1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * aachba.c 28 * 29 * Abstract: Contains Interfaces to manage IOs. 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/uaccess.h> 42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 43 #include <linux/module.h> 44 45 #include <asm/unaligned.h> 46 47 #include <scsi/scsi.h> 48 #include <scsi/scsi_cmnd.h> 49 #include <scsi/scsi_device.h> 50 #include <scsi/scsi_host.h> 51 52 #include "aacraid.h" 53 54 /* values for inqd_pdt: Peripheral device type in plain English */ 55 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 56 #define INQD_PDT_PROC 0x03 /* Processor device */ 57 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 58 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 59 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 60 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 61 62 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 63 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 64 65 /* 66 * Sense codes 67 */ 68 69 #define SENCODE_NO_SENSE 0x00 70 #define SENCODE_END_OF_DATA 0x00 71 #define SENCODE_BECOMING_READY 0x04 72 #define SENCODE_INIT_CMD_REQUIRED 0x04 73 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 74 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 75 #define SENCODE_INVALID_COMMAND 0x20 76 #define SENCODE_LBA_OUT_OF_RANGE 0x21 77 #define SENCODE_INVALID_CDB_FIELD 0x24 78 #define SENCODE_LUN_NOT_SUPPORTED 0x25 79 #define SENCODE_INVALID_PARAM_FIELD 0x26 80 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 81 #define SENCODE_PARAM_VALUE_INVALID 0x26 82 #define SENCODE_RESET_OCCURRED 0x29 83 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 84 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 85 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 86 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 87 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 88 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 89 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 90 #define SENCODE_OVERLAPPED_COMMAND 0x4E 91 92 /* 93 * Additional sense codes 94 */ 95 96 #define ASENCODE_NO_SENSE 0x00 97 #define ASENCODE_END_OF_DATA 0x05 98 #define ASENCODE_BECOMING_READY 0x01 99 #define ASENCODE_INIT_CMD_REQUIRED 0x02 100 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 101 #define ASENCODE_INVALID_COMMAND 0x00 102 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 103 #define ASENCODE_INVALID_CDB_FIELD 0x00 104 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 105 #define ASENCODE_INVALID_PARAM_FIELD 0x00 106 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 107 #define ASENCODE_PARAM_VALUE_INVALID 0x02 108 #define ASENCODE_RESET_OCCURRED 0x00 109 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 110 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 111 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 112 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 113 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 114 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 115 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 116 #define ASENCODE_OVERLAPPED_COMMAND 0x00 117 118 #define BYTE0(x) (unsigned char)(x) 119 #define BYTE1(x) (unsigned char)((x) >> 8) 120 #define BYTE2(x) (unsigned char)((x) >> 16) 121 #define BYTE3(x) (unsigned char)((x) >> 24) 122 123 /* MODE_SENSE data format */ 124 typedef struct { 125 struct { 126 u8 data_length; 127 u8 med_type; 128 u8 dev_par; 129 u8 bd_length; 130 } __attribute__((packed)) hd; 131 struct { 132 u8 dens_code; 133 u8 block_count[3]; 134 u8 reserved; 135 u8 block_length[3]; 136 } __attribute__((packed)) bd; 137 u8 mpc_buf[3]; 138 } __attribute__((packed)) aac_modep_data; 139 140 /* MODE_SENSE_10 data format */ 141 typedef struct { 142 struct { 143 u8 data_length[2]; 144 u8 med_type; 145 u8 dev_par; 146 u8 rsrvd[2]; 147 u8 bd_length[2]; 148 } __attribute__((packed)) hd; 149 struct { 150 u8 dens_code; 151 u8 block_count[3]; 152 u8 reserved; 153 u8 block_length[3]; 154 } __attribute__((packed)) bd; 155 u8 mpc_buf[3]; 156 } __attribute__((packed)) aac_modep10_data; 157 158 /*------------------------------------------------------------------------------ 159 * S T R U C T S / T Y P E D E F S 160 *----------------------------------------------------------------------------*/ 161 /* SCSI inquiry data */ 162 struct inquiry_data { 163 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 164 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 165 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 166 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 167 u8 inqd_len; /* Additional length (n-4) */ 168 u8 inqd_pad1[2];/* Reserved - must be zero */ 169 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 170 u8 inqd_vid[8]; /* Vendor ID */ 171 u8 inqd_pid[16];/* Product ID */ 172 u8 inqd_prl[4]; /* Product Revision Level */ 173 }; 174 175 /* Added for VPD 0x83 */ 176 struct tvpd_id_descriptor_type_1 { 177 u8 codeset:4; /* VPD_CODE_SET */ 178 u8 reserved:4; 179 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 180 u8 reserved2:4; 181 u8 reserved3; 182 u8 identifierlength; 183 u8 venid[8]; 184 u8 productid[16]; 185 u8 serialnumber[8]; /* SN in ASCII */ 186 187 }; 188 189 struct tvpd_id_descriptor_type_2 { 190 u8 codeset:4; /* VPD_CODE_SET */ 191 u8 reserved:4; 192 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 193 u8 reserved2:4; 194 u8 reserved3; 195 u8 identifierlength; 196 struct teu64id { 197 u32 Serial; 198 /* The serial number supposed to be 40 bits, 199 * bit we only support 32, so make the last byte zero. */ 200 u8 reserved; 201 u8 venid[3]; 202 } eu64id; 203 204 }; 205 206 struct tvpd_id_descriptor_type_3 { 207 u8 codeset : 4; /* VPD_CODE_SET */ 208 u8 reserved : 4; 209 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 210 u8 reserved2 : 4; 211 u8 reserved3; 212 u8 identifierlength; 213 u8 Identifier[16]; 214 }; 215 216 struct tvpd_page83 { 217 u8 DeviceType:5; 218 u8 DeviceTypeQualifier:3; 219 u8 PageCode; 220 u8 reserved; 221 u8 PageLength; 222 struct tvpd_id_descriptor_type_1 type1; 223 struct tvpd_id_descriptor_type_2 type2; 224 struct tvpd_id_descriptor_type_3 type3; 225 }; 226 227 /* 228 * M O D U L E G L O B A L S 229 */ 230 231 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 232 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 233 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 234 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 235 struct aac_raw_io2 *rio2, int sg_max); 236 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 237 struct aac_hba_cmd_req *hbacmd, 238 int sg_max, u64 sg_address); 239 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 240 int pages, int nseg, int nseg_new); 241 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 242 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 243 #ifdef AAC_DETAILED_STATUS_INFO 244 static char *aac_get_status_string(u32 status); 245 #endif 246 247 /* 248 * Non dasd selection is handled entirely in aachba now 249 */ 250 251 static int nondasd = -1; 252 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 253 static int dacmode = -1; 254 int aac_msi; 255 int aac_commit = -1; 256 int startup_timeout = 180; 257 int aif_timeout = 120; 258 int aac_sync_mode; /* Only Sync. transfer - disabled */ 259 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 260 261 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 263 " 0=off, 1=on"); 264 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 266 " 0=off, 1=on"); 267 module_param(nondasd, int, S_IRUGO|S_IWUSR); 268 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 269 " 0=off, 1=on"); 270 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 271 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 272 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 273 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 274 "\tbit 2 - Disable only if Battery is protecting Cache"); 275 module_param(dacmode, int, S_IRUGO|S_IWUSR); 276 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 277 " 0=off, 1=on"); 278 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 279 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 280 " adapter for foreign arrays.\n" 281 "This is typically needed in systems that do not have a BIOS." 282 " 0=off, 1=on"); 283 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 284 MODULE_PARM_DESC(msi, "IRQ handling." 285 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 286 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 287 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 288 " adapter to have it's kernel up and\n" 289 "running. This is typically adjusted for large systems that do not" 290 " have a BIOS."); 291 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 292 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 293 " applications to pick up AIFs before\n" 294 "deregistering them. This is typically adjusted for heavily burdened" 295 " systems."); 296 297 int aac_fib_dump; 298 module_param(aac_fib_dump, int, 0644); 299 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 300 301 int numacb = -1; 302 module_param(numacb, int, S_IRUGO|S_IWUSR); 303 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 304 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 305 " to use suggestion from Firmware."); 306 307 int acbsize = -1; 308 module_param(acbsize, int, S_IRUGO|S_IWUSR); 309 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 310 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 311 " suggestion from Firmware."); 312 313 int update_interval = 30 * 60; 314 module_param(update_interval, int, S_IRUGO|S_IWUSR); 315 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 316 " updates issued to adapter."); 317 318 int check_interval = 60; 319 module_param(check_interval, int, S_IRUGO|S_IWUSR); 320 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 321 " checks."); 322 323 int aac_check_reset = 1; 324 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 325 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 326 " adapter. a value of -1 forces the reset to adapters programmed to" 327 " ignore it."); 328 329 int expose_physicals = -1; 330 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 331 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 332 " -1=protect 0=off, 1=on"); 333 334 int aac_reset_devices; 335 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 336 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 337 338 int aac_wwn = 1; 339 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 340 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 341 "\t0 - Disable\n" 342 "\t1 - Array Meta Data Signature (default)\n" 343 "\t2 - Adapter Serial Number"); 344 345 346 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 347 struct fib *fibptr) { 348 struct scsi_device *device; 349 350 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 351 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 352 aac_fib_complete(fibptr); 353 return 0; 354 } 355 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 356 device = scsicmd->device; 357 if (unlikely(!device)) { 358 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 359 aac_fib_complete(fibptr); 360 return 0; 361 } 362 return 1; 363 } 364 365 /** 366 * aac_get_config_status - check the adapter configuration 367 * @common: adapter to query 368 * 369 * Query config status, and commit the configuration if needed. 370 */ 371 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 372 { 373 int status = 0; 374 struct fib * fibptr; 375 376 if (!(fibptr = aac_fib_alloc(dev))) 377 return -ENOMEM; 378 379 aac_fib_init(fibptr); 380 { 381 struct aac_get_config_status *dinfo; 382 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 383 384 dinfo->command = cpu_to_le32(VM_ContainerConfig); 385 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 386 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 387 } 388 389 status = aac_fib_send(ContainerCommand, 390 fibptr, 391 sizeof (struct aac_get_config_status), 392 FsaNormal, 393 1, 1, 394 NULL, NULL); 395 if (status < 0) { 396 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 397 } else { 398 struct aac_get_config_status_resp *reply 399 = (struct aac_get_config_status_resp *) fib_data(fibptr); 400 dprintk((KERN_WARNING 401 "aac_get_config_status: response=%d status=%d action=%d\n", 402 le32_to_cpu(reply->response), 403 le32_to_cpu(reply->status), 404 le32_to_cpu(reply->data.action))); 405 if ((le32_to_cpu(reply->response) != ST_OK) || 406 (le32_to_cpu(reply->status) != CT_OK) || 407 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 408 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 409 status = -EINVAL; 410 } 411 } 412 /* Do not set XferState to zero unless receives a response from F/W */ 413 if (status >= 0) 414 aac_fib_complete(fibptr); 415 416 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 417 if (status >= 0) { 418 if ((aac_commit == 1) || commit_flag) { 419 struct aac_commit_config * dinfo; 420 aac_fib_init(fibptr); 421 dinfo = (struct aac_commit_config *) fib_data(fibptr); 422 423 dinfo->command = cpu_to_le32(VM_ContainerConfig); 424 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 425 426 status = aac_fib_send(ContainerCommand, 427 fibptr, 428 sizeof (struct aac_commit_config), 429 FsaNormal, 430 1, 1, 431 NULL, NULL); 432 /* Do not set XferState to zero unless 433 * receives a response from F/W */ 434 if (status >= 0) 435 aac_fib_complete(fibptr); 436 } else if (aac_commit == 0) { 437 printk(KERN_WARNING 438 "aac_get_config_status: Foreign device configurations are being ignored\n"); 439 } 440 } 441 /* FIB should be freed only after getting the response from the F/W */ 442 if (status != -ERESTARTSYS) 443 aac_fib_free(fibptr); 444 return status; 445 } 446 447 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 448 { 449 char inq_data; 450 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 451 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 452 inq_data &= 0xdf; 453 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 454 } 455 } 456 457 /** 458 * aac_get_containers - list containers 459 * @common: adapter to probe 460 * 461 * Make a list of all containers on this controller 462 */ 463 int aac_get_containers(struct aac_dev *dev) 464 { 465 struct fsa_dev_info *fsa_dev_ptr; 466 u32 index; 467 int status = 0; 468 struct fib * fibptr; 469 struct aac_get_container_count *dinfo; 470 struct aac_get_container_count_resp *dresp; 471 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 472 473 if (!(fibptr = aac_fib_alloc(dev))) 474 return -ENOMEM; 475 476 aac_fib_init(fibptr); 477 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 478 dinfo->command = cpu_to_le32(VM_ContainerConfig); 479 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 480 481 status = aac_fib_send(ContainerCommand, 482 fibptr, 483 sizeof (struct aac_get_container_count), 484 FsaNormal, 485 1, 1, 486 NULL, NULL); 487 if (status >= 0) { 488 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 489 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 490 if (fibptr->dev->supplement_adapter_info.supported_options2 & 491 AAC_OPTION_SUPPORTED_240_VOLUMES) { 492 maximum_num_containers = 493 le32_to_cpu(dresp->MaxSimpleVolumes); 494 } 495 aac_fib_complete(fibptr); 496 } 497 /* FIB should be freed only after getting the response from the F/W */ 498 if (status != -ERESTARTSYS) 499 aac_fib_free(fibptr); 500 501 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 502 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 503 if (dev->fsa_dev == NULL || 504 dev->maximum_num_containers != maximum_num_containers) { 505 506 fsa_dev_ptr = dev->fsa_dev; 507 508 dev->fsa_dev = kcalloc(maximum_num_containers, 509 sizeof(*fsa_dev_ptr), GFP_KERNEL); 510 511 kfree(fsa_dev_ptr); 512 fsa_dev_ptr = NULL; 513 514 515 if (!dev->fsa_dev) 516 return -ENOMEM; 517 518 dev->maximum_num_containers = maximum_num_containers; 519 } 520 for (index = 0; index < dev->maximum_num_containers; index++) { 521 dev->fsa_dev[index].devname[0] = '\0'; 522 dev->fsa_dev[index].valid = 0; 523 524 status = aac_probe_container(dev, index); 525 526 if (status < 0) { 527 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 528 break; 529 } 530 } 531 return status; 532 } 533 534 static void get_container_name_callback(void *context, struct fib * fibptr) 535 { 536 struct aac_get_name_resp * get_name_reply; 537 struct scsi_cmnd * scsicmd; 538 539 scsicmd = (struct scsi_cmnd *) context; 540 541 if (!aac_valid_context(scsicmd, fibptr)) 542 return; 543 544 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 545 BUG_ON(fibptr == NULL); 546 547 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 548 /* Failure is irrelevant, using default value instead */ 549 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 550 && (get_name_reply->data[0] != '\0')) { 551 char *sp = get_name_reply->data; 552 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data); 553 554 sp[data_size - 1] = '\0'; 555 while (*sp == ' ') 556 ++sp; 557 if (*sp) { 558 struct inquiry_data inq; 559 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 560 int count = sizeof(d); 561 char *dp = d; 562 do { 563 *dp++ = (*sp) ? *sp++ : ' '; 564 } while (--count > 0); 565 566 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 567 memcpy(inq.inqd_pid, d, sizeof(d)); 568 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 569 } 570 } 571 572 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 573 574 aac_fib_complete(fibptr); 575 scsicmd->scsi_done(scsicmd); 576 } 577 578 /** 579 * aac_get_container_name - get container name, none blocking. 580 */ 581 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 582 { 583 int status; 584 int data_size; 585 struct aac_get_name *dinfo; 586 struct fib * cmd_fibcontext; 587 struct aac_dev * dev; 588 589 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 590 591 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data); 592 593 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 594 595 aac_fib_init(cmd_fibcontext); 596 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 597 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 598 599 dinfo->command = cpu_to_le32(VM_ContainerConfig); 600 dinfo->type = cpu_to_le32(CT_READ_NAME); 601 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 602 dinfo->count = cpu_to_le32(data_size - 1); 603 604 status = aac_fib_send(ContainerCommand, 605 cmd_fibcontext, 606 sizeof(struct aac_get_name_resp), 607 FsaNormal, 608 0, 1, 609 (fib_callback)get_container_name_callback, 610 (void *) scsicmd); 611 612 /* 613 * Check that the command queued to the controller 614 */ 615 if (status == -EINPROGRESS) 616 return 0; 617 618 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 619 aac_fib_complete(cmd_fibcontext); 620 return -1; 621 } 622 623 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 624 { 625 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 626 627 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 628 return aac_scsi_cmd(scsicmd); 629 630 scsicmd->result = DID_NO_CONNECT << 16; 631 scsicmd->scsi_done(scsicmd); 632 return 0; 633 } 634 635 static void _aac_probe_container2(void * context, struct fib * fibptr) 636 { 637 struct fsa_dev_info *fsa_dev_ptr; 638 int (*callback)(struct scsi_cmnd *); 639 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 640 int i; 641 642 643 if (!aac_valid_context(scsicmd, fibptr)) 644 return; 645 646 scsicmd->SCp.Status = 0; 647 fsa_dev_ptr = fibptr->dev->fsa_dev; 648 if (fsa_dev_ptr) { 649 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 650 __le32 sup_options2; 651 652 fsa_dev_ptr += scmd_id(scsicmd); 653 sup_options2 = 654 fibptr->dev->supplement_adapter_info.supported_options2; 655 656 if ((le32_to_cpu(dresp->status) == ST_OK) && 657 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 658 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 659 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 660 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 661 fsa_dev_ptr->block_size = 0x200; 662 } else { 663 fsa_dev_ptr->block_size = 664 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 665 } 666 for (i = 0; i < 16; i++) 667 fsa_dev_ptr->identifier[i] = 668 dresp->mnt[0].fileinfo.bdevinfo 669 .identifier[i]; 670 fsa_dev_ptr->valid = 1; 671 /* sense_key holds the current state of the spin-up */ 672 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 673 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 674 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 675 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 676 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 677 fsa_dev_ptr->size 678 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 679 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 680 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 681 } 682 if ((fsa_dev_ptr->valid & 1) == 0) 683 fsa_dev_ptr->valid = 0; 684 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 685 } 686 aac_fib_complete(fibptr); 687 aac_fib_free(fibptr); 688 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 689 scsicmd->SCp.ptr = NULL; 690 (*callback)(scsicmd); 691 return; 692 } 693 694 static void _aac_probe_container1(void * context, struct fib * fibptr) 695 { 696 struct scsi_cmnd * scsicmd; 697 struct aac_mount * dresp; 698 struct aac_query_mount *dinfo; 699 int status; 700 701 dresp = (struct aac_mount *) fib_data(fibptr); 702 if (!aac_supports_2T(fibptr->dev)) { 703 dresp->mnt[0].capacityhigh = 0; 704 if ((le32_to_cpu(dresp->status) == ST_OK) && 705 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 706 _aac_probe_container2(context, fibptr); 707 return; 708 } 709 } 710 scsicmd = (struct scsi_cmnd *) context; 711 712 if (!aac_valid_context(scsicmd, fibptr)) 713 return; 714 715 aac_fib_init(fibptr); 716 717 dinfo = (struct aac_query_mount *)fib_data(fibptr); 718 719 if (fibptr->dev->supplement_adapter_info.supported_options2 & 720 AAC_OPTION_VARIABLE_BLOCK_SIZE) 721 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 722 else 723 dinfo->command = cpu_to_le32(VM_NameServe64); 724 725 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 726 dinfo->type = cpu_to_le32(FT_FILESYS); 727 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 728 729 status = aac_fib_send(ContainerCommand, 730 fibptr, 731 sizeof(struct aac_query_mount), 732 FsaNormal, 733 0, 1, 734 _aac_probe_container2, 735 (void *) scsicmd); 736 /* 737 * Check that the command queued to the controller 738 */ 739 if (status < 0 && status != -EINPROGRESS) { 740 /* Inherit results from VM_NameServe, if any */ 741 dresp->status = cpu_to_le32(ST_OK); 742 _aac_probe_container2(context, fibptr); 743 } 744 } 745 746 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 747 { 748 struct fib * fibptr; 749 int status = -ENOMEM; 750 751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 752 struct aac_query_mount *dinfo; 753 754 aac_fib_init(fibptr); 755 756 dinfo = (struct aac_query_mount *)fib_data(fibptr); 757 758 if (fibptr->dev->supplement_adapter_info.supported_options2 & 759 AAC_OPTION_VARIABLE_BLOCK_SIZE) 760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 761 else 762 dinfo->command = cpu_to_le32(VM_NameServe); 763 764 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 765 dinfo->type = cpu_to_le32(FT_FILESYS); 766 scsicmd->SCp.ptr = (char *)callback; 767 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 768 769 status = aac_fib_send(ContainerCommand, 770 fibptr, 771 sizeof(struct aac_query_mount), 772 FsaNormal, 773 0, 1, 774 _aac_probe_container1, 775 (void *) scsicmd); 776 /* 777 * Check that the command queued to the controller 778 */ 779 if (status == -EINPROGRESS) 780 return 0; 781 782 if (status < 0) { 783 scsicmd->SCp.ptr = NULL; 784 aac_fib_complete(fibptr); 785 aac_fib_free(fibptr); 786 } 787 } 788 if (status < 0) { 789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 790 if (fsa_dev_ptr) { 791 fsa_dev_ptr += scmd_id(scsicmd); 792 if ((fsa_dev_ptr->valid & 1) == 0) { 793 fsa_dev_ptr->valid = 0; 794 return (*callback)(scsicmd); 795 } 796 } 797 } 798 return status; 799 } 800 801 /** 802 * aac_probe_container - query a logical volume 803 * @dev: device to query 804 * @cid: container identifier 805 * 806 * Queries the controller about the given volume. The volume information 807 * is updated in the struct fsa_dev_info structure rather than returned. 808 */ 809 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 810 { 811 scsicmd->device = NULL; 812 return 0; 813 } 814 815 int aac_probe_container(struct aac_dev *dev, int cid) 816 { 817 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 818 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 819 int status; 820 821 if (!scsicmd || !scsidev) { 822 kfree(scsicmd); 823 kfree(scsidev); 824 return -ENOMEM; 825 } 826 scsicmd->list.next = NULL; 827 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; 828 829 scsicmd->device = scsidev; 830 scsidev->sdev_state = 0; 831 scsidev->id = cid; 832 scsidev->host = dev->scsi_host_ptr; 833 834 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 835 while (scsicmd->device == scsidev) 836 schedule(); 837 kfree(scsidev); 838 status = scsicmd->SCp.Status; 839 kfree(scsicmd); 840 return status; 841 } 842 843 /* Local Structure to set SCSI inquiry data strings */ 844 struct scsi_inq { 845 char vid[8]; /* Vendor ID */ 846 char pid[16]; /* Product ID */ 847 char prl[4]; /* Product Revision Level */ 848 }; 849 850 /** 851 * InqStrCopy - string merge 852 * @a: string to copy from 853 * @b: string to copy to 854 * 855 * Copy a String from one location to another 856 * without copying \0 857 */ 858 859 static void inqstrcpy(char *a, char *b) 860 { 861 862 while (*a != (char)0) 863 *b++ = *a++; 864 } 865 866 static char *container_types[] = { 867 "None", 868 "Volume", 869 "Mirror", 870 "Stripe", 871 "RAID5", 872 "SSRW", 873 "SSRO", 874 "Morph", 875 "Legacy", 876 "RAID4", 877 "RAID10", 878 "RAID00", 879 "V-MIRRORS", 880 "PSEUDO R4", 881 "RAID50", 882 "RAID5D", 883 "RAID5D0", 884 "RAID1E", 885 "RAID6", 886 "RAID60", 887 "Unknown" 888 }; 889 890 char * get_container_type(unsigned tindex) 891 { 892 if (tindex >= ARRAY_SIZE(container_types)) 893 tindex = ARRAY_SIZE(container_types) - 1; 894 return container_types[tindex]; 895 } 896 897 /* Function: setinqstr 898 * 899 * Arguments: [1] pointer to void [1] int 900 * 901 * Purpose: Sets SCSI inquiry data strings for vendor, product 902 * and revision level. Allows strings to be set in platform dependent 903 * files instead of in OS dependent driver source. 904 */ 905 906 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 907 { 908 struct scsi_inq *str; 909 struct aac_supplement_adapter_info *sup_adap_info; 910 911 sup_adap_info = &dev->supplement_adapter_info; 912 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 913 memset(str, ' ', sizeof(*str)); 914 915 if (sup_adap_info->adapter_type_text[0]) { 916 int c; 917 char *cp; 918 char *cname = kmemdup(sup_adap_info->adapter_type_text, 919 sizeof(sup_adap_info->adapter_type_text), 920 GFP_ATOMIC); 921 if (!cname) 922 return; 923 924 cp = cname; 925 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 926 inqstrcpy("SMC", str->vid); 927 else { 928 c = sizeof(str->vid); 929 while (*cp && *cp != ' ' && --c) 930 ++cp; 931 c = *cp; 932 *cp = '\0'; 933 inqstrcpy(cname, str->vid); 934 *cp = c; 935 while (*cp && *cp != ' ') 936 ++cp; 937 } 938 while (*cp == ' ') 939 ++cp; 940 /* last six chars reserved for vol type */ 941 if (strlen(cp) > sizeof(str->pid)) 942 cp[sizeof(str->pid)] = '\0'; 943 inqstrcpy (cp, str->pid); 944 945 kfree(cname); 946 } else { 947 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 948 949 inqstrcpy (mp->vname, str->vid); 950 /* last six chars reserved for vol type */ 951 inqstrcpy (mp->model, str->pid); 952 } 953 954 if (tindex < ARRAY_SIZE(container_types)){ 955 char *findit = str->pid; 956 957 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 958 /* RAID is superfluous in the context of a RAID device */ 959 if (memcmp(findit-4, "RAID", 4) == 0) 960 *(findit -= 4) = ' '; 961 if (((findit - str->pid) + strlen(container_types[tindex])) 962 < (sizeof(str->pid) + sizeof(str->prl))) 963 inqstrcpy (container_types[tindex], findit + 1); 964 } 965 inqstrcpy ("V1.0", str->prl); 966 } 967 968 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 969 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 970 { 971 int container; 972 973 vpdpage83data->type3.codeset = 1; 974 vpdpage83data->type3.identifiertype = 3; 975 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 976 - 4; 977 978 for (container = 0; container < dev->maximum_num_containers; 979 container++) { 980 981 if (scmd_id(scsicmd) == container) { 982 memcpy(vpdpage83data->type3.Identifier, 983 dev->fsa_dev[container].identifier, 984 16); 985 break; 986 } 987 } 988 } 989 990 static void get_container_serial_callback(void *context, struct fib * fibptr) 991 { 992 struct aac_get_serial_resp * get_serial_reply; 993 struct scsi_cmnd * scsicmd; 994 995 BUG_ON(fibptr == NULL); 996 997 scsicmd = (struct scsi_cmnd *) context; 998 if (!aac_valid_context(scsicmd, fibptr)) 999 return; 1000 1001 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 1002 /* Failure is irrelevant, using default value instead */ 1003 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 1004 /*Check to see if it's for VPD 0x83 or 0x80 */ 1005 if (scsicmd->cmnd[2] == 0x83) { 1006 /* vpd page 0x83 - Device Identification Page */ 1007 struct aac_dev *dev; 1008 int i; 1009 struct tvpd_page83 vpdpage83data; 1010 1011 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1012 1013 memset(((u8 *)&vpdpage83data), 0, 1014 sizeof(vpdpage83data)); 1015 1016 /* DIRECT_ACCESS_DEVIC */ 1017 vpdpage83data.DeviceType = 0; 1018 /* DEVICE_CONNECTED */ 1019 vpdpage83data.DeviceTypeQualifier = 0; 1020 /* VPD_DEVICE_IDENTIFIERS */ 1021 vpdpage83data.PageCode = 0x83; 1022 vpdpage83data.reserved = 0; 1023 vpdpage83data.PageLength = 1024 sizeof(vpdpage83data.type1) + 1025 sizeof(vpdpage83data.type2); 1026 1027 /* VPD 83 Type 3 is not supported for ARC */ 1028 if (dev->sa_firmware) 1029 vpdpage83data.PageLength += 1030 sizeof(vpdpage83data.type3); 1031 1032 /* T10 Vendor Identifier Field Format */ 1033 /* VpdcodesetAscii */ 1034 vpdpage83data.type1.codeset = 2; 1035 /* VpdIdentifierTypeVendorId */ 1036 vpdpage83data.type1.identifiertype = 1; 1037 vpdpage83data.type1.identifierlength = 1038 sizeof(vpdpage83data.type1) - 4; 1039 1040 /* "ADAPTEC " for adaptec */ 1041 memcpy(vpdpage83data.type1.venid, 1042 "ADAPTEC ", 1043 sizeof(vpdpage83data.type1.venid)); 1044 memcpy(vpdpage83data.type1.productid, 1045 "ARRAY ", 1046 sizeof( 1047 vpdpage83data.type1.productid)); 1048 1049 /* Convert to ascii based serial number. 1050 * The LSB is the the end. 1051 */ 1052 for (i = 0; i < 8; i++) { 1053 u8 temp = 1054 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1055 if (temp > 0x9) { 1056 vpdpage83data.type1.serialnumber[i] = 1057 'A' + (temp - 0xA); 1058 } else { 1059 vpdpage83data.type1.serialnumber[i] = 1060 '0' + temp; 1061 } 1062 } 1063 1064 /* VpdCodeSetBinary */ 1065 vpdpage83data.type2.codeset = 1; 1066 /* VpdidentifiertypeEUI64 */ 1067 vpdpage83data.type2.identifiertype = 2; 1068 vpdpage83data.type2.identifierlength = 1069 sizeof(vpdpage83data.type2) - 4; 1070 1071 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1072 vpdpage83data.type2.eu64id.venid[1] = 0; 1073 vpdpage83data.type2.eu64id.venid[2] = 0; 1074 1075 vpdpage83data.type2.eu64id.Serial = 1076 get_serial_reply->uid; 1077 vpdpage83data.type2.eu64id.reserved = 0; 1078 1079 /* 1080 * VpdIdentifierTypeFCPHName 1081 * VPD 0x83 Type 3 not supported for ARC 1082 */ 1083 if (dev->sa_firmware) { 1084 build_vpd83_type3(&vpdpage83data, 1085 dev, scsicmd); 1086 } 1087 1088 /* Move the inquiry data to the response buffer. */ 1089 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1090 sizeof(vpdpage83data)); 1091 } else { 1092 /* It must be for VPD 0x80 */ 1093 char sp[13]; 1094 /* EVPD bit set */ 1095 sp[0] = INQD_PDT_DA; 1096 sp[1] = scsicmd->cmnd[2]; 1097 sp[2] = 0; 1098 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1099 le32_to_cpu(get_serial_reply->uid)); 1100 scsi_sg_copy_from_buffer(scsicmd, sp, 1101 sizeof(sp)); 1102 } 1103 } 1104 1105 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1106 1107 aac_fib_complete(fibptr); 1108 scsicmd->scsi_done(scsicmd); 1109 } 1110 1111 /** 1112 * aac_get_container_serial - get container serial, none blocking. 1113 */ 1114 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1115 { 1116 int status; 1117 struct aac_get_serial *dinfo; 1118 struct fib * cmd_fibcontext; 1119 struct aac_dev * dev; 1120 1121 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1122 1123 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1124 1125 aac_fib_init(cmd_fibcontext); 1126 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1127 1128 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1129 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1130 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1131 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1132 1133 status = aac_fib_send(ContainerCommand, 1134 cmd_fibcontext, 1135 sizeof(struct aac_get_serial_resp), 1136 FsaNormal, 1137 0, 1, 1138 (fib_callback) get_container_serial_callback, 1139 (void *) scsicmd); 1140 1141 /* 1142 * Check that the command queued to the controller 1143 */ 1144 if (status == -EINPROGRESS) 1145 return 0; 1146 1147 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1148 aac_fib_complete(cmd_fibcontext); 1149 return -1; 1150 } 1151 1152 /* Function: setinqserial 1153 * 1154 * Arguments: [1] pointer to void [1] int 1155 * 1156 * Purpose: Sets SCSI Unit Serial number. 1157 * This is a fake. We should read a proper 1158 * serial number from the container. <SuSE>But 1159 * without docs it's quite hard to do it :-) 1160 * So this will have to do in the meantime.</SuSE> 1161 */ 1162 1163 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1164 { 1165 /* 1166 * This breaks array migration. 1167 */ 1168 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1169 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1170 } 1171 1172 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1173 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1174 { 1175 u8 *sense_buf = (u8 *)sense_data; 1176 /* Sense data valid, err code 70h */ 1177 sense_buf[0] = 0x70; /* No info field */ 1178 sense_buf[1] = 0; /* Segment number, always zero */ 1179 1180 sense_buf[2] = sense_key; /* Sense key */ 1181 1182 sense_buf[12] = sense_code; /* Additional sense code */ 1183 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1184 1185 if (sense_key == ILLEGAL_REQUEST) { 1186 sense_buf[7] = 10; /* Additional sense length */ 1187 1188 sense_buf[15] = bit_pointer; 1189 /* Illegal parameter is in the parameter block */ 1190 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1191 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1192 /* Illegal parameter is in the CDB block */ 1193 sense_buf[16] = field_pointer >> 8; /* MSB */ 1194 sense_buf[17] = field_pointer; /* LSB */ 1195 } else 1196 sense_buf[7] = 6; /* Additional sense length */ 1197 } 1198 1199 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1200 { 1201 if (lba & 0xffffffff00000000LL) { 1202 int cid = scmd_id(cmd); 1203 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1204 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1205 SAM_STAT_CHECK_CONDITION; 1206 set_sense(&dev->fsa_dev[cid].sense_data, 1207 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1208 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1209 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1210 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1211 SCSI_SENSE_BUFFERSIZE)); 1212 cmd->scsi_done(cmd); 1213 return 1; 1214 } 1215 return 0; 1216 } 1217 1218 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1219 { 1220 return 0; 1221 } 1222 1223 static void io_callback(void *context, struct fib * fibptr); 1224 1225 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1226 { 1227 struct aac_dev *dev = fib->dev; 1228 u16 fibsize, command; 1229 long ret; 1230 1231 aac_fib_init(fib); 1232 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1233 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1234 !dev->sync_mode) { 1235 struct aac_raw_io2 *readcmd2; 1236 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1237 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1238 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1239 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1240 readcmd2->byteCount = cpu_to_le32(count * 1241 dev->fsa_dev[scmd_id(cmd)].block_size); 1242 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1243 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1244 ret = aac_build_sgraw2(cmd, readcmd2, 1245 dev->scsi_host_ptr->sg_tablesize); 1246 if (ret < 0) 1247 return ret; 1248 command = ContainerRawIo2; 1249 fibsize = sizeof(struct aac_raw_io2) + 1250 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1251 } else { 1252 struct aac_raw_io *readcmd; 1253 readcmd = (struct aac_raw_io *) fib_data(fib); 1254 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1255 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1256 readcmd->count = cpu_to_le32(count * 1257 dev->fsa_dev[scmd_id(cmd)].block_size); 1258 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1259 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1260 readcmd->bpTotal = 0; 1261 readcmd->bpComplete = 0; 1262 ret = aac_build_sgraw(cmd, &readcmd->sg); 1263 if (ret < 0) 1264 return ret; 1265 command = ContainerRawIo; 1266 fibsize = sizeof(struct aac_raw_io) + 1267 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1268 } 1269 1270 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1271 /* 1272 * Now send the Fib to the adapter 1273 */ 1274 return aac_fib_send(command, 1275 fib, 1276 fibsize, 1277 FsaNormal, 1278 0, 1, 1279 (fib_callback) io_callback, 1280 (void *) cmd); 1281 } 1282 1283 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1284 { 1285 u16 fibsize; 1286 struct aac_read64 *readcmd; 1287 long ret; 1288 1289 aac_fib_init(fib); 1290 readcmd = (struct aac_read64 *) fib_data(fib); 1291 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1292 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1293 readcmd->sector_count = cpu_to_le16(count); 1294 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1295 readcmd->pad = 0; 1296 readcmd->flags = 0; 1297 1298 ret = aac_build_sg64(cmd, &readcmd->sg); 1299 if (ret < 0) 1300 return ret; 1301 fibsize = sizeof(struct aac_read64) + 1302 ((le32_to_cpu(readcmd->sg.count) - 1) * 1303 sizeof (struct sgentry64)); 1304 BUG_ON (fibsize > (fib->dev->max_fib_size - 1305 sizeof(struct aac_fibhdr))); 1306 /* 1307 * Now send the Fib to the adapter 1308 */ 1309 return aac_fib_send(ContainerCommand64, 1310 fib, 1311 fibsize, 1312 FsaNormal, 1313 0, 1, 1314 (fib_callback) io_callback, 1315 (void *) cmd); 1316 } 1317 1318 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1319 { 1320 u16 fibsize; 1321 struct aac_read *readcmd; 1322 struct aac_dev *dev = fib->dev; 1323 long ret; 1324 1325 aac_fib_init(fib); 1326 readcmd = (struct aac_read *) fib_data(fib); 1327 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1328 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1329 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1330 readcmd->count = cpu_to_le32(count * 1331 dev->fsa_dev[scmd_id(cmd)].block_size); 1332 1333 ret = aac_build_sg(cmd, &readcmd->sg); 1334 if (ret < 0) 1335 return ret; 1336 fibsize = sizeof(struct aac_read) + 1337 ((le32_to_cpu(readcmd->sg.count) - 1) * 1338 sizeof (struct sgentry)); 1339 BUG_ON (fibsize > (fib->dev->max_fib_size - 1340 sizeof(struct aac_fibhdr))); 1341 /* 1342 * Now send the Fib to the adapter 1343 */ 1344 return aac_fib_send(ContainerCommand, 1345 fib, 1346 fibsize, 1347 FsaNormal, 1348 0, 1, 1349 (fib_callback) io_callback, 1350 (void *) cmd); 1351 } 1352 1353 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1354 { 1355 struct aac_dev *dev = fib->dev; 1356 u16 fibsize, command; 1357 long ret; 1358 1359 aac_fib_init(fib); 1360 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1361 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1362 !dev->sync_mode) { 1363 struct aac_raw_io2 *writecmd2; 1364 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1365 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1366 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1367 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1368 writecmd2->byteCount = cpu_to_le32(count * 1369 dev->fsa_dev[scmd_id(cmd)].block_size); 1370 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1371 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1372 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1373 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1374 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1375 ret = aac_build_sgraw2(cmd, writecmd2, 1376 dev->scsi_host_ptr->sg_tablesize); 1377 if (ret < 0) 1378 return ret; 1379 command = ContainerRawIo2; 1380 fibsize = sizeof(struct aac_raw_io2) + 1381 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1382 } else { 1383 struct aac_raw_io *writecmd; 1384 writecmd = (struct aac_raw_io *) fib_data(fib); 1385 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1386 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1387 writecmd->count = cpu_to_le32(count * 1388 dev->fsa_dev[scmd_id(cmd)].block_size); 1389 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1390 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1391 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1392 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1393 cpu_to_le16(RIO_TYPE_WRITE); 1394 writecmd->bpTotal = 0; 1395 writecmd->bpComplete = 0; 1396 ret = aac_build_sgraw(cmd, &writecmd->sg); 1397 if (ret < 0) 1398 return ret; 1399 command = ContainerRawIo; 1400 fibsize = sizeof(struct aac_raw_io) + 1401 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1402 } 1403 1404 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1405 /* 1406 * Now send the Fib to the adapter 1407 */ 1408 return aac_fib_send(command, 1409 fib, 1410 fibsize, 1411 FsaNormal, 1412 0, 1, 1413 (fib_callback) io_callback, 1414 (void *) cmd); 1415 } 1416 1417 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1418 { 1419 u16 fibsize; 1420 struct aac_write64 *writecmd; 1421 long ret; 1422 1423 aac_fib_init(fib); 1424 writecmd = (struct aac_write64 *) fib_data(fib); 1425 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1426 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1427 writecmd->sector_count = cpu_to_le16(count); 1428 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1429 writecmd->pad = 0; 1430 writecmd->flags = 0; 1431 1432 ret = aac_build_sg64(cmd, &writecmd->sg); 1433 if (ret < 0) 1434 return ret; 1435 fibsize = sizeof(struct aac_write64) + 1436 ((le32_to_cpu(writecmd->sg.count) - 1) * 1437 sizeof (struct sgentry64)); 1438 BUG_ON (fibsize > (fib->dev->max_fib_size - 1439 sizeof(struct aac_fibhdr))); 1440 /* 1441 * Now send the Fib to the adapter 1442 */ 1443 return aac_fib_send(ContainerCommand64, 1444 fib, 1445 fibsize, 1446 FsaNormal, 1447 0, 1, 1448 (fib_callback) io_callback, 1449 (void *) cmd); 1450 } 1451 1452 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1453 { 1454 u16 fibsize; 1455 struct aac_write *writecmd; 1456 struct aac_dev *dev = fib->dev; 1457 long ret; 1458 1459 aac_fib_init(fib); 1460 writecmd = (struct aac_write *) fib_data(fib); 1461 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1462 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1463 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1464 writecmd->count = cpu_to_le32(count * 1465 dev->fsa_dev[scmd_id(cmd)].block_size); 1466 writecmd->sg.count = cpu_to_le32(1); 1467 /* ->stable is not used - it did mean which type of write */ 1468 1469 ret = aac_build_sg(cmd, &writecmd->sg); 1470 if (ret < 0) 1471 return ret; 1472 fibsize = sizeof(struct aac_write) + 1473 ((le32_to_cpu(writecmd->sg.count) - 1) * 1474 sizeof (struct sgentry)); 1475 BUG_ON (fibsize > (fib->dev->max_fib_size - 1476 sizeof(struct aac_fibhdr))); 1477 /* 1478 * Now send the Fib to the adapter 1479 */ 1480 return aac_fib_send(ContainerCommand, 1481 fib, 1482 fibsize, 1483 FsaNormal, 1484 0, 1, 1485 (fib_callback) io_callback, 1486 (void *) cmd); 1487 } 1488 1489 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1490 { 1491 struct aac_srb * srbcmd; 1492 u32 flag; 1493 u32 timeout; 1494 1495 aac_fib_init(fib); 1496 switch(cmd->sc_data_direction){ 1497 case DMA_TO_DEVICE: 1498 flag = SRB_DataOut; 1499 break; 1500 case DMA_BIDIRECTIONAL: 1501 flag = SRB_DataIn | SRB_DataOut; 1502 break; 1503 case DMA_FROM_DEVICE: 1504 flag = SRB_DataIn; 1505 break; 1506 case DMA_NONE: 1507 default: /* shuts up some versions of gcc */ 1508 flag = SRB_NoDataXfer; 1509 break; 1510 } 1511 1512 srbcmd = (struct aac_srb*) fib_data(fib); 1513 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1514 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1515 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1516 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1517 srbcmd->flags = cpu_to_le32(flag); 1518 timeout = cmd->request->timeout/HZ; 1519 if (timeout == 0) 1520 timeout = 1; 1521 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1522 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1523 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1524 return srbcmd; 1525 } 1526 1527 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1528 struct scsi_cmnd *cmd) 1529 { 1530 struct aac_hba_cmd_req *hbacmd; 1531 struct aac_dev *dev; 1532 int bus, target; 1533 u64 address; 1534 1535 dev = (struct aac_dev *)cmd->device->host->hostdata; 1536 1537 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1538 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1539 /* iu_type is a parameter of aac_hba_send */ 1540 switch (cmd->sc_data_direction) { 1541 case DMA_TO_DEVICE: 1542 hbacmd->byte1 = 2; 1543 break; 1544 case DMA_FROM_DEVICE: 1545 case DMA_BIDIRECTIONAL: 1546 hbacmd->byte1 = 1; 1547 break; 1548 case DMA_NONE: 1549 default: 1550 break; 1551 } 1552 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1553 1554 bus = aac_logical_to_phys(scmd_channel(cmd)); 1555 target = scmd_id(cmd); 1556 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1557 1558 /* we fill in reply_qid later in aac_src_deliver_message */ 1559 /* we fill in iu_type, request_id later in aac_hba_send */ 1560 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1561 1562 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1563 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1564 1565 address = (u64)fib->hw_error_pa; 1566 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1567 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1568 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1569 1570 return hbacmd; 1571 } 1572 1573 static void aac_srb_callback(void *context, struct fib * fibptr); 1574 1575 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1576 { 1577 u16 fibsize; 1578 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1579 long ret; 1580 1581 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1582 if (ret < 0) 1583 return ret; 1584 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1585 1586 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1587 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1588 /* 1589 * Build Scatter/Gather list 1590 */ 1591 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1592 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1593 sizeof (struct sgentry64)); 1594 BUG_ON (fibsize > (fib->dev->max_fib_size - 1595 sizeof(struct aac_fibhdr))); 1596 1597 /* 1598 * Now send the Fib to the adapter 1599 */ 1600 return aac_fib_send(ScsiPortCommand64, fib, 1601 fibsize, FsaNormal, 0, 1, 1602 (fib_callback) aac_srb_callback, 1603 (void *) cmd); 1604 } 1605 1606 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1607 { 1608 u16 fibsize; 1609 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1610 long ret; 1611 1612 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1613 if (ret < 0) 1614 return ret; 1615 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1616 1617 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1618 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1619 /* 1620 * Build Scatter/Gather list 1621 */ 1622 fibsize = sizeof (struct aac_srb) + 1623 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1624 sizeof (struct sgentry)); 1625 BUG_ON (fibsize > (fib->dev->max_fib_size - 1626 sizeof(struct aac_fibhdr))); 1627 1628 /* 1629 * Now send the Fib to the adapter 1630 */ 1631 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1632 (fib_callback) aac_srb_callback, (void *) cmd); 1633 } 1634 1635 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1636 { 1637 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1638 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1639 return FAILED; 1640 return aac_scsi_32(fib, cmd); 1641 } 1642 1643 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1644 { 1645 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1646 struct aac_dev *dev; 1647 long ret; 1648 1649 dev = (struct aac_dev *)cmd->device->host->hostdata; 1650 1651 ret = aac_build_sghba(cmd, hbacmd, 1652 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1653 if (ret < 0) 1654 return ret; 1655 1656 /* 1657 * Now send the HBA command to the adapter 1658 */ 1659 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1660 sizeof(struct aac_hba_sgl); 1661 1662 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1663 (fib_callback) aac_hba_callback, 1664 (void *) cmd); 1665 } 1666 1667 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1668 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1669 { 1670 struct fib *fibptr; 1671 dma_addr_t addr; 1672 int rcode; 1673 int fibsize; 1674 struct aac_srb *srb; 1675 struct aac_srb_reply *srb_reply; 1676 struct sgmap64 *sg64; 1677 u32 vbus; 1678 u32 vid; 1679 1680 if (!dev->sa_firmware) 1681 return 0; 1682 1683 /* allocate FIB */ 1684 fibptr = aac_fib_alloc(dev); 1685 if (!fibptr) 1686 return -ENOMEM; 1687 1688 aac_fib_init(fibptr); 1689 fibptr->hw_fib_va->header.XferState &= 1690 ~cpu_to_le32(FastResponseCapable); 1691 1692 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1693 sizeof(struct sgentry64); 1694 1695 /* allocate DMA buffer for response */ 1696 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1697 DMA_BIDIRECTIONAL); 1698 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1699 rcode = -ENOMEM; 1700 goto fib_error; 1701 } 1702 1703 srb = fib_data(fibptr); 1704 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1705 1706 vbus = (u32)le16_to_cpu( 1707 dev->supplement_adapter_info.virt_device_bus); 1708 vid = (u32)le16_to_cpu( 1709 dev->supplement_adapter_info.virt_device_target); 1710 1711 /* set the common request fields */ 1712 srb->channel = cpu_to_le32(vbus); 1713 srb->id = cpu_to_le32(vid); 1714 srb->lun = 0; 1715 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1716 srb->timeout = 0; 1717 srb->retry_limit = 0; 1718 srb->cdb_size = cpu_to_le32(16); 1719 srb->count = cpu_to_le32(xfer_len); 1720 1721 sg64 = (struct sgmap64 *)&srb->sg; 1722 sg64->count = cpu_to_le32(1); 1723 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1724 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1725 sg64->sg[0].count = cpu_to_le32(xfer_len); 1726 1727 /* 1728 * Copy the updated data for other dumping or other usage if needed 1729 */ 1730 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1731 1732 /* issue request to the controller */ 1733 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1734 1, 1, NULL, NULL); 1735 1736 if (rcode == -ERESTARTSYS) 1737 rcode = -ERESTART; 1738 1739 if (unlikely(rcode < 0)) 1740 goto bmic_error; 1741 1742 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1743 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1744 1745 bmic_error: 1746 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1747 fib_error: 1748 aac_fib_complete(fibptr); 1749 aac_fib_free(fibptr); 1750 return rcode; 1751 } 1752 1753 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1754 { 1755 1756 struct aac_ciss_identify_pd *identify_resp; 1757 1758 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1759 return; 1760 1761 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1762 if (identify_resp == NULL) { 1763 dev->hba_map[bus][target].qd_limit = 32; 1764 return; 1765 } 1766 1767 if (identify_resp->current_queue_depth_limit <= 0 || 1768 identify_resp->current_queue_depth_limit > 255) 1769 dev->hba_map[bus][target].qd_limit = 32; 1770 else 1771 dev->hba_map[bus][target].qd_limit = 1772 identify_resp->current_queue_depth_limit; 1773 } 1774 1775 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1776 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1777 { 1778 int rcode = -ENOMEM; 1779 int datasize; 1780 struct aac_srb_unit srbu; 1781 struct aac_srb *srbcmd; 1782 struct aac_ciss_identify_pd *identify_reply; 1783 1784 datasize = sizeof(struct aac_ciss_identify_pd); 1785 identify_reply = kmalloc(datasize, GFP_KERNEL); 1786 if (!identify_reply) 1787 goto out; 1788 1789 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1790 1791 srbcmd = &srbu.srb; 1792 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1793 srbcmd->cdb[0] = 0x26; 1794 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1795 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1796 1797 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1798 if (unlikely(rcode < 0)) 1799 goto mem_free_all; 1800 1801 *identify_resp = identify_reply; 1802 1803 out: 1804 return rcode; 1805 mem_free_all: 1806 kfree(identify_reply); 1807 goto out; 1808 } 1809 1810 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1811 { 1812 kfree(dev->safw_phys_luns); 1813 dev->safw_phys_luns = NULL; 1814 } 1815 1816 /** 1817 * aac_get_safw_ciss_luns() Process topology change 1818 * @dev: aac_dev structure 1819 * 1820 * Execute a CISS REPORT PHYS LUNS and process the results into 1821 * the current hba_map. 1822 */ 1823 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1824 { 1825 int rcode = -ENOMEM; 1826 int datasize; 1827 struct aac_srb *srbcmd; 1828 struct aac_srb_unit srbu; 1829 struct aac_ciss_phys_luns_resp *phys_luns; 1830 1831 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1832 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1833 phys_luns = kmalloc(datasize, GFP_KERNEL); 1834 if (phys_luns == NULL) 1835 goto out; 1836 1837 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1838 1839 srbcmd = &srbu.srb; 1840 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1841 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1842 srbcmd->cdb[1] = 2; /* extended reporting */ 1843 srbcmd->cdb[8] = (u8)(datasize >> 8); 1844 srbcmd->cdb[9] = (u8)(datasize); 1845 1846 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1847 if (unlikely(rcode < 0)) 1848 goto mem_free_all; 1849 1850 if (phys_luns->resp_flag != 2) { 1851 rcode = -ENOMSG; 1852 goto mem_free_all; 1853 } 1854 1855 dev->safw_phys_luns = phys_luns; 1856 1857 out: 1858 return rcode; 1859 mem_free_all: 1860 kfree(phys_luns); 1861 goto out; 1862 } 1863 1864 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1865 { 1866 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1867 } 1868 1869 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1870 { 1871 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1872 } 1873 1874 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1875 { 1876 return dev->safw_phys_luns->lun[lun].level2[0]; 1877 } 1878 1879 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1880 { 1881 return dev->safw_phys_luns->lun[lun].bus >> 6; 1882 } 1883 1884 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1885 { 1886 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1887 } 1888 1889 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1890 { 1891 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1892 } 1893 1894 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1895 { 1896 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1897 } 1898 1899 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1900 int bus, int target) 1901 { 1902 kfree(dev->hba_map[bus][target].safw_identify_resp); 1903 dev->hba_map[bus][target].safw_identify_resp = NULL; 1904 } 1905 1906 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1907 int lun_count) 1908 { 1909 int luns; 1910 int i; 1911 u32 bus; 1912 u32 target; 1913 1914 luns = aac_get_safw_phys_lun_count(dev); 1915 1916 if (luns < lun_count) 1917 lun_count = luns; 1918 else if (lun_count < 0) 1919 lun_count = luns; 1920 1921 for (i = 0; i < lun_count; i++) { 1922 bus = aac_get_safw_phys_bus(dev, i); 1923 target = aac_get_safw_phys_target(dev, i); 1924 1925 aac_free_safw_identify_resp(dev, bus, target); 1926 } 1927 } 1928 1929 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1930 { 1931 int i; 1932 int rcode = 0; 1933 u32 lun_count; 1934 u32 bus; 1935 u32 target; 1936 struct aac_ciss_identify_pd *identify_resp = NULL; 1937 1938 lun_count = aac_get_safw_phys_lun_count(dev); 1939 1940 for (i = 0; i < lun_count; ++i) { 1941 1942 bus = aac_get_safw_phys_bus(dev, i); 1943 target = aac_get_safw_phys_target(dev, i); 1944 1945 rcode = aac_issue_safw_bmic_identify(dev, 1946 &identify_resp, bus, target); 1947 1948 if (unlikely(rcode < 0)) 1949 goto free_identify_resp; 1950 1951 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1952 } 1953 1954 out: 1955 return rcode; 1956 free_identify_resp: 1957 aac_free_safw_all_identify_resp(dev, i); 1958 goto out; 1959 } 1960 1961 /** 1962 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1963 * @dev: aac_dev structure 1964 * @phys_luns: FW information from report phys luns 1965 * @rescan: Indicates scan type 1966 * 1967 * Update our hba map with the information gathered from the FW 1968 */ 1969 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1970 { 1971 /* ok and extended reporting */ 1972 u32 lun_count, nexus; 1973 u32 i, bus, target; 1974 u8 expose_flag, attribs; 1975 1976 lun_count = aac_get_safw_phys_lun_count(dev); 1977 1978 dev->scan_counter++; 1979 1980 for (i = 0; i < lun_count; ++i) { 1981 1982 bus = aac_get_safw_phys_bus(dev, i); 1983 target = aac_get_safw_phys_target(dev, i); 1984 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1985 attribs = aac_get_safw_phys_attribs(dev, i); 1986 nexus = aac_get_safw_phys_nexus(dev, i); 1987 1988 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1989 continue; 1990 1991 if (expose_flag != 0) { 1992 dev->hba_map[bus][target].devtype = 1993 AAC_DEVTYPE_RAID_MEMBER; 1994 continue; 1995 } 1996 1997 if (nexus != 0 && (attribs & 8)) { 1998 dev->hba_map[bus][target].devtype = 1999 AAC_DEVTYPE_NATIVE_RAW; 2000 dev->hba_map[bus][target].rmw_nexus = 2001 nexus; 2002 } else 2003 dev->hba_map[bus][target].devtype = 2004 AAC_DEVTYPE_ARC_RAW; 2005 2006 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 2007 2008 aac_set_safw_target_qd(dev, bus, target); 2009 } 2010 } 2011 2012 static int aac_setup_safw_targets(struct aac_dev *dev) 2013 { 2014 int rcode = 0; 2015 2016 rcode = aac_get_containers(dev); 2017 if (unlikely(rcode < 0)) 2018 goto out; 2019 2020 rcode = aac_get_safw_ciss_luns(dev); 2021 if (unlikely(rcode < 0)) 2022 goto out; 2023 2024 rcode = aac_get_safw_attr_all_targets(dev); 2025 if (unlikely(rcode < 0)) 2026 goto free_ciss_luns; 2027 2028 aac_set_safw_attr_all_targets(dev); 2029 2030 aac_free_safw_all_identify_resp(dev, -1); 2031 free_ciss_luns: 2032 aac_free_safw_ciss_luns(dev); 2033 out: 2034 return rcode; 2035 } 2036 2037 int aac_setup_safw_adapter(struct aac_dev *dev) 2038 { 2039 return aac_setup_safw_targets(dev); 2040 } 2041 2042 int aac_get_adapter_info(struct aac_dev* dev) 2043 { 2044 struct fib* fibptr; 2045 int rcode; 2046 u32 tmp, bus, target; 2047 struct aac_adapter_info *info; 2048 struct aac_bus_info *command; 2049 struct aac_bus_info_response *bus_info; 2050 2051 if (!(fibptr = aac_fib_alloc(dev))) 2052 return -ENOMEM; 2053 2054 aac_fib_init(fibptr); 2055 info = (struct aac_adapter_info *) fib_data(fibptr); 2056 memset(info,0,sizeof(*info)); 2057 2058 rcode = aac_fib_send(RequestAdapterInfo, 2059 fibptr, 2060 sizeof(*info), 2061 FsaNormal, 2062 -1, 1, /* First `interrupt' command uses special wait */ 2063 NULL, 2064 NULL); 2065 2066 if (rcode < 0) { 2067 /* FIB should be freed only after 2068 * getting the response from the F/W */ 2069 if (rcode != -ERESTARTSYS) { 2070 aac_fib_complete(fibptr); 2071 aac_fib_free(fibptr); 2072 } 2073 return rcode; 2074 } 2075 memcpy(&dev->adapter_info, info, sizeof(*info)); 2076 2077 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2078 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2079 struct aac_supplement_adapter_info * sinfo; 2080 2081 aac_fib_init(fibptr); 2082 2083 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2084 2085 memset(sinfo,0,sizeof(*sinfo)); 2086 2087 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2088 fibptr, 2089 sizeof(*sinfo), 2090 FsaNormal, 2091 1, 1, 2092 NULL, 2093 NULL); 2094 2095 if (rcode >= 0) 2096 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2097 if (rcode == -ERESTARTSYS) { 2098 fibptr = aac_fib_alloc(dev); 2099 if (!fibptr) 2100 return -ENOMEM; 2101 } 2102 2103 } 2104 2105 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2106 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2107 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2108 dev->hba_map[bus][target].devtype = 0; 2109 dev->hba_map[bus][target].qd_limit = 0; 2110 } 2111 } 2112 2113 /* 2114 * GetBusInfo 2115 */ 2116 2117 aac_fib_init(fibptr); 2118 2119 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2120 2121 memset(bus_info, 0, sizeof(*bus_info)); 2122 2123 command = (struct aac_bus_info *)bus_info; 2124 2125 command->Command = cpu_to_le32(VM_Ioctl); 2126 command->ObjType = cpu_to_le32(FT_DRIVE); 2127 command->MethodId = cpu_to_le32(1); 2128 command->CtlCmd = cpu_to_le32(GetBusInfo); 2129 2130 rcode = aac_fib_send(ContainerCommand, 2131 fibptr, 2132 sizeof (*bus_info), 2133 FsaNormal, 2134 1, 1, 2135 NULL, NULL); 2136 2137 /* reasoned default */ 2138 dev->maximum_num_physicals = 16; 2139 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2140 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2141 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2142 } 2143 2144 if (!dev->in_reset) { 2145 char buffer[16]; 2146 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2147 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2148 dev->name, 2149 dev->id, 2150 tmp>>24, 2151 (tmp>>16)&0xff, 2152 tmp&0xff, 2153 le32_to_cpu(dev->adapter_info.kernelbuild), 2154 (int)sizeof(dev->supplement_adapter_info.build_date), 2155 dev->supplement_adapter_info.build_date); 2156 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2157 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2158 dev->name, dev->id, 2159 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2160 le32_to_cpu(dev->adapter_info.monitorbuild)); 2161 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2162 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2163 dev->name, dev->id, 2164 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2165 le32_to_cpu(dev->adapter_info.biosbuild)); 2166 buffer[0] = '\0'; 2167 if (aac_get_serial_number( 2168 shost_to_class(dev->scsi_host_ptr), buffer)) 2169 printk(KERN_INFO "%s%d: serial %s", 2170 dev->name, dev->id, buffer); 2171 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2172 printk(KERN_INFO "%s%d: TSID %.*s\n", 2173 dev->name, dev->id, 2174 (int)sizeof(dev->supplement_adapter_info 2175 .vpd_info.tsid), 2176 dev->supplement_adapter_info.vpd_info.tsid); 2177 } 2178 if (!aac_check_reset || ((aac_check_reset == 1) && 2179 (dev->supplement_adapter_info.supported_options2 & 2180 AAC_OPTION_IGNORE_RESET))) { 2181 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2182 dev->name, dev->id); 2183 } 2184 } 2185 2186 dev->cache_protected = 0; 2187 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2188 AAC_FEATURE_JBOD) != 0); 2189 dev->nondasd_support = 0; 2190 dev->raid_scsi_mode = 0; 2191 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2192 dev->nondasd_support = 1; 2193 2194 /* 2195 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2196 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2197 * force nondasd support on. If we decide to allow the non-dasd flag 2198 * additional changes changes will have to be made to support 2199 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2200 * changed to support the new dev->raid_scsi_mode flag instead of 2201 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2202 * function aac_detect will have to be modified where it sets up the 2203 * max number of channels based on the aac->nondasd_support flag only. 2204 */ 2205 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2206 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2207 dev->nondasd_support = 1; 2208 dev->raid_scsi_mode = 1; 2209 } 2210 if (dev->raid_scsi_mode != 0) 2211 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2212 dev->name, dev->id); 2213 2214 if (nondasd != -1) 2215 dev->nondasd_support = (nondasd!=0); 2216 if (dev->nondasd_support && !dev->in_reset) 2217 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2218 2219 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2220 dev->needs_dac = 1; 2221 dev->dac_support = 0; 2222 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2223 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2224 if (!dev->in_reset) 2225 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2226 dev->name, dev->id); 2227 dev->dac_support = 1; 2228 } 2229 2230 if(dacmode != -1) { 2231 dev->dac_support = (dacmode!=0); 2232 } 2233 2234 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2235 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2236 & AAC_QUIRK_SCSI_32)) { 2237 dev->nondasd_support = 0; 2238 dev->jbod = 0; 2239 expose_physicals = 0; 2240 } 2241 2242 if (dev->dac_support) { 2243 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2244 if (!dev->in_reset) 2245 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2246 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2247 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2248 dev->dac_support = 0; 2249 } else { 2250 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2251 rcode = -ENOMEM; 2252 } 2253 } 2254 /* 2255 * Deal with configuring for the individualized limits of each packet 2256 * interface. 2257 */ 2258 dev->a_ops.adapter_scsi = (dev->dac_support) 2259 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2260 ? aac_scsi_32_64 2261 : aac_scsi_64) 2262 : aac_scsi_32; 2263 if (dev->raw_io_interface) { 2264 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2265 ? aac_bounds_64 2266 : aac_bounds_32; 2267 dev->a_ops.adapter_read = aac_read_raw_io; 2268 dev->a_ops.adapter_write = aac_write_raw_io; 2269 } else { 2270 dev->a_ops.adapter_bounds = aac_bounds_32; 2271 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2272 sizeof(struct aac_fibhdr) - 2273 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2274 sizeof(struct sgentry); 2275 if (dev->dac_support) { 2276 dev->a_ops.adapter_read = aac_read_block64; 2277 dev->a_ops.adapter_write = aac_write_block64; 2278 /* 2279 * 38 scatter gather elements 2280 */ 2281 dev->scsi_host_ptr->sg_tablesize = 2282 (dev->max_fib_size - 2283 sizeof(struct aac_fibhdr) - 2284 sizeof(struct aac_write64) + 2285 sizeof(struct sgentry64)) / 2286 sizeof(struct sgentry64); 2287 } else { 2288 dev->a_ops.adapter_read = aac_read_block; 2289 dev->a_ops.adapter_write = aac_write_block; 2290 } 2291 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2292 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2293 /* 2294 * Worst case size that could cause sg overflow when 2295 * we break up SG elements that are larger than 64KB. 2296 * Would be nice if we could tell the SCSI layer what 2297 * the maximum SG element size can be. Worst case is 2298 * (sg_tablesize-1) 4KB elements with one 64KB 2299 * element. 2300 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2301 */ 2302 dev->scsi_host_ptr->max_sectors = 2303 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2304 } 2305 } 2306 if (!dev->sync_mode && dev->sa_firmware && 2307 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2308 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2309 HBA_MAX_SG_SEPARATE; 2310 2311 /* FIB should be freed only after getting the response from the F/W */ 2312 if (rcode != -ERESTARTSYS) { 2313 aac_fib_complete(fibptr); 2314 aac_fib_free(fibptr); 2315 } 2316 2317 return rcode; 2318 } 2319 2320 2321 static void io_callback(void *context, struct fib * fibptr) 2322 { 2323 struct aac_dev *dev; 2324 struct aac_read_reply *readreply; 2325 struct scsi_cmnd *scsicmd; 2326 u32 cid; 2327 2328 scsicmd = (struct scsi_cmnd *) context; 2329 2330 if (!aac_valid_context(scsicmd, fibptr)) 2331 return; 2332 2333 dev = fibptr->dev; 2334 cid = scmd_id(scsicmd); 2335 2336 if (nblank(dprintk(x))) { 2337 u64 lba; 2338 switch (scsicmd->cmnd[0]) { 2339 case WRITE_6: 2340 case READ_6: 2341 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2342 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2343 break; 2344 case WRITE_16: 2345 case READ_16: 2346 lba = ((u64)scsicmd->cmnd[2] << 56) | 2347 ((u64)scsicmd->cmnd[3] << 48) | 2348 ((u64)scsicmd->cmnd[4] << 40) | 2349 ((u64)scsicmd->cmnd[5] << 32) | 2350 ((u64)scsicmd->cmnd[6] << 24) | 2351 (scsicmd->cmnd[7] << 16) | 2352 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2353 break; 2354 case WRITE_12: 2355 case READ_12: 2356 lba = ((u64)scsicmd->cmnd[2] << 24) | 2357 (scsicmd->cmnd[3] << 16) | 2358 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2359 break; 2360 default: 2361 lba = ((u64)scsicmd->cmnd[2] << 24) | 2362 (scsicmd->cmnd[3] << 16) | 2363 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2364 break; 2365 } 2366 printk(KERN_DEBUG 2367 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2368 smp_processor_id(), (unsigned long long)lba, jiffies); 2369 } 2370 2371 BUG_ON(fibptr == NULL); 2372 2373 scsi_dma_unmap(scsicmd); 2374 2375 readreply = (struct aac_read_reply *)fib_data(fibptr); 2376 switch (le32_to_cpu(readreply->status)) { 2377 case ST_OK: 2378 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2379 SAM_STAT_GOOD; 2380 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2381 break; 2382 case ST_NOT_READY: 2383 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2384 SAM_STAT_CHECK_CONDITION; 2385 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2386 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2387 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2388 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2389 SCSI_SENSE_BUFFERSIZE)); 2390 break; 2391 case ST_MEDERR: 2392 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2393 SAM_STAT_CHECK_CONDITION; 2394 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2395 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2396 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2397 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2398 SCSI_SENSE_BUFFERSIZE)); 2399 break; 2400 default: 2401 #ifdef AAC_DETAILED_STATUS_INFO 2402 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2403 le32_to_cpu(readreply->status)); 2404 #endif 2405 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2406 SAM_STAT_CHECK_CONDITION; 2407 set_sense(&dev->fsa_dev[cid].sense_data, 2408 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2409 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2410 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2411 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2412 SCSI_SENSE_BUFFERSIZE)); 2413 break; 2414 } 2415 aac_fib_complete(fibptr); 2416 2417 scsicmd->scsi_done(scsicmd); 2418 } 2419 2420 static int aac_read(struct scsi_cmnd * scsicmd) 2421 { 2422 u64 lba; 2423 u32 count; 2424 int status; 2425 struct aac_dev *dev; 2426 struct fib * cmd_fibcontext; 2427 int cid; 2428 2429 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2430 /* 2431 * Get block address and transfer length 2432 */ 2433 switch (scsicmd->cmnd[0]) { 2434 case READ_6: 2435 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2436 2437 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2438 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2439 count = scsicmd->cmnd[4]; 2440 2441 if (count == 0) 2442 count = 256; 2443 break; 2444 case READ_16: 2445 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2446 2447 lba = ((u64)scsicmd->cmnd[2] << 56) | 2448 ((u64)scsicmd->cmnd[3] << 48) | 2449 ((u64)scsicmd->cmnd[4] << 40) | 2450 ((u64)scsicmd->cmnd[5] << 32) | 2451 ((u64)scsicmd->cmnd[6] << 24) | 2452 (scsicmd->cmnd[7] << 16) | 2453 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2454 count = (scsicmd->cmnd[10] << 24) | 2455 (scsicmd->cmnd[11] << 16) | 2456 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2457 break; 2458 case READ_12: 2459 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2460 2461 lba = ((u64)scsicmd->cmnd[2] << 24) | 2462 (scsicmd->cmnd[3] << 16) | 2463 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2464 count = (scsicmd->cmnd[6] << 24) | 2465 (scsicmd->cmnd[7] << 16) | 2466 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2467 break; 2468 default: 2469 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2470 2471 lba = ((u64)scsicmd->cmnd[2] << 24) | 2472 (scsicmd->cmnd[3] << 16) | 2473 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2474 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2475 break; 2476 } 2477 2478 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2479 cid = scmd_id(scsicmd); 2480 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2481 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2482 SAM_STAT_CHECK_CONDITION; 2483 set_sense(&dev->fsa_dev[cid].sense_data, 2484 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2485 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2486 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2487 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2488 SCSI_SENSE_BUFFERSIZE)); 2489 scsicmd->scsi_done(scsicmd); 2490 return 1; 2491 } 2492 2493 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2494 smp_processor_id(), (unsigned long long)lba, jiffies)); 2495 if (aac_adapter_bounds(dev,scsicmd,lba)) 2496 return 0; 2497 /* 2498 * Alocate and initialize a Fib 2499 */ 2500 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2501 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2502 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2503 2504 /* 2505 * Check that the command queued to the controller 2506 */ 2507 if (status == -EINPROGRESS) 2508 return 0; 2509 2510 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2511 /* 2512 * For some reason, the Fib didn't queue, return QUEUE_FULL 2513 */ 2514 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2515 scsicmd->scsi_done(scsicmd); 2516 aac_fib_complete(cmd_fibcontext); 2517 aac_fib_free(cmd_fibcontext); 2518 return 0; 2519 } 2520 2521 static int aac_write(struct scsi_cmnd * scsicmd) 2522 { 2523 u64 lba; 2524 u32 count; 2525 int fua; 2526 int status; 2527 struct aac_dev *dev; 2528 struct fib * cmd_fibcontext; 2529 int cid; 2530 2531 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2532 /* 2533 * Get block address and transfer length 2534 */ 2535 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2536 { 2537 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2538 count = scsicmd->cmnd[4]; 2539 if (count == 0) 2540 count = 256; 2541 fua = 0; 2542 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2543 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2544 2545 lba = ((u64)scsicmd->cmnd[2] << 56) | 2546 ((u64)scsicmd->cmnd[3] << 48) | 2547 ((u64)scsicmd->cmnd[4] << 40) | 2548 ((u64)scsicmd->cmnd[5] << 32) | 2549 ((u64)scsicmd->cmnd[6] << 24) | 2550 (scsicmd->cmnd[7] << 16) | 2551 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2552 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2553 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2554 fua = scsicmd->cmnd[1] & 0x8; 2555 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2556 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2557 2558 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2559 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2560 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2561 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2562 fua = scsicmd->cmnd[1] & 0x8; 2563 } else { 2564 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2565 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2566 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2567 fua = scsicmd->cmnd[1] & 0x8; 2568 } 2569 2570 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2571 cid = scmd_id(scsicmd); 2572 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2573 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2574 SAM_STAT_CHECK_CONDITION; 2575 set_sense(&dev->fsa_dev[cid].sense_data, 2576 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2577 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2578 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2579 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2580 SCSI_SENSE_BUFFERSIZE)); 2581 scsicmd->scsi_done(scsicmd); 2582 return 1; 2583 } 2584 2585 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2586 smp_processor_id(), (unsigned long long)lba, jiffies)); 2587 if (aac_adapter_bounds(dev,scsicmd,lba)) 2588 return 0; 2589 /* 2590 * Allocate and initialize a Fib then setup a BlockWrite command 2591 */ 2592 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2593 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2594 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2595 2596 /* 2597 * Check that the command queued to the controller 2598 */ 2599 if (status == -EINPROGRESS) 2600 return 0; 2601 2602 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2603 /* 2604 * For some reason, the Fib didn't queue, return QUEUE_FULL 2605 */ 2606 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2607 scsicmd->scsi_done(scsicmd); 2608 2609 aac_fib_complete(cmd_fibcontext); 2610 aac_fib_free(cmd_fibcontext); 2611 return 0; 2612 } 2613 2614 static void synchronize_callback(void *context, struct fib *fibptr) 2615 { 2616 struct aac_synchronize_reply *synchronizereply; 2617 struct scsi_cmnd *cmd; 2618 2619 cmd = context; 2620 2621 if (!aac_valid_context(cmd, fibptr)) 2622 return; 2623 2624 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2625 smp_processor_id(), jiffies)); 2626 BUG_ON(fibptr == NULL); 2627 2628 2629 synchronizereply = fib_data(fibptr); 2630 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2631 cmd->result = DID_OK << 16 | 2632 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2633 else { 2634 struct scsi_device *sdev = cmd->device; 2635 struct aac_dev *dev = fibptr->dev; 2636 u32 cid = sdev_id(sdev); 2637 printk(KERN_WARNING 2638 "synchronize_callback: synchronize failed, status = %d\n", 2639 le32_to_cpu(synchronizereply->status)); 2640 cmd->result = DID_OK << 16 | 2641 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2642 set_sense(&dev->fsa_dev[cid].sense_data, 2643 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2644 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2645 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2646 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2647 SCSI_SENSE_BUFFERSIZE)); 2648 } 2649 2650 aac_fib_complete(fibptr); 2651 aac_fib_free(fibptr); 2652 cmd->scsi_done(cmd); 2653 } 2654 2655 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2656 { 2657 int status; 2658 struct fib *cmd_fibcontext; 2659 struct aac_synchronize *synchronizecmd; 2660 struct scsi_cmnd *cmd; 2661 struct scsi_device *sdev = scsicmd->device; 2662 int active = 0; 2663 struct aac_dev *aac; 2664 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | 2665 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2666 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2667 unsigned long flags; 2668 2669 /* 2670 * Wait for all outstanding queued commands to complete to this 2671 * specific target (block). 2672 */ 2673 spin_lock_irqsave(&sdev->list_lock, flags); 2674 list_for_each_entry(cmd, &sdev->cmd_list, list) 2675 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { 2676 u64 cmnd_lba; 2677 u32 cmnd_count; 2678 2679 if (cmd->cmnd[0] == WRITE_6) { 2680 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | 2681 (cmd->cmnd[2] << 8) | 2682 cmd->cmnd[3]; 2683 cmnd_count = cmd->cmnd[4]; 2684 if (cmnd_count == 0) 2685 cmnd_count = 256; 2686 } else if (cmd->cmnd[0] == WRITE_16) { 2687 cmnd_lba = ((u64)cmd->cmnd[2] << 56) | 2688 ((u64)cmd->cmnd[3] << 48) | 2689 ((u64)cmd->cmnd[4] << 40) | 2690 ((u64)cmd->cmnd[5] << 32) | 2691 ((u64)cmd->cmnd[6] << 24) | 2692 (cmd->cmnd[7] << 16) | 2693 (cmd->cmnd[8] << 8) | 2694 cmd->cmnd[9]; 2695 cmnd_count = (cmd->cmnd[10] << 24) | 2696 (cmd->cmnd[11] << 16) | 2697 (cmd->cmnd[12] << 8) | 2698 cmd->cmnd[13]; 2699 } else if (cmd->cmnd[0] == WRITE_12) { 2700 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2701 (cmd->cmnd[3] << 16) | 2702 (cmd->cmnd[4] << 8) | 2703 cmd->cmnd[5]; 2704 cmnd_count = (cmd->cmnd[6] << 24) | 2705 (cmd->cmnd[7] << 16) | 2706 (cmd->cmnd[8] << 8) | 2707 cmd->cmnd[9]; 2708 } else if (cmd->cmnd[0] == WRITE_10) { 2709 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2710 (cmd->cmnd[3] << 16) | 2711 (cmd->cmnd[4] << 8) | 2712 cmd->cmnd[5]; 2713 cmnd_count = (cmd->cmnd[7] << 8) | 2714 cmd->cmnd[8]; 2715 } else 2716 continue; 2717 if (((cmnd_lba + cmnd_count) < lba) || 2718 (count && ((lba + count) < cmnd_lba))) 2719 continue; 2720 ++active; 2721 break; 2722 } 2723 2724 spin_unlock_irqrestore(&sdev->list_lock, flags); 2725 2726 /* 2727 * Yield the processor (requeue for later) 2728 */ 2729 if (active) 2730 return SCSI_MLQUEUE_DEVICE_BUSY; 2731 2732 aac = (struct aac_dev *)sdev->host->hostdata; 2733 if (aac->in_reset) 2734 return SCSI_MLQUEUE_HOST_BUSY; 2735 2736 /* 2737 * Allocate and initialize a Fib 2738 */ 2739 if (!(cmd_fibcontext = aac_fib_alloc(aac))) 2740 return SCSI_MLQUEUE_HOST_BUSY; 2741 2742 aac_fib_init(cmd_fibcontext); 2743 2744 synchronizecmd = fib_data(cmd_fibcontext); 2745 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2746 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2747 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2748 synchronizecmd->count = 2749 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2750 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2751 2752 /* 2753 * Now send the Fib to the adapter 2754 */ 2755 status = aac_fib_send(ContainerCommand, 2756 cmd_fibcontext, 2757 sizeof(struct aac_synchronize), 2758 FsaNormal, 2759 0, 1, 2760 (fib_callback)synchronize_callback, 2761 (void *)scsicmd); 2762 2763 /* 2764 * Check that the command queued to the controller 2765 */ 2766 if (status == -EINPROGRESS) 2767 return 0; 2768 2769 printk(KERN_WARNING 2770 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2771 aac_fib_complete(cmd_fibcontext); 2772 aac_fib_free(cmd_fibcontext); 2773 return SCSI_MLQUEUE_HOST_BUSY; 2774 } 2775 2776 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2777 { 2778 struct scsi_cmnd *scsicmd = context; 2779 2780 if (!aac_valid_context(scsicmd, fibptr)) 2781 return; 2782 2783 BUG_ON(fibptr == NULL); 2784 2785 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2786 2787 aac_fib_complete(fibptr); 2788 aac_fib_free(fibptr); 2789 scsicmd->scsi_done(scsicmd); 2790 } 2791 2792 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2793 { 2794 int status; 2795 struct fib *cmd_fibcontext; 2796 struct aac_power_management *pmcmd; 2797 struct scsi_device *sdev = scsicmd->device; 2798 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2799 2800 if (!(aac->supplement_adapter_info.supported_options2 & 2801 AAC_OPTION_POWER_MANAGEMENT)) { 2802 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2803 SAM_STAT_GOOD; 2804 scsicmd->scsi_done(scsicmd); 2805 return 0; 2806 } 2807 2808 if (aac->in_reset) 2809 return SCSI_MLQUEUE_HOST_BUSY; 2810 2811 /* 2812 * Allocate and initialize a Fib 2813 */ 2814 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2815 2816 aac_fib_init(cmd_fibcontext); 2817 2818 pmcmd = fib_data(cmd_fibcontext); 2819 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2820 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2821 /* Eject bit ignored, not relevant */ 2822 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2823 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2824 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2825 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2826 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2827 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2828 2829 /* 2830 * Now send the Fib to the adapter 2831 */ 2832 status = aac_fib_send(ContainerCommand, 2833 cmd_fibcontext, 2834 sizeof(struct aac_power_management), 2835 FsaNormal, 2836 0, 1, 2837 (fib_callback)aac_start_stop_callback, 2838 (void *)scsicmd); 2839 2840 /* 2841 * Check that the command queued to the controller 2842 */ 2843 if (status == -EINPROGRESS) 2844 return 0; 2845 2846 aac_fib_complete(cmd_fibcontext); 2847 aac_fib_free(cmd_fibcontext); 2848 return SCSI_MLQUEUE_HOST_BUSY; 2849 } 2850 2851 /** 2852 * aac_scsi_cmd() - Process SCSI command 2853 * @scsicmd: SCSI command block 2854 * 2855 * Emulate a SCSI command and queue the required request for the 2856 * aacraid firmware. 2857 */ 2858 2859 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2860 { 2861 u32 cid, bus; 2862 struct Scsi_Host *host = scsicmd->device->host; 2863 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2864 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2865 2866 if (fsa_dev_ptr == NULL) 2867 return -1; 2868 /* 2869 * If the bus, id or lun is out of range, return fail 2870 * Test does not apply to ID 16, the pseudo id for the controller 2871 * itself. 2872 */ 2873 cid = scmd_id(scsicmd); 2874 if (cid != host->this_id) { 2875 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2876 if((cid >= dev->maximum_num_containers) || 2877 (scsicmd->device->lun != 0)) { 2878 scsicmd->result = DID_NO_CONNECT << 16; 2879 goto scsi_done_ret; 2880 } 2881 2882 /* 2883 * If the target container doesn't exist, it may have 2884 * been newly created 2885 */ 2886 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2887 (fsa_dev_ptr[cid].sense_data.sense_key == 2888 NOT_READY)) { 2889 switch (scsicmd->cmnd[0]) { 2890 case SERVICE_ACTION_IN_16: 2891 if (!(dev->raw_io_interface) || 2892 !(dev->raw_io_64) || 2893 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2894 break; 2895 /* fall through */ 2896 case INQUIRY: 2897 case READ_CAPACITY: 2898 case TEST_UNIT_READY: 2899 if (dev->in_reset) 2900 return -1; 2901 return _aac_probe_container(scsicmd, 2902 aac_probe_container_callback2); 2903 default: 2904 break; 2905 } 2906 } 2907 } else { /* check for physical non-dasd devices */ 2908 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2909 2910 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2911 dev->hba_map[bus][cid].devtype 2912 == AAC_DEVTYPE_NATIVE_RAW) { 2913 if (dev->in_reset) 2914 return -1; 2915 return aac_send_hba_fib(scsicmd); 2916 } else if (dev->nondasd_support || expose_physicals || 2917 dev->jbod) { 2918 if (dev->in_reset) 2919 return -1; 2920 return aac_send_srb_fib(scsicmd); 2921 } else { 2922 scsicmd->result = DID_NO_CONNECT << 16; 2923 goto scsi_done_ret; 2924 } 2925 } 2926 } 2927 /* 2928 * else Command for the controller itself 2929 */ 2930 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2931 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2932 { 2933 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2934 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2935 set_sense(&dev->fsa_dev[cid].sense_data, 2936 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2937 ASENCODE_INVALID_COMMAND, 0, 0); 2938 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2939 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2940 SCSI_SENSE_BUFFERSIZE)); 2941 goto scsi_done_ret; 2942 } 2943 2944 switch (scsicmd->cmnd[0]) { 2945 case READ_6: 2946 case READ_10: 2947 case READ_12: 2948 case READ_16: 2949 if (dev->in_reset) 2950 return -1; 2951 return aac_read(scsicmd); 2952 2953 case WRITE_6: 2954 case WRITE_10: 2955 case WRITE_12: 2956 case WRITE_16: 2957 if (dev->in_reset) 2958 return -1; 2959 return aac_write(scsicmd); 2960 2961 case SYNCHRONIZE_CACHE: 2962 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2963 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2964 SAM_STAT_GOOD; 2965 break; 2966 } 2967 /* Issue FIB to tell Firmware to flush it's cache */ 2968 if ((aac_cache & 6) != 2) 2969 return aac_synchronize(scsicmd); 2970 /* fall through */ 2971 case INQUIRY: 2972 { 2973 struct inquiry_data inq_data; 2974 2975 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2976 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2977 2978 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2979 char *arr = (char *)&inq_data; 2980 2981 /* EVPD bit set */ 2982 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2983 INQD_PDT_PROC : INQD_PDT_DA; 2984 if (scsicmd->cmnd[2] == 0) { 2985 /* supported vital product data pages */ 2986 arr[3] = 3; 2987 arr[4] = 0x0; 2988 arr[5] = 0x80; 2989 arr[6] = 0x83; 2990 arr[1] = scsicmd->cmnd[2]; 2991 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2992 sizeof(inq_data)); 2993 scsicmd->result = DID_OK << 16 | 2994 COMMAND_COMPLETE << 8 | 2995 SAM_STAT_GOOD; 2996 } else if (scsicmd->cmnd[2] == 0x80) { 2997 /* unit serial number page */ 2998 arr[3] = setinqserial(dev, &arr[4], 2999 scmd_id(scsicmd)); 3000 arr[1] = scsicmd->cmnd[2]; 3001 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 3002 sizeof(inq_data)); 3003 if (aac_wwn != 2) 3004 return aac_get_container_serial( 3005 scsicmd); 3006 scsicmd->result = DID_OK << 16 | 3007 COMMAND_COMPLETE << 8 | 3008 SAM_STAT_GOOD; 3009 } else if (scsicmd->cmnd[2] == 0x83) { 3010 /* vpd page 0x83 - Device Identification Page */ 3011 char *sno = (char *)&inq_data; 3012 sno[3] = setinqserial(dev, &sno[4], 3013 scmd_id(scsicmd)); 3014 if (aac_wwn != 2) 3015 return aac_get_container_serial( 3016 scsicmd); 3017 scsicmd->result = DID_OK << 16 | 3018 COMMAND_COMPLETE << 8 | 3019 SAM_STAT_GOOD; 3020 } else { 3021 /* vpd page not implemented */ 3022 scsicmd->result = DID_OK << 16 | 3023 COMMAND_COMPLETE << 8 | 3024 SAM_STAT_CHECK_CONDITION; 3025 set_sense(&dev->fsa_dev[cid].sense_data, 3026 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 3027 ASENCODE_NO_SENSE, 7, 2); 3028 memcpy(scsicmd->sense_buffer, 3029 &dev->fsa_dev[cid].sense_data, 3030 min_t(size_t, 3031 sizeof(dev->fsa_dev[cid].sense_data), 3032 SCSI_SENSE_BUFFERSIZE)); 3033 } 3034 break; 3035 } 3036 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 3037 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 3038 inq_data.inqd_len = 31; 3039 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 3040 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 3041 /* 3042 * Set the Vendor, Product, and Revision Level 3043 * see: <vendor>.c i.e. aac.c 3044 */ 3045 if (cid == host->this_id) { 3046 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 3047 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 3048 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 3049 sizeof(inq_data)); 3050 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3051 SAM_STAT_GOOD; 3052 break; 3053 } 3054 if (dev->in_reset) 3055 return -1; 3056 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 3057 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 3058 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 3059 return aac_get_container_name(scsicmd); 3060 } 3061 case SERVICE_ACTION_IN_16: 3062 if (!(dev->raw_io_interface) || 3063 !(dev->raw_io_64) || 3064 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 3065 break; 3066 { 3067 u64 capacity; 3068 char cp[13]; 3069 unsigned int alloc_len; 3070 3071 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 3072 capacity = fsa_dev_ptr[cid].size - 1; 3073 cp[0] = (capacity >> 56) & 0xff; 3074 cp[1] = (capacity >> 48) & 0xff; 3075 cp[2] = (capacity >> 40) & 0xff; 3076 cp[3] = (capacity >> 32) & 0xff; 3077 cp[4] = (capacity >> 24) & 0xff; 3078 cp[5] = (capacity >> 16) & 0xff; 3079 cp[6] = (capacity >> 8) & 0xff; 3080 cp[7] = (capacity >> 0) & 0xff; 3081 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3082 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3083 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3084 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3085 cp[12] = 0; 3086 3087 alloc_len = ((scsicmd->cmnd[10] << 24) 3088 + (scsicmd->cmnd[11] << 16) 3089 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3090 3091 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3092 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3093 if (alloc_len < scsi_bufflen(scsicmd)) 3094 scsi_set_resid(scsicmd, 3095 scsi_bufflen(scsicmd) - alloc_len); 3096 3097 /* Do not cache partition table for arrays */ 3098 scsicmd->device->removable = 1; 3099 3100 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3101 SAM_STAT_GOOD; 3102 break; 3103 } 3104 3105 case READ_CAPACITY: 3106 { 3107 u32 capacity; 3108 char cp[8]; 3109 3110 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3111 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3112 capacity = fsa_dev_ptr[cid].size - 1; 3113 else 3114 capacity = (u32)-1; 3115 3116 cp[0] = (capacity >> 24) & 0xff; 3117 cp[1] = (capacity >> 16) & 0xff; 3118 cp[2] = (capacity >> 8) & 0xff; 3119 cp[3] = (capacity >> 0) & 0xff; 3120 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3121 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3122 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3123 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3124 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3125 /* Do not cache partition table for arrays */ 3126 scsicmd->device->removable = 1; 3127 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3128 SAM_STAT_GOOD; 3129 break; 3130 } 3131 3132 case MODE_SENSE: 3133 { 3134 int mode_buf_length = 4; 3135 u32 capacity; 3136 aac_modep_data mpd; 3137 3138 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3139 capacity = fsa_dev_ptr[cid].size - 1; 3140 else 3141 capacity = (u32)-1; 3142 3143 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3144 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3145 3146 /* Mode data length */ 3147 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3148 /* Medium type - default */ 3149 mpd.hd.med_type = 0; 3150 /* Device-specific param, 3151 bit 8: 0/1 = write enabled/protected 3152 bit 4: 0/1 = FUA enabled */ 3153 mpd.hd.dev_par = 0; 3154 3155 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3156 mpd.hd.dev_par = 0x10; 3157 if (scsicmd->cmnd[1] & 0x8) 3158 mpd.hd.bd_length = 0; /* Block descriptor length */ 3159 else { 3160 mpd.hd.bd_length = sizeof(mpd.bd); 3161 mpd.hd.data_length += mpd.hd.bd_length; 3162 mpd.bd.block_length[0] = 3163 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3164 mpd.bd.block_length[1] = 3165 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3166 mpd.bd.block_length[2] = 3167 fsa_dev_ptr[cid].block_size & 0xff; 3168 3169 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3170 if (scsicmd->cmnd[2] == 0x1C) { 3171 /* page length */ 3172 mpd.mpc_buf[1] = 0xa; 3173 /* Mode data length */ 3174 mpd.hd.data_length = 23; 3175 } else { 3176 /* Mode data length */ 3177 mpd.hd.data_length = 15; 3178 } 3179 3180 if (capacity > 0xffffff) { 3181 mpd.bd.block_count[0] = 0xff; 3182 mpd.bd.block_count[1] = 0xff; 3183 mpd.bd.block_count[2] = 0xff; 3184 } else { 3185 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3186 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3187 mpd.bd.block_count[2] = capacity & 0xff; 3188 } 3189 } 3190 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3191 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3192 mpd.hd.data_length += 3; 3193 mpd.mpc_buf[0] = 8; 3194 mpd.mpc_buf[1] = 1; 3195 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3196 ? 0 : 0x04; /* WCE */ 3197 mode_buf_length = sizeof(mpd); 3198 } 3199 3200 if (mode_buf_length > scsicmd->cmnd[4]) 3201 mode_buf_length = scsicmd->cmnd[4]; 3202 else 3203 mode_buf_length = sizeof(mpd); 3204 scsi_sg_copy_from_buffer(scsicmd, 3205 (char *)&mpd, 3206 mode_buf_length); 3207 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3208 SAM_STAT_GOOD; 3209 break; 3210 } 3211 case MODE_SENSE_10: 3212 { 3213 u32 capacity; 3214 int mode_buf_length = 8; 3215 aac_modep10_data mpd10; 3216 3217 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3218 capacity = fsa_dev_ptr[cid].size - 1; 3219 else 3220 capacity = (u32)-1; 3221 3222 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3223 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3224 /* Mode data length (MSB) */ 3225 mpd10.hd.data_length[0] = 0; 3226 /* Mode data length (LSB) */ 3227 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3228 /* Medium type - default */ 3229 mpd10.hd.med_type = 0; 3230 /* Device-specific param, 3231 bit 8: 0/1 = write enabled/protected 3232 bit 4: 0/1 = FUA enabled */ 3233 mpd10.hd.dev_par = 0; 3234 3235 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3236 mpd10.hd.dev_par = 0x10; 3237 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3238 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3239 if (scsicmd->cmnd[1] & 0x8) { 3240 /* Block descriptor length (MSB) */ 3241 mpd10.hd.bd_length[0] = 0; 3242 /* Block descriptor length (LSB) */ 3243 mpd10.hd.bd_length[1] = 0; 3244 } else { 3245 mpd10.hd.bd_length[0] = 0; 3246 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3247 3248 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3249 3250 mpd10.bd.block_length[0] = 3251 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3252 mpd10.bd.block_length[1] = 3253 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3254 mpd10.bd.block_length[2] = 3255 fsa_dev_ptr[cid].block_size & 0xff; 3256 3257 if (capacity > 0xffffff) { 3258 mpd10.bd.block_count[0] = 0xff; 3259 mpd10.bd.block_count[1] = 0xff; 3260 mpd10.bd.block_count[2] = 0xff; 3261 } else { 3262 mpd10.bd.block_count[0] = 3263 (capacity >> 16) & 0xff; 3264 mpd10.bd.block_count[1] = 3265 (capacity >> 8) & 0xff; 3266 mpd10.bd.block_count[2] = 3267 capacity & 0xff; 3268 } 3269 } 3270 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3271 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3272 mpd10.hd.data_length[1] += 3; 3273 mpd10.mpc_buf[0] = 8; 3274 mpd10.mpc_buf[1] = 1; 3275 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3276 ? 0 : 0x04; /* WCE */ 3277 mode_buf_length = sizeof(mpd10); 3278 if (mode_buf_length > scsicmd->cmnd[8]) 3279 mode_buf_length = scsicmd->cmnd[8]; 3280 } 3281 scsi_sg_copy_from_buffer(scsicmd, 3282 (char *)&mpd10, 3283 mode_buf_length); 3284 3285 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3286 SAM_STAT_GOOD; 3287 break; 3288 } 3289 case REQUEST_SENSE: 3290 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3291 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3292 sizeof(struct sense_data)); 3293 memset(&dev->fsa_dev[cid].sense_data, 0, 3294 sizeof(struct sense_data)); 3295 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3296 SAM_STAT_GOOD; 3297 break; 3298 3299 case ALLOW_MEDIUM_REMOVAL: 3300 dprintk((KERN_DEBUG "LOCK command.\n")); 3301 if (scsicmd->cmnd[4]) 3302 fsa_dev_ptr[cid].locked = 1; 3303 else 3304 fsa_dev_ptr[cid].locked = 0; 3305 3306 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3307 SAM_STAT_GOOD; 3308 break; 3309 /* 3310 * These commands are all No-Ops 3311 */ 3312 case TEST_UNIT_READY: 3313 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3314 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3315 SAM_STAT_CHECK_CONDITION; 3316 set_sense(&dev->fsa_dev[cid].sense_data, 3317 NOT_READY, SENCODE_BECOMING_READY, 3318 ASENCODE_BECOMING_READY, 0, 0); 3319 memcpy(scsicmd->sense_buffer, 3320 &dev->fsa_dev[cid].sense_data, 3321 min_t(size_t, 3322 sizeof(dev->fsa_dev[cid].sense_data), 3323 SCSI_SENSE_BUFFERSIZE)); 3324 break; 3325 } 3326 /* fall through */ 3327 case RESERVE: 3328 case RELEASE: 3329 case REZERO_UNIT: 3330 case REASSIGN_BLOCKS: 3331 case SEEK_10: 3332 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3333 SAM_STAT_GOOD; 3334 break; 3335 3336 case START_STOP: 3337 return aac_start_stop(scsicmd); 3338 3339 /* FALLTHRU */ 3340 default: 3341 /* 3342 * Unhandled commands 3343 */ 3344 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3345 scsicmd->cmnd[0])); 3346 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3347 SAM_STAT_CHECK_CONDITION; 3348 set_sense(&dev->fsa_dev[cid].sense_data, 3349 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3350 ASENCODE_INVALID_COMMAND, 0, 0); 3351 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3352 min_t(size_t, 3353 sizeof(dev->fsa_dev[cid].sense_data), 3354 SCSI_SENSE_BUFFERSIZE)); 3355 } 3356 3357 scsi_done_ret: 3358 3359 scsicmd->scsi_done(scsicmd); 3360 return 0; 3361 } 3362 3363 static int query_disk(struct aac_dev *dev, void __user *arg) 3364 { 3365 struct aac_query_disk qd; 3366 struct fsa_dev_info *fsa_dev_ptr; 3367 3368 fsa_dev_ptr = dev->fsa_dev; 3369 if (!fsa_dev_ptr) 3370 return -EBUSY; 3371 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3372 return -EFAULT; 3373 if (qd.cnum == -1) { 3374 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3375 return -EINVAL; 3376 qd.cnum = qd.id; 3377 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3378 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3379 return -EINVAL; 3380 qd.instance = dev->scsi_host_ptr->host_no; 3381 qd.bus = 0; 3382 qd.id = CONTAINER_TO_ID(qd.cnum); 3383 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3384 } 3385 else return -EINVAL; 3386 3387 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3388 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3389 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3390 3391 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3392 qd.unmapped = 1; 3393 else 3394 qd.unmapped = 0; 3395 3396 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3397 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3398 3399 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3400 return -EFAULT; 3401 return 0; 3402 } 3403 3404 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3405 { 3406 struct aac_delete_disk dd; 3407 struct fsa_dev_info *fsa_dev_ptr; 3408 3409 fsa_dev_ptr = dev->fsa_dev; 3410 if (!fsa_dev_ptr) 3411 return -EBUSY; 3412 3413 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3414 return -EFAULT; 3415 3416 if (dd.cnum >= dev->maximum_num_containers) 3417 return -EINVAL; 3418 /* 3419 * Mark this container as being deleted. 3420 */ 3421 fsa_dev_ptr[dd.cnum].deleted = 1; 3422 /* 3423 * Mark the container as no longer valid 3424 */ 3425 fsa_dev_ptr[dd.cnum].valid = 0; 3426 return 0; 3427 } 3428 3429 static int delete_disk(struct aac_dev *dev, void __user *arg) 3430 { 3431 struct aac_delete_disk dd; 3432 struct fsa_dev_info *fsa_dev_ptr; 3433 3434 fsa_dev_ptr = dev->fsa_dev; 3435 if (!fsa_dev_ptr) 3436 return -EBUSY; 3437 3438 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3439 return -EFAULT; 3440 3441 if (dd.cnum >= dev->maximum_num_containers) 3442 return -EINVAL; 3443 /* 3444 * If the container is locked, it can not be deleted by the API. 3445 */ 3446 if (fsa_dev_ptr[dd.cnum].locked) 3447 return -EBUSY; 3448 else { 3449 /* 3450 * Mark the container as no longer being valid. 3451 */ 3452 fsa_dev_ptr[dd.cnum].valid = 0; 3453 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3454 return 0; 3455 } 3456 } 3457 3458 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3459 { 3460 switch (cmd) { 3461 case FSACTL_QUERY_DISK: 3462 return query_disk(dev, arg); 3463 case FSACTL_DELETE_DISK: 3464 return delete_disk(dev, arg); 3465 case FSACTL_FORCE_DELETE_DISK: 3466 return force_delete_disk(dev, arg); 3467 case FSACTL_GET_CONTAINERS: 3468 return aac_get_containers(dev); 3469 default: 3470 return -ENOTTY; 3471 } 3472 } 3473 3474 /** 3475 * 3476 * aac_srb_callback 3477 * @context: the context set in the fib - here it is scsi cmd 3478 * @fibptr: pointer to the fib 3479 * 3480 * Handles the completion of a scsi command to a non dasd device 3481 * 3482 */ 3483 3484 static void aac_srb_callback(void *context, struct fib * fibptr) 3485 { 3486 struct aac_srb_reply *srbreply; 3487 struct scsi_cmnd *scsicmd; 3488 3489 scsicmd = (struct scsi_cmnd *) context; 3490 3491 if (!aac_valid_context(scsicmd, fibptr)) 3492 return; 3493 3494 BUG_ON(fibptr == NULL); 3495 3496 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3497 3498 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3499 3500 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3501 /* fast response */ 3502 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3503 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3504 } else { 3505 /* 3506 * Calculate resid for sg 3507 */ 3508 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3509 - le32_to_cpu(srbreply->data_xfer_length)); 3510 } 3511 3512 3513 scsi_dma_unmap(scsicmd); 3514 3515 /* expose physical device if expose_physicald flag is on */ 3516 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3517 && expose_physicals > 0) 3518 aac_expose_phy_device(scsicmd); 3519 3520 /* 3521 * First check the fib status 3522 */ 3523 3524 if (le32_to_cpu(srbreply->status) != ST_OK) { 3525 int len; 3526 3527 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3528 le32_to_cpu(srbreply->status)); 3529 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3530 SCSI_SENSE_BUFFERSIZE); 3531 scsicmd->result = DID_ERROR << 16 3532 | COMMAND_COMPLETE << 8 3533 | SAM_STAT_CHECK_CONDITION; 3534 memcpy(scsicmd->sense_buffer, 3535 srbreply->sense_data, len); 3536 } 3537 3538 /* 3539 * Next check the srb status 3540 */ 3541 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3542 case SRB_STATUS_ERROR_RECOVERY: 3543 case SRB_STATUS_PENDING: 3544 case SRB_STATUS_SUCCESS: 3545 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3546 break; 3547 case SRB_STATUS_DATA_OVERRUN: 3548 switch (scsicmd->cmnd[0]) { 3549 case READ_6: 3550 case WRITE_6: 3551 case READ_10: 3552 case WRITE_10: 3553 case READ_12: 3554 case WRITE_12: 3555 case READ_16: 3556 case WRITE_16: 3557 if (le32_to_cpu(srbreply->data_xfer_length) 3558 < scsicmd->underflow) 3559 pr_warn("aacraid: SCSI CMD underflow\n"); 3560 else 3561 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3562 scsicmd->result = DID_ERROR << 16 3563 | COMMAND_COMPLETE << 8; 3564 break; 3565 case INQUIRY: 3566 scsicmd->result = DID_OK << 16 3567 | COMMAND_COMPLETE << 8; 3568 break; 3569 default: 3570 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3571 break; 3572 } 3573 break; 3574 case SRB_STATUS_ABORTED: 3575 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3576 break; 3577 case SRB_STATUS_ABORT_FAILED: 3578 /* 3579 * Not sure about this one - but assuming the 3580 * hba was trying to abort for some reason 3581 */ 3582 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3583 break; 3584 case SRB_STATUS_PARITY_ERROR: 3585 scsicmd->result = DID_PARITY << 16 3586 | MSG_PARITY_ERROR << 8; 3587 break; 3588 case SRB_STATUS_NO_DEVICE: 3589 case SRB_STATUS_INVALID_PATH_ID: 3590 case SRB_STATUS_INVALID_TARGET_ID: 3591 case SRB_STATUS_INVALID_LUN: 3592 case SRB_STATUS_SELECTION_TIMEOUT: 3593 scsicmd->result = DID_NO_CONNECT << 16 3594 | COMMAND_COMPLETE << 8; 3595 break; 3596 3597 case SRB_STATUS_COMMAND_TIMEOUT: 3598 case SRB_STATUS_TIMEOUT: 3599 scsicmd->result = DID_TIME_OUT << 16 3600 | COMMAND_COMPLETE << 8; 3601 break; 3602 3603 case SRB_STATUS_BUSY: 3604 scsicmd->result = DID_BUS_BUSY << 16 3605 | COMMAND_COMPLETE << 8; 3606 break; 3607 3608 case SRB_STATUS_BUS_RESET: 3609 scsicmd->result = DID_RESET << 16 3610 | COMMAND_COMPLETE << 8; 3611 break; 3612 3613 case SRB_STATUS_MESSAGE_REJECTED: 3614 scsicmd->result = DID_ERROR << 16 3615 | MESSAGE_REJECT << 8; 3616 break; 3617 case SRB_STATUS_REQUEST_FLUSHED: 3618 case SRB_STATUS_ERROR: 3619 case SRB_STATUS_INVALID_REQUEST: 3620 case SRB_STATUS_REQUEST_SENSE_FAILED: 3621 case SRB_STATUS_NO_HBA: 3622 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3623 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3624 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3625 case SRB_STATUS_DELAYED_RETRY: 3626 case SRB_STATUS_BAD_FUNCTION: 3627 case SRB_STATUS_NOT_STARTED: 3628 case SRB_STATUS_NOT_IN_USE: 3629 case SRB_STATUS_FORCE_ABORT: 3630 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3631 default: 3632 #ifdef AAC_DETAILED_STATUS_INFO 3633 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3634 le32_to_cpu(srbreply->srb_status) & 0x3F, 3635 aac_get_status_string( 3636 le32_to_cpu(srbreply->srb_status) & 0x3F), 3637 scsicmd->cmnd[0], 3638 le32_to_cpu(srbreply->scsi_status)); 3639 #endif 3640 /* 3641 * When the CC bit is SET by the host in ATA pass thru CDB, 3642 * driver is supposed to return DID_OK 3643 * 3644 * When the CC bit is RESET by the host, driver should 3645 * return DID_ERROR 3646 */ 3647 if ((scsicmd->cmnd[0] == ATA_12) 3648 || (scsicmd->cmnd[0] == ATA_16)) { 3649 3650 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3651 scsicmd->result = DID_OK << 16 3652 | COMMAND_COMPLETE << 8; 3653 break; 3654 } else { 3655 scsicmd->result = DID_ERROR << 16 3656 | COMMAND_COMPLETE << 8; 3657 break; 3658 } 3659 } else { 3660 scsicmd->result = DID_ERROR << 16 3661 | COMMAND_COMPLETE << 8; 3662 break; 3663 } 3664 } 3665 if (le32_to_cpu(srbreply->scsi_status) 3666 == SAM_STAT_CHECK_CONDITION) { 3667 int len; 3668 3669 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3670 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3671 SCSI_SENSE_BUFFERSIZE); 3672 #ifdef AAC_DETAILED_STATUS_INFO 3673 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3674 le32_to_cpu(srbreply->status), len); 3675 #endif 3676 memcpy(scsicmd->sense_buffer, 3677 srbreply->sense_data, len); 3678 } 3679 3680 /* 3681 * OR in the scsi status (already shifted up a bit) 3682 */ 3683 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3684 3685 aac_fib_complete(fibptr); 3686 scsicmd->scsi_done(scsicmd); 3687 } 3688 3689 static void hba_resp_task_complete(struct aac_dev *dev, 3690 struct scsi_cmnd *scsicmd, 3691 struct aac_hba_resp *err) { 3692 3693 scsicmd->result = err->status; 3694 /* set residual count */ 3695 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3696 3697 switch (err->status) { 3698 case SAM_STAT_GOOD: 3699 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3700 break; 3701 case SAM_STAT_CHECK_CONDITION: 3702 { 3703 int len; 3704 3705 len = min_t(u8, err->sense_response_data_len, 3706 SCSI_SENSE_BUFFERSIZE); 3707 if (len) 3708 memcpy(scsicmd->sense_buffer, 3709 err->sense_response_buf, len); 3710 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3711 break; 3712 } 3713 case SAM_STAT_BUSY: 3714 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3715 break; 3716 case SAM_STAT_TASK_ABORTED: 3717 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3718 break; 3719 case SAM_STAT_RESERVATION_CONFLICT: 3720 case SAM_STAT_TASK_SET_FULL: 3721 default: 3722 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3723 break; 3724 } 3725 } 3726 3727 static void hba_resp_task_failure(struct aac_dev *dev, 3728 struct scsi_cmnd *scsicmd, 3729 struct aac_hba_resp *err) 3730 { 3731 switch (err->status) { 3732 case HBA_RESP_STAT_HBAMODE_DISABLED: 3733 { 3734 u32 bus, cid; 3735 3736 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3737 cid = scmd_id(scsicmd); 3738 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3739 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3740 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3741 } 3742 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3743 break; 3744 } 3745 case HBA_RESP_STAT_IO_ERROR: 3746 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3747 scsicmd->result = DID_OK << 16 | 3748 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3749 break; 3750 case HBA_RESP_STAT_IO_ABORTED: 3751 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3752 break; 3753 case HBA_RESP_STAT_INVALID_DEVICE: 3754 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3755 break; 3756 case HBA_RESP_STAT_UNDERRUN: 3757 /* UNDERRUN is OK */ 3758 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3759 break; 3760 case HBA_RESP_STAT_OVERRUN: 3761 default: 3762 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3763 break; 3764 } 3765 } 3766 3767 /** 3768 * 3769 * aac_hba_callback 3770 * @context: the context set in the fib - here it is scsi cmd 3771 * @fibptr: pointer to the fib 3772 * 3773 * Handles the completion of a native HBA scsi command 3774 * 3775 */ 3776 void aac_hba_callback(void *context, struct fib *fibptr) 3777 { 3778 struct aac_dev *dev; 3779 struct scsi_cmnd *scsicmd; 3780 3781 struct aac_hba_resp *err = 3782 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3783 3784 scsicmd = (struct scsi_cmnd *) context; 3785 3786 if (!aac_valid_context(scsicmd, fibptr)) 3787 return; 3788 3789 WARN_ON(fibptr == NULL); 3790 dev = fibptr->dev; 3791 3792 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3793 scsi_dma_unmap(scsicmd); 3794 3795 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3796 /* fast response */ 3797 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3798 goto out; 3799 } 3800 3801 switch (err->service_response) { 3802 case HBA_RESP_SVCRES_TASK_COMPLETE: 3803 hba_resp_task_complete(dev, scsicmd, err); 3804 break; 3805 case HBA_RESP_SVCRES_FAILURE: 3806 hba_resp_task_failure(dev, scsicmd, err); 3807 break; 3808 case HBA_RESP_SVCRES_TMF_REJECTED: 3809 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3810 break; 3811 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3812 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3813 break; 3814 case HBA_RESP_SVCRES_TMF_COMPLETE: 3815 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3816 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3817 break; 3818 default: 3819 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3820 break; 3821 } 3822 3823 out: 3824 aac_fib_complete(fibptr); 3825 3826 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3827 scsicmd->SCp.sent_command = 1; 3828 else 3829 scsicmd->scsi_done(scsicmd); 3830 } 3831 3832 /** 3833 * 3834 * aac_send_srb_fib 3835 * @scsicmd: the scsi command block 3836 * 3837 * This routine will form a FIB and fill in the aac_srb from the 3838 * scsicmd passed in. 3839 */ 3840 3841 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3842 { 3843 struct fib* cmd_fibcontext; 3844 struct aac_dev* dev; 3845 int status; 3846 3847 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3848 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3849 scsicmd->device->lun > 7) { 3850 scsicmd->result = DID_NO_CONNECT << 16; 3851 scsicmd->scsi_done(scsicmd); 3852 return 0; 3853 } 3854 3855 /* 3856 * Allocate and initialize a Fib then setup a BlockWrite command 3857 */ 3858 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3859 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3860 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3861 3862 /* 3863 * Check that the command queued to the controller 3864 */ 3865 if (status == -EINPROGRESS) 3866 return 0; 3867 3868 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3869 aac_fib_complete(cmd_fibcontext); 3870 aac_fib_free(cmd_fibcontext); 3871 3872 return -1; 3873 } 3874 3875 /** 3876 * 3877 * aac_send_hba_fib 3878 * @scsicmd: the scsi command block 3879 * 3880 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3881 * scsicmd passed in. 3882 */ 3883 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3884 { 3885 struct fib *cmd_fibcontext; 3886 struct aac_dev *dev; 3887 int status; 3888 3889 dev = shost_priv(scsicmd->device->host); 3890 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3891 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3892 scsicmd->result = DID_NO_CONNECT << 16; 3893 scsicmd->scsi_done(scsicmd); 3894 return 0; 3895 } 3896 3897 /* 3898 * Allocate and initialize a Fib then setup a BlockWrite command 3899 */ 3900 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3901 if (!cmd_fibcontext) 3902 return -1; 3903 3904 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3905 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3906 3907 /* 3908 * Check that the command queued to the controller 3909 */ 3910 if (status == -EINPROGRESS) 3911 return 0; 3912 3913 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3914 status); 3915 aac_fib_complete(cmd_fibcontext); 3916 aac_fib_free(cmd_fibcontext); 3917 3918 return -1; 3919 } 3920 3921 3922 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3923 { 3924 unsigned long byte_count = 0; 3925 int nseg; 3926 struct scatterlist *sg; 3927 int i; 3928 3929 // Get rid of old data 3930 psg->count = 0; 3931 psg->sg[0].addr = 0; 3932 psg->sg[0].count = 0; 3933 3934 nseg = scsi_dma_map(scsicmd); 3935 if (nseg <= 0) 3936 return nseg; 3937 3938 psg->count = cpu_to_le32(nseg); 3939 3940 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3941 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3942 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3943 byte_count += sg_dma_len(sg); 3944 } 3945 /* hba wants the size to be exact */ 3946 if (byte_count > scsi_bufflen(scsicmd)) { 3947 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3948 (byte_count - scsi_bufflen(scsicmd)); 3949 psg->sg[i-1].count = cpu_to_le32(temp); 3950 byte_count = scsi_bufflen(scsicmd); 3951 } 3952 /* Check for command underflow */ 3953 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3954 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3955 byte_count, scsicmd->underflow); 3956 } 3957 3958 return byte_count; 3959 } 3960 3961 3962 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3963 { 3964 unsigned long byte_count = 0; 3965 u64 addr; 3966 int nseg; 3967 struct scatterlist *sg; 3968 int i; 3969 3970 // Get rid of old data 3971 psg->count = 0; 3972 psg->sg[0].addr[0] = 0; 3973 psg->sg[0].addr[1] = 0; 3974 psg->sg[0].count = 0; 3975 3976 nseg = scsi_dma_map(scsicmd); 3977 if (nseg <= 0) 3978 return nseg; 3979 3980 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3981 int count = sg_dma_len(sg); 3982 addr = sg_dma_address(sg); 3983 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3984 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3985 psg->sg[i].count = cpu_to_le32(count); 3986 byte_count += count; 3987 } 3988 psg->count = cpu_to_le32(nseg); 3989 /* hba wants the size to be exact */ 3990 if (byte_count > scsi_bufflen(scsicmd)) { 3991 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3992 (byte_count - scsi_bufflen(scsicmd)); 3993 psg->sg[i-1].count = cpu_to_le32(temp); 3994 byte_count = scsi_bufflen(scsicmd); 3995 } 3996 /* Check for command underflow */ 3997 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3998 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3999 byte_count, scsicmd->underflow); 4000 } 4001 4002 return byte_count; 4003 } 4004 4005 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 4006 { 4007 unsigned long byte_count = 0; 4008 int nseg; 4009 struct scatterlist *sg; 4010 int i; 4011 4012 // Get rid of old data 4013 psg->count = 0; 4014 psg->sg[0].next = 0; 4015 psg->sg[0].prev = 0; 4016 psg->sg[0].addr[0] = 0; 4017 psg->sg[0].addr[1] = 0; 4018 psg->sg[0].count = 0; 4019 psg->sg[0].flags = 0; 4020 4021 nseg = scsi_dma_map(scsicmd); 4022 if (nseg <= 0) 4023 return nseg; 4024 4025 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4026 int count = sg_dma_len(sg); 4027 u64 addr = sg_dma_address(sg); 4028 psg->sg[i].next = 0; 4029 psg->sg[i].prev = 0; 4030 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 4031 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 4032 psg->sg[i].count = cpu_to_le32(count); 4033 psg->sg[i].flags = 0; 4034 byte_count += count; 4035 } 4036 psg->count = cpu_to_le32(nseg); 4037 /* hba wants the size to be exact */ 4038 if (byte_count > scsi_bufflen(scsicmd)) { 4039 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 4040 (byte_count - scsi_bufflen(scsicmd)); 4041 psg->sg[i-1].count = cpu_to_le32(temp); 4042 byte_count = scsi_bufflen(scsicmd); 4043 } 4044 /* Check for command underflow */ 4045 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4046 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4047 byte_count, scsicmd->underflow); 4048 } 4049 4050 return byte_count; 4051 } 4052 4053 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 4054 struct aac_raw_io2 *rio2, int sg_max) 4055 { 4056 unsigned long byte_count = 0; 4057 int nseg; 4058 struct scatterlist *sg; 4059 int i, conformable = 0; 4060 u32 min_size = PAGE_SIZE, cur_size; 4061 4062 nseg = scsi_dma_map(scsicmd); 4063 if (nseg <= 0) 4064 return nseg; 4065 4066 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4067 int count = sg_dma_len(sg); 4068 u64 addr = sg_dma_address(sg); 4069 4070 BUG_ON(i >= sg_max); 4071 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 4072 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 4073 cur_size = cpu_to_le32(count); 4074 rio2->sge[i].length = cur_size; 4075 rio2->sge[i].flags = 0; 4076 if (i == 0) { 4077 conformable = 1; 4078 rio2->sgeFirstSize = cur_size; 4079 } else if (i == 1) { 4080 rio2->sgeNominalSize = cur_size; 4081 min_size = cur_size; 4082 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 4083 conformable = 0; 4084 if (cur_size < min_size) 4085 min_size = cur_size; 4086 } 4087 byte_count += count; 4088 } 4089 4090 /* hba wants the size to be exact */ 4091 if (byte_count > scsi_bufflen(scsicmd)) { 4092 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4093 (byte_count - scsi_bufflen(scsicmd)); 4094 rio2->sge[i-1].length = cpu_to_le32(temp); 4095 byte_count = scsi_bufflen(scsicmd); 4096 } 4097 4098 rio2->sgeCnt = cpu_to_le32(nseg); 4099 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4100 /* not conformable: evaluate required sg elements */ 4101 if (!conformable) { 4102 int j, nseg_new = nseg, err_found; 4103 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4104 err_found = 0; 4105 nseg_new = 2; 4106 for (j = 1; j < nseg - 1; ++j) { 4107 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4108 err_found = 1; 4109 break; 4110 } 4111 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4112 } 4113 if (!err_found) 4114 break; 4115 } 4116 if (i > 0 && nseg_new <= sg_max) { 4117 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4118 4119 if (ret < 0) 4120 return ret; 4121 } 4122 } else 4123 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4124 4125 /* Check for command underflow */ 4126 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4127 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4128 byte_count, scsicmd->underflow); 4129 } 4130 4131 return byte_count; 4132 } 4133 4134 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4135 { 4136 struct sge_ieee1212 *sge; 4137 int i, j, pos; 4138 u32 addr_low; 4139 4140 if (aac_convert_sgl == 0) 4141 return 0; 4142 4143 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4144 if (sge == NULL) 4145 return -ENOMEM; 4146 4147 for (i = 1, pos = 1; i < nseg-1; ++i) { 4148 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4149 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4150 sge[pos].addrLow = addr_low; 4151 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4152 if (addr_low < rio2->sge[i].addrLow) 4153 sge[pos].addrHigh++; 4154 sge[pos].length = pages * PAGE_SIZE; 4155 sge[pos].flags = 0; 4156 pos++; 4157 } 4158 } 4159 sge[pos] = rio2->sge[nseg-1]; 4160 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4161 4162 kfree(sge); 4163 rio2->sgeCnt = cpu_to_le32(nseg_new); 4164 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4165 rio2->sgeNominalSize = pages * PAGE_SIZE; 4166 return 0; 4167 } 4168 4169 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4170 struct aac_hba_cmd_req *hbacmd, 4171 int sg_max, 4172 u64 sg_address) 4173 { 4174 unsigned long byte_count = 0; 4175 int nseg; 4176 struct scatterlist *sg; 4177 int i; 4178 u32 cur_size; 4179 struct aac_hba_sgl *sge; 4180 4181 nseg = scsi_dma_map(scsicmd); 4182 if (nseg <= 0) { 4183 byte_count = nseg; 4184 goto out; 4185 } 4186 4187 if (nseg > HBA_MAX_SG_EMBEDDED) 4188 sge = &hbacmd->sge[2]; 4189 else 4190 sge = &hbacmd->sge[0]; 4191 4192 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4193 int count = sg_dma_len(sg); 4194 u64 addr = sg_dma_address(sg); 4195 4196 WARN_ON(i >= sg_max); 4197 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4198 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4199 cur_size = cpu_to_le32(count); 4200 sge->len = cur_size; 4201 sge->flags = 0; 4202 byte_count += count; 4203 sge++; 4204 } 4205 4206 sge--; 4207 /* hba wants the size to be exact */ 4208 if (byte_count > scsi_bufflen(scsicmd)) { 4209 u32 temp; 4210 4211 temp = le32_to_cpu(sge->len) - byte_count 4212 - scsi_bufflen(scsicmd); 4213 sge->len = cpu_to_le32(temp); 4214 byte_count = scsi_bufflen(scsicmd); 4215 } 4216 4217 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4218 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4219 sge->flags = cpu_to_le32(0x40000000); 4220 } else { 4221 /* not embedded */ 4222 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4223 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4224 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4225 hbacmd->sge[0].addr_lo = 4226 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4227 } 4228 4229 /* Check for command underflow */ 4230 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4231 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4232 byte_count, scsicmd->underflow); 4233 } 4234 out: 4235 return byte_count; 4236 } 4237 4238 #ifdef AAC_DETAILED_STATUS_INFO 4239 4240 struct aac_srb_status_info { 4241 u32 status; 4242 char *str; 4243 }; 4244 4245 4246 static struct aac_srb_status_info srb_status_info[] = { 4247 { SRB_STATUS_PENDING, "Pending Status"}, 4248 { SRB_STATUS_SUCCESS, "Success"}, 4249 { SRB_STATUS_ABORTED, "Aborted Command"}, 4250 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4251 { SRB_STATUS_ERROR, "Error Event"}, 4252 { SRB_STATUS_BUSY, "Device Busy"}, 4253 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4254 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4255 { SRB_STATUS_NO_DEVICE, "No Device"}, 4256 { SRB_STATUS_TIMEOUT, "Timeout"}, 4257 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4258 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4259 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4260 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4261 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4262 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4263 { SRB_STATUS_NO_HBA, "No HBA"}, 4264 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4265 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4266 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4267 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4268 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4269 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4270 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4271 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4272 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4273 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4274 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4275 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4276 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4277 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4278 { 0xff, "Unknown Error"} 4279 }; 4280 4281 char *aac_get_status_string(u32 status) 4282 { 4283 int i; 4284 4285 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4286 if (srb_status_info[i].status == status) 4287 return srb_status_info[i].str; 4288 4289 return "Bad Status Code"; 4290 } 4291 4292 #endif 4293