byteCount = cpu_to_le32(count * 1229 dev->fsa_dev[scmd_id(cmd)].block_size); 1230 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1231 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1232 ret = aac_build_sgraw2(cmd, readcmd2, 1233 dev->scsi_host_ptr->sg_tablesize); 1234 if (ret < 0) 1235 return ret; 1236 command = ContainerRawIo2; 1237 fibsize = struct_size(readcmd2, sge, 1238 le32_to_cpu(readcmd2->sgeCnt)); 1239 } else { 1240 struct aac_raw_io *readcmd; 1241 readcmd = (struct aac_raw_io *) fib_data(fib); 1242 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1243 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1244 readcmd->count = cpu_to_le32(count * 1245 dev->fsa_dev[scmd_id(cmd)].block_size); 1246 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1247 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1248 readcmd->bpTotal = 0; 1249 readcmd->bpComplete = 0; 1250 ret = aac_build_sgraw(cmd, &readcmd->sg); 1251 if (ret < 0) 1252 return ret; 1253 command = ContainerRawIo; 1254 fibsize = sizeof(struct aac_raw_io) + 1255 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1256 } 1257 1258 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1259 /* 1260 * Now send the Fib to the adapter 1261 */ 1262 return aac_fib_send(command, 1263 fib, 1264 fibsize, 1265 FsaNormal, 1266 0, 1, 1267 (fib_callback) io_callback, 1268 (void *) cmd); 1269 } 1270 1271 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1272 { 1273 u16 fibsize; 1274 struct aac_read64 *readcmd; 1275 long ret; 1276 1277 aac_fib_init(fib); 1278 readcmd = (struct aac_read64 *) fib_data(fib); 1279 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1280 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1281 readcmd->sector_count = cpu_to_le16(count); 1282 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1283 readcmd->pad = 0; 1284 readcmd->flags = 0; 1285 1286 ret = aac_build_sg64(cmd, &readcmd->sg); 1287 if (ret < 0) 1288 return ret; 1289 fibsize = sizeof(struct aac_read64) + 1290 ((le32_to_cpu(readcmd->sg.count) - 1) * 1291 sizeof (struct sgentry64)); 1292 BUG_ON (fibsize > (fib->dev->max_fib_size - 1293 sizeof(struct aac_fibhdr))); 1294 /* 1295 * Now send the Fib to the adapter 1296 */ 1297 return aac_fib_send(ContainerCommand64, 1298 fib, 1299 fibsize, 1300 FsaNormal, 1301 0, 1, 1302 (fib_callback) io_callback, 1303 (void *) cmd); 1304 } 1305 1306 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1307 { 1308 u16 fibsize; 1309 struct aac_read *readcmd; 1310 struct aac_dev *dev = fib->dev; 1311 long ret; 1312 1313 aac_fib_init(fib); 1314 readcmd = (struct aac_read *) fib_data(fib); 1315 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1316 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1317 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1318 readcmd->count = cpu_to_le32(count * 1319 dev->fsa_dev[scmd_id(cmd)].block_size); 1320 1321 ret = aac_build_sg(cmd, &readcmd->sg); 1322 if (ret < 0) 1323 return ret; 1324 fibsize = sizeof(struct aac_read) + 1325 ((le32_to_cpu(readcmd->sg.count) - 1) * 1326 sizeof (struct sgentry)); 1327 BUG_ON (fibsize > (fib->dev->max_fib_size - 1328 sizeof(struct aac_fibhdr))); 1329 /* 1330 * Now send the Fib to the adapter 1331 */ 1332 return aac_fib_send(ContainerCommand, 1333 fib, 1334 fibsize, 1335 FsaNormal, 1336 0, 1, 1337 (fib_callback) io_callback, 1338 (void *) cmd); 1339 } 1340 1341 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1342 { 1343 struct aac_dev *dev = fib->dev; 1344 u16 fibsize, command; 1345 long ret; 1346 1347 aac_fib_init(fib); 1348 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1349 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1350 !dev->sync_mode) { 1351 struct aac_raw_io2 *writecmd2; 1352 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1353 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1354 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1355 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1356 writecmd2->byteCount = cpu_to_le32(count * 1357 dev->fsa_dev[scmd_id(cmd)].block_size); 1358 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1359 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1360 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1361 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1362 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1363 ret = aac_build_sgraw2(cmd, writecmd2, 1364 dev->scsi_host_ptr->sg_tablesize); 1365 if (ret < 0) 1366 return ret; 1367 command = ContainerRawIo2; 1368 fibsize = struct_size(writecmd2, sge, 1369 le32_to_cpu(writecmd2->sgeCnt)); 1370 } else { 1371 struct aac_raw_io *writecmd; 1372 writecmd = (struct aac_raw_io *) fib_data(fib); 1373 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1374 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1375 writecmd->count = cpu_to_le32(count * 1376 dev->fsa_dev[scmd_id(cmd)].block_size); 1377 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1378 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1379 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1380 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1381 cpu_to_le16(RIO_TYPE_WRITE); 1382 writecmd->bpTotal = 0; 1383 writecmd->bpComplete = 0; 1384 ret = aac_build_sgraw(cmd, &writecmd->sg); 1385 if (ret < 0) 1386 return ret; 1387 command = ContainerRawIo; 1388 fibsize = sizeof(struct aac_raw_io) + 1389 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1390 } 1391 1392 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1393 /* 1394 * Now send the Fib to the adapter 1395 */ 1396 return aac_fib_send(command, 1397 fib, 1398 fibsize, 1399 FsaNormal, 1400 0, 1, 1401 (fib_callback) io_callback, 1402 (void *) cmd); 1403 } 1404 1405 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1406 { 1407 u16 fibsize; 1408 struct aac_write64 *writecmd; 1409 long ret; 1410 1411 aac_fib_init(fib); 1412 writecmd = (struct aac_write64 *) fib_data(fib); 1413 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1414 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1415 writecmd->sector_count = cpu_to_le16(count); 1416 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1417 writecmd->pad = 0; 1418 writecmd->flags = 0; 1419 1420 ret = aac_build_sg64(cmd, &writecmd->sg); 1421 if (ret < 0) 1422 return ret; 1423 fibsize = sizeof(struct aac_write64) + 1424 ((le32_to_cpu(writecmd->sg.count) - 1) * 1425 sizeof (struct sgentry64)); 1426 BUG_ON (fibsize > (fib->dev->max_fib_size - 1427 sizeof(struct aac_fibhdr))); 1428 /* 1429 * Now send the Fib to the adapter 1430 */ 1431 return aac_fib_send(ContainerCommand64, 1432 fib, 1433 fibsize, 1434 FsaNormal, 1435 0, 1, 1436 (fib_callback) io_callback, 1437 (void *) cmd); 1438 } 1439 1440 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1441 { 1442 u16 fibsize; 1443 struct aac_write *writecmd; 1444 struct aac_dev *dev = fib->dev; 1445 long ret; 1446 1447 aac_fib_init(fib); 1448 writecmd = (struct aac_write *) fib_data(fib); 1449 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1450 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1451 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1452 writecmd->count = cpu_to_le32(count * 1453 dev->fsa_dev[scmd_id(cmd)].block_size); 1454 writecmd->sg.count = cpu_to_le32(1); 1455 /* ->stable is not used - it did mean which type of write */ 1456 1457 ret = aac_build_sg(cmd, &writecmd->sg); 1458 if (ret < 0) 1459 return ret; 1460 fibsize = sizeof(struct aac_write) + 1461 ((le32_to_cpu(writecmd->sg.count) - 1) * 1462 sizeof (struct sgentry)); 1463 BUG_ON (fibsize > (fib->dev->max_fib_size - 1464 sizeof(struct aac_fibhdr))); 1465 /* 1466 * Now send the Fib to the adapter 1467 */ 1468 return aac_fib_send(ContainerCommand, 1469 fib, 1470 fibsize, 1471 FsaNormal, 1472 0, 1, 1473 (fib_callback) io_callback, 1474 (void *) cmd); 1475 } 1476 1477 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1478 { 1479 struct aac_srb * srbcmd; 1480 u32 flag; 1481 u32 timeout; 1482 struct aac_dev *dev = fib->dev; 1483 1484 aac_fib_init(fib); 1485 switch(cmd->sc_data_direction){ 1486 case DMA_TO_DEVICE: 1487 flag = SRB_DataOut; 1488 break; 1489 case DMA_BIDIRECTIONAL: 1490 flag = SRB_DataIn | SRB_DataOut; 1491 break; 1492 case DMA_FROM_DEVICE: 1493 flag = SRB_DataIn; 1494 break; 1495 case DMA_NONE: 1496 default: /* shuts up some versions of gcc */ 1497 flag = SRB_NoDataXfer; 1498 break; 1499 } 1500 1501 srbcmd = (struct aac_srb*) fib_data(fib); 1502 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1503 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1504 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1505 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1506 srbcmd->flags = cpu_to_le32(flag); 1507 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ; 1508 if (timeout == 0) 1509 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1510 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1511 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1512 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1513 return srbcmd; 1514 } 1515 1516 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1517 struct scsi_cmnd *cmd) 1518 { 1519 struct aac_hba_cmd_req *hbacmd; 1520 struct aac_dev *dev; 1521 int bus, target; 1522 u64 address; 1523 1524 dev = (struct aac_dev *)cmd->device->host->hostdata; 1525 1526 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1527 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1528 /* iu_type is a parameter of aac_hba_send */ 1529 switch (cmd->sc_data_direction) { 1530 case DMA_TO_DEVICE: 1531 hbacmd->byte1 = 2; 1532 break; 1533 case DMA_FROM_DEVICE: 1534 case DMA_BIDIRECTIONAL: 1535 hbacmd->byte1 = 1; 1536 break; 1537 case DMA_NONE: 1538 default: 1539 break; 1540 } 1541 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1542 1543 bus = aac_logical_to_phys(scmd_channel(cmd)); 1544 target = scmd_id(cmd); 1545 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1546 1547 /* we fill in reply_qid later in aac_src_deliver_message */ 1548 /* we fill in iu_type, request_id later in aac_hba_send */ 1549 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1550 1551 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1552 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1553 1554 address = (u64)fib->hw_error_pa; 1555 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1556 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1557 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1558 1559 return hbacmd; 1560 } 1561 1562 static void aac_srb_callback(void *context, struct fib * fibptr); 1563 1564 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1565 { 1566 u16 fibsize; 1567 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1568 long ret; 1569 1570 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1571 if (ret < 0) 1572 return ret; 1573 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1574 1575 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1576 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1577 /* 1578 * Build Scatter/Gather list 1579 */ 1580 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1581 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1582 sizeof (struct sgentry64)); 1583 BUG_ON (fibsize > (fib->dev->max_fib_size - 1584 sizeof(struct aac_fibhdr))); 1585 1586 /* 1587 * Now send the Fib to the adapter 1588 */ 1589 return aac_fib_send(ScsiPortCommand64, fib, 1590 fibsize, FsaNormal, 0, 1, 1591 (fib_callback) aac_srb_callback, 1592 (void *) cmd); 1593 } 1594 1595 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1596 { 1597 u16 fibsize; 1598 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1599 long ret; 1600 1601 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1602 if (ret < 0) 1603 return ret; 1604 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1605 1606 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1607 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1608 /* 1609 * Build Scatter/Gather list 1610 */ 1611 fibsize = sizeof (struct aac_srb) + 1612 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1613 sizeof (struct sgentry)); 1614 BUG_ON (fibsize > (fib->dev->max_fib_size - 1615 sizeof(struct aac_fibhdr))); 1616 1617 /* 1618 * Now send the Fib to the adapter 1619 */ 1620 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1621 (fib_callback) aac_srb_callback, (void *) cmd); 1622 } 1623 1624 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1625 { 1626 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1627 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1628 return FAILED; 1629 return aac_scsi_32(fib, cmd); 1630 } 1631 1632 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1633 { 1634 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1635 struct aac_dev *dev; 1636 long ret; 1637 1638 dev = (struct aac_dev *)cmd->device->host->hostdata; 1639 1640 ret = aac_build_sghba(cmd, hbacmd, 1641 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1642 if (ret < 0) 1643 return ret; 1644 1645 /* 1646 * Now send the HBA command to the adapter 1647 */ 1648 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1649 sizeof(struct aac_hba_sgl); 1650 1651 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1652 (fib_callback) aac_hba_callback, 1653 (void *) cmd); 1654 } 1655 1656 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1657 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1658 { 1659 struct fib *fibptr; 1660 dma_addr_t addr; 1661 int rcode; 1662 int fibsize; 1663 struct aac_srb *srb; 1664 struct aac_srb_reply *srb_reply; 1665 struct sgmap64 *sg64; 1666 u32 vbus; 1667 u32 vid; 1668 1669 if (!dev->sa_firmware) 1670 return 0; 1671 1672 /* allocate FIB */ 1673 fibptr = aac_fib_alloc(dev); 1674 if (!fibptr) 1675 return -ENOMEM; 1676 1677 aac_fib_init(fibptr); 1678 fibptr->hw_fib_va->header.XferState &= 1679 ~cpu_to_le32(FastResponseCapable); 1680 1681 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1682 sizeof(struct sgentry64); 1683 1684 /* allocate DMA buffer for response */ 1685 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1686 DMA_BIDIRECTIONAL); 1687 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1688 rcode = -ENOMEM; 1689 goto fib_error; 1690 } 1691 1692 srb = fib_data(fibptr); 1693 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1694 1695 vbus = (u32)le16_to_cpu( 1696 dev->supplement_adapter_info.virt_device_bus); 1697 vid = (u32)le16_to_cpu( 1698 dev->supplement_adapter_info.virt_device_target); 1699 1700 /* set the common request fields */ 1701 srb->channel = cpu_to_le32(vbus); 1702 srb->id = cpu_to_le32(vid); 1703 srb->lun = 0; 1704 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1705 srb->timeout = 0; 1706 srb->retry_limit = 0; 1707 srb->cdb_size = cpu_to_le32(16); 1708 srb->count = cpu_to_le32(xfer_len); 1709 1710 sg64 = (struct sgmap64 *)&srb->sg; 1711 sg64->count = cpu_to_le32(1); 1712 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1713 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1714 sg64->sg[0].count = cpu_to_le32(xfer_len); 1715 1716 /* 1717 * Copy the updated data for other dumping or other usage if needed 1718 */ 1719 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1720 1721 /* issue request to the controller */ 1722 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1723 1, 1, NULL, NULL); 1724 1725 if (rcode == -ERESTARTSYS) 1726 rcode = -ERESTART; 1727 1728 if (unlikely(rcode < 0)) 1729 goto bmic_error; 1730 1731 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1732 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1733 1734 bmic_error: 1735 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1736 fib_error: 1737 aac_fib_complete(fibptr); 1738 aac_fib_free(fibptr); 1739 return rcode; 1740 } 1741 1742 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1743 { 1744 1745 struct aac_ciss_identify_pd *identify_resp; 1746 1747 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1748 return; 1749 1750 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1751 if (identify_resp == NULL) { 1752 dev->hba_map[bus][target].qd_limit = 32; 1753 return; 1754 } 1755 1756 if (identify_resp->current_queue_depth_limit <= 0 || 1757 identify_resp->current_queue_depth_limit > 255) 1758 dev->hba_map[bus][target].qd_limit = 32; 1759 else 1760 dev->hba_map[bus][target].qd_limit = 1761 identify_resp->current_queue_depth_limit; 1762 } 1763 1764 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1765 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1766 { 1767 int rcode = -ENOMEM; 1768 int datasize; 1769 struct aac_srb_unit srbu; 1770 struct aac_srb *srbcmd; 1771 struct aac_ciss_identify_pd *identify_reply; 1772 1773 datasize = sizeof(struct aac_ciss_identify_pd); 1774 identify_reply = kmalloc(datasize, GFP_KERNEL); 1775 if (!identify_reply) 1776 goto out; 1777 1778 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1779 1780 srbcmd = &srbu.srb; 1781 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1782 srbcmd->cdb[0] = 0x26; 1783 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1784 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1785 1786 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1787 if (unlikely(rcode < 0)) 1788 goto mem_free_all; 1789 1790 *identify_resp = identify_reply; 1791 1792 out: 1793 return rcode; 1794 mem_free_all: 1795 kfree(identify_reply); 1796 goto out; 1797 } 1798 1799 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1800 { 1801 kfree(dev->safw_phys_luns); 1802 dev->safw_phys_luns = NULL; 1803 } 1804 1805 /** 1806 * aac_get_safw_ciss_luns() - Process topology change 1807 * @dev: aac_dev structure 1808 * 1809 * Execute a CISS REPORT PHYS LUNS and process the results into 1810 * the current hba_map. 1811 */ 1812 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1813 { 1814 int rcode = -ENOMEM; 1815 int datasize; 1816 struct aac_srb *srbcmd; 1817 struct aac_srb_unit srbu; 1818 struct aac_ciss_phys_luns_resp *phys_luns; 1819 1820 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1821 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1822 phys_luns = kmalloc(datasize, GFP_KERNEL); 1823 if (phys_luns == NULL) 1824 goto out; 1825 1826 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1827 1828 srbcmd = &srbu.srb; 1829 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1830 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1831 srbcmd->cdb[1] = 2; /* extended reporting */ 1832 srbcmd->cdb[8] = (u8)(datasize >> 8); 1833 srbcmd->cdb[9] = (u8)(datasize); 1834 1835 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1836 if (unlikely(rcode < 0)) 1837 goto mem_free_all; 1838 1839 if (phys_luns->resp_flag != 2) { 1840 rcode = -ENOMSG; 1841 goto mem_free_all; 1842 } 1843 1844 dev->safw_phys_luns = phys_luns; 1845 1846 out: 1847 return rcode; 1848 mem_free_all: 1849 kfree(phys_luns); 1850 goto out; 1851 } 1852 1853 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1854 { 1855 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1856 } 1857 1858 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1859 { 1860 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1861 } 1862 1863 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1864 { 1865 return dev->safw_phys_luns->lun[lun].level2[0]; 1866 } 1867 1868 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1869 { 1870 return dev->safw_phys_luns->lun[lun].bus >> 6; 1871 } 1872 1873 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1874 { 1875 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1876 } 1877 1878 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1879 { 1880 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1881 } 1882 1883 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1884 int bus, int target) 1885 { 1886 kfree(dev->hba_map[bus][target].safw_identify_resp); 1887 dev->hba_map[bus][target].safw_identify_resp = NULL; 1888 } 1889 1890 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1891 int lun_count) 1892 { 1893 int luns; 1894 int i; 1895 u32 bus; 1896 u32 target; 1897 1898 luns = aac_get_safw_phys_lun_count(dev); 1899 1900 if (luns < lun_count) 1901 lun_count = luns; 1902 else if (lun_count < 0) 1903 lun_count = luns; 1904 1905 for (i = 0; i < lun_count; i++) { 1906 bus = aac_get_safw_phys_bus(dev, i); 1907 target = aac_get_safw_phys_target(dev, i); 1908 1909 aac_free_safw_identify_resp(dev, bus, target); 1910 } 1911 } 1912 1913 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1914 { 1915 int i; 1916 int rcode = 0; 1917 u32 lun_count; 1918 u32 bus; 1919 u32 target; 1920 struct aac_ciss_identify_pd *identify_resp = NULL; 1921 1922 lun_count = aac_get_safw_phys_lun_count(dev); 1923 1924 for (i = 0; i < lun_count; ++i) { 1925 1926 bus = aac_get_safw_phys_bus(dev, i); 1927 target = aac_get_safw_phys_target(dev, i); 1928 1929 rcode = aac_issue_safw_bmic_identify(dev, 1930 &identify_resp, bus, target); 1931 1932 if (unlikely(rcode < 0)) 1933 goto free_identify_resp; 1934 1935 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1936 } 1937 1938 out: 1939 return rcode; 1940 free_identify_resp: 1941 aac_free_safw_all_identify_resp(dev, i); 1942 goto out; 1943 } 1944 1945 /** 1946 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1947 * @dev: aac_dev structure 1948 * 1949 * Update our hba map with the information gathered from the FW 1950 */ 1951 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1952 { 1953 /* ok and extended reporting */ 1954 u32 lun_count, nexus; 1955 u32 i, bus, target; 1956 u8 expose_flag, attribs; 1957 1958 lun_count = aac_get_safw_phys_lun_count(dev); 1959 1960 dev->scan_counter++; 1961 1962 for (i = 0; i < lun_count; ++i) { 1963 1964 bus = aac_get_safw_phys_bus(dev, i); 1965 target = aac_get_safw_phys_target(dev, i); 1966 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1967 attribs = aac_get_safw_phys_attribs(dev, i); 1968 nexus = aac_get_safw_phys_nexus(dev, i); 1969 1970 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1971 continue; 1972 1973 if (expose_flag != 0) { 1974 dev->hba_map[bus][target].devtype = 1975 AAC_DEVTYPE_RAID_MEMBER; 1976 continue; 1977 } 1978 1979 if (nexus != 0 && (attribs & 8)) { 1980 dev->hba_map[bus][target].devtype = 1981 AAC_DEVTYPE_NATIVE_RAW; 1982 dev->hba_map[bus][target].rmw_nexus = 1983 nexus; 1984 } else 1985 dev->hba_map[bus][target].devtype = 1986 AAC_DEVTYPE_ARC_RAW; 1987 1988 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1989 1990 aac_set_safw_target_qd(dev, bus, target); 1991 } 1992 } 1993 1994 static int aac_setup_safw_targets(struct aac_dev *dev) 1995 { 1996 int rcode = 0; 1997 1998 rcode = aac_get_containers(dev); 1999 if (unlikely(rcode < 0)) 2000 goto out; 2001 2002 rcode = aac_get_safw_ciss_luns(dev); 2003 if (unlikely(rcode < 0)) 2004 goto out; 2005 2006 rcode = aac_get_safw_attr_all_targets(dev); 2007 if (unlikely(rcode < 0)) 2008 goto free_ciss_luns; 2009 2010 aac_set_safw_attr_all_targets(dev); 2011 2012 aac_free_safw_all_identify_resp(dev, -1); 2013 free_ciss_luns: 2014 aac_free_safw_ciss_luns(dev); 2015 out: 2016 return rcode; 2017 } 2018 2019 int aac_setup_safw_adapter(struct aac_dev *dev) 2020 { 2021 return aac_setup_safw_targets(dev); 2022 } 2023 2024 int aac_get_adapter_info(struct aac_dev* dev) 2025 { 2026 struct fib* fibptr; 2027 int rcode; 2028 u32 tmp, bus, target; 2029 struct aac_adapter_info *info; 2030 struct aac_bus_info *command; 2031 struct aac_bus_info_response *bus_info; 2032 2033 if (!(fibptr = aac_fib_alloc(dev))) 2034 return -ENOMEM; 2035 2036 aac_fib_init(fibptr); 2037 info = (struct aac_adapter_info *) fib_data(fibptr); 2038 memset(info,0,sizeof(*info)); 2039 2040 rcode = aac_fib_send(RequestAdapterInfo, 2041 fibptr, 2042 sizeof(*info), 2043 FsaNormal, 2044 -1, 1, /* First `interrupt' command uses special wait */ 2045 NULL, 2046 NULL); 2047 2048 if (rcode < 0) { 2049 /* FIB should be freed only after 2050 * getting the response from the F/W */ 2051 if (rcode != -ERESTARTSYS) { 2052 aac_fib_complete(fibptr); 2053 aac_fib_free(fibptr); 2054 } 2055 return rcode; 2056 } 2057 memcpy(&dev->adapter_info, info, sizeof(*info)); 2058 2059 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2060 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2061 struct aac_supplement_adapter_info * sinfo; 2062 2063 aac_fib_init(fibptr); 2064 2065 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2066 2067 memset(sinfo,0,sizeof(*sinfo)); 2068 2069 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2070 fibptr, 2071 sizeof(*sinfo), 2072 FsaNormal, 2073 1, 1, 2074 NULL, 2075 NULL); 2076 2077 if (rcode >= 0) 2078 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2079 if (rcode == -ERESTARTSYS) { 2080 fibptr = aac_fib_alloc(dev); 2081 if (!fibptr) 2082 return -ENOMEM; 2083 } 2084 2085 } 2086 2087 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2088 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2089 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2090 dev->hba_map[bus][target].devtype = 0; 2091 dev->hba_map[bus][target].qd_limit = 0; 2092 } 2093 } 2094 2095 /* 2096 * GetBusInfo 2097 */ 2098 2099 aac_fib_init(fibptr); 2100 2101 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2102 2103 memset(bus_info, 0, sizeof(*bus_info)); 2104 2105 command = (struct aac_bus_info *)bus_info; 2106 2107 command->Command = cpu_to_le32(VM_Ioctl); 2108 command->ObjType = cpu_to_le32(FT_DRIVE); 2109 command->MethodId = cpu_to_le32(1); 2110 command->CtlCmd = cpu_to_le32(GetBusInfo); 2111 2112 rcode = aac_fib_send(ContainerCommand, 2113 fibptr, 2114 sizeof (*bus_info), 2115 FsaNormal, 2116 1, 1, 2117 NULL, NULL); 2118 2119 /* reasoned default */ 2120 dev->maximum_num_physicals = 16; 2121 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2122 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2123 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2124 } 2125 2126 if (!dev->in_reset) { 2127 char buffer[16]; 2128 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2129 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2130 dev->name, 2131 dev->id, 2132 tmp>>24, 2133 (tmp>>16)&0xff, 2134 tmp&0xff, 2135 le32_to_cpu(dev->adapter_info.kernelbuild), 2136 (int)sizeof(dev->supplement_adapter_info.build_date), 2137 dev->supplement_adapter_info.build_date); 2138 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2139 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2140 dev->name, dev->id, 2141 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2142 le32_to_cpu(dev->adapter_info.monitorbuild)); 2143 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2144 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2145 dev->name, dev->id, 2146 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2147 le32_to_cpu(dev->adapter_info.biosbuild)); 2148 buffer[0] = '\0'; 2149 if (aac_get_serial_number( 2150 shost_to_class(dev->scsi_host_ptr), buffer)) 2151 printk(KERN_INFO "%s%d: serial %s", 2152 dev->name, dev->id, buffer); 2153 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2154 printk(KERN_INFO "%s%d: TSID %.*s\n", 2155 dev->name, dev->id, 2156 (int)sizeof(dev->supplement_adapter_info 2157 .vpd_info.tsid), 2158 dev->supplement_adapter_info.vpd_info.tsid); 2159 } 2160 if (!aac_check_reset || ((aac_check_reset == 1) && 2161 (dev->supplement_adapter_info.supported_options2 & 2162 AAC_OPTION_IGNORE_RESET))) { 2163 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2164 dev->name, dev->id); 2165 } 2166 } 2167 2168 dev->cache_protected = 0; 2169 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2170 AAC_FEATURE_JBOD) != 0); 2171 dev->nondasd_support = 0; 2172 dev->raid_scsi_mode = 0; 2173 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2174 dev->nondasd_support = 1; 2175 2176 /* 2177 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2178 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2179 * force nondasd support on. If we decide to allow the non-dasd flag 2180 * additional changes changes will have to be made to support 2181 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2182 * changed to support the new dev->raid_scsi_mode flag instead of 2183 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2184 * function aac_detect will have to be modified where it sets up the 2185 * max number of channels based on the aac->nondasd_support flag only. 2186 */ 2187 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2188 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2189 dev->nondasd_support = 1; 2190 dev->raid_scsi_mode = 1; 2191 } 2192 if (dev->raid_scsi_mode != 0) 2193 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2194 dev->name, dev->id); 2195 2196 if (nondasd != -1) 2197 dev->nondasd_support = (nondasd!=0); 2198 if (dev->nondasd_support && !dev->in_reset) 2199 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2200 2201 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2202 dev->needs_dac = 1; 2203 dev->dac_support = 0; 2204 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2205 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2206 if (!dev->in_reset) 2207 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2208 dev->name, dev->id); 2209 dev->dac_support = 1; 2210 } 2211 2212 if(dacmode != -1) { 2213 dev->dac_support = (dacmode!=0); 2214 } 2215 2216 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2217 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2218 & AAC_QUIRK_SCSI_32)) { 2219 dev->nondasd_support = 0; 2220 dev->jbod = 0; 2221 expose_physicals = 0; 2222 } 2223 2224 if (dev->dac_support) { 2225 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) { 2226 if (!dev->in_reset) 2227 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2228 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) { 2229 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2230 dev->dac_support = 0; 2231 } else { 2232 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2233 rcode = -ENOMEM; 2234 } 2235 } 2236 /* 2237 * Deal with configuring for the individualized limits of each packet 2238 * interface. 2239 */ 2240 dev->a_ops.adapter_scsi = (dev->dac_support) 2241 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2242 ? aac_scsi_32_64 2243 : aac_scsi_64) 2244 : aac_scsi_32; 2245 if (dev->raw_io_interface) { 2246 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2247 ? aac_bounds_64 2248 : aac_bounds_32; 2249 dev->a_ops.adapter_read = aac_read_raw_io; 2250 dev->a_ops.adapter_write = aac_write_raw_io; 2251 } else { 2252 dev->a_ops.adapter_bounds = aac_bounds_32; 2253 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2254 sizeof(struct aac_fibhdr) - 2255 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2256 sizeof(struct sgentry); 2257 if (dev->dac_support) { 2258 dev->a_ops.adapter_read = aac_read_block64; 2259 dev->a_ops.adapter_write = aac_write_block64; 2260 /* 2261 * 38 scatter gather elements 2262 */ 2263 dev->scsi_host_ptr->sg_tablesize = 2264 (dev->max_fib_size - 2265 sizeof(struct aac_fibhdr) - 2266 sizeof(struct aac_write64) + 2267 sizeof(struct sgentry64)) / 2268 sizeof(struct sgentry64); 2269 } else { 2270 dev->a_ops.adapter_read = aac_read_block; 2271 dev->a_ops.adapter_write = aac_write_block; 2272 } 2273 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2274 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2275 /* 2276 * Worst case size that could cause sg overflow when 2277 * we break up SG elements that are larger than 64KB. 2278 * Would be nice if we could tell the SCSI layer what 2279 * the maximum SG element size can be. Worst case is 2280 * (sg_tablesize-1) 4KB elements with one 64KB 2281 * element. 2282 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2283 */ 2284 dev->scsi_host_ptr->max_sectors = 2285 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2286 } 2287 } 2288 if (!dev->sync_mode && dev->sa_firmware && 2289 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2290 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2291 HBA_MAX_SG_SEPARATE; 2292 2293 /* FIB should be freed only after getting the response from the F/W */ 2294 if (rcode != -ERESTARTSYS) { 2295 aac_fib_complete(fibptr); 2296 aac_fib_free(fibptr); 2297 } 2298 2299 return rcode; 2300 } 2301 2302 2303 static void io_callback(void *context, struct fib * fibptr) 2304 { 2305 struct aac_dev *dev; 2306 struct aac_read_reply *readreply; 2307 struct scsi_cmnd *scsicmd; 2308 u32 cid; 2309 2310 scsicmd = (struct scsi_cmnd *) context; 2311 2312 if (!aac_valid_context(scsicmd, fibptr)) 2313 return; 2314 2315 dev = fibptr->dev; 2316 cid = scmd_id(scsicmd); 2317 2318 if (nblank(dprintk(x))) { 2319 u64 lba; 2320 switch (scsicmd->cmnd[0]) { 2321 case WRITE_6: 2322 case READ_6: 2323 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2324 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2325 break; 2326 case WRITE_16: 2327 case READ_16: 2328 lba = ((u64)scsicmd->cmnd[2] << 56) | 2329 ((u64)scsicmd->cmnd[3] << 48) | 2330 ((u64)scsicmd->cmnd[4] << 40) | 2331 ((u64)scsicmd->cmnd[5] << 32) | 2332 ((u64)scsicmd->cmnd[6] << 24) | 2333 (scsicmd->cmnd[7] << 16) | 2334 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2335 break; 2336 case WRITE_12: 2337 case READ_12: 2338 lba = ((u64)scsicmd->cmnd[2] << 24) | 2339 (scsicmd->cmnd[3] << 16) | 2340 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2341 break; 2342 default: 2343 lba = ((u64)scsicmd->cmnd[2] << 24) | 2344 (scsicmd->cmnd[3] << 16) | 2345 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2346 break; 2347 } 2348 printk(KERN_DEBUG 2349 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2350 smp_processor_id(), (unsigned long long)lba, jiffies); 2351 } 2352 2353 BUG_ON(fibptr == NULL); 2354 2355 scsi_dma_unmap(scsicmd); 2356 2357 readreply = (struct aac_read_reply *)fib_data(fibptr); 2358 switch (le32_to_cpu(readreply->status)) { 2359 case ST_OK: 2360 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2361 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2362 break; 2363 case ST_NOT_READY: 2364 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2365 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2366 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2367 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2368 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2369 SCSI_SENSE_BUFFERSIZE)); 2370 break; 2371 case ST_MEDERR: 2372 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2373 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2374 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2375 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2376 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2377 SCSI_SENSE_BUFFERSIZE)); 2378 break; 2379 default: 2380 #ifdef AAC_DETAILED_STATUS_INFO 2381 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2382 le32_to_cpu(readreply->status)); 2383 #endif 2384 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2385 set_sense(&dev->fsa_dev[cid].sense_data, 2386 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2387 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2388 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2389 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2390 SCSI_SENSE_BUFFERSIZE)); 2391 break; 2392 } 2393 aac_fib_complete(fibptr); 2394 2395 scsicmd->scsi_done(scsicmd); 2396 } 2397 2398 static int aac_read(struct scsi_cmnd * scsicmd) 2399 { 2400 u64 lba; 2401 u32 count; 2402 int status; 2403 struct aac_dev *dev; 2404 struct fib * cmd_fibcontext; 2405 int cid; 2406 2407 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2408 /* 2409 * Get block address and transfer length 2410 */ 2411 switch (scsicmd->cmnd[0]) { 2412 case READ_6: 2413 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2414 2415 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2416 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2417 count = scsicmd->cmnd[4]; 2418 2419 if (count == 0) 2420 count = 256; 2421 break; 2422 case READ_16: 2423 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2424 2425 lba = ((u64)scsicmd->cmnd[2] << 56) | 2426 ((u64)scsicmd->cmnd[3] << 48) | 2427 ((u64)scsicmd->cmnd[4] << 40) | 2428 ((u64)scsicmd->cmnd[5] << 32) | 2429 ((u64)scsicmd->cmnd[6] << 24) | 2430 (scsicmd->cmnd[7] << 16) | 2431 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2432 count = (scsicmd->cmnd[10] << 24) | 2433 (scsicmd->cmnd[11] << 16) | 2434 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2435 break; 2436 case READ_12: 2437 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2438 2439 lba = ((u64)scsicmd->cmnd[2] << 24) | 2440 (scsicmd->cmnd[3] << 16) | 2441 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2442 count = (scsicmd->cmnd[6] << 24) | 2443 (scsicmd->cmnd[7] << 16) | 2444 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2445 break; 2446 default: 2447 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2448 2449 lba = ((u64)scsicmd->cmnd[2] << 24) | 2450 (scsicmd->cmnd[3] << 16) | 2451 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2452 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2453 break; 2454 } 2455 2456 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2457 cid = scmd_id(scsicmd); 2458 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2459 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2460 set_sense(&dev->fsa_dev[cid].sense_data, 2461 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2462 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2463 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2464 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2465 SCSI_SENSE_BUFFERSIZE)); 2466 scsicmd->scsi_done(scsicmd); 2467 return 0; 2468 } 2469 2470 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2471 smp_processor_id(), (unsigned long long)lba, jiffies)); 2472 if (aac_adapter_bounds(dev,scsicmd,lba)) 2473 return 0; 2474 /* 2475 * Alocate and initialize a Fib 2476 */ 2477 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2478 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2479 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2480 2481 /* 2482 * Check that the command queued to the controller 2483 */ 2484 if (status == -EINPROGRESS) 2485 return 0; 2486 2487 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2488 /* 2489 * For some reason, the Fib didn't queue, return QUEUE_FULL 2490 */ 2491 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2492 scsicmd->scsi_done(scsicmd); 2493 aac_fib_complete(cmd_fibcontext); 2494 aac_fib_free(cmd_fibcontext); 2495 return 0; 2496 } 2497 2498 static int aac_write(struct scsi_cmnd * scsicmd) 2499 { 2500 u64 lba; 2501 u32 count; 2502 int fua; 2503 int status; 2504 struct aac_dev *dev; 2505 struct fib * cmd_fibcontext; 2506 int cid; 2507 2508 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2509 /* 2510 * Get block address and transfer length 2511 */ 2512 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2513 { 2514 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2515 count = scsicmd->cmnd[4]; 2516 if (count == 0) 2517 count = 256; 2518 fua = 0; 2519 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2520 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2521 2522 lba = ((u64)scsicmd->cmnd[2] << 56) | 2523 ((u64)scsicmd->cmnd[3] << 48) | 2524 ((u64)scsicmd->cmnd[4] << 40) | 2525 ((u64)scsicmd->cmnd[5] << 32) | 2526 ((u64)scsicmd->cmnd[6] << 24) | 2527 (scsicmd->cmnd[7] << 16) | 2528 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2529 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2530 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2531 fua = scsicmd->cmnd[1] & 0x8; 2532 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2533 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2534 2535 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2536 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2537 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2538 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2539 fua = scsicmd->cmnd[1] & 0x8; 2540 } else { 2541 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2542 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2543 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2544 fua = scsicmd->cmnd[1] & 0x8; 2545 } 2546 2547 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2548 cid = scmd_id(scsicmd); 2549 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2550 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2551 set_sense(&dev->fsa_dev[cid].sense_data, 2552 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2553 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2554 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2555 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2556 SCSI_SENSE_BUFFERSIZE)); 2557 scsicmd->scsi_done(scsicmd); 2558 return 0; 2559 } 2560 2561 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2562 smp_processor_id(), (unsigned long long)lba, jiffies)); 2563 if (aac_adapter_bounds(dev,scsicmd,lba)) 2564 return 0; 2565 /* 2566 * Allocate and initialize a Fib then setup a BlockWrite command 2567 */ 2568 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2569 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2570 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2571 2572 /* 2573 * Check that the command queued to the controller 2574 */ 2575 if (status == -EINPROGRESS) 2576 return 0; 2577 2578 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2579 /* 2580 * For some reason, the Fib didn't queue, return QUEUE_FULL 2581 */ 2582 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2583 scsicmd->scsi_done(scsicmd); 2584 2585 aac_fib_complete(cmd_fibcontext); 2586 aac_fib_free(cmd_fibcontext); 2587 return 0; 2588 } 2589 2590 static void synchronize_callback(void *context, struct fib *fibptr) 2591 { 2592 struct aac_synchronize_reply *synchronizereply; 2593 struct scsi_cmnd *cmd = context; 2594 2595 if (!aac_valid_context(cmd, fibptr)) 2596 return; 2597 2598 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2599 smp_processor_id(), jiffies)); 2600 BUG_ON(fibptr == NULL); 2601 2602 2603 synchronizereply = fib_data(fibptr); 2604 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2605 cmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2606 else { 2607 struct scsi_device *sdev = cmd->device; 2608 struct aac_dev *dev = fibptr->dev; 2609 u32 cid = sdev_id(sdev); 2610 printk(KERN_WARNING 2611 "synchronize_callback: synchronize failed, status = %d\n", 2612 le32_to_cpu(synchronizereply->status)); 2613 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2614 set_sense(&dev->fsa_dev[cid].sense_data, 2615 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2616 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2617 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2618 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2619 SCSI_SENSE_BUFFERSIZE)); 2620 } 2621 2622 aac_fib_complete(fibptr); 2623 aac_fib_free(fibptr); 2624 cmd->scsi_done(cmd); 2625 } 2626 2627 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2628 { 2629 int status; 2630 struct fib *cmd_fibcontext; 2631 struct aac_synchronize *synchronizecmd; 2632 struct scsi_device *sdev = scsicmd->device; 2633 struct aac_dev *aac; 2634 2635 aac = (struct aac_dev *)sdev->host->hostdata; 2636 if (aac->in_reset) 2637 return SCSI_MLQUEUE_HOST_BUSY; 2638 2639 /* 2640 * Allocate and initialize a Fib 2641 */ 2642 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2643 2644 aac_fib_init(cmd_fibcontext); 2645 2646 synchronizecmd = fib_data(cmd_fibcontext); 2647 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2648 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2649 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2650 synchronizecmd->count = 2651 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2652 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2653 2654 /* 2655 * Now send the Fib to the adapter 2656 */ 2657 status = aac_fib_send(ContainerCommand, 2658 cmd_fibcontext, 2659 sizeof(struct aac_synchronize), 2660 FsaNormal, 2661 0, 1, 2662 (fib_callback)synchronize_callback, 2663 (void *)scsicmd); 2664 2665 /* 2666 * Check that the command queued to the controller 2667 */ 2668 if (status == -EINPROGRESS) 2669 return 0; 2670 2671 printk(KERN_WARNING 2672 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2673 aac_fib_complete(cmd_fibcontext); 2674 aac_fib_free(cmd_fibcontext); 2675 return SCSI_MLQUEUE_HOST_BUSY; 2676 } 2677 2678 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2679 { 2680 struct scsi_cmnd *scsicmd = context; 2681 2682 if (!aac_valid_context(scsicmd, fibptr)) 2683 return; 2684 2685 BUG_ON(fibptr == NULL); 2686 2687 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2688 2689 aac_fib_complete(fibptr); 2690 aac_fib_free(fibptr); 2691 scsicmd->scsi_done(scsicmd); 2692 } 2693 2694 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2695 { 2696 int status; 2697 struct fib *cmd_fibcontext; 2698 struct aac_power_management *pmcmd; 2699 struct scsi_device *sdev = scsicmd->device; 2700 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2701 2702 if (!(aac->supplement_adapter_info.supported_options2 & 2703 AAC_OPTION_POWER_MANAGEMENT)) { 2704 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2705 scsicmd->scsi_done(scsicmd); 2706 return 0; 2707 } 2708 2709 if (aac->in_reset) 2710 return SCSI_MLQUEUE_HOST_BUSY; 2711 2712 /* 2713 * Allocate and initialize a Fib 2714 */ 2715 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2716 2717 aac_fib_init(cmd_fibcontext); 2718 2719 pmcmd = fib_data(cmd_fibcontext); 2720 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2721 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2722 /* Eject bit ignored, not relevant */ 2723 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2724 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2725 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2726 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2727 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2728 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2729 2730 /* 2731 * Now send the Fib to the adapter 2732 */ 2733 status = aac_fib_send(ContainerCommand, 2734 cmd_fibcontext, 2735 sizeof(struct aac_power_management), 2736 FsaNormal, 2737 0, 1, 2738 (fib_callback)aac_start_stop_callback, 2739 (void *)scsicmd); 2740 2741 /* 2742 * Check that the command queued to the controller 2743 */ 2744 if (status == -EINPROGRESS) 2745 return 0; 2746 2747 aac_fib_complete(cmd_fibcontext); 2748 aac_fib_free(cmd_fibcontext); 2749 return SCSI_MLQUEUE_HOST_BUSY; 2750 } 2751 2752 /** 2753 * aac_scsi_cmd() - Process SCSI command 2754 * @scsicmd: SCSI command block 2755 * 2756 * Emulate a SCSI command and queue the required request for the 2757 * aacraid firmware. 2758 */ 2759 2760 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2761 { 2762 u32 cid, bus; 2763 struct Scsi_Host *host = scsicmd->device->host; 2764 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2765 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2766 2767 if (fsa_dev_ptr == NULL) 2768 return -1; 2769 /* 2770 * If the bus, id or lun is out of range, return fail 2771 * Test does not apply to ID 16, the pseudo id for the controller 2772 * itself. 2773 */ 2774 cid = scmd_id(scsicmd); 2775 if (cid != host->this_id) { 2776 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2777 if((cid >= dev->maximum_num_containers) || 2778 (scsicmd->device->lun != 0)) { 2779 scsicmd->result = DID_NO_CONNECT << 16; 2780 goto scsi_done_ret; 2781 } 2782 2783 /* 2784 * If the target container doesn't exist, it may have 2785 * been newly created 2786 */ 2787 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2788 (fsa_dev_ptr[cid].sense_data.sense_key == 2789 NOT_READY)) { 2790 switch (scsicmd->cmnd[0]) { 2791 case SERVICE_ACTION_IN_16: 2792 if (!(dev->raw_io_interface) || 2793 !(dev->raw_io_64) || 2794 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2795 break; 2796 fallthrough; 2797 case INQUIRY: 2798 case READ_CAPACITY: 2799 case TEST_UNIT_READY: 2800 if (dev->in_reset) 2801 return -1; 2802 return _aac_probe_container(scsicmd, 2803 aac_probe_container_callback2); 2804 default: 2805 break; 2806 } 2807 } 2808 } else { /* check for physical non-dasd devices */ 2809 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2810 2811 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2812 dev->hba_map[bus][cid].devtype 2813 == AAC_DEVTYPE_NATIVE_RAW) { 2814 if (dev->in_reset) 2815 return -1; 2816 return aac_send_hba_fib(scsicmd); 2817 } else if (dev->nondasd_support || expose_physicals || 2818 dev->jbod) { 2819 if (dev->in_reset) 2820 return -1; 2821 return aac_send_srb_fib(scsicmd); 2822 } else { 2823 scsicmd->result = DID_NO_CONNECT << 16; 2824 goto scsi_done_ret; 2825 } 2826 } 2827 } 2828 /* 2829 * else Command for the controller itself 2830 */ 2831 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2832 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2833 { 2834 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2835 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2836 set_sense(&dev->fsa_dev[cid].sense_data, 2837 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2838 ASENCODE_INVALID_COMMAND, 0, 0); 2839 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2840 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2841 SCSI_SENSE_BUFFERSIZE)); 2842 goto scsi_done_ret; 2843 } 2844 2845 switch (scsicmd->cmnd[0]) { 2846 case READ_6: 2847 case READ_10: 2848 case READ_12: 2849 case READ_16: 2850 if (dev->in_reset) 2851 return -1; 2852 return aac_read(scsicmd); 2853 2854 case WRITE_6: 2855 case WRITE_10: 2856 case WRITE_12: 2857 case WRITE_16: 2858 if (dev->in_reset) 2859 return -1; 2860 return aac_write(scsicmd); 2861 2862 case SYNCHRONIZE_CACHE: 2863 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2864 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2865 break; 2866 } 2867 /* Issue FIB to tell Firmware to flush it's cache */ 2868 if ((aac_cache & 6) != 2) 2869 return aac_synchronize(scsicmd); 2870 fallthrough; 2871 case INQUIRY: 2872 { 2873 struct inquiry_data inq_data; 2874 2875 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2876 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2877 2878 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2879 char *arr = (char *)&inq_data; 2880 2881 /* EVPD bit set */ 2882 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2883 INQD_PDT_PROC : INQD_PDT_DA; 2884 if (scsicmd->cmnd[2] == 0) { 2885 /* supported vital product data pages */ 2886 arr[3] = 3; 2887 arr[4] = 0x0; 2888 arr[5] = 0x80; 2889 arr[6] = 0x83; 2890 arr[1] = scsicmd->cmnd[2]; 2891 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2892 sizeof(inq_data)); 2893 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2894 } else if (scsicmd->cmnd[2] == 0x80) { 2895 /* unit serial number page */ 2896 arr[3] = setinqserial(dev, &arr[4], 2897 scmd_id(scsicmd)); 2898 arr[1] = scsicmd->cmnd[2]; 2899 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2900 sizeof(inq_data)); 2901 if (aac_wwn != 2) 2902 return aac_get_container_serial( 2903 scsicmd); 2904 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2905 } else if (scsicmd->cmnd[2] == 0x83) { 2906 /* vpd page 0x83 - Device Identification Page */ 2907 char *sno = (char *)&inq_data; 2908 sno[3] = setinqserial(dev, &sno[4], 2909 scmd_id(scsicmd)); 2910 if (aac_wwn != 2) 2911 return aac_get_container_serial( 2912 scsicmd); 2913 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2914 } else { 2915 /* vpd page not implemented */ 2916 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2917 set_sense(&dev->fsa_dev[cid].sense_data, 2918 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2919 ASENCODE_NO_SENSE, 7, 2); 2920 memcpy(scsicmd->sense_buffer, 2921 &dev->fsa_dev[cid].sense_data, 2922 min_t(size_t, 2923 sizeof(dev->fsa_dev[cid].sense_data), 2924 SCSI_SENSE_BUFFERSIZE)); 2925 } 2926 break; 2927 } 2928 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2929 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2930 inq_data.inqd_len = 31; 2931 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2932 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2933 /* 2934 * Set the Vendor, Product, and Revision Level 2935 * see: <vendor>.c i.e. aac.c 2936 */ 2937 if (cid == host->this_id) { 2938 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2939 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2940 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2941 sizeof(inq_data)); 2942 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2943 break; 2944 } 2945 if (dev->in_reset) 2946 return -1; 2947 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2948 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2949 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2950 return aac_get_container_name(scsicmd); 2951 } 2952 case SERVICE_ACTION_IN_16: 2953 if (!(dev->raw_io_interface) || 2954 !(dev->raw_io_64) || 2955 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2956 break; 2957 { 2958 u64 capacity; 2959 char cp[13]; 2960 unsigned int alloc_len; 2961 2962 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2963 capacity = fsa_dev_ptr[cid].size - 1; 2964 cp[0] = (capacity >> 56) & 0xff; 2965 cp[1] = (capacity >> 48) & 0xff; 2966 cp[2] = (capacity >> 40) & 0xff; 2967 cp[3] = (capacity >> 32) & 0xff; 2968 cp[4] = (capacity >> 24) & 0xff; 2969 cp[5] = (capacity >> 16) & 0xff; 2970 cp[6] = (capacity >> 8) & 0xff; 2971 cp[7] = (capacity >> 0) & 0xff; 2972 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2973 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2974 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2975 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 2976 cp[12] = 0; 2977 2978 alloc_len = ((scsicmd->cmnd[10] << 24) 2979 + (scsicmd->cmnd[11] << 16) 2980 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 2981 2982 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 2983 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 2984 if (alloc_len < scsi_bufflen(scsicmd)) 2985 scsi_set_resid(scsicmd, 2986 scsi_bufflen(scsicmd) - alloc_len); 2987 2988 /* Do not cache partition table for arrays */ 2989 scsicmd->device->removable = 1; 2990 2991 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2992 break; 2993 } 2994 2995 case READ_CAPACITY: 2996 { 2997 u32 capacity; 2998 char cp[8]; 2999 3000 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3001 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3002 capacity = fsa_dev_ptr[cid].size - 1; 3003 else 3004 capacity = (u32)-1; 3005 3006 cp[0] = (capacity >> 24) & 0xff; 3007 cp[1] = (capacity >> 16) & 0xff; 3008 cp[2] = (capacity >> 8) & 0xff; 3009 cp[3] = (capacity >> 0) & 0xff; 3010 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3011 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3012 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3013 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3014 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3015 /* Do not cache partition table for arrays */ 3016 scsicmd->device->removable = 1; 3017 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3018 break; 3019 } 3020 3021 case MODE_SENSE: 3022 { 3023 int mode_buf_length = 4; 3024 u32 capacity; 3025 aac_modep_data mpd; 3026 3027 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3028 capacity = fsa_dev_ptr[cid].size - 1; 3029 else 3030 capacity = (u32)-1; 3031 3032 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3033 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3034 3035 /* Mode data length */ 3036 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3037 /* Medium type - default */ 3038 mpd.hd.med_type = 0; 3039 /* Device-specific param, 3040 bit 8: 0/1 = write enabled/protected 3041 bit 4: 0/1 = FUA enabled */ 3042 mpd.hd.dev_par = 0; 3043 3044 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3045 mpd.hd.dev_par = 0x10; 3046 if (scsicmd->cmnd[1] & 0x8) 3047 mpd.hd.bd_length = 0; /* Block descriptor length */ 3048 else { 3049 mpd.hd.bd_length = sizeof(mpd.bd); 3050 mpd.hd.data_length += mpd.hd.bd_length; 3051 mpd.bd.block_length[0] = 3052 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3053 mpd.bd.block_length[1] = 3054 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3055 mpd.bd.block_length[2] = 3056 fsa_dev_ptr[cid].block_size & 0xff; 3057 3058 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3059 if (scsicmd->cmnd[2] == 0x1C) { 3060 /* page length */ 3061 mpd.mpc_buf[1] = 0xa; 3062 /* Mode data length */ 3063 mpd.hd.data_length = 23; 3064 } else { 3065 /* Mode data length */ 3066 mpd.hd.data_length = 15; 3067 } 3068 3069 if (capacity > 0xffffff) { 3070 mpd.bd.block_count[0] = 0xff; 3071 mpd.bd.block_count[1] = 0xff; 3072 mpd.bd.block_count[2] = 0xff; 3073 } else { 3074 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3075 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3076 mpd.bd.block_count[2] = capacity & 0xff; 3077 } 3078 } 3079 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3080 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3081 mpd.hd.data_length += 3; 3082 mpd.mpc_buf[0] = 8; 3083 mpd.mpc_buf[1] = 1; 3084 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3085 ? 0 : 0x04; /* WCE */ 3086 mode_buf_length = sizeof(mpd); 3087 } 3088 3089 if (mode_buf_length > scsicmd->cmnd[4]) 3090 mode_buf_length = scsicmd->cmnd[4]; 3091 else 3092 mode_buf_length = sizeof(mpd); 3093 scsi_sg_copy_from_buffer(scsicmd, 3094 (char *)&mpd, 3095 mode_buf_length); 3096 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3097 break; 3098 } 3099 case MODE_SENSE_10: 3100 { 3101 u32 capacity; 3102 int mode_buf_length = 8; 3103 aac_modep10_data mpd10; 3104 3105 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3106 capacity = fsa_dev_ptr[cid].size - 1; 3107 else 3108 capacity = (u32)-1; 3109 3110 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3111 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3112 /* Mode data length (MSB) */ 3113 mpd10.hd.data_length[0] = 0; 3114 /* Mode data length (LSB) */ 3115 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3116 /* Medium type - default */ 3117 mpd10.hd.med_type = 0; 3118 /* Device-specific param, 3119 bit 8: 0/1 = write enabled/protected 3120 bit 4: 0/1 = FUA enabled */ 3121 mpd10.hd.dev_par = 0; 3122 3123 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3124 mpd10.hd.dev_par = 0x10; 3125 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3126 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3127 if (scsicmd->cmnd[1] & 0x8) { 3128 /* Block descriptor length (MSB) */ 3129 mpd10.hd.bd_length[0] = 0; 3130 /* Block descriptor length (LSB) */ 3131 mpd10.hd.bd_length[1] = 0; 3132 } else { 3133 mpd10.hd.bd_length[0] = 0; 3134 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3135 3136 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3137 3138 mpd10.bd.block_length[0] = 3139 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3140 mpd10.bd.block_length[1] = 3141 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3142 mpd10.bd.block_length[2] = 3143 fsa_dev_ptr[cid].block_size & 0xff; 3144 3145 if (capacity > 0xffffff) { 3146 mpd10.bd.block_count[0] = 0xff; 3147 mpd10.bd.block_count[1] = 0xff; 3148 mpd10.bd.block_count[2] = 0xff; 3149 } else { 3150 mpd10.bd.block_count[0] = 3151 (capacity >> 16) & 0xff; 3152 mpd10.bd.block_count[1] = 3153 (capacity >> 8) & 0xff; 3154 mpd10.bd.block_count[2] = 3155 capacity & 0xff; 3156 } 3157 } 3158 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3159 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3160 mpd10.hd.data_length[1] += 3; 3161 mpd10.mpc_buf[0] = 8; 3162 mpd10.mpc_buf[1] = 1; 3163 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3164 ? 0 : 0x04; /* WCE */ 3165 mode_buf_length = sizeof(mpd10); 3166 if (mode_buf_length > scsicmd->cmnd[8]) 3167 mode_buf_length = scsicmd->cmnd[8]; 3168 } 3169 scsi_sg_copy_from_buffer(scsicmd, 3170 (char *)&mpd10, 3171 mode_buf_length); 3172 3173 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3174 break; 3175 } 3176 case REQUEST_SENSE: 3177 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3178 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3179 sizeof(struct sense_data)); 3180 memset(&dev->fsa_dev[cid].sense_data, 0, 3181 sizeof(struct sense_data)); 3182 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3183 break; 3184 3185 case ALLOW_MEDIUM_REMOVAL: 3186 dprintk((KERN_DEBUG "LOCK command.\n")); 3187 if (scsicmd->cmnd[4]) 3188 fsa_dev_ptr[cid].locked = 1; 3189 else 3190 fsa_dev_ptr[cid].locked = 0; 3191 3192 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3193 break; 3194 /* 3195 * These commands are all No-Ops 3196 */ 3197 case TEST_UNIT_READY: 3198 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3199 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3200 set_sense(&dev->fsa_dev[cid].sense_data, 3201 NOT_READY, SENCODE_BECOMING_READY, 3202 ASENCODE_BECOMING_READY, 0, 0); 3203 memcpy(scsicmd->sense_buffer, 3204 &dev->fsa_dev[cid].sense_data, 3205 min_t(size_t, 3206 sizeof(dev->fsa_dev[cid].sense_data), 3207 SCSI_SENSE_BUFFERSIZE)); 3208 break; 3209 } 3210 fallthrough; 3211 case RESERVE: 3212 case RELEASE: 3213 case REZERO_UNIT: 3214 case REASSIGN_BLOCKS: 3215 case SEEK_10: 3216 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3217 break; 3218 3219 case START_STOP: 3220 return aac_start_stop(scsicmd); 3221 3222 default: 3223 /* 3224 * Unhandled commands 3225 */ 3226 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3227 scsicmd->cmnd[0])); 3228 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3229 set_sense(&dev->fsa_dev[cid].sense_data, 3230 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3231 ASENCODE_INVALID_COMMAND, 0, 0); 3232 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3233 min_t(size_t, 3234 sizeof(dev->fsa_dev[cid].sense_data), 3235 SCSI_SENSE_BUFFERSIZE)); 3236 } 3237 3238 scsi_done_ret: 3239 3240 scsicmd->scsi_done(scsicmd); 3241 return 0; 3242 } 3243 3244 static int query_disk(struct aac_dev *dev, void __user *arg) 3245 { 3246 struct aac_query_disk qd; 3247 struct fsa_dev_info *fsa_dev_ptr; 3248 3249 fsa_dev_ptr = dev->fsa_dev; 3250 if (!fsa_dev_ptr) 3251 return -EBUSY; 3252 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3253 return -EFAULT; 3254 if (qd.cnum == -1) { 3255 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3256 return -EINVAL; 3257 qd.cnum = qd.id; 3258 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3259 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3260 return -EINVAL; 3261 qd.instance = dev->scsi_host_ptr->host_no; 3262 qd.bus = 0; 3263 qd.id = CONTAINER_TO_ID(qd.cnum); 3264 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3265 } 3266 else return -EINVAL; 3267 3268 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3269 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3270 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3271 3272 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3273 qd.unmapped = 1; 3274 else 3275 qd.unmapped = 0; 3276 3277 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3278 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3279 3280 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3281 return -EFAULT; 3282 return 0; 3283 } 3284 3285 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3286 { 3287 struct aac_delete_disk dd; 3288 struct fsa_dev_info *fsa_dev_ptr; 3289 3290 fsa_dev_ptr = dev->fsa_dev; 3291 if (!fsa_dev_ptr) 3292 return -EBUSY; 3293 3294 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3295 return -EFAULT; 3296 3297 if (dd.cnum >= dev->maximum_num_containers) 3298 return -EINVAL; 3299 /* 3300 * Mark this container as being deleted. 3301 */ 3302 fsa_dev_ptr[dd.cnum].deleted = 1; 3303 /* 3304 * Mark the container as no longer valid 3305 */ 3306 fsa_dev_ptr[dd.cnum].valid = 0; 3307 return 0; 3308 } 3309 3310 static int delete_disk(struct aac_dev *dev, void __user *arg) 3311 { 3312 struct aac_delete_disk dd; 3313 struct fsa_dev_info *fsa_dev_ptr; 3314 3315 fsa_dev_ptr = dev->fsa_dev; 3316 if (!fsa_dev_ptr) 3317 return -EBUSY; 3318 3319 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3320 return -EFAULT; 3321 3322 if (dd.cnum >= dev->maximum_num_containers) 3323 return -EINVAL; 3324 /* 3325 * If the container is locked, it can not be deleted by the API. 3326 */ 3327 if (fsa_dev_ptr[dd.cnum].locked) 3328 return -EBUSY; 3329 else { 3330 /* 3331 * Mark the container as no longer being valid. 3332 */ 3333 fsa_dev_ptr[dd.cnum].valid = 0; 3334 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3335 return 0; 3336 } 3337 } 3338 3339 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3340 { 3341 switch (cmd) { 3342 case FSACTL_QUERY_DISK: 3343 return query_disk(dev, arg); 3344 case FSACTL_DELETE_DISK: 3345 return delete_disk(dev, arg); 3346 case FSACTL_FORCE_DELETE_DISK: 3347 return force_delete_disk(dev, arg); 3348 case FSACTL_GET_CONTAINERS: 3349 return aac_get_containers(dev); 3350 default: 3351 return -ENOTTY; 3352 } 3353 } 3354 3355 /** 3356 * aac_srb_callback 3357 * @context: the context set in the fib - here it is scsi cmd 3358 * @fibptr: pointer to the fib 3359 * 3360 * Handles the completion of a scsi command to a non dasd device 3361 */ 3362 static void aac_srb_callback(void *context, struct fib * fibptr) 3363 { 3364 struct aac_srb_reply *srbreply; 3365 struct scsi_cmnd *scsicmd; 3366 3367 scsicmd = (struct scsi_cmnd *) context; 3368 3369 if (!aac_valid_context(scsicmd, fibptr)) 3370 return; 3371 3372 BUG_ON(fibptr == NULL); 3373 3374 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3375 3376 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3377 3378 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3379 /* fast response */ 3380 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3381 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3382 } else { 3383 /* 3384 * Calculate resid for sg 3385 */ 3386 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3387 - le32_to_cpu(srbreply->data_xfer_length)); 3388 } 3389 3390 3391 scsi_dma_unmap(scsicmd); 3392 3393 /* expose physical device if expose_physicald flag is on */ 3394 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3395 && expose_physicals > 0) 3396 aac_expose_phy_device(scsicmd); 3397 3398 /* 3399 * First check the fib status 3400 */ 3401 3402 if (le32_to_cpu(srbreply->status) != ST_OK) { 3403 int len; 3404 3405 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3406 le32_to_cpu(srbreply->status)); 3407 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3408 SCSI_SENSE_BUFFERSIZE); 3409 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION; 3410 memcpy(scsicmd->sense_buffer, 3411 srbreply->sense_data, len); 3412 } 3413 3414 /* 3415 * Next check the srb status 3416 */ 3417 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3418 case SRB_STATUS_ERROR_RECOVERY: 3419 case SRB_STATUS_PENDING: 3420 case SRB_STATUS_SUCCESS: 3421 scsicmd->result = DID_OK << 16; 3422 break; 3423 case SRB_STATUS_DATA_OVERRUN: 3424 switch (scsicmd->cmnd[0]) { 3425 case READ_6: 3426 case WRITE_6: 3427 case READ_10: 3428 case WRITE_10: 3429 case READ_12: 3430 case WRITE_12: 3431 case READ_16: 3432 case WRITE_16: 3433 if (le32_to_cpu(srbreply->data_xfer_length) 3434 < scsicmd->underflow) 3435 pr_warn("aacraid: SCSI CMD underflow\n"); 3436 else 3437 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3438 scsicmd->result = DID_ERROR << 16; 3439 break; 3440 case INQUIRY: 3441 scsicmd->result = DID_OK << 16; 3442 break; 3443 default: 3444 scsicmd->result = DID_OK << 16; 3445 break; 3446 } 3447 break; 3448 case SRB_STATUS_ABORTED: 3449 scsicmd->result = DID_ABORT << 16; 3450 break; 3451 case SRB_STATUS_ABORT_FAILED: 3452 /* 3453 * Not sure about this one - but assuming the 3454 * hba was trying to abort for some reason 3455 */ 3456 scsicmd->result = DID_ERROR << 16; 3457 break; 3458 case SRB_STATUS_PARITY_ERROR: 3459 scsicmd->result = DID_PARITY << 16; 3460 break; 3461 case SRB_STATUS_NO_DEVICE: 3462 case SRB_STATUS_INVALID_PATH_ID: 3463 case SRB_STATUS_INVALID_TARGET_ID: 3464 case SRB_STATUS_INVALID_LUN: 3465 case SRB_STATUS_SELECTION_TIMEOUT: 3466 scsicmd->result = DID_NO_CONNECT << 16; 3467 break; 3468 3469 case SRB_STATUS_COMMAND_TIMEOUT: 3470 case SRB_STATUS_TIMEOUT: 3471 scsicmd->result = DID_TIME_OUT << 16; 3472 break; 3473 3474 case SRB_STATUS_BUSY: 3475 scsicmd->result = DID_BUS_BUSY << 16; 3476 break; 3477 3478 case SRB_STATUS_BUS_RESET: 3479 scsicmd->result = DID_RESET << 16; 3480 break; 3481 3482 case SRB_STATUS_MESSAGE_REJECTED: 3483 scsicmd->result = DID_ERROR << 16; 3484 break; 3485 case SRB_STATUS_REQUEST_FLUSHED: 3486 case SRB_STATUS_ERROR: 3487 case SRB_STATUS_INVALID_REQUEST: 3488 case SRB_STATUS_REQUEST_SENSE_FAILED: 3489 case SRB_STATUS_NO_HBA: 3490 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3491 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3492 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3493 case SRB_STATUS_DELAYED_RETRY: 3494 case SRB_STATUS_BAD_FUNCTION: 3495 case SRB_STATUS_NOT_STARTED: 3496 case SRB_STATUS_NOT_IN_USE: 3497 case SRB_STATUS_FORCE_ABORT: 3498 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3499 default: 3500 #ifdef AAC_DETAILED_STATUS_INFO 3501 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3502 le32_to_cpu(srbreply->srb_status) & 0x3F, 3503 aac_get_status_string( 3504 le32_to_cpu(srbreply->srb_status) & 0x3F), 3505 scsicmd->cmnd[0], 3506 le32_to_cpu(srbreply->scsi_status)); 3507 #endif 3508 /* 3509 * When the CC bit is SET by the host in ATA pass thru CDB, 3510 * driver is supposed to return DID_OK 3511 * 3512 * When the CC bit is RESET by the host, driver should 3513 * return DID_ERROR 3514 */ 3515 if ((scsicmd->cmnd[0] == ATA_12) 3516 || (scsicmd->cmnd[0] == ATA_16)) { 3517 3518 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3519 scsicmd->result = DID_OK << 16; 3520 } else { 3521 scsicmd->result = DID_ERROR << 16; 3522 } 3523 } else { 3524 scsicmd->result = DID_ERROR << 16; 3525 } 3526 break; 3527 } 3528 if (le32_to_cpu(srbreply->scsi_status) 3529 == SAM_STAT_CHECK_CONDITION) { 3530 int len; 3531 3532 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3533 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3534 SCSI_SENSE_BUFFERSIZE); 3535 #ifdef AAC_DETAILED_STATUS_INFO 3536 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3537 le32_to_cpu(srbreply->status), len); 3538 #endif 3539 memcpy(scsicmd->sense_buffer, 3540 srbreply->sense_data, len); 3541 } 3542 3543 /* 3544 * OR in the scsi status (already shifted up a bit) 3545 */ 3546 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3547 3548 aac_fib_complete(fibptr); 3549 scsicmd->scsi_done(scsicmd); 3550 } 3551 3552 static void hba_resp_task_complete(struct aac_dev *dev, 3553 struct scsi_cmnd *scsicmd, 3554 struct aac_hba_resp *err) { 3555 3556 scsicmd->result = err->status; 3557 /* set residual count */ 3558 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3559 3560 switch (err->status) { 3561 case SAM_STAT_GOOD: 3562 scsicmd->result |= DID_OK << 16; 3563 break; 3564 case SAM_STAT_CHECK_CONDITION: 3565 { 3566 int len; 3567 3568 len = min_t(u8, err->sense_response_data_len, 3569 SCSI_SENSE_BUFFERSIZE); 3570 if (len) 3571 memcpy(scsicmd->sense_buffer, 3572 err->sense_response_buf, len); 3573 scsicmd->result |= DID_OK << 16; 3574 break; 3575 } 3576 case SAM_STAT_BUSY: 3577 scsicmd->result |= DID_BUS_BUSY << 16; 3578 break; 3579 case SAM_STAT_TASK_ABORTED: 3580 scsicmd->result |= DID_ABORT << 16; 3581 break; 3582 case SAM_STAT_RESERVATION_CONFLICT: 3583 case SAM_STAT_TASK_SET_FULL: 3584 default: 3585 scsicmd->result |= DID_ERROR << 16; 3586 break; 3587 } 3588 } 3589 3590 static void hba_resp_task_failure(struct aac_dev *dev, 3591 struct scsi_cmnd *scsicmd, 3592 struct aac_hba_resp *err) 3593 { 3594 switch (err->status) { 3595 case HBA_RESP_STAT_HBAMODE_DISABLED: 3596 { 3597 u32 bus, cid; 3598 3599 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3600 cid = scmd_id(scsicmd); 3601 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3602 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3603 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3604 } 3605 scsicmd->result = DID_NO_CONNECT << 16; 3606 break; 3607 } 3608 case HBA_RESP_STAT_IO_ERROR: 3609 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3610 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY; 3611 break; 3612 case HBA_RESP_STAT_IO_ABORTED: 3613 scsicmd->result = DID_ABORT << 16; 3614 break; 3615 case HBA_RESP_STAT_INVALID_DEVICE: 3616 scsicmd->result = DID_NO_CONNECT << 16; 3617 break; 3618 case HBA_RESP_STAT_UNDERRUN: 3619 /* UNDERRUN is OK */ 3620 scsicmd->result = DID_OK << 16; 3621 break; 3622 case HBA_RESP_STAT_OVERRUN: 3623 default: 3624 scsicmd->result = DID_ERROR << 16; 3625 break; 3626 } 3627 } 3628 3629 /** 3630 * aac_hba_callback 3631 * @context: the context set in the fib - here it is scsi cmd 3632 * @fibptr: pointer to the fib 3633 * 3634 * Handles the completion of a native HBA scsi command 3635 */ 3636 void aac_hba_callback(void *context, struct fib *fibptr) 3637 { 3638 struct aac_dev *dev; 3639 struct scsi_cmnd *scsicmd; 3640 3641 struct aac_hba_resp *err = 3642 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3643 3644 scsicmd = (struct scsi_cmnd *) context; 3645 3646 if (!aac_valid_context(scsicmd, fibptr)) 3647 return; 3648 3649 WARN_ON(fibptr == NULL); 3650 dev = fibptr->dev; 3651 3652 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3653 scsi_dma_unmap(scsicmd); 3654 3655 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3656 /* fast response */ 3657 scsicmd->result = DID_OK << 16; 3658 goto out; 3659 } 3660 3661 switch (err->service_response) { 3662 case HBA_RESP_SVCRES_TASK_COMPLETE: 3663 hba_resp_task_complete(dev, scsicmd, err); 3664 break; 3665 case HBA_RESP_SVCRES_FAILURE: 3666 hba_resp_task_failure(dev, scsicmd, err); 3667 break; 3668 case HBA_RESP_SVCRES_TMF_REJECTED: 3669 scsicmd->result = DID_ERROR << 16; 3670 break; 3671 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3672 scsicmd->result = DID_NO_CONNECT << 16; 3673 break; 3674 case HBA_RESP_SVCRES_TMF_COMPLETE: 3675 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3676 scsicmd->result = DID_OK << 16; 3677 break; 3678 default: 3679 scsicmd->result = DID_ERROR << 16; 3680 break; 3681 } 3682 3683 out: 3684 aac_fib_complete(fibptr); 3685 3686 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3687 scsicmd->SCp.sent_command = 1; 3688 else 3689 scsicmd->scsi_done(scsicmd); 3690 } 3691 3692 /** 3693 * aac_send_srb_fib 3694 * @scsicmd: the scsi command block 3695 * 3696 * This routine will form a FIB and fill in the aac_srb from the 3697 * scsicmd passed in. 3698 */ 3699 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3700 { 3701 struct fib* cmd_fibcontext; 3702 struct aac_dev* dev; 3703 int status; 3704 3705 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3706 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3707 scsicmd->device->lun > 7) { 3708 scsicmd->result = DID_NO_CONNECT << 16; 3709 scsicmd->scsi_done(scsicmd); 3710 return 0; 3711 } 3712 3713 /* 3714 * Allocate and initialize a Fib then setup a BlockWrite command 3715 */ 3716 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3717 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3718 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3719 3720 /* 3721 * Check that the command queued to the controller 3722 */ 3723 if (status == -EINPROGRESS) 3724 return 0; 3725 3726 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3727 aac_fib_complete(cmd_fibcontext); 3728 aac_fib_free(cmd_fibcontext); 3729 3730 return -1; 3731 } 3732 3733 /** 3734 * aac_send_hba_fib 3735 * @scsicmd: the scsi command block 3736 * 3737 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3738 * scsicmd passed in. 3739 */ 3740 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3741 { 3742 struct fib *cmd_fibcontext; 3743 struct aac_dev *dev; 3744 int status; 3745 3746 dev = shost_priv(scsicmd->device->host); 3747 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3748 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3749 scsicmd->result = DID_NO_CONNECT << 16; 3750 scsicmd->scsi_done(scsicmd); 3751 return 0; 3752 } 3753 3754 /* 3755 * Allocate and initialize a Fib then setup a BlockWrite command 3756 */ 3757 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3758 if (!cmd_fibcontext) 3759 return -1; 3760 3761 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3762 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3763 3764 /* 3765 * Check that the command queued to the controller 3766 */ 3767 if (status == -EINPROGRESS) 3768 return 0; 3769 3770 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3771 status); 3772 aac_fib_complete(cmd_fibcontext); 3773 aac_fib_free(cmd_fibcontext); 3774 3775 return -1; 3776 } 3777 3778 3779 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3780 { 3781 unsigned long byte_count = 0; 3782 int nseg; 3783 struct scatterlist *sg; 3784 int i; 3785 3786 // Get rid of old data 3787 psg->count = 0; 3788 psg->sg[0].addr = 0; 3789 psg->sg[0].count = 0; 3790 3791 nseg = scsi_dma_map(scsicmd); 3792 if (nseg <= 0) 3793 return nseg; 3794 3795 psg->count = cpu_to_le32(nseg); 3796 3797 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3798 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3799 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3800 byte_count += sg_dma_len(sg); 3801 } 3802 /* hba wants the size to be exact */ 3803 if (byte_count > scsi_bufflen(scsicmd)) { 3804 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3805 (byte_count - scsi_bufflen(scsicmd)); 3806 psg->sg[i-1].count = cpu_to_le32(temp); 3807 byte_count = scsi_bufflen(scsicmd); 3808 } 3809 /* Check for command underflow */ 3810 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3811 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3812 byte_count, scsicmd->underflow); 3813 } 3814 3815 return byte_count; 3816 } 3817 3818 3819 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3820 { 3821 unsigned long byte_count = 0; 3822 u64 addr; 3823 int nseg; 3824 struct scatterlist *sg; 3825 int i; 3826 3827 // Get rid of old data 3828 psg->count = 0; 3829 psg->sg[0].addr[0] = 0; 3830 psg->sg[0].addr[1] = 0; 3831 psg->sg[0].count = 0; 3832 3833 nseg = scsi_dma_map(scsicmd); 3834 if (nseg <= 0) 3835 return nseg; 3836 3837 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3838 int count = sg_dma_len(sg); 3839 addr = sg_dma_address(sg); 3840 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3841 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3842 psg->sg[i].count = cpu_to_le32(count); 3843 byte_count += count; 3844 } 3845 psg->count = cpu_to_le32(nseg); 3846 /* hba wants the size to be exact */ 3847 if (byte_count > scsi_bufflen(scsicmd)) { 3848 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3849 (byte_count - scsi_bufflen(scsicmd)); 3850 psg->sg[i-1].count = cpu_to_le32(temp); 3851 byte_count = scsi_bufflen(scsicmd); 3852 } 3853 /* Check for command underflow */ 3854 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3855 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3856 byte_count, scsicmd->underflow); 3857 } 3858 3859 return byte_count; 3860 } 3861 3862 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3863 { 3864 unsigned long byte_count = 0; 3865 int nseg; 3866 struct scatterlist *sg; 3867 int i; 3868 3869 // Get rid of old data 3870 psg->count = 0; 3871 psg->sg[0].next = 0; 3872 psg->sg[0].prev = 0; 3873 psg->sg[0].addr[0] = 0; 3874 psg->sg[0].addr[1] = 0; 3875 psg->sg[0].count = 0; 3876 psg->sg[0].flags = 0; 3877 3878 nseg = scsi_dma_map(scsicmd); 3879 if (nseg <= 0) 3880 return nseg; 3881 3882 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3883 int count = sg_dma_len(sg); 3884 u64 addr = sg_dma_address(sg); 3885 psg->sg[i].next = 0; 3886 psg->sg[i].prev = 0; 3887 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3888 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3889 psg->sg[i].count = cpu_to_le32(count); 3890 psg->sg[i].flags = 0; 3891 byte_count += count; 3892 } 3893 psg->count = cpu_to_le32(nseg); 3894 /* hba wants the size to be exact */ 3895 if (byte_count > scsi_bufflen(scsicmd)) { 3896 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3897 (byte_count - scsi_bufflen(scsicmd)); 3898 psg->sg[i-1].count = cpu_to_le32(temp); 3899 byte_count = scsi_bufflen(scsicmd); 3900 } 3901 /* Check for command underflow */ 3902 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3903 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3904 byte_count, scsicmd->underflow); 3905 } 3906 3907 return byte_count; 3908 } 3909 3910 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3911 struct aac_raw_io2 *rio2, int sg_max) 3912 { 3913 unsigned long byte_count = 0; 3914 int nseg; 3915 struct scatterlist *sg; 3916 int i, conformable = 0; 3917 u32 min_size = PAGE_SIZE, cur_size; 3918 3919 nseg = scsi_dma_map(scsicmd); 3920 if (nseg <= 0) 3921 return nseg; 3922 3923 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3924 int count = sg_dma_len(sg); 3925 u64 addr = sg_dma_address(sg); 3926 3927 BUG_ON(i >= sg_max); 3928 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3929 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3930 cur_size = cpu_to_le32(count); 3931 rio2->sge[i].length = cur_size; 3932 rio2->sge[i].flags = 0; 3933 if (i == 0) { 3934 conformable = 1; 3935 rio2->sgeFirstSize = cur_size; 3936 } else if (i == 1) { 3937 rio2->sgeNominalSize = cur_size; 3938 min_size = cur_size; 3939 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3940 conformable = 0; 3941 if (cur_size < min_size) 3942 min_size = cur_size; 3943 } 3944 byte_count += count; 3945 } 3946 3947 /* hba wants the size to be exact */ 3948 if (byte_count > scsi_bufflen(scsicmd)) { 3949 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 3950 (byte_count - scsi_bufflen(scsicmd)); 3951 rio2->sge[i-1].length = cpu_to_le32(temp); 3952 byte_count = scsi_bufflen(scsicmd); 3953 } 3954 3955 rio2->sgeCnt = cpu_to_le32(nseg); 3956 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 3957 /* not conformable: evaluate required sg elements */ 3958 if (!conformable) { 3959 int j, nseg_new = nseg, err_found; 3960 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 3961 err_found = 0; 3962 nseg_new = 2; 3963 for (j = 1; j < nseg - 1; ++j) { 3964 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 3965 err_found = 1; 3966 break; 3967 } 3968 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 3969 } 3970 if (!err_found) 3971 break; 3972 } 3973 if (i > 0 && nseg_new <= sg_max) { 3974 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 3975 3976 if (ret < 0) 3977 return ret; 3978 } 3979 } else 3980 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 3981 3982 /* Check for command underflow */ 3983 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3984 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3985 byte_count, scsicmd->underflow); 3986 } 3987 3988 return byte_count; 3989 } 3990 3991 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 3992 { 3993 struct sge_ieee1212 *sge; 3994 int i, j, pos; 3995 u32 addr_low; 3996 3997 if (aac_convert_sgl == 0) 3998 return 0; 3999 4000 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC); 4001 if (sge == NULL) 4002 return -ENOMEM; 4003 4004 for (i = 1, pos = 1; i < nseg-1; ++i) { 4005 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4006 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4007 sge[pos].addrLow = addr_low; 4008 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4009 if (addr_low < rio2->sge[i].addrLow) 4010 sge[pos].addrHigh++; 4011 sge[pos].length = pages * PAGE_SIZE; 4012 sge[pos].flags = 0; 4013 pos++; 4014 } 4015 } 4016 sge[pos] = rio2->sge[nseg-1]; 4017 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4018 4019 kfree(sge); 4020 rio2->sgeCnt = cpu_to_le32(nseg_new); 4021 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4022 rio2->sgeNominalSize = pages * PAGE_SIZE; 4023 return 0; 4024 } 4025 4026 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4027 struct aac_hba_cmd_req *hbacmd, 4028 int sg_max, 4029 u64 sg_address) 4030 { 4031 unsigned long byte_count = 0; 4032 int nseg; 4033 struct scatterlist *sg; 4034 int i; 4035 u32 cur_size; 4036 struct aac_hba_sgl *sge; 4037 4038 nseg = scsi_dma_map(scsicmd); 4039 if (nseg <= 0) { 4040 byte_count = nseg; 4041 goto out; 4042 } 4043 4044 if (nseg > HBA_MAX_SG_EMBEDDED) 4045 sge = &hbacmd->sge[2]; 4046 else 4047 sge = &hbacmd->sge[0]; 4048 4049 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4050 int count = sg_dma_len(sg); 4051 u64 addr = sg_dma_address(sg); 4052 4053 WARN_ON(i >= sg_max); 4054 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4055 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4056 cur_size = cpu_to_le32(count); 4057 sge->len = cur_size; 4058 sge->flags = 0; 4059 byte_count += count; 4060 sge++; 4061 } 4062 4063 sge--; 4064 /* hba wants the size to be exact */ 4065 if (byte_count > scsi_bufflen(scsicmd)) { 4066 u32 temp; 4067 4068 temp = le32_to_cpu(sge->len) - byte_count 4069 - scsi_bufflen(scsicmd); 4070 sge->len = cpu_to_le32(temp); 4071 byte_count = scsi_bufflen(scsicmd); 4072 } 4073 4074 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4075 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4076 sge->flags = cpu_to_le32(0x40000000); 4077 } else { 4078 /* not embedded */ 4079 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4080 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4081 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4082 hbacmd->sge[0].addr_lo = 4083 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4084 } 4085 4086 /* Check for command underflow */ 4087 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4088 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4089 byte_count, scsicmd->underflow); 4090 } 4091 out: 4092 return byte_count; 4093 } 4094 4095 #ifdef AAC_DETAILED_STATUS_INFO 4096 4097 struct aac_srb_status_info { 4098 u32 status; 4099 char *str; 4100 }; 4101 4102 4103 static struct aac_srb_status_info srb_status_info[] = { 4104 { SRB_STATUS_PENDING, "Pending Status"}, 4105 { SRB_STATUS_SUCCESS, "Success"}, 4106 { SRB_STATUS_ABORTED, "Aborted Command"}, 4107 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4108 { SRB_STATUS_ERROR, "Error Event"}, 4109 { SRB_STATUS_BUSY, "Device Busy"}, 4110 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4111 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4112 { SRB_STATUS_NO_DEVICE, "No Device"}, 4113 { SRB_STATUS_TIMEOUT, "Timeout"}, 4114 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4115 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4116 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4117 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4118 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4119 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4120 { SRB_STATUS_NO_HBA, "No HBA"}, 4121 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4122 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4123 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4124 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4125 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4126 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4127 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4128 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4129 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4130 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4131 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4132 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4133 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4134 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4135 { 0xff, "Unknown Error"} 4136 }; 4137 4138 char *aac_get_status_string(u32 status) 4139 { 4140 int i; 4141 4142 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4143 if (srb_status_info[i].status == status) 4144 return srb_status_info[i].str; 4145 4146 return "Bad Status Code"; 4147 } 4148 4149 #endif 4150