1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 29 #include <linux/module.h> 30 31 #include <asm/unaligned.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 38 #include "aacraid.h" 39 40 /* values for inqd_pdt: Peripheral device type in plain English */ 41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 42 #define INQD_PDT_PROC 0x03 /* Processor device */ 43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 47 48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 50 51 /* 52 * Sense codes 53 */ 54 55 #define SENCODE_NO_SENSE 0x00 56 #define SENCODE_END_OF_DATA 0x00 57 #define SENCODE_BECOMING_READY 0x04 58 #define SENCODE_INIT_CMD_REQUIRED 0x04 59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 61 #define SENCODE_INVALID_COMMAND 0x20 62 #define SENCODE_LBA_OUT_OF_RANGE 0x21 63 #define SENCODE_INVALID_CDB_FIELD 0x24 64 #define SENCODE_LUN_NOT_SUPPORTED 0x25 65 #define SENCODE_INVALID_PARAM_FIELD 0x26 66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 67 #define SENCODE_PARAM_VALUE_INVALID 0x26 68 #define SENCODE_RESET_OCCURRED 0x29 69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 76 #define SENCODE_OVERLAPPED_COMMAND 0x4E 77 78 /* 79 * Additional sense codes 80 */ 81 82 #define ASENCODE_NO_SENSE 0x00 83 #define ASENCODE_END_OF_DATA 0x05 84 #define ASENCODE_BECOMING_READY 0x01 85 #define ASENCODE_INIT_CMD_REQUIRED 0x02 86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 87 #define ASENCODE_INVALID_COMMAND 0x00 88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 89 #define ASENCODE_INVALID_CDB_FIELD 0x00 90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 91 #define ASENCODE_INVALID_PARAM_FIELD 0x00 92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 93 #define ASENCODE_PARAM_VALUE_INVALID 0x02 94 #define ASENCODE_RESET_OCCURRED 0x00 95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 102 #define ASENCODE_OVERLAPPED_COMMAND 0x00 103 104 #define BYTE0(x) (unsigned char)(x) 105 #define BYTE1(x) (unsigned char)((x) >> 8) 106 #define BYTE2(x) (unsigned char)((x) >> 16) 107 #define BYTE3(x) (unsigned char)((x) >> 24) 108 109 /* MODE_SENSE data format */ 110 typedef struct { 111 struct { 112 u8 data_length; 113 u8 med_type; 114 u8 dev_par; 115 u8 bd_length; 116 } __attribute__((packed)) hd; 117 struct { 118 u8 dens_code; 119 u8 block_count[3]; 120 u8 reserved; 121 u8 block_length[3]; 122 } __attribute__((packed)) bd; 123 u8 mpc_buf[3]; 124 } __attribute__((packed)) aac_modep_data; 125 126 /* MODE_SENSE_10 data format */ 127 typedef struct { 128 struct { 129 u8 data_length[2]; 130 u8 med_type; 131 u8 dev_par; 132 u8 rsrvd[2]; 133 u8 bd_length[2]; 134 } __attribute__((packed)) hd; 135 struct { 136 u8 dens_code; 137 u8 block_count[3]; 138 u8 reserved; 139 u8 block_length[3]; 140 } __attribute__((packed)) bd; 141 u8 mpc_buf[3]; 142 } __attribute__((packed)) aac_modep10_data; 143 144 /*------------------------------------------------------------------------------ 145 * S T R U C T S / T Y P E D E F S 146 *----------------------------------------------------------------------------*/ 147 /* SCSI inquiry data */ 148 struct inquiry_data { 149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 150 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 153 u8 inqd_len; /* Additional length (n-4) */ 154 u8 inqd_pad1[2];/* Reserved - must be zero */ 155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 156 u8 inqd_vid[8]; /* Vendor ID */ 157 u8 inqd_pid[16];/* Product ID */ 158 u8 inqd_prl[4]; /* Product Revision Level */ 159 }; 160 161 /* Added for VPD 0x83 */ 162 struct tvpd_id_descriptor_type_1 { 163 u8 codeset:4; /* VPD_CODE_SET */ 164 u8 reserved:4; 165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 166 u8 reserved2:4; 167 u8 reserved3; 168 u8 identifierlength; 169 u8 venid[8]; 170 u8 productid[16]; 171 u8 serialnumber[8]; /* SN in ASCII */ 172 173 }; 174 175 struct tvpd_id_descriptor_type_2 { 176 u8 codeset:4; /* VPD_CODE_SET */ 177 u8 reserved:4; 178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 179 u8 reserved2:4; 180 u8 reserved3; 181 u8 identifierlength; 182 struct teu64id { 183 u32 Serial; 184 /* The serial number supposed to be 40 bits, 185 * bit we only support 32, so make the last byte zero. */ 186 u8 reserved; 187 u8 venid[3]; 188 } eu64id; 189 190 }; 191 192 struct tvpd_id_descriptor_type_3 { 193 u8 codeset : 4; /* VPD_CODE_SET */ 194 u8 reserved : 4; 195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 196 u8 reserved2 : 4; 197 u8 reserved3; 198 u8 identifierlength; 199 u8 Identifier[16]; 200 }; 201 202 struct tvpd_page83 { 203 u8 DeviceType:5; 204 u8 DeviceTypeQualifier:3; 205 u8 PageCode; 206 u8 reserved; 207 u8 PageLength; 208 struct tvpd_id_descriptor_type_1 type1; 209 struct tvpd_id_descriptor_type_2 type2; 210 struct tvpd_id_descriptor_type_3 type3; 211 }; 212 213 /* 214 * M O D U L E G L O B A L S 215 */ 216 217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 221 struct aac_raw_io2 *rio2, int sg_max); 222 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 223 struct aac_hba_cmd_req *hbacmd, 224 int sg_max, u64 sg_address); 225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 226 int pages, int nseg, int nseg_new); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @common: adapter to query 354 * 355 * Query config status, and commit the configuration if needed. 356 */ 357 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 358 { 359 int status = 0; 360 struct fib * fibptr; 361 362 if (!(fibptr = aac_fib_alloc(dev))) 363 return -ENOMEM; 364 365 aac_fib_init(fibptr); 366 { 367 struct aac_get_config_status *dinfo; 368 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 369 370 dinfo->command = cpu_to_le32(VM_ContainerConfig); 371 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 372 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 373 } 374 375 status = aac_fib_send(ContainerCommand, 376 fibptr, 377 sizeof (struct aac_get_config_status), 378 FsaNormal, 379 1, 1, 380 NULL, NULL); 381 if (status < 0) { 382 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 383 } else { 384 struct aac_get_config_status_resp *reply 385 = (struct aac_get_config_status_resp *) fib_data(fibptr); 386 dprintk((KERN_WARNING 387 "aac_get_config_status: response=%d status=%d action=%d\n", 388 le32_to_cpu(reply->response), 389 le32_to_cpu(reply->status), 390 le32_to_cpu(reply->data.action))); 391 if ((le32_to_cpu(reply->response) != ST_OK) || 392 (le32_to_cpu(reply->status) != CT_OK) || 393 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 394 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 395 status = -EINVAL; 396 } 397 } 398 /* Do not set XferState to zero unless receives a response from F/W */ 399 if (status >= 0) 400 aac_fib_complete(fibptr); 401 402 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 403 if (status >= 0) { 404 if ((aac_commit == 1) || commit_flag) { 405 struct aac_commit_config * dinfo; 406 aac_fib_init(fibptr); 407 dinfo = (struct aac_commit_config *) fib_data(fibptr); 408 409 dinfo->command = cpu_to_le32(VM_ContainerConfig); 410 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 411 412 status = aac_fib_send(ContainerCommand, 413 fibptr, 414 sizeof (struct aac_commit_config), 415 FsaNormal, 416 1, 1, 417 NULL, NULL); 418 /* Do not set XferState to zero unless 419 * receives a response from F/W */ 420 if (status >= 0) 421 aac_fib_complete(fibptr); 422 } else if (aac_commit == 0) { 423 printk(KERN_WARNING 424 "aac_get_config_status: Foreign device configurations are being ignored\n"); 425 } 426 } 427 /* FIB should be freed only after getting the response from the F/W */ 428 if (status != -ERESTARTSYS) 429 aac_fib_free(fibptr); 430 return status; 431 } 432 433 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 434 { 435 char inq_data; 436 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 437 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 438 inq_data &= 0xdf; 439 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 440 } 441 } 442 443 /** 444 * aac_get_containers - list containers 445 * @common: adapter to probe 446 * 447 * Make a list of all containers on this controller 448 */ 449 int aac_get_containers(struct aac_dev *dev) 450 { 451 struct fsa_dev_info *fsa_dev_ptr; 452 u32 index; 453 int status = 0; 454 struct fib * fibptr; 455 struct aac_get_container_count *dinfo; 456 struct aac_get_container_count_resp *dresp; 457 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 458 459 if (!(fibptr = aac_fib_alloc(dev))) 460 return -ENOMEM; 461 462 aac_fib_init(fibptr); 463 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 464 dinfo->command = cpu_to_le32(VM_ContainerConfig); 465 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 466 467 status = aac_fib_send(ContainerCommand, 468 fibptr, 469 sizeof (struct aac_get_container_count), 470 FsaNormal, 471 1, 1, 472 NULL, NULL); 473 if (status >= 0) { 474 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 475 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 476 if (fibptr->dev->supplement_adapter_info.supported_options2 & 477 AAC_OPTION_SUPPORTED_240_VOLUMES) { 478 maximum_num_containers = 479 le32_to_cpu(dresp->MaxSimpleVolumes); 480 } 481 aac_fib_complete(fibptr); 482 } 483 /* FIB should be freed only after getting the response from the F/W */ 484 if (status != -ERESTARTSYS) 485 aac_fib_free(fibptr); 486 487 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 488 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 489 if (dev->fsa_dev == NULL || 490 dev->maximum_num_containers != maximum_num_containers) { 491 492 fsa_dev_ptr = dev->fsa_dev; 493 494 dev->fsa_dev = kcalloc(maximum_num_containers, 495 sizeof(*fsa_dev_ptr), GFP_KERNEL); 496 497 kfree(fsa_dev_ptr); 498 fsa_dev_ptr = NULL; 499 500 501 if (!dev->fsa_dev) 502 return -ENOMEM; 503 504 dev->maximum_num_containers = maximum_num_containers; 505 } 506 for (index = 0; index < dev->maximum_num_containers; index++) { 507 dev->fsa_dev[index].devname[0] = '\0'; 508 dev->fsa_dev[index].valid = 0; 509 510 status = aac_probe_container(dev, index); 511 512 if (status < 0) { 513 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 514 break; 515 } 516 } 517 return status; 518 } 519 520 static void get_container_name_callback(void *context, struct fib * fibptr) 521 { 522 struct aac_get_name_resp * get_name_reply; 523 struct scsi_cmnd * scsicmd; 524 525 scsicmd = (struct scsi_cmnd *) context; 526 527 if (!aac_valid_context(scsicmd, fibptr)) 528 return; 529 530 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 531 BUG_ON(fibptr == NULL); 532 533 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 534 /* Failure is irrelevant, using default value instead */ 535 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 536 && (get_name_reply->data[0] != '\0')) { 537 char *sp = get_name_reply->data; 538 int data_size = sizeof_field(struct aac_get_name_resp, data); 539 540 sp[data_size - 1] = '\0'; 541 while (*sp == ' ') 542 ++sp; 543 if (*sp) { 544 struct inquiry_data inq; 545 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 546 int count = sizeof(d); 547 char *dp = d; 548 do { 549 *dp++ = (*sp) ? *sp++ : ' '; 550 } while (--count > 0); 551 552 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 553 memcpy(inq.inqd_pid, d, sizeof(d)); 554 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 555 } 556 } 557 558 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 559 560 aac_fib_complete(fibptr); 561 scsicmd->scsi_done(scsicmd); 562 } 563 564 /** 565 * aac_get_container_name - get container name, none blocking. 566 */ 567 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 568 { 569 int status; 570 int data_size; 571 struct aac_get_name *dinfo; 572 struct fib * cmd_fibcontext; 573 struct aac_dev * dev; 574 575 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 576 577 data_size = sizeof_field(struct aac_get_name_resp, data); 578 579 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 580 581 aac_fib_init(cmd_fibcontext); 582 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 583 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 584 585 dinfo->command = cpu_to_le32(VM_ContainerConfig); 586 dinfo->type = cpu_to_le32(CT_READ_NAME); 587 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 588 dinfo->count = cpu_to_le32(data_size - 1); 589 590 status = aac_fib_send(ContainerCommand, 591 cmd_fibcontext, 592 sizeof(struct aac_get_name_resp), 593 FsaNormal, 594 0, 1, 595 (fib_callback)get_container_name_callback, 596 (void *) scsicmd); 597 598 /* 599 * Check that the command queued to the controller 600 */ 601 if (status == -EINPROGRESS) 602 return 0; 603 604 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 605 aac_fib_complete(cmd_fibcontext); 606 return -1; 607 } 608 609 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 610 { 611 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 612 613 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 614 return aac_scsi_cmd(scsicmd); 615 616 scsicmd->result = DID_NO_CONNECT << 16; 617 scsicmd->scsi_done(scsicmd); 618 return 0; 619 } 620 621 static void _aac_probe_container2(void * context, struct fib * fibptr) 622 { 623 struct fsa_dev_info *fsa_dev_ptr; 624 int (*callback)(struct scsi_cmnd *); 625 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 626 int i; 627 628 629 if (!aac_valid_context(scsicmd, fibptr)) 630 return; 631 632 scsicmd->SCp.Status = 0; 633 fsa_dev_ptr = fibptr->dev->fsa_dev; 634 if (fsa_dev_ptr) { 635 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 636 __le32 sup_options2; 637 638 fsa_dev_ptr += scmd_id(scsicmd); 639 sup_options2 = 640 fibptr->dev->supplement_adapter_info.supported_options2; 641 642 if ((le32_to_cpu(dresp->status) == ST_OK) && 643 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 644 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 645 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 646 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 647 fsa_dev_ptr->block_size = 0x200; 648 } else { 649 fsa_dev_ptr->block_size = 650 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 651 } 652 for (i = 0; i < 16; i++) 653 fsa_dev_ptr->identifier[i] = 654 dresp->mnt[0].fileinfo.bdevinfo 655 .identifier[i]; 656 fsa_dev_ptr->valid = 1; 657 /* sense_key holds the current state of the spin-up */ 658 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 659 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 660 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 661 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 662 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 663 fsa_dev_ptr->size 664 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 665 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 666 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 667 } 668 if ((fsa_dev_ptr->valid & 1) == 0) 669 fsa_dev_ptr->valid = 0; 670 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 671 } 672 aac_fib_complete(fibptr); 673 aac_fib_free(fibptr); 674 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 675 scsicmd->SCp.ptr = NULL; 676 (*callback)(scsicmd); 677 return; 678 } 679 680 static void _aac_probe_container1(void * context, struct fib * fibptr) 681 { 682 struct scsi_cmnd * scsicmd; 683 struct aac_mount * dresp; 684 struct aac_query_mount *dinfo; 685 int status; 686 687 dresp = (struct aac_mount *) fib_data(fibptr); 688 if (!aac_supports_2T(fibptr->dev)) { 689 dresp->mnt[0].capacityhigh = 0; 690 if ((le32_to_cpu(dresp->status) == ST_OK) && 691 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 692 _aac_probe_container2(context, fibptr); 693 return; 694 } 695 } 696 scsicmd = (struct scsi_cmnd *) context; 697 698 if (!aac_valid_context(scsicmd, fibptr)) 699 return; 700 701 aac_fib_init(fibptr); 702 703 dinfo = (struct aac_query_mount *)fib_data(fibptr); 704 705 if (fibptr->dev->supplement_adapter_info.supported_options2 & 706 AAC_OPTION_VARIABLE_BLOCK_SIZE) 707 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 708 else 709 dinfo->command = cpu_to_le32(VM_NameServe64); 710 711 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 712 dinfo->type = cpu_to_le32(FT_FILESYS); 713 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 714 715 status = aac_fib_send(ContainerCommand, 716 fibptr, 717 sizeof(struct aac_query_mount), 718 FsaNormal, 719 0, 1, 720 _aac_probe_container2, 721 (void *) scsicmd); 722 /* 723 * Check that the command queued to the controller 724 */ 725 if (status < 0 && status != -EINPROGRESS) { 726 /* Inherit results from VM_NameServe, if any */ 727 dresp->status = cpu_to_le32(ST_OK); 728 _aac_probe_container2(context, fibptr); 729 } 730 } 731 732 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 733 { 734 struct fib * fibptr; 735 int status = -ENOMEM; 736 737 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 738 struct aac_query_mount *dinfo; 739 740 aac_fib_init(fibptr); 741 742 dinfo = (struct aac_query_mount *)fib_data(fibptr); 743 744 if (fibptr->dev->supplement_adapter_info.supported_options2 & 745 AAC_OPTION_VARIABLE_BLOCK_SIZE) 746 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 747 else 748 dinfo->command = cpu_to_le32(VM_NameServe); 749 750 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 751 dinfo->type = cpu_to_le32(FT_FILESYS); 752 scsicmd->SCp.ptr = (char *)callback; 753 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 754 755 status = aac_fib_send(ContainerCommand, 756 fibptr, 757 sizeof(struct aac_query_mount), 758 FsaNormal, 759 0, 1, 760 _aac_probe_container1, 761 (void *) scsicmd); 762 /* 763 * Check that the command queued to the controller 764 */ 765 if (status == -EINPROGRESS) 766 return 0; 767 768 if (status < 0) { 769 scsicmd->SCp.ptr = NULL; 770 aac_fib_complete(fibptr); 771 aac_fib_free(fibptr); 772 } 773 } 774 if (status < 0) { 775 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 776 if (fsa_dev_ptr) { 777 fsa_dev_ptr += scmd_id(scsicmd); 778 if ((fsa_dev_ptr->valid & 1) == 0) { 779 fsa_dev_ptr->valid = 0; 780 return (*callback)(scsicmd); 781 } 782 } 783 } 784 return status; 785 } 786 787 /** 788 * aac_probe_container - query a logical volume 789 * @dev: device to query 790 * @cid: container identifier 791 * 792 * Queries the controller about the given volume. The volume information 793 * is updated in the struct fsa_dev_info structure rather than returned. 794 */ 795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 796 { 797 scsicmd->device = NULL; 798 return 0; 799 } 800 801 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 802 { 803 aac_probe_container_callback1(scsi_cmnd); 804 } 805 806 int aac_probe_container(struct aac_dev *dev, int cid) 807 { 808 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 809 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 810 int status; 811 812 if (!scsicmd || !scsidev) { 813 kfree(scsicmd); 814 kfree(scsidev); 815 return -ENOMEM; 816 } 817 scsicmd->scsi_done = aac_probe_container_scsi_done; 818 819 scsicmd->device = scsidev; 820 scsidev->sdev_state = 0; 821 scsidev->id = cid; 822 scsidev->host = dev->scsi_host_ptr; 823 824 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 825 while (scsicmd->device == scsidev) 826 schedule(); 827 kfree(scsidev); 828 status = scsicmd->SCp.Status; 829 kfree(scsicmd); 830 return status; 831 } 832 833 /* Local Structure to set SCSI inquiry data strings */ 834 struct scsi_inq { 835 char vid[8]; /* Vendor ID */ 836 char pid[16]; /* Product ID */ 837 char prl[4]; /* Product Revision Level */ 838 }; 839 840 /** 841 * InqStrCopy - string merge 842 * @a: string to copy from 843 * @b: string to copy to 844 * 845 * Copy a String from one location to another 846 * without copying \0 847 */ 848 849 static void inqstrcpy(char *a, char *b) 850 { 851 852 while (*a != (char)0) 853 *b++ = *a++; 854 } 855 856 static char *container_types[] = { 857 "None", 858 "Volume", 859 "Mirror", 860 "Stripe", 861 "RAID5", 862 "SSRW", 863 "SSRO", 864 "Morph", 865 "Legacy", 866 "RAID4", 867 "RAID10", 868 "RAID00", 869 "V-MIRRORS", 870 "PSEUDO R4", 871 "RAID50", 872 "RAID5D", 873 "RAID5D0", 874 "RAID1E", 875 "RAID6", 876 "RAID60", 877 "Unknown" 878 }; 879 880 char * get_container_type(unsigned tindex) 881 { 882 if (tindex >= ARRAY_SIZE(container_types)) 883 tindex = ARRAY_SIZE(container_types) - 1; 884 return container_types[tindex]; 885 } 886 887 /* Function: setinqstr 888 * 889 * Arguments: [1] pointer to void [1] int 890 * 891 * Purpose: Sets SCSI inquiry data strings for vendor, product 892 * and revision level. Allows strings to be set in platform dependent 893 * files instead of in OS dependent driver source. 894 */ 895 896 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 897 { 898 struct scsi_inq *str; 899 struct aac_supplement_adapter_info *sup_adap_info; 900 901 sup_adap_info = &dev->supplement_adapter_info; 902 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 903 memset(str, ' ', sizeof(*str)); 904 905 if (sup_adap_info->adapter_type_text[0]) { 906 int c; 907 char *cp; 908 char *cname = kmemdup(sup_adap_info->adapter_type_text, 909 sizeof(sup_adap_info->adapter_type_text), 910 GFP_ATOMIC); 911 if (!cname) 912 return; 913 914 cp = cname; 915 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 916 inqstrcpy("SMC", str->vid); 917 else { 918 c = sizeof(str->vid); 919 while (*cp && *cp != ' ' && --c) 920 ++cp; 921 c = *cp; 922 *cp = '\0'; 923 inqstrcpy(cname, str->vid); 924 *cp = c; 925 while (*cp && *cp != ' ') 926 ++cp; 927 } 928 while (*cp == ' ') 929 ++cp; 930 /* last six chars reserved for vol type */ 931 if (strlen(cp) > sizeof(str->pid)) 932 cp[sizeof(str->pid)] = '\0'; 933 inqstrcpy (cp, str->pid); 934 935 kfree(cname); 936 } else { 937 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 938 939 inqstrcpy (mp->vname, str->vid); 940 /* last six chars reserved for vol type */ 941 inqstrcpy (mp->model, str->pid); 942 } 943 944 if (tindex < ARRAY_SIZE(container_types)){ 945 char *findit = str->pid; 946 947 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 948 /* RAID is superfluous in the context of a RAID device */ 949 if (memcmp(findit-4, "RAID", 4) == 0) 950 *(findit -= 4) = ' '; 951 if (((findit - str->pid) + strlen(container_types[tindex])) 952 < (sizeof(str->pid) + sizeof(str->prl))) 953 inqstrcpy (container_types[tindex], findit + 1); 954 } 955 inqstrcpy ("V1.0", str->prl); 956 } 957 958 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 959 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 960 { 961 int container; 962 963 vpdpage83data->type3.codeset = 1; 964 vpdpage83data->type3.identifiertype = 3; 965 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 966 - 4; 967 968 for (container = 0; container < dev->maximum_num_containers; 969 container++) { 970 971 if (scmd_id(scsicmd) == container) { 972 memcpy(vpdpage83data->type3.Identifier, 973 dev->fsa_dev[container].identifier, 974 16); 975 break; 976 } 977 } 978 } 979 980 static void get_container_serial_callback(void *context, struct fib * fibptr) 981 { 982 struct aac_get_serial_resp * get_serial_reply; 983 struct scsi_cmnd * scsicmd; 984 985 BUG_ON(fibptr == NULL); 986 987 scsicmd = (struct scsi_cmnd *) context; 988 if (!aac_valid_context(scsicmd, fibptr)) 989 return; 990 991 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 992 /* Failure is irrelevant, using default value instead */ 993 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 994 /*Check to see if it's for VPD 0x83 or 0x80 */ 995 if (scsicmd->cmnd[2] == 0x83) { 996 /* vpd page 0x83 - Device Identification Page */ 997 struct aac_dev *dev; 998 int i; 999 struct tvpd_page83 vpdpage83data; 1000 1001 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1002 1003 memset(((u8 *)&vpdpage83data), 0, 1004 sizeof(vpdpage83data)); 1005 1006 /* DIRECT_ACCESS_DEVIC */ 1007 vpdpage83data.DeviceType = 0; 1008 /* DEVICE_CONNECTED */ 1009 vpdpage83data.DeviceTypeQualifier = 0; 1010 /* VPD_DEVICE_IDENTIFIERS */ 1011 vpdpage83data.PageCode = 0x83; 1012 vpdpage83data.reserved = 0; 1013 vpdpage83data.PageLength = 1014 sizeof(vpdpage83data.type1) + 1015 sizeof(vpdpage83data.type2); 1016 1017 /* VPD 83 Type 3 is not supported for ARC */ 1018 if (dev->sa_firmware) 1019 vpdpage83data.PageLength += 1020 sizeof(vpdpage83data.type3); 1021 1022 /* T10 Vendor Identifier Field Format */ 1023 /* VpdcodesetAscii */ 1024 vpdpage83data.type1.codeset = 2; 1025 /* VpdIdentifierTypeVendorId */ 1026 vpdpage83data.type1.identifiertype = 1; 1027 vpdpage83data.type1.identifierlength = 1028 sizeof(vpdpage83data.type1) - 4; 1029 1030 /* "ADAPTEC " for adaptec */ 1031 memcpy(vpdpage83data.type1.venid, 1032 "ADAPTEC ", 1033 sizeof(vpdpage83data.type1.venid)); 1034 memcpy(vpdpage83data.type1.productid, 1035 "ARRAY ", 1036 sizeof( 1037 vpdpage83data.type1.productid)); 1038 1039 /* Convert to ascii based serial number. 1040 * The LSB is the the end. 1041 */ 1042 for (i = 0; i < 8; i++) { 1043 u8 temp = 1044 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1045 if (temp > 0x9) { 1046 vpdpage83data.type1.serialnumber[i] = 1047 'A' + (temp - 0xA); 1048 } else { 1049 vpdpage83data.type1.serialnumber[i] = 1050 '0' + temp; 1051 } 1052 } 1053 1054 /* VpdCodeSetBinary */ 1055 vpdpage83data.type2.codeset = 1; 1056 /* VpdidentifiertypeEUI64 */ 1057 vpdpage83data.type2.identifiertype = 2; 1058 vpdpage83data.type2.identifierlength = 1059 sizeof(vpdpage83data.type2) - 4; 1060 1061 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1062 vpdpage83data.type2.eu64id.venid[1] = 0; 1063 vpdpage83data.type2.eu64id.venid[2] = 0; 1064 1065 vpdpage83data.type2.eu64id.Serial = 1066 get_serial_reply->uid; 1067 vpdpage83data.type2.eu64id.reserved = 0; 1068 1069 /* 1070 * VpdIdentifierTypeFCPHName 1071 * VPD 0x83 Type 3 not supported for ARC 1072 */ 1073 if (dev->sa_firmware) { 1074 build_vpd83_type3(&vpdpage83data, 1075 dev, scsicmd); 1076 } 1077 1078 /* Move the inquiry data to the response buffer. */ 1079 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1080 sizeof(vpdpage83data)); 1081 } else { 1082 /* It must be for VPD 0x80 */ 1083 char sp[13]; 1084 /* EVPD bit set */ 1085 sp[0] = INQD_PDT_DA; 1086 sp[1] = scsicmd->cmnd[2]; 1087 sp[2] = 0; 1088 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1089 le32_to_cpu(get_serial_reply->uid)); 1090 scsi_sg_copy_from_buffer(scsicmd, sp, 1091 sizeof(sp)); 1092 } 1093 } 1094 1095 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1096 1097 aac_fib_complete(fibptr); 1098 scsicmd->scsi_done(scsicmd); 1099 } 1100 1101 /** 1102 * aac_get_container_serial - get container serial, none blocking. 1103 */ 1104 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1105 { 1106 int status; 1107 struct aac_get_serial *dinfo; 1108 struct fib * cmd_fibcontext; 1109 struct aac_dev * dev; 1110 1111 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1112 1113 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1114 1115 aac_fib_init(cmd_fibcontext); 1116 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1117 1118 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1119 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1120 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1121 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1122 1123 status = aac_fib_send(ContainerCommand, 1124 cmd_fibcontext, 1125 sizeof(struct aac_get_serial_resp), 1126 FsaNormal, 1127 0, 1, 1128 (fib_callback) get_container_serial_callback, 1129 (void *) scsicmd); 1130 1131 /* 1132 * Check that the command queued to the controller 1133 */ 1134 if (status == -EINPROGRESS) 1135 return 0; 1136 1137 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1138 aac_fib_complete(cmd_fibcontext); 1139 return -1; 1140 } 1141 1142 /* Function: setinqserial 1143 * 1144 * Arguments: [1] pointer to void [1] int 1145 * 1146 * Purpose: Sets SCSI Unit Serial number. 1147 * This is a fake. We should read a proper 1148 * serial number from the container. <SuSE>But 1149 * without docs it's quite hard to do it :-) 1150 * So this will have to do in the meantime.</SuSE> 1151 */ 1152 1153 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1154 { 1155 /* 1156 * This breaks array migration. 1157 */ 1158 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1159 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1160 } 1161 1162 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1163 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1164 { 1165 u8 *sense_buf = (u8 *)sense_data; 1166 /* Sense data valid, err code 70h */ 1167 sense_buf[0] = 0x70; /* No info field */ 1168 sense_buf[1] = 0; /* Segment number, always zero */ 1169 1170 sense_buf[2] = sense_key; /* Sense key */ 1171 1172 sense_buf[12] = sense_code; /* Additional sense code */ 1173 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1174 1175 if (sense_key == ILLEGAL_REQUEST) { 1176 sense_buf[7] = 10; /* Additional sense length */ 1177 1178 sense_buf[15] = bit_pointer; 1179 /* Illegal parameter is in the parameter block */ 1180 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1181 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1182 /* Illegal parameter is in the CDB block */ 1183 sense_buf[16] = field_pointer >> 8; /* MSB */ 1184 sense_buf[17] = field_pointer; /* LSB */ 1185 } else 1186 sense_buf[7] = 6; /* Additional sense length */ 1187 } 1188 1189 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1190 { 1191 if (lba & 0xffffffff00000000LL) { 1192 int cid = scmd_id(cmd); 1193 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1194 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1195 SAM_STAT_CHECK_CONDITION; 1196 set_sense(&dev->fsa_dev[cid].sense_data, 1197 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1198 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1199 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1200 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1201 SCSI_SENSE_BUFFERSIZE)); 1202 cmd->scsi_done(cmd); 1203 return 1; 1204 } 1205 return 0; 1206 } 1207 1208 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1209 { 1210 return 0; 1211 } 1212 1213 static void io_callback(void *context, struct fib * fibptr); 1214 1215 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1216 { 1217 struct aac_dev *dev = fib->dev; 1218 u16 fibsize, command; 1219 long ret; 1220 1221 aac_fib_init(fib); 1222 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1223 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1224 !dev->sync_mode) { 1225 struct aac_raw_io2 *readcmd2; 1226 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1227 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1228 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1229 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1230 readcmd2->byteCount = cpu_to_le32(count * 1231 dev->fsa_dev[scmd_id(cmd)].block_size); 1232 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1233 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1234 ret = aac_build_sgraw2(cmd, readcmd2, 1235 dev->scsi_host_ptr->sg_tablesize); 1236 if (ret < 0) 1237 return ret; 1238 command = ContainerRawIo2; 1239 fibsize = sizeof(struct aac_raw_io2) + 1240 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1241 } else { 1242 struct aac_raw_io *readcmd; 1243 readcmd = (struct aac_raw_io *) fib_data(fib); 1244 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1245 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1246 readcmd->count = cpu_to_le32(count * 1247 dev->fsa_dev[scmd_id(cmd)].block_size); 1248 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1249 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1250 readcmd->bpTotal = 0; 1251 readcmd->bpComplete = 0; 1252 ret = aac_build_sgraw(cmd, &readcmd->sg); 1253 if (ret < 0) 1254 return ret; 1255 command = ContainerRawIo; 1256 fibsize = sizeof(struct aac_raw_io) + 1257 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1258 } 1259 1260 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1261 /* 1262 * Now send the Fib to the adapter 1263 */ 1264 return aac_fib_send(command, 1265 fib, 1266 fibsize, 1267 FsaNormal, 1268 0, 1, 1269 (fib_callback) io_callback, 1270 (void *) cmd); 1271 } 1272 1273 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1274 { 1275 u16 fibsize; 1276 struct aac_read64 *readcmd; 1277 long ret; 1278 1279 aac_fib_init(fib); 1280 readcmd = (struct aac_read64 *) fib_data(fib); 1281 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1282 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1283 readcmd->sector_count = cpu_to_le16(count); 1284 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1285 readcmd->pad = 0; 1286 readcmd->flags = 0; 1287 1288 ret = aac_build_sg64(cmd, &readcmd->sg); 1289 if (ret < 0) 1290 return ret; 1291 fibsize = sizeof(struct aac_read64) + 1292 ((le32_to_cpu(readcmd->sg.count) - 1) * 1293 sizeof (struct sgentry64)); 1294 BUG_ON (fibsize > (fib->dev->max_fib_size - 1295 sizeof(struct aac_fibhdr))); 1296 /* 1297 * Now send the Fib to the adapter 1298 */ 1299 return aac_fib_send(ContainerCommand64, 1300 fib, 1301 fibsize, 1302 FsaNormal, 1303 0, 1, 1304 (fib_callback) io_callback, 1305 (void *) cmd); 1306 } 1307 1308 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1309 { 1310 u16 fibsize; 1311 struct aac_read *readcmd; 1312 struct aac_dev *dev = fib->dev; 1313 long ret; 1314 1315 aac_fib_init(fib); 1316 readcmd = (struct aac_read *) fib_data(fib); 1317 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1318 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1319 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1320 readcmd->count = cpu_to_le32(count * 1321 dev->fsa_dev[scmd_id(cmd)].block_size); 1322 1323 ret = aac_build_sg(cmd, &readcmd->sg); 1324 if (ret < 0) 1325 return ret; 1326 fibsize = sizeof(struct aac_read) + 1327 ((le32_to_cpu(readcmd->sg.count) - 1) * 1328 sizeof (struct sgentry)); 1329 BUG_ON (fibsize > (fib->dev->max_fib_size - 1330 sizeof(struct aac_fibhdr))); 1331 /* 1332 * Now send the Fib to the adapter 1333 */ 1334 return aac_fib_send(ContainerCommand, 1335 fib, 1336 fibsize, 1337 FsaNormal, 1338 0, 1, 1339 (fib_callback) io_callback, 1340 (void *) cmd); 1341 } 1342 1343 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1344 { 1345 struct aac_dev *dev = fib->dev; 1346 u16 fibsize, command; 1347 long ret; 1348 1349 aac_fib_init(fib); 1350 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1351 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1352 !dev->sync_mode) { 1353 struct aac_raw_io2 *writecmd2; 1354 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1355 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1356 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1357 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1358 writecmd2->byteCount = cpu_to_le32(count * 1359 dev->fsa_dev[scmd_id(cmd)].block_size); 1360 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1361 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1362 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1363 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1364 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1365 ret = aac_build_sgraw2(cmd, writecmd2, 1366 dev->scsi_host_ptr->sg_tablesize); 1367 if (ret < 0) 1368 return ret; 1369 command = ContainerRawIo2; 1370 fibsize = sizeof(struct aac_raw_io2) + 1371 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1372 } else { 1373 struct aac_raw_io *writecmd; 1374 writecmd = (struct aac_raw_io *) fib_data(fib); 1375 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1376 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1377 writecmd->count = cpu_to_le32(count * 1378 dev->fsa_dev[scmd_id(cmd)].block_size); 1379 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1380 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1381 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1382 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1383 cpu_to_le16(RIO_TYPE_WRITE); 1384 writecmd->bpTotal = 0; 1385 writecmd->bpComplete = 0; 1386 ret = aac_build_sgraw(cmd, &writecmd->sg); 1387 if (ret < 0) 1388 return ret; 1389 command = ContainerRawIo; 1390 fibsize = sizeof(struct aac_raw_io) + 1391 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1392 } 1393 1394 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1395 /* 1396 * Now send the Fib to the adapter 1397 */ 1398 return aac_fib_send(command, 1399 fib, 1400 fibsize, 1401 FsaNormal, 1402 0, 1, 1403 (fib_callback) io_callback, 1404 (void *) cmd); 1405 } 1406 1407 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1408 { 1409 u16 fibsize; 1410 struct aac_write64 *writecmd; 1411 long ret; 1412 1413 aac_fib_init(fib); 1414 writecmd = (struct aac_write64 *) fib_data(fib); 1415 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1416 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1417 writecmd->sector_count = cpu_to_le16(count); 1418 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1419 writecmd->pad = 0; 1420 writecmd->flags = 0; 1421 1422 ret = aac_build_sg64(cmd, &writecmd->sg); 1423 if (ret < 0) 1424 return ret; 1425 fibsize = sizeof(struct aac_write64) + 1426 ((le32_to_cpu(writecmd->sg.count) - 1) * 1427 sizeof (struct sgentry64)); 1428 BUG_ON (fibsize > (fib->dev->max_fib_size - 1429 sizeof(struct aac_fibhdr))); 1430 /* 1431 * Now send the Fib to the adapter 1432 */ 1433 return aac_fib_send(ContainerCommand64, 1434 fib, 1435 fibsize, 1436 FsaNormal, 1437 0, 1, 1438 (fib_callback) io_callback, 1439 (void *) cmd); 1440 } 1441 1442 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1443 { 1444 u16 fibsize; 1445 struct aac_write *writecmd; 1446 struct aac_dev *dev = fib->dev; 1447 long ret; 1448 1449 aac_fib_init(fib); 1450 writecmd = (struct aac_write *) fib_data(fib); 1451 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1452 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1453 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1454 writecmd->count = cpu_to_le32(count * 1455 dev->fsa_dev[scmd_id(cmd)].block_size); 1456 writecmd->sg.count = cpu_to_le32(1); 1457 /* ->stable is not used - it did mean which type of write */ 1458 1459 ret = aac_build_sg(cmd, &writecmd->sg); 1460 if (ret < 0) 1461 return ret; 1462 fibsize = sizeof(struct aac_write) + 1463 ((le32_to_cpu(writecmd->sg.count) - 1) * 1464 sizeof (struct sgentry)); 1465 BUG_ON (fibsize > (fib->dev->max_fib_size - 1466 sizeof(struct aac_fibhdr))); 1467 /* 1468 * Now send the Fib to the adapter 1469 */ 1470 return aac_fib_send(ContainerCommand, 1471 fib, 1472 fibsize, 1473 FsaNormal, 1474 0, 1, 1475 (fib_callback) io_callback, 1476 (void *) cmd); 1477 } 1478 1479 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1480 { 1481 struct aac_srb * srbcmd; 1482 u32 flag; 1483 u32 timeout; 1484 struct aac_dev *dev = fib->dev; 1485 1486 aac_fib_init(fib); 1487 switch(cmd->sc_data_direction){ 1488 case DMA_TO_DEVICE: 1489 flag = SRB_DataOut; 1490 break; 1491 case DMA_BIDIRECTIONAL: 1492 flag = SRB_DataIn | SRB_DataOut; 1493 break; 1494 case DMA_FROM_DEVICE: 1495 flag = SRB_DataIn; 1496 break; 1497 case DMA_NONE: 1498 default: /* shuts up some versions of gcc */ 1499 flag = SRB_NoDataXfer; 1500 break; 1501 } 1502 1503 srbcmd = (struct aac_srb*) fib_data(fib); 1504 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1505 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1506 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1507 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1508 srbcmd->flags = cpu_to_le32(flag); 1509 timeout = cmd->request->timeout/HZ; 1510 if (timeout == 0) 1511 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1512 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1513 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1514 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1515 return srbcmd; 1516 } 1517 1518 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1519 struct scsi_cmnd *cmd) 1520 { 1521 struct aac_hba_cmd_req *hbacmd; 1522 struct aac_dev *dev; 1523 int bus, target; 1524 u64 address; 1525 1526 dev = (struct aac_dev *)cmd->device->host->hostdata; 1527 1528 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1529 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1530 /* iu_type is a parameter of aac_hba_send */ 1531 switch (cmd->sc_data_direction) { 1532 case DMA_TO_DEVICE: 1533 hbacmd->byte1 = 2; 1534 break; 1535 case DMA_FROM_DEVICE: 1536 case DMA_BIDIRECTIONAL: 1537 hbacmd->byte1 = 1; 1538 break; 1539 case DMA_NONE: 1540 default: 1541 break; 1542 } 1543 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1544 1545 bus = aac_logical_to_phys(scmd_channel(cmd)); 1546 target = scmd_id(cmd); 1547 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1548 1549 /* we fill in reply_qid later in aac_src_deliver_message */ 1550 /* we fill in iu_type, request_id later in aac_hba_send */ 1551 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1552 1553 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1554 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1555 1556 address = (u64)fib->hw_error_pa; 1557 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1558 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1559 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1560 1561 return hbacmd; 1562 } 1563 1564 static void aac_srb_callback(void *context, struct fib * fibptr); 1565 1566 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1567 { 1568 u16 fibsize; 1569 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1570 long ret; 1571 1572 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1573 if (ret < 0) 1574 return ret; 1575 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1576 1577 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1578 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1579 /* 1580 * Build Scatter/Gather list 1581 */ 1582 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1583 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1584 sizeof (struct sgentry64)); 1585 BUG_ON (fibsize > (fib->dev->max_fib_size - 1586 sizeof(struct aac_fibhdr))); 1587 1588 /* 1589 * Now send the Fib to the adapter 1590 */ 1591 return aac_fib_send(ScsiPortCommand64, fib, 1592 fibsize, FsaNormal, 0, 1, 1593 (fib_callback) aac_srb_callback, 1594 (void *) cmd); 1595 } 1596 1597 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1598 { 1599 u16 fibsize; 1600 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1601 long ret; 1602 1603 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1604 if (ret < 0) 1605 return ret; 1606 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1607 1608 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1609 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1610 /* 1611 * Build Scatter/Gather list 1612 */ 1613 fibsize = sizeof (struct aac_srb) + 1614 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1615 sizeof (struct sgentry)); 1616 BUG_ON (fibsize > (fib->dev->max_fib_size - 1617 sizeof(struct aac_fibhdr))); 1618 1619 /* 1620 * Now send the Fib to the adapter 1621 */ 1622 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1623 (fib_callback) aac_srb_callback, (void *) cmd); 1624 } 1625 1626 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1627 { 1628 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1629 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1630 return FAILED; 1631 return aac_scsi_32(fib, cmd); 1632 } 1633 1634 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1635 { 1636 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1637 struct aac_dev *dev; 1638 long ret; 1639 1640 dev = (struct aac_dev *)cmd->device->host->hostdata; 1641 1642 ret = aac_build_sghba(cmd, hbacmd, 1643 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1644 if (ret < 0) 1645 return ret; 1646 1647 /* 1648 * Now send the HBA command to the adapter 1649 */ 1650 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1651 sizeof(struct aac_hba_sgl); 1652 1653 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1654 (fib_callback) aac_hba_callback, 1655 (void *) cmd); 1656 } 1657 1658 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1659 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1660 { 1661 struct fib *fibptr; 1662 dma_addr_t addr; 1663 int rcode; 1664 int fibsize; 1665 struct aac_srb *srb; 1666 struct aac_srb_reply *srb_reply; 1667 struct sgmap64 *sg64; 1668 u32 vbus; 1669 u32 vid; 1670 1671 if (!dev->sa_firmware) 1672 return 0; 1673 1674 /* allocate FIB */ 1675 fibptr = aac_fib_alloc(dev); 1676 if (!fibptr) 1677 return -ENOMEM; 1678 1679 aac_fib_init(fibptr); 1680 fibptr->hw_fib_va->header.XferState &= 1681 ~cpu_to_le32(FastResponseCapable); 1682 1683 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1684 sizeof(struct sgentry64); 1685 1686 /* allocate DMA buffer for response */ 1687 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1688 DMA_BIDIRECTIONAL); 1689 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1690 rcode = -ENOMEM; 1691 goto fib_error; 1692 } 1693 1694 srb = fib_data(fibptr); 1695 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1696 1697 vbus = (u32)le16_to_cpu( 1698 dev->supplement_adapter_info.virt_device_bus); 1699 vid = (u32)le16_to_cpu( 1700 dev->supplement_adapter_info.virt_device_target); 1701 1702 /* set the common request fields */ 1703 srb->channel = cpu_to_le32(vbus); 1704 srb->id = cpu_to_le32(vid); 1705 srb->lun = 0; 1706 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1707 srb->timeout = 0; 1708 srb->retry_limit = 0; 1709 srb->cdb_size = cpu_to_le32(16); 1710 srb->count = cpu_to_le32(xfer_len); 1711 1712 sg64 = (struct sgmap64 *)&srb->sg; 1713 sg64->count = cpu_to_le32(1); 1714 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1715 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1716 sg64->sg[0].count = cpu_to_le32(xfer_len); 1717 1718 /* 1719 * Copy the updated data for other dumping or other usage if needed 1720 */ 1721 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1722 1723 /* issue request to the controller */ 1724 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1725 1, 1, NULL, NULL); 1726 1727 if (rcode == -ERESTARTSYS) 1728 rcode = -ERESTART; 1729 1730 if (unlikely(rcode < 0)) 1731 goto bmic_error; 1732 1733 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1734 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1735 1736 bmic_error: 1737 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1738 fib_error: 1739 aac_fib_complete(fibptr); 1740 aac_fib_free(fibptr); 1741 return rcode; 1742 } 1743 1744 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1745 { 1746 1747 struct aac_ciss_identify_pd *identify_resp; 1748 1749 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1750 return; 1751 1752 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1753 if (identify_resp == NULL) { 1754 dev->hba_map[bus][target].qd_limit = 32; 1755 return; 1756 } 1757 1758 if (identify_resp->current_queue_depth_limit <= 0 || 1759 identify_resp->current_queue_depth_limit > 255) 1760 dev->hba_map[bus][target].qd_limit = 32; 1761 else 1762 dev->hba_map[bus][target].qd_limit = 1763 identify_resp->current_queue_depth_limit; 1764 } 1765 1766 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1767 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1768 { 1769 int rcode = -ENOMEM; 1770 int datasize; 1771 struct aac_srb_unit srbu; 1772 struct aac_srb *srbcmd; 1773 struct aac_ciss_identify_pd *identify_reply; 1774 1775 datasize = sizeof(struct aac_ciss_identify_pd); 1776 identify_reply = kmalloc(datasize, GFP_KERNEL); 1777 if (!identify_reply) 1778 goto out; 1779 1780 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1781 1782 srbcmd = &srbu.srb; 1783 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1784 srbcmd->cdb[0] = 0x26; 1785 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1786 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1787 1788 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1789 if (unlikely(rcode < 0)) 1790 goto mem_free_all; 1791 1792 *identify_resp = identify_reply; 1793 1794 out: 1795 return rcode; 1796 mem_free_all: 1797 kfree(identify_reply); 1798 goto out; 1799 } 1800 1801 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1802 { 1803 kfree(dev->safw_phys_luns); 1804 dev->safw_phys_luns = NULL; 1805 } 1806 1807 /** 1808 * aac_get_safw_ciss_luns() Process topology change 1809 * @dev: aac_dev structure 1810 * 1811 * Execute a CISS REPORT PHYS LUNS and process the results into 1812 * the current hba_map. 1813 */ 1814 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1815 { 1816 int rcode = -ENOMEM; 1817 int datasize; 1818 struct aac_srb *srbcmd; 1819 struct aac_srb_unit srbu; 1820 struct aac_ciss_phys_luns_resp *phys_luns; 1821 1822 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1823 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1824 phys_luns = kmalloc(datasize, GFP_KERNEL); 1825 if (phys_luns == NULL) 1826 goto out; 1827 1828 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1829 1830 srbcmd = &srbu.srb; 1831 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1832 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1833 srbcmd->cdb[1] = 2; /* extended reporting */ 1834 srbcmd->cdb[8] = (u8)(datasize >> 8); 1835 srbcmd->cdb[9] = (u8)(datasize); 1836 1837 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1838 if (unlikely(rcode < 0)) 1839 goto mem_free_all; 1840 1841 if (phys_luns->resp_flag != 2) { 1842 rcode = -ENOMSG; 1843 goto mem_free_all; 1844 } 1845 1846 dev->safw_phys_luns = phys_luns; 1847 1848 out: 1849 return rcode; 1850 mem_free_all: 1851 kfree(phys_luns); 1852 goto out; 1853 } 1854 1855 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1856 { 1857 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1858 } 1859 1860 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1861 { 1862 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1863 } 1864 1865 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1866 { 1867 return dev->safw_phys_luns->lun[lun].level2[0]; 1868 } 1869 1870 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1871 { 1872 return dev->safw_phys_luns->lun[lun].bus >> 6; 1873 } 1874 1875 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1876 { 1877 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1878 } 1879 1880 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1881 { 1882 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1883 } 1884 1885 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1886 { 1887 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1888 } 1889 1890 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1891 int bus, int target) 1892 { 1893 kfree(dev->hba_map[bus][target].safw_identify_resp); 1894 dev->hba_map[bus][target].safw_identify_resp = NULL; 1895 } 1896 1897 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1898 int lun_count) 1899 { 1900 int luns; 1901 int i; 1902 u32 bus; 1903 u32 target; 1904 1905 luns = aac_get_safw_phys_lun_count(dev); 1906 1907 if (luns < lun_count) 1908 lun_count = luns; 1909 else if (lun_count < 0) 1910 lun_count = luns; 1911 1912 for (i = 0; i < lun_count; i++) { 1913 bus = aac_get_safw_phys_bus(dev, i); 1914 target = aac_get_safw_phys_target(dev, i); 1915 1916 aac_free_safw_identify_resp(dev, bus, target); 1917 } 1918 } 1919 1920 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1921 { 1922 int i; 1923 int rcode = 0; 1924 u32 lun_count; 1925 u32 bus; 1926 u32 target; 1927 struct aac_ciss_identify_pd *identify_resp = NULL; 1928 1929 lun_count = aac_get_safw_phys_lun_count(dev); 1930 1931 for (i = 0; i < lun_count; ++i) { 1932 1933 bus = aac_get_safw_phys_bus(dev, i); 1934 target = aac_get_safw_phys_target(dev, i); 1935 1936 rcode = aac_issue_safw_bmic_identify(dev, 1937 &identify_resp, bus, target); 1938 1939 if (unlikely(rcode < 0)) 1940 goto free_identify_resp; 1941 1942 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1943 } 1944 1945 out: 1946 return rcode; 1947 free_identify_resp: 1948 aac_free_safw_all_identify_resp(dev, i); 1949 goto out; 1950 } 1951 1952 /** 1953 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1954 * @dev: aac_dev structure 1955 * @phys_luns: FW information from report phys luns 1956 * @rescan: Indicates scan type 1957 * 1958 * Update our hba map with the information gathered from the FW 1959 */ 1960 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1961 { 1962 /* ok and extended reporting */ 1963 u32 lun_count, nexus; 1964 u32 i, bus, target; 1965 u8 expose_flag, attribs; 1966 1967 lun_count = aac_get_safw_phys_lun_count(dev); 1968 1969 dev->scan_counter++; 1970 1971 for (i = 0; i < lun_count; ++i) { 1972 1973 bus = aac_get_safw_phys_bus(dev, i); 1974 target = aac_get_safw_phys_target(dev, i); 1975 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1976 attribs = aac_get_safw_phys_attribs(dev, i); 1977 nexus = aac_get_safw_phys_nexus(dev, i); 1978 1979 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1980 continue; 1981 1982 if (expose_flag != 0) { 1983 dev->hba_map[bus][target].devtype = 1984 AAC_DEVTYPE_RAID_MEMBER; 1985 continue; 1986 } 1987 1988 if (nexus != 0 && (attribs & 8)) { 1989 dev->hba_map[bus][target].devtype = 1990 AAC_DEVTYPE_NATIVE_RAW; 1991 dev->hba_map[bus][target].rmw_nexus = 1992 nexus; 1993 } else 1994 dev->hba_map[bus][target].devtype = 1995 AAC_DEVTYPE_ARC_RAW; 1996 1997 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1998 1999 aac_set_safw_target_qd(dev, bus, target); 2000 } 2001 } 2002 2003 static int aac_setup_safw_targets(struct aac_dev *dev) 2004 { 2005 int rcode = 0; 2006 2007 rcode = aac_get_containers(dev); 2008 if (unlikely(rcode < 0)) 2009 goto out; 2010 2011 rcode = aac_get_safw_ciss_luns(dev); 2012 if (unlikely(rcode < 0)) 2013 goto out; 2014 2015 rcode = aac_get_safw_attr_all_targets(dev); 2016 if (unlikely(rcode < 0)) 2017 goto free_ciss_luns; 2018 2019 aac_set_safw_attr_all_targets(dev); 2020 2021 aac_free_safw_all_identify_resp(dev, -1); 2022 free_ciss_luns: 2023 aac_free_safw_ciss_luns(dev); 2024 out: 2025 return rcode; 2026 } 2027 2028 int aac_setup_safw_adapter(struct aac_dev *dev) 2029 { 2030 return aac_setup_safw_targets(dev); 2031 } 2032 2033 int aac_get_adapter_info(struct aac_dev* dev) 2034 { 2035 struct fib* fibptr; 2036 int rcode; 2037 u32 tmp, bus, target; 2038 struct aac_adapter_info *info; 2039 struct aac_bus_info *command; 2040 struct aac_bus_info_response *bus_info; 2041 2042 if (!(fibptr = aac_fib_alloc(dev))) 2043 return -ENOMEM; 2044 2045 aac_fib_init(fibptr); 2046 info = (struct aac_adapter_info *) fib_data(fibptr); 2047 memset(info,0,sizeof(*info)); 2048 2049 rcode = aac_fib_send(RequestAdapterInfo, 2050 fibptr, 2051 sizeof(*info), 2052 FsaNormal, 2053 -1, 1, /* First `interrupt' command uses special wait */ 2054 NULL, 2055 NULL); 2056 2057 if (rcode < 0) { 2058 /* FIB should be freed only after 2059 * getting the response from the F/W */ 2060 if (rcode != -ERESTARTSYS) { 2061 aac_fib_complete(fibptr); 2062 aac_fib_free(fibptr); 2063 } 2064 return rcode; 2065 } 2066 memcpy(&dev->adapter_info, info, sizeof(*info)); 2067 2068 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2069 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2070 struct aac_supplement_adapter_info * sinfo; 2071 2072 aac_fib_init(fibptr); 2073 2074 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2075 2076 memset(sinfo,0,sizeof(*sinfo)); 2077 2078 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2079 fibptr, 2080 sizeof(*sinfo), 2081 FsaNormal, 2082 1, 1, 2083 NULL, 2084 NULL); 2085 2086 if (rcode >= 0) 2087 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2088 if (rcode == -ERESTARTSYS) { 2089 fibptr = aac_fib_alloc(dev); 2090 if (!fibptr) 2091 return -ENOMEM; 2092 } 2093 2094 } 2095 2096 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2097 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2098 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2099 dev->hba_map[bus][target].devtype = 0; 2100 dev->hba_map[bus][target].qd_limit = 0; 2101 } 2102 } 2103 2104 /* 2105 * GetBusInfo 2106 */ 2107 2108 aac_fib_init(fibptr); 2109 2110 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2111 2112 memset(bus_info, 0, sizeof(*bus_info)); 2113 2114 command = (struct aac_bus_info *)bus_info; 2115 2116 command->Command = cpu_to_le32(VM_Ioctl); 2117 command->ObjType = cpu_to_le32(FT_DRIVE); 2118 command->MethodId = cpu_to_le32(1); 2119 command->CtlCmd = cpu_to_le32(GetBusInfo); 2120 2121 rcode = aac_fib_send(ContainerCommand, 2122 fibptr, 2123 sizeof (*bus_info), 2124 FsaNormal, 2125 1, 1, 2126 NULL, NULL); 2127 2128 /* reasoned default */ 2129 dev->maximum_num_physicals = 16; 2130 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2131 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2132 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2133 } 2134 2135 if (!dev->in_reset) { 2136 char buffer[16]; 2137 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2138 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2139 dev->name, 2140 dev->id, 2141 tmp>>24, 2142 (tmp>>16)&0xff, 2143 tmp&0xff, 2144 le32_to_cpu(dev->adapter_info.kernelbuild), 2145 (int)sizeof(dev->supplement_adapter_info.build_date), 2146 dev->supplement_adapter_info.build_date); 2147 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2148 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2149 dev->name, dev->id, 2150 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2151 le32_to_cpu(dev->adapter_info.monitorbuild)); 2152 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2153 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2154 dev->name, dev->id, 2155 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2156 le32_to_cpu(dev->adapter_info.biosbuild)); 2157 buffer[0] = '\0'; 2158 if (aac_get_serial_number( 2159 shost_to_class(dev->scsi_host_ptr), buffer)) 2160 printk(KERN_INFO "%s%d: serial %s", 2161 dev->name, dev->id, buffer); 2162 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2163 printk(KERN_INFO "%s%d: TSID %.*s\n", 2164 dev->name, dev->id, 2165 (int)sizeof(dev->supplement_adapter_info 2166 .vpd_info.tsid), 2167 dev->supplement_adapter_info.vpd_info.tsid); 2168 } 2169 if (!aac_check_reset || ((aac_check_reset == 1) && 2170 (dev->supplement_adapter_info.supported_options2 & 2171 AAC_OPTION_IGNORE_RESET))) { 2172 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2173 dev->name, dev->id); 2174 } 2175 } 2176 2177 dev->cache_protected = 0; 2178 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2179 AAC_FEATURE_JBOD) != 0); 2180 dev->nondasd_support = 0; 2181 dev->raid_scsi_mode = 0; 2182 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2183 dev->nondasd_support = 1; 2184 2185 /* 2186 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2187 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2188 * force nondasd support on. If we decide to allow the non-dasd flag 2189 * additional changes changes will have to be made to support 2190 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2191 * changed to support the new dev->raid_scsi_mode flag instead of 2192 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2193 * function aac_detect will have to be modified where it sets up the 2194 * max number of channels based on the aac->nondasd_support flag only. 2195 */ 2196 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2197 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2198 dev->nondasd_support = 1; 2199 dev->raid_scsi_mode = 1; 2200 } 2201 if (dev->raid_scsi_mode != 0) 2202 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2203 dev->name, dev->id); 2204 2205 if (nondasd != -1) 2206 dev->nondasd_support = (nondasd!=0); 2207 if (dev->nondasd_support && !dev->in_reset) 2208 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2209 2210 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2211 dev->needs_dac = 1; 2212 dev->dac_support = 0; 2213 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2214 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2215 if (!dev->in_reset) 2216 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2217 dev->name, dev->id); 2218 dev->dac_support = 1; 2219 } 2220 2221 if(dacmode != -1) { 2222 dev->dac_support = (dacmode!=0); 2223 } 2224 2225 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2226 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2227 & AAC_QUIRK_SCSI_32)) { 2228 dev->nondasd_support = 0; 2229 dev->jbod = 0; 2230 expose_physicals = 0; 2231 } 2232 2233 if (dev->dac_support) { 2234 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2235 if (!dev->in_reset) 2236 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2237 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2238 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2239 dev->dac_support = 0; 2240 } else { 2241 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2242 rcode = -ENOMEM; 2243 } 2244 } 2245 /* 2246 * Deal with configuring for the individualized limits of each packet 2247 * interface. 2248 */ 2249 dev->a_ops.adapter_scsi = (dev->dac_support) 2250 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2251 ? aac_scsi_32_64 2252 : aac_scsi_64) 2253 : aac_scsi_32; 2254 if (dev->raw_io_interface) { 2255 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2256 ? aac_bounds_64 2257 : aac_bounds_32; 2258 dev->a_ops.adapter_read = aac_read_raw_io; 2259 dev->a_ops.adapter_write = aac_write_raw_io; 2260 } else { 2261 dev->a_ops.adapter_bounds = aac_bounds_32; 2262 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2263 sizeof(struct aac_fibhdr) - 2264 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2265 sizeof(struct sgentry); 2266 if (dev->dac_support) { 2267 dev->a_ops.adapter_read = aac_read_block64; 2268 dev->a_ops.adapter_write = aac_write_block64; 2269 /* 2270 * 38 scatter gather elements 2271 */ 2272 dev->scsi_host_ptr->sg_tablesize = 2273 (dev->max_fib_size - 2274 sizeof(struct aac_fibhdr) - 2275 sizeof(struct aac_write64) + 2276 sizeof(struct sgentry64)) / 2277 sizeof(struct sgentry64); 2278 } else { 2279 dev->a_ops.adapter_read = aac_read_block; 2280 dev->a_ops.adapter_write = aac_write_block; 2281 } 2282 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2283 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2284 /* 2285 * Worst case size that could cause sg overflow when 2286 * we break up SG elements that are larger than 64KB. 2287 * Would be nice if we could tell the SCSI layer what 2288 * the maximum SG element size can be. Worst case is 2289 * (sg_tablesize-1) 4KB elements with one 64KB 2290 * element. 2291 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2292 */ 2293 dev->scsi_host_ptr->max_sectors = 2294 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2295 } 2296 } 2297 if (!dev->sync_mode && dev->sa_firmware && 2298 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2299 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2300 HBA_MAX_SG_SEPARATE; 2301 2302 /* FIB should be freed only after getting the response from the F/W */ 2303 if (rcode != -ERESTARTSYS) { 2304 aac_fib_complete(fibptr); 2305 aac_fib_free(fibptr); 2306 } 2307 2308 return rcode; 2309 } 2310 2311 2312 static void io_callback(void *context, struct fib * fibptr) 2313 { 2314 struct aac_dev *dev; 2315 struct aac_read_reply *readreply; 2316 struct scsi_cmnd *scsicmd; 2317 u32 cid; 2318 2319 scsicmd = (struct scsi_cmnd *) context; 2320 2321 if (!aac_valid_context(scsicmd, fibptr)) 2322 return; 2323 2324 dev = fibptr->dev; 2325 cid = scmd_id(scsicmd); 2326 2327 if (nblank(dprintk(x))) { 2328 u64 lba; 2329 switch (scsicmd->cmnd[0]) { 2330 case WRITE_6: 2331 case READ_6: 2332 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2333 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2334 break; 2335 case WRITE_16: 2336 case READ_16: 2337 lba = ((u64)scsicmd->cmnd[2] << 56) | 2338 ((u64)scsicmd->cmnd[3] << 48) | 2339 ((u64)scsicmd->cmnd[4] << 40) | 2340 ((u64)scsicmd->cmnd[5] << 32) | 2341 ((u64)scsicmd->cmnd[6] << 24) | 2342 (scsicmd->cmnd[7] << 16) | 2343 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2344 break; 2345 case WRITE_12: 2346 case READ_12: 2347 lba = ((u64)scsicmd->cmnd[2] << 24) | 2348 (scsicmd->cmnd[3] << 16) | 2349 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2350 break; 2351 default: 2352 lba = ((u64)scsicmd->cmnd[2] << 24) | 2353 (scsicmd->cmnd[3] << 16) | 2354 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2355 break; 2356 } 2357 printk(KERN_DEBUG 2358 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2359 smp_processor_id(), (unsigned long long)lba, jiffies); 2360 } 2361 2362 BUG_ON(fibptr == NULL); 2363 2364 scsi_dma_unmap(scsicmd); 2365 2366 readreply = (struct aac_read_reply *)fib_data(fibptr); 2367 switch (le32_to_cpu(readreply->status)) { 2368 case ST_OK: 2369 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2370 SAM_STAT_GOOD; 2371 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2372 break; 2373 case ST_NOT_READY: 2374 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2375 SAM_STAT_CHECK_CONDITION; 2376 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2377 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2378 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2379 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2380 SCSI_SENSE_BUFFERSIZE)); 2381 break; 2382 case ST_MEDERR: 2383 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2384 SAM_STAT_CHECK_CONDITION; 2385 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2386 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2387 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2388 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2389 SCSI_SENSE_BUFFERSIZE)); 2390 break; 2391 default: 2392 #ifdef AAC_DETAILED_STATUS_INFO 2393 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2394 le32_to_cpu(readreply->status)); 2395 #endif 2396 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2397 SAM_STAT_CHECK_CONDITION; 2398 set_sense(&dev->fsa_dev[cid].sense_data, 2399 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2400 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2401 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2402 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2403 SCSI_SENSE_BUFFERSIZE)); 2404 break; 2405 } 2406 aac_fib_complete(fibptr); 2407 2408 scsicmd->scsi_done(scsicmd); 2409 } 2410 2411 static int aac_read(struct scsi_cmnd * scsicmd) 2412 { 2413 u64 lba; 2414 u32 count; 2415 int status; 2416 struct aac_dev *dev; 2417 struct fib * cmd_fibcontext; 2418 int cid; 2419 2420 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2421 /* 2422 * Get block address and transfer length 2423 */ 2424 switch (scsicmd->cmnd[0]) { 2425 case READ_6: 2426 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2427 2428 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2429 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2430 count = scsicmd->cmnd[4]; 2431 2432 if (count == 0) 2433 count = 256; 2434 break; 2435 case READ_16: 2436 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2437 2438 lba = ((u64)scsicmd->cmnd[2] << 56) | 2439 ((u64)scsicmd->cmnd[3] << 48) | 2440 ((u64)scsicmd->cmnd[4] << 40) | 2441 ((u64)scsicmd->cmnd[5] << 32) | 2442 ((u64)scsicmd->cmnd[6] << 24) | 2443 (scsicmd->cmnd[7] << 16) | 2444 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2445 count = (scsicmd->cmnd[10] << 24) | 2446 (scsicmd->cmnd[11] << 16) | 2447 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2448 break; 2449 case READ_12: 2450 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2451 2452 lba = ((u64)scsicmd->cmnd[2] << 24) | 2453 (scsicmd->cmnd[3] << 16) | 2454 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2455 count = (scsicmd->cmnd[6] << 24) | 2456 (scsicmd->cmnd[7] << 16) | 2457 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2458 break; 2459 default: 2460 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2461 2462 lba = ((u64)scsicmd->cmnd[2] << 24) | 2463 (scsicmd->cmnd[3] << 16) | 2464 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2465 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2466 break; 2467 } 2468 2469 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2470 cid = scmd_id(scsicmd); 2471 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2472 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2473 SAM_STAT_CHECK_CONDITION; 2474 set_sense(&dev->fsa_dev[cid].sense_data, 2475 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2476 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2477 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2478 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2479 SCSI_SENSE_BUFFERSIZE)); 2480 scsicmd->scsi_done(scsicmd); 2481 return 0; 2482 } 2483 2484 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2485 smp_processor_id(), (unsigned long long)lba, jiffies)); 2486 if (aac_adapter_bounds(dev,scsicmd,lba)) 2487 return 0; 2488 /* 2489 * Alocate and initialize a Fib 2490 */ 2491 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2492 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2493 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2494 2495 /* 2496 * Check that the command queued to the controller 2497 */ 2498 if (status == -EINPROGRESS) 2499 return 0; 2500 2501 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2502 /* 2503 * For some reason, the Fib didn't queue, return QUEUE_FULL 2504 */ 2505 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2506 scsicmd->scsi_done(scsicmd); 2507 aac_fib_complete(cmd_fibcontext); 2508 aac_fib_free(cmd_fibcontext); 2509 return 0; 2510 } 2511 2512 static int aac_write(struct scsi_cmnd * scsicmd) 2513 { 2514 u64 lba; 2515 u32 count; 2516 int fua; 2517 int status; 2518 struct aac_dev *dev; 2519 struct fib * cmd_fibcontext; 2520 int cid; 2521 2522 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2523 /* 2524 * Get block address and transfer length 2525 */ 2526 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2527 { 2528 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2529 count = scsicmd->cmnd[4]; 2530 if (count == 0) 2531 count = 256; 2532 fua = 0; 2533 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2534 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2535 2536 lba = ((u64)scsicmd->cmnd[2] << 56) | 2537 ((u64)scsicmd->cmnd[3] << 48) | 2538 ((u64)scsicmd->cmnd[4] << 40) | 2539 ((u64)scsicmd->cmnd[5] << 32) | 2540 ((u64)scsicmd->cmnd[6] << 24) | 2541 (scsicmd->cmnd[7] << 16) | 2542 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2543 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2544 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2545 fua = scsicmd->cmnd[1] & 0x8; 2546 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2547 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2548 2549 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2550 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2551 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2552 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2553 fua = scsicmd->cmnd[1] & 0x8; 2554 } else { 2555 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2556 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2557 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2558 fua = scsicmd->cmnd[1] & 0x8; 2559 } 2560 2561 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2562 cid = scmd_id(scsicmd); 2563 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2564 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2565 SAM_STAT_CHECK_CONDITION; 2566 set_sense(&dev->fsa_dev[cid].sense_data, 2567 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2568 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2569 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2570 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2571 SCSI_SENSE_BUFFERSIZE)); 2572 scsicmd->scsi_done(scsicmd); 2573 return 0; 2574 } 2575 2576 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2577 smp_processor_id(), (unsigned long long)lba, jiffies)); 2578 if (aac_adapter_bounds(dev,scsicmd,lba)) 2579 return 0; 2580 /* 2581 * Allocate and initialize a Fib then setup a BlockWrite command 2582 */ 2583 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2584 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2585 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2586 2587 /* 2588 * Check that the command queued to the controller 2589 */ 2590 if (status == -EINPROGRESS) 2591 return 0; 2592 2593 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2594 /* 2595 * For some reason, the Fib didn't queue, return QUEUE_FULL 2596 */ 2597 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2598 scsicmd->scsi_done(scsicmd); 2599 2600 aac_fib_complete(cmd_fibcontext); 2601 aac_fib_free(cmd_fibcontext); 2602 return 0; 2603 } 2604 2605 static void synchronize_callback(void *context, struct fib *fibptr) 2606 { 2607 struct aac_synchronize_reply *synchronizereply; 2608 struct scsi_cmnd *cmd = context; 2609 2610 if (!aac_valid_context(cmd, fibptr)) 2611 return; 2612 2613 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2614 smp_processor_id(), jiffies)); 2615 BUG_ON(fibptr == NULL); 2616 2617 2618 synchronizereply = fib_data(fibptr); 2619 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2620 cmd->result = DID_OK << 16 | 2621 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2622 else { 2623 struct scsi_device *sdev = cmd->device; 2624 struct aac_dev *dev = fibptr->dev; 2625 u32 cid = sdev_id(sdev); 2626 printk(KERN_WARNING 2627 "synchronize_callback: synchronize failed, status = %d\n", 2628 le32_to_cpu(synchronizereply->status)); 2629 cmd->result = DID_OK << 16 | 2630 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2631 set_sense(&dev->fsa_dev[cid].sense_data, 2632 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2633 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2634 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2635 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2636 SCSI_SENSE_BUFFERSIZE)); 2637 } 2638 2639 aac_fib_complete(fibptr); 2640 aac_fib_free(fibptr); 2641 cmd->scsi_done(cmd); 2642 } 2643 2644 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2645 { 2646 int status; 2647 struct fib *cmd_fibcontext; 2648 struct aac_synchronize *synchronizecmd; 2649 struct scsi_device *sdev = scsicmd->device; 2650 struct aac_dev *aac; 2651 2652 aac = (struct aac_dev *)sdev->host->hostdata; 2653 if (aac->in_reset) 2654 return SCSI_MLQUEUE_HOST_BUSY; 2655 2656 /* 2657 * Allocate and initialize a Fib 2658 */ 2659 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2660 2661 aac_fib_init(cmd_fibcontext); 2662 2663 synchronizecmd = fib_data(cmd_fibcontext); 2664 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2665 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2666 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2667 synchronizecmd->count = 2668 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2669 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2670 2671 /* 2672 * Now send the Fib to the adapter 2673 */ 2674 status = aac_fib_send(ContainerCommand, 2675 cmd_fibcontext, 2676 sizeof(struct aac_synchronize), 2677 FsaNormal, 2678 0, 1, 2679 (fib_callback)synchronize_callback, 2680 (void *)scsicmd); 2681 2682 /* 2683 * Check that the command queued to the controller 2684 */ 2685 if (status == -EINPROGRESS) 2686 return 0; 2687 2688 printk(KERN_WARNING 2689 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2690 aac_fib_complete(cmd_fibcontext); 2691 aac_fib_free(cmd_fibcontext); 2692 return SCSI_MLQUEUE_HOST_BUSY; 2693 } 2694 2695 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2696 { 2697 struct scsi_cmnd *scsicmd = context; 2698 2699 if (!aac_valid_context(scsicmd, fibptr)) 2700 return; 2701 2702 BUG_ON(fibptr == NULL); 2703 2704 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2705 2706 aac_fib_complete(fibptr); 2707 aac_fib_free(fibptr); 2708 scsicmd->scsi_done(scsicmd); 2709 } 2710 2711 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2712 { 2713 int status; 2714 struct fib *cmd_fibcontext; 2715 struct aac_power_management *pmcmd; 2716 struct scsi_device *sdev = scsicmd->device; 2717 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2718 2719 if (!(aac->supplement_adapter_info.supported_options2 & 2720 AAC_OPTION_POWER_MANAGEMENT)) { 2721 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2722 SAM_STAT_GOOD; 2723 scsicmd->scsi_done(scsicmd); 2724 return 0; 2725 } 2726 2727 if (aac->in_reset) 2728 return SCSI_MLQUEUE_HOST_BUSY; 2729 2730 /* 2731 * Allocate and initialize a Fib 2732 */ 2733 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2734 2735 aac_fib_init(cmd_fibcontext); 2736 2737 pmcmd = fib_data(cmd_fibcontext); 2738 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2739 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2740 /* Eject bit ignored, not relevant */ 2741 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2742 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2743 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2744 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2745 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2746 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2747 2748 /* 2749 * Now send the Fib to the adapter 2750 */ 2751 status = aac_fib_send(ContainerCommand, 2752 cmd_fibcontext, 2753 sizeof(struct aac_power_management), 2754 FsaNormal, 2755 0, 1, 2756 (fib_callback)aac_start_stop_callback, 2757 (void *)scsicmd); 2758 2759 /* 2760 * Check that the command queued to the controller 2761 */ 2762 if (status == -EINPROGRESS) 2763 return 0; 2764 2765 aac_fib_complete(cmd_fibcontext); 2766 aac_fib_free(cmd_fibcontext); 2767 return SCSI_MLQUEUE_HOST_BUSY; 2768 } 2769 2770 /** 2771 * aac_scsi_cmd() - Process SCSI command 2772 * @scsicmd: SCSI command block 2773 * 2774 * Emulate a SCSI command and queue the required request for the 2775 * aacraid firmware. 2776 */ 2777 2778 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2779 { 2780 u32 cid, bus; 2781 struct Scsi_Host *host = scsicmd->device->host; 2782 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2783 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2784 2785 if (fsa_dev_ptr == NULL) 2786 return -1; 2787 /* 2788 * If the bus, id or lun is out of range, return fail 2789 * Test does not apply to ID 16, the pseudo id for the controller 2790 * itself. 2791 */ 2792 cid = scmd_id(scsicmd); 2793 if (cid != host->this_id) { 2794 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2795 if((cid >= dev->maximum_num_containers) || 2796 (scsicmd->device->lun != 0)) { 2797 scsicmd->result = DID_NO_CONNECT << 16; 2798 goto scsi_done_ret; 2799 } 2800 2801 /* 2802 * If the target container doesn't exist, it may have 2803 * been newly created 2804 */ 2805 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2806 (fsa_dev_ptr[cid].sense_data.sense_key == 2807 NOT_READY)) { 2808 switch (scsicmd->cmnd[0]) { 2809 case SERVICE_ACTION_IN_16: 2810 if (!(dev->raw_io_interface) || 2811 !(dev->raw_io_64) || 2812 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2813 break; 2814 /* fall through */ 2815 case INQUIRY: 2816 case READ_CAPACITY: 2817 case TEST_UNIT_READY: 2818 if (dev->in_reset) 2819 return -1; 2820 return _aac_probe_container(scsicmd, 2821 aac_probe_container_callback2); 2822 default: 2823 break; 2824 } 2825 } 2826 } else { /* check for physical non-dasd devices */ 2827 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2828 2829 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2830 dev->hba_map[bus][cid].devtype 2831 == AAC_DEVTYPE_NATIVE_RAW) { 2832 if (dev->in_reset) 2833 return -1; 2834 return aac_send_hba_fib(scsicmd); 2835 } else if (dev->nondasd_support || expose_physicals || 2836 dev->jbod) { 2837 if (dev->in_reset) 2838 return -1; 2839 return aac_send_srb_fib(scsicmd); 2840 } else { 2841 scsicmd->result = DID_NO_CONNECT << 16; 2842 goto scsi_done_ret; 2843 } 2844 } 2845 } 2846 /* 2847 * else Command for the controller itself 2848 */ 2849 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2850 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2851 { 2852 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2853 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2854 set_sense(&dev->fsa_dev[cid].sense_data, 2855 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2856 ASENCODE_INVALID_COMMAND, 0, 0); 2857 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2858 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2859 SCSI_SENSE_BUFFERSIZE)); 2860 goto scsi_done_ret; 2861 } 2862 2863 switch (scsicmd->cmnd[0]) { 2864 case READ_6: 2865 case READ_10: 2866 case READ_12: 2867 case READ_16: 2868 if (dev->in_reset) 2869 return -1; 2870 return aac_read(scsicmd); 2871 2872 case WRITE_6: 2873 case WRITE_10: 2874 case WRITE_12: 2875 case WRITE_16: 2876 if (dev->in_reset) 2877 return -1; 2878 return aac_write(scsicmd); 2879 2880 case SYNCHRONIZE_CACHE: 2881 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2882 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2883 SAM_STAT_GOOD; 2884 break; 2885 } 2886 /* Issue FIB to tell Firmware to flush it's cache */ 2887 if ((aac_cache & 6) != 2) 2888 return aac_synchronize(scsicmd); 2889 /* fall through */ 2890 case INQUIRY: 2891 { 2892 struct inquiry_data inq_data; 2893 2894 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2895 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2896 2897 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2898 char *arr = (char *)&inq_data; 2899 2900 /* EVPD bit set */ 2901 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2902 INQD_PDT_PROC : INQD_PDT_DA; 2903 if (scsicmd->cmnd[2] == 0) { 2904 /* supported vital product data pages */ 2905 arr[3] = 3; 2906 arr[4] = 0x0; 2907 arr[5] = 0x80; 2908 arr[6] = 0x83; 2909 arr[1] = scsicmd->cmnd[2]; 2910 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2911 sizeof(inq_data)); 2912 scsicmd->result = DID_OK << 16 | 2913 COMMAND_COMPLETE << 8 | 2914 SAM_STAT_GOOD; 2915 } else if (scsicmd->cmnd[2] == 0x80) { 2916 /* unit serial number page */ 2917 arr[3] = setinqserial(dev, &arr[4], 2918 scmd_id(scsicmd)); 2919 arr[1] = scsicmd->cmnd[2]; 2920 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2921 sizeof(inq_data)); 2922 if (aac_wwn != 2) 2923 return aac_get_container_serial( 2924 scsicmd); 2925 scsicmd->result = DID_OK << 16 | 2926 COMMAND_COMPLETE << 8 | 2927 SAM_STAT_GOOD; 2928 } else if (scsicmd->cmnd[2] == 0x83) { 2929 /* vpd page 0x83 - Device Identification Page */ 2930 char *sno = (char *)&inq_data; 2931 sno[3] = setinqserial(dev, &sno[4], 2932 scmd_id(scsicmd)); 2933 if (aac_wwn != 2) 2934 return aac_get_container_serial( 2935 scsicmd); 2936 scsicmd->result = DID_OK << 16 | 2937 COMMAND_COMPLETE << 8 | 2938 SAM_STAT_GOOD; 2939 } else { 2940 /* vpd page not implemented */ 2941 scsicmd->result = DID_OK << 16 | 2942 COMMAND_COMPLETE << 8 | 2943 SAM_STAT_CHECK_CONDITION; 2944 set_sense(&dev->fsa_dev[cid].sense_data, 2945 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2946 ASENCODE_NO_SENSE, 7, 2); 2947 memcpy(scsicmd->sense_buffer, 2948 &dev->fsa_dev[cid].sense_data, 2949 min_t(size_t, 2950 sizeof(dev->fsa_dev[cid].sense_data), 2951 SCSI_SENSE_BUFFERSIZE)); 2952 } 2953 break; 2954 } 2955 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2956 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2957 inq_data.inqd_len = 31; 2958 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2959 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2960 /* 2961 * Set the Vendor, Product, and Revision Level 2962 * see: <vendor>.c i.e. aac.c 2963 */ 2964 if (cid == host->this_id) { 2965 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2966 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2967 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2968 sizeof(inq_data)); 2969 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2970 SAM_STAT_GOOD; 2971 break; 2972 } 2973 if (dev->in_reset) 2974 return -1; 2975 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2976 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2977 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2978 return aac_get_container_name(scsicmd); 2979 } 2980 case SERVICE_ACTION_IN_16: 2981 if (!(dev->raw_io_interface) || 2982 !(dev->raw_io_64) || 2983 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2984 break; 2985 { 2986 u64 capacity; 2987 char cp[13]; 2988 unsigned int alloc_len; 2989 2990 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2991 capacity = fsa_dev_ptr[cid].size - 1; 2992 cp[0] = (capacity >> 56) & 0xff; 2993 cp[1] = (capacity >> 48) & 0xff; 2994 cp[2] = (capacity >> 40) & 0xff; 2995 cp[3] = (capacity >> 32) & 0xff; 2996 cp[4] = (capacity >> 24) & 0xff; 2997 cp[5] = (capacity >> 16) & 0xff; 2998 cp[6] = (capacity >> 8) & 0xff; 2999 cp[7] = (capacity >> 0) & 0xff; 3000 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3001 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3002 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3003 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3004 cp[12] = 0; 3005 3006 alloc_len = ((scsicmd->cmnd[10] << 24) 3007 + (scsicmd->cmnd[11] << 16) 3008 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3009 3010 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3011 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3012 if (alloc_len < scsi_bufflen(scsicmd)) 3013 scsi_set_resid(scsicmd, 3014 scsi_bufflen(scsicmd) - alloc_len); 3015 3016 /* Do not cache partition table for arrays */ 3017 scsicmd->device->removable = 1; 3018 3019 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3020 SAM_STAT_GOOD; 3021 break; 3022 } 3023 3024 case READ_CAPACITY: 3025 { 3026 u32 capacity; 3027 char cp[8]; 3028 3029 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3030 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3031 capacity = fsa_dev_ptr[cid].size - 1; 3032 else 3033 capacity = (u32)-1; 3034 3035 cp[0] = (capacity >> 24) & 0xff; 3036 cp[1] = (capacity >> 16) & 0xff; 3037 cp[2] = (capacity >> 8) & 0xff; 3038 cp[3] = (capacity >> 0) & 0xff; 3039 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3040 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3041 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3042 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3043 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3044 /* Do not cache partition table for arrays */ 3045 scsicmd->device->removable = 1; 3046 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3047 SAM_STAT_GOOD; 3048 break; 3049 } 3050 3051 case MODE_SENSE: 3052 { 3053 int mode_buf_length = 4; 3054 u32 capacity; 3055 aac_modep_data mpd; 3056 3057 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3058 capacity = fsa_dev_ptr[cid].size - 1; 3059 else 3060 capacity = (u32)-1; 3061 3062 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3063 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3064 3065 /* Mode data length */ 3066 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3067 /* Medium type - default */ 3068 mpd.hd.med_type = 0; 3069 /* Device-specific param, 3070 bit 8: 0/1 = write enabled/protected 3071 bit 4: 0/1 = FUA enabled */ 3072 mpd.hd.dev_par = 0; 3073 3074 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3075 mpd.hd.dev_par = 0x10; 3076 if (scsicmd->cmnd[1] & 0x8) 3077 mpd.hd.bd_length = 0; /* Block descriptor length */ 3078 else { 3079 mpd.hd.bd_length = sizeof(mpd.bd); 3080 mpd.hd.data_length += mpd.hd.bd_length; 3081 mpd.bd.block_length[0] = 3082 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3083 mpd.bd.block_length[1] = 3084 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3085 mpd.bd.block_length[2] = 3086 fsa_dev_ptr[cid].block_size & 0xff; 3087 3088 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3089 if (scsicmd->cmnd[2] == 0x1C) { 3090 /* page length */ 3091 mpd.mpc_buf[1] = 0xa; 3092 /* Mode data length */ 3093 mpd.hd.data_length = 23; 3094 } else { 3095 /* Mode data length */ 3096 mpd.hd.data_length = 15; 3097 } 3098 3099 if (capacity > 0xffffff) { 3100 mpd.bd.block_count[0] = 0xff; 3101 mpd.bd.block_count[1] = 0xff; 3102 mpd.bd.block_count[2] = 0xff; 3103 } else { 3104 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3105 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3106 mpd.bd.block_count[2] = capacity & 0xff; 3107 } 3108 } 3109 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3110 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3111 mpd.hd.data_length += 3; 3112 mpd.mpc_buf[0] = 8; 3113 mpd.mpc_buf[1] = 1; 3114 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3115 ? 0 : 0x04; /* WCE */ 3116 mode_buf_length = sizeof(mpd); 3117 } 3118 3119 if (mode_buf_length > scsicmd->cmnd[4]) 3120 mode_buf_length = scsicmd->cmnd[4]; 3121 else 3122 mode_buf_length = sizeof(mpd); 3123 scsi_sg_copy_from_buffer(scsicmd, 3124 (char *)&mpd, 3125 mode_buf_length); 3126 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3127 SAM_STAT_GOOD; 3128 break; 3129 } 3130 case MODE_SENSE_10: 3131 { 3132 u32 capacity; 3133 int mode_buf_length = 8; 3134 aac_modep10_data mpd10; 3135 3136 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3137 capacity = fsa_dev_ptr[cid].size - 1; 3138 else 3139 capacity = (u32)-1; 3140 3141 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3142 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3143 /* Mode data length (MSB) */ 3144 mpd10.hd.data_length[0] = 0; 3145 /* Mode data length (LSB) */ 3146 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3147 /* Medium type - default */ 3148 mpd10.hd.med_type = 0; 3149 /* Device-specific param, 3150 bit 8: 0/1 = write enabled/protected 3151 bit 4: 0/1 = FUA enabled */ 3152 mpd10.hd.dev_par = 0; 3153 3154 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3155 mpd10.hd.dev_par = 0x10; 3156 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3157 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3158 if (scsicmd->cmnd[1] & 0x8) { 3159 /* Block descriptor length (MSB) */ 3160 mpd10.hd.bd_length[0] = 0; 3161 /* Block descriptor length (LSB) */ 3162 mpd10.hd.bd_length[1] = 0; 3163 } else { 3164 mpd10.hd.bd_length[0] = 0; 3165 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3166 3167 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3168 3169 mpd10.bd.block_length[0] = 3170 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3171 mpd10.bd.block_length[1] = 3172 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3173 mpd10.bd.block_length[2] = 3174 fsa_dev_ptr[cid].block_size & 0xff; 3175 3176 if (capacity > 0xffffff) { 3177 mpd10.bd.block_count[0] = 0xff; 3178 mpd10.bd.block_count[1] = 0xff; 3179 mpd10.bd.block_count[2] = 0xff; 3180 } else { 3181 mpd10.bd.block_count[0] = 3182 (capacity >> 16) & 0xff; 3183 mpd10.bd.block_count[1] = 3184 (capacity >> 8) & 0xff; 3185 mpd10.bd.block_count[2] = 3186 capacity & 0xff; 3187 } 3188 } 3189 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3190 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3191 mpd10.hd.data_length[1] += 3; 3192 mpd10.mpc_buf[0] = 8; 3193 mpd10.mpc_buf[1] = 1; 3194 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3195 ? 0 : 0x04; /* WCE */ 3196 mode_buf_length = sizeof(mpd10); 3197 if (mode_buf_length > scsicmd->cmnd[8]) 3198 mode_buf_length = scsicmd->cmnd[8]; 3199 } 3200 scsi_sg_copy_from_buffer(scsicmd, 3201 (char *)&mpd10, 3202 mode_buf_length); 3203 3204 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3205 SAM_STAT_GOOD; 3206 break; 3207 } 3208 case REQUEST_SENSE: 3209 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3210 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3211 sizeof(struct sense_data)); 3212 memset(&dev->fsa_dev[cid].sense_data, 0, 3213 sizeof(struct sense_data)); 3214 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3215 SAM_STAT_GOOD; 3216 break; 3217 3218 case ALLOW_MEDIUM_REMOVAL: 3219 dprintk((KERN_DEBUG "LOCK command.\n")); 3220 if (scsicmd->cmnd[4]) 3221 fsa_dev_ptr[cid].locked = 1; 3222 else 3223 fsa_dev_ptr[cid].locked = 0; 3224 3225 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3226 SAM_STAT_GOOD; 3227 break; 3228 /* 3229 * These commands are all No-Ops 3230 */ 3231 case TEST_UNIT_READY: 3232 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3233 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3234 SAM_STAT_CHECK_CONDITION; 3235 set_sense(&dev->fsa_dev[cid].sense_data, 3236 NOT_READY, SENCODE_BECOMING_READY, 3237 ASENCODE_BECOMING_READY, 0, 0); 3238 memcpy(scsicmd->sense_buffer, 3239 &dev->fsa_dev[cid].sense_data, 3240 min_t(size_t, 3241 sizeof(dev->fsa_dev[cid].sense_data), 3242 SCSI_SENSE_BUFFERSIZE)); 3243 break; 3244 } 3245 /* fall through */ 3246 case RESERVE: 3247 case RELEASE: 3248 case REZERO_UNIT: 3249 case REASSIGN_BLOCKS: 3250 case SEEK_10: 3251 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3252 SAM_STAT_GOOD; 3253 break; 3254 3255 case START_STOP: 3256 return aac_start_stop(scsicmd); 3257 3258 /* FALLTHRU */ 3259 default: 3260 /* 3261 * Unhandled commands 3262 */ 3263 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3264 scsicmd->cmnd[0])); 3265 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3266 SAM_STAT_CHECK_CONDITION; 3267 set_sense(&dev->fsa_dev[cid].sense_data, 3268 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3269 ASENCODE_INVALID_COMMAND, 0, 0); 3270 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3271 min_t(size_t, 3272 sizeof(dev->fsa_dev[cid].sense_data), 3273 SCSI_SENSE_BUFFERSIZE)); 3274 } 3275 3276 scsi_done_ret: 3277 3278 scsicmd->scsi_done(scsicmd); 3279 return 0; 3280 } 3281 3282 static int query_disk(struct aac_dev *dev, void __user *arg) 3283 { 3284 struct aac_query_disk qd; 3285 struct fsa_dev_info *fsa_dev_ptr; 3286 3287 fsa_dev_ptr = dev->fsa_dev; 3288 if (!fsa_dev_ptr) 3289 return -EBUSY; 3290 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3291 return -EFAULT; 3292 if (qd.cnum == -1) { 3293 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3294 return -EINVAL; 3295 qd.cnum = qd.id; 3296 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3297 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3298 return -EINVAL; 3299 qd.instance = dev->scsi_host_ptr->host_no; 3300 qd.bus = 0; 3301 qd.id = CONTAINER_TO_ID(qd.cnum); 3302 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3303 } 3304 else return -EINVAL; 3305 3306 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3307 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3308 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3309 3310 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3311 qd.unmapped = 1; 3312 else 3313 qd.unmapped = 0; 3314 3315 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3316 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3317 3318 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3319 return -EFAULT; 3320 return 0; 3321 } 3322 3323 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3324 { 3325 struct aac_delete_disk dd; 3326 struct fsa_dev_info *fsa_dev_ptr; 3327 3328 fsa_dev_ptr = dev->fsa_dev; 3329 if (!fsa_dev_ptr) 3330 return -EBUSY; 3331 3332 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3333 return -EFAULT; 3334 3335 if (dd.cnum >= dev->maximum_num_containers) 3336 return -EINVAL; 3337 /* 3338 * Mark this container as being deleted. 3339 */ 3340 fsa_dev_ptr[dd.cnum].deleted = 1; 3341 /* 3342 * Mark the container as no longer valid 3343 */ 3344 fsa_dev_ptr[dd.cnum].valid = 0; 3345 return 0; 3346 } 3347 3348 static int delete_disk(struct aac_dev *dev, void __user *arg) 3349 { 3350 struct aac_delete_disk dd; 3351 struct fsa_dev_info *fsa_dev_ptr; 3352 3353 fsa_dev_ptr = dev->fsa_dev; 3354 if (!fsa_dev_ptr) 3355 return -EBUSY; 3356 3357 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3358 return -EFAULT; 3359 3360 if (dd.cnum >= dev->maximum_num_containers) 3361 return -EINVAL; 3362 /* 3363 * If the container is locked, it can not be deleted by the API. 3364 */ 3365 if (fsa_dev_ptr[dd.cnum].locked) 3366 return -EBUSY; 3367 else { 3368 /* 3369 * Mark the container as no longer being valid. 3370 */ 3371 fsa_dev_ptr[dd.cnum].valid = 0; 3372 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3373 return 0; 3374 } 3375 } 3376 3377 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3378 { 3379 switch (cmd) { 3380 case FSACTL_QUERY_DISK: 3381 return query_disk(dev, arg); 3382 case FSACTL_DELETE_DISK: 3383 return delete_disk(dev, arg); 3384 case FSACTL_FORCE_DELETE_DISK: 3385 return force_delete_disk(dev, arg); 3386 case FSACTL_GET_CONTAINERS: 3387 return aac_get_containers(dev); 3388 default: 3389 return -ENOTTY; 3390 } 3391 } 3392 3393 /** 3394 * 3395 * aac_srb_callback 3396 * @context: the context set in the fib - here it is scsi cmd 3397 * @fibptr: pointer to the fib 3398 * 3399 * Handles the completion of a scsi command to a non dasd device 3400 * 3401 */ 3402 3403 static void aac_srb_callback(void *context, struct fib * fibptr) 3404 { 3405 struct aac_srb_reply *srbreply; 3406 struct scsi_cmnd *scsicmd; 3407 3408 scsicmd = (struct scsi_cmnd *) context; 3409 3410 if (!aac_valid_context(scsicmd, fibptr)) 3411 return; 3412 3413 BUG_ON(fibptr == NULL); 3414 3415 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3416 3417 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3418 3419 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3420 /* fast response */ 3421 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3422 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3423 } else { 3424 /* 3425 * Calculate resid for sg 3426 */ 3427 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3428 - le32_to_cpu(srbreply->data_xfer_length)); 3429 } 3430 3431 3432 scsi_dma_unmap(scsicmd); 3433 3434 /* expose physical device if expose_physicald flag is on */ 3435 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3436 && expose_physicals > 0) 3437 aac_expose_phy_device(scsicmd); 3438 3439 /* 3440 * First check the fib status 3441 */ 3442 3443 if (le32_to_cpu(srbreply->status) != ST_OK) { 3444 int len; 3445 3446 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3447 le32_to_cpu(srbreply->status)); 3448 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3449 SCSI_SENSE_BUFFERSIZE); 3450 scsicmd->result = DID_ERROR << 16 3451 | COMMAND_COMPLETE << 8 3452 | SAM_STAT_CHECK_CONDITION; 3453 memcpy(scsicmd->sense_buffer, 3454 srbreply->sense_data, len); 3455 } 3456 3457 /* 3458 * Next check the srb status 3459 */ 3460 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3461 case SRB_STATUS_ERROR_RECOVERY: 3462 case SRB_STATUS_PENDING: 3463 case SRB_STATUS_SUCCESS: 3464 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3465 break; 3466 case SRB_STATUS_DATA_OVERRUN: 3467 switch (scsicmd->cmnd[0]) { 3468 case READ_6: 3469 case WRITE_6: 3470 case READ_10: 3471 case WRITE_10: 3472 case READ_12: 3473 case WRITE_12: 3474 case READ_16: 3475 case WRITE_16: 3476 if (le32_to_cpu(srbreply->data_xfer_length) 3477 < scsicmd->underflow) 3478 pr_warn("aacraid: SCSI CMD underflow\n"); 3479 else 3480 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3481 scsicmd->result = DID_ERROR << 16 3482 | COMMAND_COMPLETE << 8; 3483 break; 3484 case INQUIRY: 3485 scsicmd->result = DID_OK << 16 3486 | COMMAND_COMPLETE << 8; 3487 break; 3488 default: 3489 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3490 break; 3491 } 3492 break; 3493 case SRB_STATUS_ABORTED: 3494 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3495 break; 3496 case SRB_STATUS_ABORT_FAILED: 3497 /* 3498 * Not sure about this one - but assuming the 3499 * hba was trying to abort for some reason 3500 */ 3501 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3502 break; 3503 case SRB_STATUS_PARITY_ERROR: 3504 scsicmd->result = DID_PARITY << 16 3505 | MSG_PARITY_ERROR << 8; 3506 break; 3507 case SRB_STATUS_NO_DEVICE: 3508 case SRB_STATUS_INVALID_PATH_ID: 3509 case SRB_STATUS_INVALID_TARGET_ID: 3510 case SRB_STATUS_INVALID_LUN: 3511 case SRB_STATUS_SELECTION_TIMEOUT: 3512 scsicmd->result = DID_NO_CONNECT << 16 3513 | COMMAND_COMPLETE << 8; 3514 break; 3515 3516 case SRB_STATUS_COMMAND_TIMEOUT: 3517 case SRB_STATUS_TIMEOUT: 3518 scsicmd->result = DID_TIME_OUT << 16 3519 | COMMAND_COMPLETE << 8; 3520 break; 3521 3522 case SRB_STATUS_BUSY: 3523 scsicmd->result = DID_BUS_BUSY << 16 3524 | COMMAND_COMPLETE << 8; 3525 break; 3526 3527 case SRB_STATUS_BUS_RESET: 3528 scsicmd->result = DID_RESET << 16 3529 | COMMAND_COMPLETE << 8; 3530 break; 3531 3532 case SRB_STATUS_MESSAGE_REJECTED: 3533 scsicmd->result = DID_ERROR << 16 3534 | MESSAGE_REJECT << 8; 3535 break; 3536 case SRB_STATUS_REQUEST_FLUSHED: 3537 case SRB_STATUS_ERROR: 3538 case SRB_STATUS_INVALID_REQUEST: 3539 case SRB_STATUS_REQUEST_SENSE_FAILED: 3540 case SRB_STATUS_NO_HBA: 3541 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3542 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3543 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3544 case SRB_STATUS_DELAYED_RETRY: 3545 case SRB_STATUS_BAD_FUNCTION: 3546 case SRB_STATUS_NOT_STARTED: 3547 case SRB_STATUS_NOT_IN_USE: 3548 case SRB_STATUS_FORCE_ABORT: 3549 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3550 default: 3551 #ifdef AAC_DETAILED_STATUS_INFO 3552 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3553 le32_to_cpu(srbreply->srb_status) & 0x3F, 3554 aac_get_status_string( 3555 le32_to_cpu(srbreply->srb_status) & 0x3F), 3556 scsicmd->cmnd[0], 3557 le32_to_cpu(srbreply->scsi_status)); 3558 #endif 3559 /* 3560 * When the CC bit is SET by the host in ATA pass thru CDB, 3561 * driver is supposed to return DID_OK 3562 * 3563 * When the CC bit is RESET by the host, driver should 3564 * return DID_ERROR 3565 */ 3566 if ((scsicmd->cmnd[0] == ATA_12) 3567 || (scsicmd->cmnd[0] == ATA_16)) { 3568 3569 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3570 scsicmd->result = DID_OK << 16 3571 | COMMAND_COMPLETE << 8; 3572 break; 3573 } else { 3574 scsicmd->result = DID_ERROR << 16 3575 | COMMAND_COMPLETE << 8; 3576 break; 3577 } 3578 } else { 3579 scsicmd->result = DID_ERROR << 16 3580 | COMMAND_COMPLETE << 8; 3581 break; 3582 } 3583 } 3584 if (le32_to_cpu(srbreply->scsi_status) 3585 == SAM_STAT_CHECK_CONDITION) { 3586 int len; 3587 3588 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3589 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3590 SCSI_SENSE_BUFFERSIZE); 3591 #ifdef AAC_DETAILED_STATUS_INFO 3592 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3593 le32_to_cpu(srbreply->status), len); 3594 #endif 3595 memcpy(scsicmd->sense_buffer, 3596 srbreply->sense_data, len); 3597 } 3598 3599 /* 3600 * OR in the scsi status (already shifted up a bit) 3601 */ 3602 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3603 3604 aac_fib_complete(fibptr); 3605 scsicmd->scsi_done(scsicmd); 3606 } 3607 3608 static void hba_resp_task_complete(struct aac_dev *dev, 3609 struct scsi_cmnd *scsicmd, 3610 struct aac_hba_resp *err) { 3611 3612 scsicmd->result = err->status; 3613 /* set residual count */ 3614 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3615 3616 switch (err->status) { 3617 case SAM_STAT_GOOD: 3618 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3619 break; 3620 case SAM_STAT_CHECK_CONDITION: 3621 { 3622 int len; 3623 3624 len = min_t(u8, err->sense_response_data_len, 3625 SCSI_SENSE_BUFFERSIZE); 3626 if (len) 3627 memcpy(scsicmd->sense_buffer, 3628 err->sense_response_buf, len); 3629 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3630 break; 3631 } 3632 case SAM_STAT_BUSY: 3633 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3634 break; 3635 case SAM_STAT_TASK_ABORTED: 3636 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3637 break; 3638 case SAM_STAT_RESERVATION_CONFLICT: 3639 case SAM_STAT_TASK_SET_FULL: 3640 default: 3641 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3642 break; 3643 } 3644 } 3645 3646 static void hba_resp_task_failure(struct aac_dev *dev, 3647 struct scsi_cmnd *scsicmd, 3648 struct aac_hba_resp *err) 3649 { 3650 switch (err->status) { 3651 case HBA_RESP_STAT_HBAMODE_DISABLED: 3652 { 3653 u32 bus, cid; 3654 3655 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3656 cid = scmd_id(scsicmd); 3657 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3658 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3659 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3660 } 3661 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3662 break; 3663 } 3664 case HBA_RESP_STAT_IO_ERROR: 3665 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3666 scsicmd->result = DID_OK << 16 | 3667 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3668 break; 3669 case HBA_RESP_STAT_IO_ABORTED: 3670 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3671 break; 3672 case HBA_RESP_STAT_INVALID_DEVICE: 3673 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3674 break; 3675 case HBA_RESP_STAT_UNDERRUN: 3676 /* UNDERRUN is OK */ 3677 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3678 break; 3679 case HBA_RESP_STAT_OVERRUN: 3680 default: 3681 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3682 break; 3683 } 3684 } 3685 3686 /** 3687 * 3688 * aac_hba_callback 3689 * @context: the context set in the fib - here it is scsi cmd 3690 * @fibptr: pointer to the fib 3691 * 3692 * Handles the completion of a native HBA scsi command 3693 * 3694 */ 3695 void aac_hba_callback(void *context, struct fib *fibptr) 3696 { 3697 struct aac_dev *dev; 3698 struct scsi_cmnd *scsicmd; 3699 3700 struct aac_hba_resp *err = 3701 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3702 3703 scsicmd = (struct scsi_cmnd *) context; 3704 3705 if (!aac_valid_context(scsicmd, fibptr)) 3706 return; 3707 3708 WARN_ON(fibptr == NULL); 3709 dev = fibptr->dev; 3710 3711 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3712 scsi_dma_unmap(scsicmd); 3713 3714 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3715 /* fast response */ 3716 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3717 goto out; 3718 } 3719 3720 switch (err->service_response) { 3721 case HBA_RESP_SVCRES_TASK_COMPLETE: 3722 hba_resp_task_complete(dev, scsicmd, err); 3723 break; 3724 case HBA_RESP_SVCRES_FAILURE: 3725 hba_resp_task_failure(dev, scsicmd, err); 3726 break; 3727 case HBA_RESP_SVCRES_TMF_REJECTED: 3728 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3729 break; 3730 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3731 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3732 break; 3733 case HBA_RESP_SVCRES_TMF_COMPLETE: 3734 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3735 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3736 break; 3737 default: 3738 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3739 break; 3740 } 3741 3742 out: 3743 aac_fib_complete(fibptr); 3744 3745 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3746 scsicmd->SCp.sent_command = 1; 3747 else 3748 scsicmd->scsi_done(scsicmd); 3749 } 3750 3751 /** 3752 * 3753 * aac_send_srb_fib 3754 * @scsicmd: the scsi command block 3755 * 3756 * This routine will form a FIB and fill in the aac_srb from the 3757 * scsicmd passed in. 3758 */ 3759 3760 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3761 { 3762 struct fib* cmd_fibcontext; 3763 struct aac_dev* dev; 3764 int status; 3765 3766 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3767 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3768 scsicmd->device->lun > 7) { 3769 scsicmd->result = DID_NO_CONNECT << 16; 3770 scsicmd->scsi_done(scsicmd); 3771 return 0; 3772 } 3773 3774 /* 3775 * Allocate and initialize a Fib then setup a BlockWrite command 3776 */ 3777 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3778 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3779 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3780 3781 /* 3782 * Check that the command queued to the controller 3783 */ 3784 if (status == -EINPROGRESS) 3785 return 0; 3786 3787 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3788 aac_fib_complete(cmd_fibcontext); 3789 aac_fib_free(cmd_fibcontext); 3790 3791 return -1; 3792 } 3793 3794 /** 3795 * 3796 * aac_send_hba_fib 3797 * @scsicmd: the scsi command block 3798 * 3799 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3800 * scsicmd passed in. 3801 */ 3802 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3803 { 3804 struct fib *cmd_fibcontext; 3805 struct aac_dev *dev; 3806 int status; 3807 3808 dev = shost_priv(scsicmd->device->host); 3809 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3810 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3811 scsicmd->result = DID_NO_CONNECT << 16; 3812 scsicmd->scsi_done(scsicmd); 3813 return 0; 3814 } 3815 3816 /* 3817 * Allocate and initialize a Fib then setup a BlockWrite command 3818 */ 3819 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3820 if (!cmd_fibcontext) 3821 return -1; 3822 3823 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3824 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3825 3826 /* 3827 * Check that the command queued to the controller 3828 */ 3829 if (status == -EINPROGRESS) 3830 return 0; 3831 3832 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3833 status); 3834 aac_fib_complete(cmd_fibcontext); 3835 aac_fib_free(cmd_fibcontext); 3836 3837 return -1; 3838 } 3839 3840 3841 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3842 { 3843 unsigned long byte_count = 0; 3844 int nseg; 3845 struct scatterlist *sg; 3846 int i; 3847 3848 // Get rid of old data 3849 psg->count = 0; 3850 psg->sg[0].addr = 0; 3851 psg->sg[0].count = 0; 3852 3853 nseg = scsi_dma_map(scsicmd); 3854 if (nseg <= 0) 3855 return nseg; 3856 3857 psg->count = cpu_to_le32(nseg); 3858 3859 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3860 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3861 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3862 byte_count += sg_dma_len(sg); 3863 } 3864 /* hba wants the size to be exact */ 3865 if (byte_count > scsi_bufflen(scsicmd)) { 3866 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3867 (byte_count - scsi_bufflen(scsicmd)); 3868 psg->sg[i-1].count = cpu_to_le32(temp); 3869 byte_count = scsi_bufflen(scsicmd); 3870 } 3871 /* Check for command underflow */ 3872 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3873 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3874 byte_count, scsicmd->underflow); 3875 } 3876 3877 return byte_count; 3878 } 3879 3880 3881 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3882 { 3883 unsigned long byte_count = 0; 3884 u64 addr; 3885 int nseg; 3886 struct scatterlist *sg; 3887 int i; 3888 3889 // Get rid of old data 3890 psg->count = 0; 3891 psg->sg[0].addr[0] = 0; 3892 psg->sg[0].addr[1] = 0; 3893 psg->sg[0].count = 0; 3894 3895 nseg = scsi_dma_map(scsicmd); 3896 if (nseg <= 0) 3897 return nseg; 3898 3899 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3900 int count = sg_dma_len(sg); 3901 addr = sg_dma_address(sg); 3902 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3903 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3904 psg->sg[i].count = cpu_to_le32(count); 3905 byte_count += count; 3906 } 3907 psg->count = cpu_to_le32(nseg); 3908 /* hba wants the size to be exact */ 3909 if (byte_count > scsi_bufflen(scsicmd)) { 3910 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3911 (byte_count - scsi_bufflen(scsicmd)); 3912 psg->sg[i-1].count = cpu_to_le32(temp); 3913 byte_count = scsi_bufflen(scsicmd); 3914 } 3915 /* Check for command underflow */ 3916 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3917 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3918 byte_count, scsicmd->underflow); 3919 } 3920 3921 return byte_count; 3922 } 3923 3924 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3925 { 3926 unsigned long byte_count = 0; 3927 int nseg; 3928 struct scatterlist *sg; 3929 int i; 3930 3931 // Get rid of old data 3932 psg->count = 0; 3933 psg->sg[0].next = 0; 3934 psg->sg[0].prev = 0; 3935 psg->sg[0].addr[0] = 0; 3936 psg->sg[0].addr[1] = 0; 3937 psg->sg[0].count = 0; 3938 psg->sg[0].flags = 0; 3939 3940 nseg = scsi_dma_map(scsicmd); 3941 if (nseg <= 0) 3942 return nseg; 3943 3944 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3945 int count = sg_dma_len(sg); 3946 u64 addr = sg_dma_address(sg); 3947 psg->sg[i].next = 0; 3948 psg->sg[i].prev = 0; 3949 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3950 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3951 psg->sg[i].count = cpu_to_le32(count); 3952 psg->sg[i].flags = 0; 3953 byte_count += count; 3954 } 3955 psg->count = cpu_to_le32(nseg); 3956 /* hba wants the size to be exact */ 3957 if (byte_count > scsi_bufflen(scsicmd)) { 3958 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3959 (byte_count - scsi_bufflen(scsicmd)); 3960 psg->sg[i-1].count = cpu_to_le32(temp); 3961 byte_count = scsi_bufflen(scsicmd); 3962 } 3963 /* Check for command underflow */ 3964 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3965 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3966 byte_count, scsicmd->underflow); 3967 } 3968 3969 return byte_count; 3970 } 3971 3972 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3973 struct aac_raw_io2 *rio2, int sg_max) 3974 { 3975 unsigned long byte_count = 0; 3976 int nseg; 3977 struct scatterlist *sg; 3978 int i, conformable = 0; 3979 u32 min_size = PAGE_SIZE, cur_size; 3980 3981 nseg = scsi_dma_map(scsicmd); 3982 if (nseg <= 0) 3983 return nseg; 3984 3985 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3986 int count = sg_dma_len(sg); 3987 u64 addr = sg_dma_address(sg); 3988 3989 BUG_ON(i >= sg_max); 3990 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3991 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3992 cur_size = cpu_to_le32(count); 3993 rio2->sge[i].length = cur_size; 3994 rio2->sge[i].flags = 0; 3995 if (i == 0) { 3996 conformable = 1; 3997 rio2->sgeFirstSize = cur_size; 3998 } else if (i == 1) { 3999 rio2->sgeNominalSize = cur_size; 4000 min_size = cur_size; 4001 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 4002 conformable = 0; 4003 if (cur_size < min_size) 4004 min_size = cur_size; 4005 } 4006 byte_count += count; 4007 } 4008 4009 /* hba wants the size to be exact */ 4010 if (byte_count > scsi_bufflen(scsicmd)) { 4011 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4012 (byte_count - scsi_bufflen(scsicmd)); 4013 rio2->sge[i-1].length = cpu_to_le32(temp); 4014 byte_count = scsi_bufflen(scsicmd); 4015 } 4016 4017 rio2->sgeCnt = cpu_to_le32(nseg); 4018 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4019 /* not conformable: evaluate required sg elements */ 4020 if (!conformable) { 4021 int j, nseg_new = nseg, err_found; 4022 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4023 err_found = 0; 4024 nseg_new = 2; 4025 for (j = 1; j < nseg - 1; ++j) { 4026 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4027 err_found = 1; 4028 break; 4029 } 4030 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4031 } 4032 if (!err_found) 4033 break; 4034 } 4035 if (i > 0 && nseg_new <= sg_max) { 4036 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4037 4038 if (ret < 0) 4039 return ret; 4040 } 4041 } else 4042 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4043 4044 /* Check for command underflow */ 4045 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4046 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4047 byte_count, scsicmd->underflow); 4048 } 4049 4050 return byte_count; 4051 } 4052 4053 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4054 { 4055 struct sge_ieee1212 *sge; 4056 int i, j, pos; 4057 u32 addr_low; 4058 4059 if (aac_convert_sgl == 0) 4060 return 0; 4061 4062 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4063 if (sge == NULL) 4064 return -ENOMEM; 4065 4066 for (i = 1, pos = 1; i < nseg-1; ++i) { 4067 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4068 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4069 sge[pos].addrLow = addr_low; 4070 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4071 if (addr_low < rio2->sge[i].addrLow) 4072 sge[pos].addrHigh++; 4073 sge[pos].length = pages * PAGE_SIZE; 4074 sge[pos].flags = 0; 4075 pos++; 4076 } 4077 } 4078 sge[pos] = rio2->sge[nseg-1]; 4079 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4080 4081 kfree(sge); 4082 rio2->sgeCnt = cpu_to_le32(nseg_new); 4083 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4084 rio2->sgeNominalSize = pages * PAGE_SIZE; 4085 return 0; 4086 } 4087 4088 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4089 struct aac_hba_cmd_req *hbacmd, 4090 int sg_max, 4091 u64 sg_address) 4092 { 4093 unsigned long byte_count = 0; 4094 int nseg; 4095 struct scatterlist *sg; 4096 int i; 4097 u32 cur_size; 4098 struct aac_hba_sgl *sge; 4099 4100 nseg = scsi_dma_map(scsicmd); 4101 if (nseg <= 0) { 4102 byte_count = nseg; 4103 goto out; 4104 } 4105 4106 if (nseg > HBA_MAX_SG_EMBEDDED) 4107 sge = &hbacmd->sge[2]; 4108 else 4109 sge = &hbacmd->sge[0]; 4110 4111 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4112 int count = sg_dma_len(sg); 4113 u64 addr = sg_dma_address(sg); 4114 4115 WARN_ON(i >= sg_max); 4116 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4117 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4118 cur_size = cpu_to_le32(count); 4119 sge->len = cur_size; 4120 sge->flags = 0; 4121 byte_count += count; 4122 sge++; 4123 } 4124 4125 sge--; 4126 /* hba wants the size to be exact */ 4127 if (byte_count > scsi_bufflen(scsicmd)) { 4128 u32 temp; 4129 4130 temp = le32_to_cpu(sge->len) - byte_count 4131 - scsi_bufflen(scsicmd); 4132 sge->len = cpu_to_le32(temp); 4133 byte_count = scsi_bufflen(scsicmd); 4134 } 4135 4136 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4137 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4138 sge->flags = cpu_to_le32(0x40000000); 4139 } else { 4140 /* not embedded */ 4141 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4142 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4143 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4144 hbacmd->sge[0].addr_lo = 4145 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4146 } 4147 4148 /* Check for command underflow */ 4149 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4150 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4151 byte_count, scsicmd->underflow); 4152 } 4153 out: 4154 return byte_count; 4155 } 4156 4157 #ifdef AAC_DETAILED_STATUS_INFO 4158 4159 struct aac_srb_status_info { 4160 u32 status; 4161 char *str; 4162 }; 4163 4164 4165 static struct aac_srb_status_info srb_status_info[] = { 4166 { SRB_STATUS_PENDING, "Pending Status"}, 4167 { SRB_STATUS_SUCCESS, "Success"}, 4168 { SRB_STATUS_ABORTED, "Aborted Command"}, 4169 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4170 { SRB_STATUS_ERROR, "Error Event"}, 4171 { SRB_STATUS_BUSY, "Device Busy"}, 4172 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4173 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4174 { SRB_STATUS_NO_DEVICE, "No Device"}, 4175 { SRB_STATUS_TIMEOUT, "Timeout"}, 4176 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4177 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4178 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4179 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4180 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4181 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4182 { SRB_STATUS_NO_HBA, "No HBA"}, 4183 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4184 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4185 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4186 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4187 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4188 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4189 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4190 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4191 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4192 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4193 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4194 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4195 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4196 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4197 { 0xff, "Unknown Error"} 4198 }; 4199 4200 char *aac_get_status_string(u32 status) 4201 { 4202 int i; 4203 4204 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4205 if (srb_status_info[i].status == status) 4206 return srb_status_info[i].str; 4207 4208 return "Bad Status Code"; 4209 } 4210 4211 #endif 4212