1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/module.h> 29 30 #include <asm/unaligned.h> 31 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_host.h> 36 37 #include "aacraid.h" 38 39 /* values for inqd_pdt: Peripheral device type in plain English */ 40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 41 #define INQD_PDT_PROC 0x03 /* Processor device */ 42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 46 47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 49 50 /* 51 * Sense codes 52 */ 53 54 #define SENCODE_NO_SENSE 0x00 55 #define SENCODE_END_OF_DATA 0x00 56 #define SENCODE_BECOMING_READY 0x04 57 #define SENCODE_INIT_CMD_REQUIRED 0x04 58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 60 #define SENCODE_INVALID_COMMAND 0x20 61 #define SENCODE_LBA_OUT_OF_RANGE 0x21 62 #define SENCODE_INVALID_CDB_FIELD 0x24 63 #define SENCODE_LUN_NOT_SUPPORTED 0x25 64 #define SENCODE_INVALID_PARAM_FIELD 0x26 65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 66 #define SENCODE_PARAM_VALUE_INVALID 0x26 67 #define SENCODE_RESET_OCCURRED 0x29 68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 75 #define SENCODE_OVERLAPPED_COMMAND 0x4E 76 77 /* 78 * Additional sense codes 79 */ 80 81 #define ASENCODE_NO_SENSE 0x00 82 #define ASENCODE_END_OF_DATA 0x05 83 #define ASENCODE_BECOMING_READY 0x01 84 #define ASENCODE_INIT_CMD_REQUIRED 0x02 85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 86 #define ASENCODE_INVALID_COMMAND 0x00 87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 88 #define ASENCODE_INVALID_CDB_FIELD 0x00 89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 90 #define ASENCODE_INVALID_PARAM_FIELD 0x00 91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 92 #define ASENCODE_PARAM_VALUE_INVALID 0x02 93 #define ASENCODE_RESET_OCCURRED 0x00 94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 101 #define ASENCODE_OVERLAPPED_COMMAND 0x00 102 103 #define BYTE0(x) (unsigned char)(x) 104 #define BYTE1(x) (unsigned char)((x) >> 8) 105 #define BYTE2(x) (unsigned char)((x) >> 16) 106 #define BYTE3(x) (unsigned char)((x) >> 24) 107 108 /* MODE_SENSE data format */ 109 typedef struct { 110 struct { 111 u8 data_length; 112 u8 med_type; 113 u8 dev_par; 114 u8 bd_length; 115 } __attribute__((packed)) hd; 116 struct { 117 u8 dens_code; 118 u8 block_count[3]; 119 u8 reserved; 120 u8 block_length[3]; 121 } __attribute__((packed)) bd; 122 u8 mpc_buf[3]; 123 } __attribute__((packed)) aac_modep_data; 124 125 /* MODE_SENSE_10 data format */ 126 typedef struct { 127 struct { 128 u8 data_length[2]; 129 u8 med_type; 130 u8 dev_par; 131 u8 rsrvd[2]; 132 u8 bd_length[2]; 133 } __attribute__((packed)) hd; 134 struct { 135 u8 dens_code; 136 u8 block_count[3]; 137 u8 reserved; 138 u8 block_length[3]; 139 } __attribute__((packed)) bd; 140 u8 mpc_buf[3]; 141 } __attribute__((packed)) aac_modep10_data; 142 143 /*------------------------------------------------------------------------------ 144 * S T R U C T S / T Y P E D E F S 145 *----------------------------------------------------------------------------*/ 146 /* SCSI inquiry data */ 147 struct inquiry_data { 148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 149 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 152 u8 inqd_len; /* Additional length (n-4) */ 153 u8 inqd_pad1[2];/* Reserved - must be zero */ 154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 155 u8 inqd_vid[8]; /* Vendor ID */ 156 u8 inqd_pid[16];/* Product ID */ 157 u8 inqd_prl[4]; /* Product Revision Level */ 158 }; 159 160 /* Added for VPD 0x83 */ 161 struct tvpd_id_descriptor_type_1 { 162 u8 codeset:4; /* VPD_CODE_SET */ 163 u8 reserved:4; 164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 165 u8 reserved2:4; 166 u8 reserved3; 167 u8 identifierlength; 168 u8 venid[8]; 169 u8 productid[16]; 170 u8 serialnumber[8]; /* SN in ASCII */ 171 172 }; 173 174 struct tvpd_id_descriptor_type_2 { 175 u8 codeset:4; /* VPD_CODE_SET */ 176 u8 reserved:4; 177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 178 u8 reserved2:4; 179 u8 reserved3; 180 u8 identifierlength; 181 struct teu64id { 182 u32 Serial; 183 /* The serial number supposed to be 40 bits, 184 * bit we only support 32, so make the last byte zero. */ 185 u8 reserved; 186 u8 venid[3]; 187 } eu64id; 188 189 }; 190 191 struct tvpd_id_descriptor_type_3 { 192 u8 codeset : 4; /* VPD_CODE_SET */ 193 u8 reserved : 4; 194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 195 u8 reserved2 : 4; 196 u8 reserved3; 197 u8 identifierlength; 198 u8 Identifier[16]; 199 }; 200 201 struct tvpd_page83 { 202 u8 DeviceType:5; 203 u8 DeviceTypeQualifier:3; 204 u8 PageCode; 205 u8 reserved; 206 u8 PageLength; 207 struct tvpd_id_descriptor_type_1 type1; 208 struct tvpd_id_descriptor_type_2 type2; 209 struct tvpd_id_descriptor_type_3 type3; 210 }; 211 212 /* 213 * M O D U L E G L O B A L S 214 */ 215 216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 220 struct aac_raw_io2 *rio2, int sg_max); 221 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 222 struct aac_hba_cmd_req *hbacmd, 223 int sg_max, u64 sg_address); 224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 225 int pages, int nseg, int nseg_new); 226 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have its kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 static int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 static int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 aac_priv(scsicmd)->owner = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @dev: aac driver data 354 * @commit_flag: force sending CT_COMMIT_CONFIG 355 * 356 * Query config status, and commit the configuration if needed. 357 */ 358 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 359 { 360 int status = 0; 361 struct fib * fibptr; 362 363 if (!(fibptr = aac_fib_alloc(dev))) 364 return -ENOMEM; 365 366 aac_fib_init(fibptr); 367 { 368 struct aac_get_config_status *dinfo; 369 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 370 371 dinfo->command = cpu_to_le32(VM_ContainerConfig); 372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 374 } 375 376 status = aac_fib_send(ContainerCommand, 377 fibptr, 378 sizeof (struct aac_get_config_status), 379 FsaNormal, 380 1, 1, 381 NULL, NULL); 382 if (status < 0) { 383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 384 } else { 385 struct aac_get_config_status_resp *reply 386 = (struct aac_get_config_status_resp *) fib_data(fibptr); 387 dprintk((KERN_WARNING 388 "aac_get_config_status: response=%d status=%d action=%d\n", 389 le32_to_cpu(reply->response), 390 le32_to_cpu(reply->status), 391 le32_to_cpu(reply->data.action))); 392 if ((le32_to_cpu(reply->response) != ST_OK) || 393 (le32_to_cpu(reply->status) != CT_OK) || 394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 396 status = -EINVAL; 397 } 398 } 399 /* Do not set XferState to zero unless receives a response from F/W */ 400 if (status >= 0) 401 aac_fib_complete(fibptr); 402 403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 404 if (status >= 0) { 405 if ((aac_commit == 1) || commit_flag) { 406 struct aac_commit_config * dinfo; 407 aac_fib_init(fibptr); 408 dinfo = (struct aac_commit_config *) fib_data(fibptr); 409 410 dinfo->command = cpu_to_le32(VM_ContainerConfig); 411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 412 413 status = aac_fib_send(ContainerCommand, 414 fibptr, 415 sizeof (struct aac_commit_config), 416 FsaNormal, 417 1, 1, 418 NULL, NULL); 419 /* Do not set XferState to zero unless 420 * receives a response from F/W */ 421 if (status >= 0) 422 aac_fib_complete(fibptr); 423 } else if (aac_commit == 0) { 424 printk(KERN_WARNING 425 "aac_get_config_status: Foreign device configurations are being ignored\n"); 426 } 427 } 428 /* FIB should be freed only after getting the response from the F/W */ 429 if (status != -ERESTARTSYS) 430 aac_fib_free(fibptr); 431 return status; 432 } 433 434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 435 { 436 char inq_data; 437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 439 inq_data &= 0xdf; 440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 441 } 442 } 443 444 /** 445 * aac_get_containers - list containers 446 * @dev: aac driver data 447 * 448 * Make a list of all containers on this controller 449 */ 450 int aac_get_containers(struct aac_dev *dev) 451 { 452 struct fsa_dev_info *fsa_dev_ptr; 453 u32 index; 454 int status = 0; 455 struct fib * fibptr; 456 struct aac_get_container_count *dinfo; 457 struct aac_get_container_count_resp *dresp; 458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 459 460 if (!(fibptr = aac_fib_alloc(dev))) 461 return -ENOMEM; 462 463 aac_fib_init(fibptr); 464 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 465 dinfo->command = cpu_to_le32(VM_ContainerConfig); 466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 467 468 status = aac_fib_send(ContainerCommand, 469 fibptr, 470 sizeof (struct aac_get_container_count), 471 FsaNormal, 472 1, 1, 473 NULL, NULL); 474 if (status >= 0) { 475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 477 if (fibptr->dev->supplement_adapter_info.supported_options2 & 478 AAC_OPTION_SUPPORTED_240_VOLUMES) { 479 maximum_num_containers = 480 le32_to_cpu(dresp->MaxSimpleVolumes); 481 } 482 aac_fib_complete(fibptr); 483 } 484 /* FIB should be freed only after getting the response from the F/W */ 485 if (status != -ERESTARTSYS) 486 aac_fib_free(fibptr); 487 488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 490 if (dev->fsa_dev == NULL || 491 dev->maximum_num_containers != maximum_num_containers) { 492 493 fsa_dev_ptr = dev->fsa_dev; 494 495 dev->fsa_dev = kcalloc(maximum_num_containers, 496 sizeof(*fsa_dev_ptr), GFP_KERNEL); 497 498 kfree(fsa_dev_ptr); 499 fsa_dev_ptr = NULL; 500 501 502 if (!dev->fsa_dev) 503 return -ENOMEM; 504 505 dev->maximum_num_containers = maximum_num_containers; 506 } 507 for (index = 0; index < dev->maximum_num_containers; index++) { 508 dev->fsa_dev[index].devname[0] = '\0'; 509 dev->fsa_dev[index].valid = 0; 510 511 status = aac_probe_container(dev, index); 512 513 if (status < 0) { 514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 515 break; 516 } 517 } 518 return status; 519 } 520 521 static void aac_scsi_done(struct scsi_cmnd *scmd) 522 { 523 if (scmd->device->request_queue) { 524 /* SCSI command has been submitted by the SCSI mid-layer. */ 525 scsi_done(scmd); 526 } else { 527 /* SCSI command has been submitted by aac_probe_container(). */ 528 aac_probe_container_scsi_done(scmd); 529 } 530 } 531 532 static void get_container_name_callback(void *context, struct fib * fibptr) 533 { 534 struct aac_get_name_resp * get_name_reply; 535 struct scsi_cmnd * scsicmd; 536 537 scsicmd = (struct scsi_cmnd *) context; 538 539 if (!aac_valid_context(scsicmd, fibptr)) 540 return; 541 542 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 543 BUG_ON(fibptr == NULL); 544 545 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 546 /* Failure is irrelevant, using default value instead */ 547 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 548 && (get_name_reply->data[0] != '\0')) { 549 char *sp = get_name_reply->data; 550 int data_size = sizeof_field(struct aac_get_name_resp, data); 551 552 sp[data_size - 1] = '\0'; 553 while (*sp == ' ') 554 ++sp; 555 if (*sp) { 556 struct inquiry_data inq; 557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 558 int count = sizeof(d); 559 char *dp = d; 560 do { 561 *dp++ = (*sp) ? *sp++ : ' '; 562 } while (--count > 0); 563 564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 565 memcpy(inq.inqd_pid, d, sizeof(d)); 566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 567 } 568 } 569 570 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 571 572 aac_fib_complete(fibptr); 573 aac_scsi_done(scsicmd); 574 } 575 576 /* 577 * aac_get_container_name - get container name, none blocking. 578 */ 579 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 580 { 581 int status; 582 int data_size; 583 struct aac_get_name *dinfo; 584 struct fib * cmd_fibcontext; 585 struct aac_dev * dev; 586 587 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 588 589 data_size = sizeof_field(struct aac_get_name_resp, data); 590 591 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 592 593 aac_fib_init(cmd_fibcontext); 594 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 595 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 596 597 dinfo->command = cpu_to_le32(VM_ContainerConfig); 598 dinfo->type = cpu_to_le32(CT_READ_NAME); 599 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 600 dinfo->count = cpu_to_le32(data_size - 1); 601 602 status = aac_fib_send(ContainerCommand, 603 cmd_fibcontext, 604 sizeof(struct aac_get_name_resp), 605 FsaNormal, 606 0, 1, 607 (fib_callback)get_container_name_callback, 608 (void *) scsicmd); 609 610 /* 611 * Check that the command queued to the controller 612 */ 613 if (status == -EINPROGRESS) 614 return 0; 615 616 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 617 aac_fib_complete(cmd_fibcontext); 618 return -1; 619 } 620 621 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 622 { 623 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 624 625 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 626 return aac_scsi_cmd(scsicmd); 627 628 scsicmd->result = DID_NO_CONNECT << 16; 629 aac_scsi_done(scsicmd); 630 return 0; 631 } 632 633 static void _aac_probe_container2(void * context, struct fib * fibptr) 634 { 635 struct fsa_dev_info *fsa_dev_ptr; 636 int (*callback)(struct scsi_cmnd *); 637 struct scsi_cmnd *scsicmd = context; 638 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd); 639 int i; 640 641 642 if (!aac_valid_context(scsicmd, fibptr)) 643 return; 644 645 cmd_priv->status = 0; 646 fsa_dev_ptr = fibptr->dev->fsa_dev; 647 if (fsa_dev_ptr) { 648 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 649 __le32 sup_options2; 650 651 fsa_dev_ptr += scmd_id(scsicmd); 652 sup_options2 = 653 fibptr->dev->supplement_adapter_info.supported_options2; 654 655 if ((le32_to_cpu(dresp->status) == ST_OK) && 656 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 657 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 658 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 659 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 660 fsa_dev_ptr->block_size = 0x200; 661 } else { 662 fsa_dev_ptr->block_size = 663 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 664 } 665 for (i = 0; i < 16; i++) 666 fsa_dev_ptr->identifier[i] = 667 dresp->mnt[0].fileinfo.bdevinfo 668 .identifier[i]; 669 fsa_dev_ptr->valid = 1; 670 /* sense_key holds the current state of the spin-up */ 671 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 672 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 673 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 674 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 675 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 676 fsa_dev_ptr->size 677 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 678 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 679 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 680 } 681 if ((fsa_dev_ptr->valid & 1) == 0) 682 fsa_dev_ptr->valid = 0; 683 cmd_priv->status = le32_to_cpu(dresp->count); 684 } 685 aac_fib_complete(fibptr); 686 aac_fib_free(fibptr); 687 callback = cmd_priv->callback; 688 cmd_priv->callback = NULL; 689 (*callback)(scsicmd); 690 return; 691 } 692 693 static void _aac_probe_container1(void * context, struct fib * fibptr) 694 { 695 struct scsi_cmnd * scsicmd; 696 struct aac_mount * dresp; 697 struct aac_query_mount *dinfo; 698 int status; 699 700 dresp = (struct aac_mount *) fib_data(fibptr); 701 if (!aac_supports_2T(fibptr->dev)) { 702 dresp->mnt[0].capacityhigh = 0; 703 if ((le32_to_cpu(dresp->status) == ST_OK) && 704 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 705 _aac_probe_container2(context, fibptr); 706 return; 707 } 708 } 709 scsicmd = (struct scsi_cmnd *) context; 710 711 if (!aac_valid_context(scsicmd, fibptr)) 712 return; 713 714 aac_fib_init(fibptr); 715 716 dinfo = (struct aac_query_mount *)fib_data(fibptr); 717 718 if (fibptr->dev->supplement_adapter_info.supported_options2 & 719 AAC_OPTION_VARIABLE_BLOCK_SIZE) 720 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 721 else 722 dinfo->command = cpu_to_le32(VM_NameServe64); 723 724 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 725 dinfo->type = cpu_to_le32(FT_FILESYS); 726 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 727 728 status = aac_fib_send(ContainerCommand, 729 fibptr, 730 sizeof(struct aac_query_mount), 731 FsaNormal, 732 0, 1, 733 _aac_probe_container2, 734 (void *) scsicmd); 735 /* 736 * Check that the command queued to the controller 737 */ 738 if (status < 0 && status != -EINPROGRESS) { 739 /* Inherit results from VM_NameServe, if any */ 740 dresp->status = cpu_to_le32(ST_OK); 741 _aac_probe_container2(context, fibptr); 742 } 743 } 744 745 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 746 { 747 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd); 748 struct fib * fibptr; 749 int status = -ENOMEM; 750 751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 752 struct aac_query_mount *dinfo; 753 754 aac_fib_init(fibptr); 755 756 dinfo = (struct aac_query_mount *)fib_data(fibptr); 757 758 if (fibptr->dev->supplement_adapter_info.supported_options2 & 759 AAC_OPTION_VARIABLE_BLOCK_SIZE) 760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 761 else 762 dinfo->command = cpu_to_le32(VM_NameServe); 763 764 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 765 dinfo->type = cpu_to_le32(FT_FILESYS); 766 cmd_priv->callback = callback; 767 cmd_priv->owner = AAC_OWNER_FIRMWARE; 768 769 status = aac_fib_send(ContainerCommand, 770 fibptr, 771 sizeof(struct aac_query_mount), 772 FsaNormal, 773 0, 1, 774 _aac_probe_container1, 775 (void *) scsicmd); 776 /* 777 * Check that the command queued to the controller 778 */ 779 if (status == -EINPROGRESS) 780 return 0; 781 782 if (status < 0) { 783 cmd_priv->callback = NULL; 784 aac_fib_complete(fibptr); 785 aac_fib_free(fibptr); 786 } 787 } 788 if (status < 0) { 789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 790 if (fsa_dev_ptr) { 791 fsa_dev_ptr += scmd_id(scsicmd); 792 if ((fsa_dev_ptr->valid & 1) == 0) { 793 fsa_dev_ptr->valid = 0; 794 return (*callback)(scsicmd); 795 } 796 } 797 } 798 return status; 799 } 800 801 /** 802 * aac_probe_container_callback1 - query a logical volume 803 * @scsicmd: the scsi command block 804 * 805 * Queries the controller about the given volume. The volume information 806 * is updated in the struct fsa_dev_info structure rather than returned. 807 */ 808 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 809 { 810 scsicmd->device = NULL; 811 return 0; 812 } 813 814 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 815 { 816 aac_probe_container_callback1(scsi_cmnd); 817 } 818 819 int aac_probe_container(struct aac_dev *dev, int cid) 820 { 821 struct scsi_cmnd *scsicmd = kzalloc(sizeof(*scsicmd), GFP_KERNEL); 822 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd); 823 struct scsi_device *scsidev = kzalloc(sizeof(*scsidev), GFP_KERNEL); 824 int status; 825 826 if (!scsicmd || !scsidev) { 827 kfree(scsicmd); 828 kfree(scsidev); 829 return -ENOMEM; 830 } 831 832 scsicmd->device = scsidev; 833 scsidev->sdev_state = 0; 834 scsidev->id = cid; 835 scsidev->host = dev->scsi_host_ptr; 836 837 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 838 while (scsicmd->device == scsidev) 839 schedule(); 840 kfree(scsidev); 841 status = cmd_priv->status; 842 kfree(scsicmd); 843 return status; 844 } 845 846 /* Local Structure to set SCSI inquiry data strings */ 847 struct scsi_inq { 848 char vid[8]; /* Vendor ID */ 849 char pid[16]; /* Product ID */ 850 char prl[4]; /* Product Revision Level */ 851 }; 852 853 /** 854 * inqstrcpy - string merge 855 * @a: string to copy from 856 * @b: string to copy to 857 * 858 * Copy a String from one location to another 859 * without copying \0 860 */ 861 862 static void inqstrcpy(char *a, char *b) 863 { 864 865 while (*a != (char)0) 866 *b++ = *a++; 867 } 868 869 static char *container_types[] = { 870 "None", 871 "Volume", 872 "Mirror", 873 "Stripe", 874 "RAID5", 875 "SSRW", 876 "SSRO", 877 "Morph", 878 "Legacy", 879 "RAID4", 880 "RAID10", 881 "RAID00", 882 "V-MIRRORS", 883 "PSEUDO R4", 884 "RAID50", 885 "RAID5D", 886 "RAID5D0", 887 "RAID1E", 888 "RAID6", 889 "RAID60", 890 "Unknown" 891 }; 892 893 char * get_container_type(unsigned tindex) 894 { 895 if (tindex >= ARRAY_SIZE(container_types)) 896 tindex = ARRAY_SIZE(container_types) - 1; 897 return container_types[tindex]; 898 } 899 900 /* Function: setinqstr 901 * 902 * Arguments: [1] pointer to void [1] int 903 * 904 * Purpose: Sets SCSI inquiry data strings for vendor, product 905 * and revision level. Allows strings to be set in platform dependent 906 * files instead of in OS dependent driver source. 907 */ 908 909 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 910 { 911 struct scsi_inq *str; 912 struct aac_supplement_adapter_info *sup_adap_info; 913 914 sup_adap_info = &dev->supplement_adapter_info; 915 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 916 memset(str, ' ', sizeof(*str)); 917 918 if (sup_adap_info->adapter_type_text[0]) { 919 int c; 920 char *cp; 921 char *cname = kmemdup(sup_adap_info->adapter_type_text, 922 sizeof(sup_adap_info->adapter_type_text), 923 GFP_ATOMIC); 924 if (!cname) 925 return; 926 927 cp = cname; 928 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 929 inqstrcpy("SMC", str->vid); 930 else { 931 c = sizeof(str->vid); 932 while (*cp && *cp != ' ' && --c) 933 ++cp; 934 c = *cp; 935 *cp = '\0'; 936 inqstrcpy(cname, str->vid); 937 *cp = c; 938 while (*cp && *cp != ' ') 939 ++cp; 940 } 941 while (*cp == ' ') 942 ++cp; 943 /* last six chars reserved for vol type */ 944 if (strlen(cp) > sizeof(str->pid)) 945 cp[sizeof(str->pid)] = '\0'; 946 inqstrcpy (cp, str->pid); 947 948 kfree(cname); 949 } else { 950 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 951 952 inqstrcpy (mp->vname, str->vid); 953 /* last six chars reserved for vol type */ 954 inqstrcpy (mp->model, str->pid); 955 } 956 957 if (tindex < ARRAY_SIZE(container_types)){ 958 char *findit = str->pid; 959 960 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 961 /* RAID is superfluous in the context of a RAID device */ 962 if (memcmp(findit-4, "RAID", 4) == 0) 963 *(findit -= 4) = ' '; 964 if (((findit - str->pid) + strlen(container_types[tindex])) 965 < (sizeof(str->pid) + sizeof(str->prl))) 966 inqstrcpy (container_types[tindex], findit + 1); 967 } 968 inqstrcpy ("V1.0", str->prl); 969 } 970 971 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 972 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 973 { 974 int container; 975 976 vpdpage83data->type3.codeset = 1; 977 vpdpage83data->type3.identifiertype = 3; 978 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 979 - 4; 980 981 for (container = 0; container < dev->maximum_num_containers; 982 container++) { 983 984 if (scmd_id(scsicmd) == container) { 985 memcpy(vpdpage83data->type3.Identifier, 986 dev->fsa_dev[container].identifier, 987 16); 988 break; 989 } 990 } 991 } 992 993 static void get_container_serial_callback(void *context, struct fib * fibptr) 994 { 995 struct aac_get_serial_resp * get_serial_reply; 996 struct scsi_cmnd * scsicmd; 997 998 BUG_ON(fibptr == NULL); 999 1000 scsicmd = (struct scsi_cmnd *) context; 1001 if (!aac_valid_context(scsicmd, fibptr)) 1002 return; 1003 1004 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 1005 /* Failure is irrelevant, using default value instead */ 1006 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 1007 /*Check to see if it's for VPD 0x83 or 0x80 */ 1008 if (scsicmd->cmnd[2] == 0x83) { 1009 /* vpd page 0x83 - Device Identification Page */ 1010 struct aac_dev *dev; 1011 int i; 1012 struct tvpd_page83 vpdpage83data; 1013 1014 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1015 1016 memset(((u8 *)&vpdpage83data), 0, 1017 sizeof(vpdpage83data)); 1018 1019 /* DIRECT_ACCESS_DEVIC */ 1020 vpdpage83data.DeviceType = 0; 1021 /* DEVICE_CONNECTED */ 1022 vpdpage83data.DeviceTypeQualifier = 0; 1023 /* VPD_DEVICE_IDENTIFIERS */ 1024 vpdpage83data.PageCode = 0x83; 1025 vpdpage83data.reserved = 0; 1026 vpdpage83data.PageLength = 1027 sizeof(vpdpage83data.type1) + 1028 sizeof(vpdpage83data.type2); 1029 1030 /* VPD 83 Type 3 is not supported for ARC */ 1031 if (dev->sa_firmware) 1032 vpdpage83data.PageLength += 1033 sizeof(vpdpage83data.type3); 1034 1035 /* T10 Vendor Identifier Field Format */ 1036 /* VpdcodesetAscii */ 1037 vpdpage83data.type1.codeset = 2; 1038 /* VpdIdentifierTypeVendorId */ 1039 vpdpage83data.type1.identifiertype = 1; 1040 vpdpage83data.type1.identifierlength = 1041 sizeof(vpdpage83data.type1) - 4; 1042 1043 /* "ADAPTEC " for adaptec */ 1044 memcpy(vpdpage83data.type1.venid, 1045 "ADAPTEC ", 1046 sizeof(vpdpage83data.type1.venid)); 1047 memcpy(vpdpage83data.type1.productid, 1048 "ARRAY ", 1049 sizeof( 1050 vpdpage83data.type1.productid)); 1051 1052 /* Convert to ascii based serial number. 1053 * The LSB is the the end. 1054 */ 1055 for (i = 0; i < 8; i++) { 1056 u8 temp = 1057 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1058 if (temp > 0x9) { 1059 vpdpage83data.type1.serialnumber[i] = 1060 'A' + (temp - 0xA); 1061 } else { 1062 vpdpage83data.type1.serialnumber[i] = 1063 '0' + temp; 1064 } 1065 } 1066 1067 /* VpdCodeSetBinary */ 1068 vpdpage83data.type2.codeset = 1; 1069 /* VpdidentifiertypeEUI64 */ 1070 vpdpage83data.type2.identifiertype = 2; 1071 vpdpage83data.type2.identifierlength = 1072 sizeof(vpdpage83data.type2) - 4; 1073 1074 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1075 vpdpage83data.type2.eu64id.venid[1] = 0; 1076 vpdpage83data.type2.eu64id.venid[2] = 0; 1077 1078 vpdpage83data.type2.eu64id.Serial = 1079 get_serial_reply->uid; 1080 vpdpage83data.type2.eu64id.reserved = 0; 1081 1082 /* 1083 * VpdIdentifierTypeFCPHName 1084 * VPD 0x83 Type 3 not supported for ARC 1085 */ 1086 if (dev->sa_firmware) { 1087 build_vpd83_type3(&vpdpage83data, 1088 dev, scsicmd); 1089 } 1090 1091 /* Move the inquiry data to the response buffer. */ 1092 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1093 sizeof(vpdpage83data)); 1094 } else { 1095 /* It must be for VPD 0x80 */ 1096 char sp[13]; 1097 /* EVPD bit set */ 1098 sp[0] = INQD_PDT_DA; 1099 sp[1] = scsicmd->cmnd[2]; 1100 sp[2] = 0; 1101 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1102 le32_to_cpu(get_serial_reply->uid)); 1103 scsi_sg_copy_from_buffer(scsicmd, sp, 1104 sizeof(sp)); 1105 } 1106 } 1107 1108 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 1109 1110 aac_fib_complete(fibptr); 1111 aac_scsi_done(scsicmd); 1112 } 1113 1114 /* 1115 * aac_get_container_serial - get container serial, none blocking. 1116 */ 1117 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1118 { 1119 int status; 1120 struct aac_get_serial *dinfo; 1121 struct fib * cmd_fibcontext; 1122 struct aac_dev * dev; 1123 1124 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1125 1126 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1127 1128 aac_fib_init(cmd_fibcontext); 1129 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1130 1131 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1132 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1133 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1134 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 1135 1136 status = aac_fib_send(ContainerCommand, 1137 cmd_fibcontext, 1138 sizeof(struct aac_get_serial_resp), 1139 FsaNormal, 1140 0, 1, 1141 (fib_callback) get_container_serial_callback, 1142 (void *) scsicmd); 1143 1144 /* 1145 * Check that the command queued to the controller 1146 */ 1147 if (status == -EINPROGRESS) 1148 return 0; 1149 1150 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1151 aac_fib_complete(cmd_fibcontext); 1152 return -1; 1153 } 1154 1155 /* Function: setinqserial 1156 * 1157 * Arguments: [1] pointer to void [1] int 1158 * 1159 * Purpose: Sets SCSI Unit Serial number. 1160 * This is a fake. We should read a proper 1161 * serial number from the container. <SuSE>But 1162 * without docs it's quite hard to do it :-) 1163 * So this will have to do in the meantime.</SuSE> 1164 */ 1165 1166 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1167 { 1168 /* 1169 * This breaks array migration. 1170 */ 1171 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1172 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1173 } 1174 1175 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1176 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1177 { 1178 u8 *sense_buf = (u8 *)sense_data; 1179 /* Sense data valid, err code 70h */ 1180 sense_buf[0] = 0x70; /* No info field */ 1181 sense_buf[1] = 0; /* Segment number, always zero */ 1182 1183 sense_buf[2] = sense_key; /* Sense key */ 1184 1185 sense_buf[12] = sense_code; /* Additional sense code */ 1186 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1187 1188 if (sense_key == ILLEGAL_REQUEST) { 1189 sense_buf[7] = 10; /* Additional sense length */ 1190 1191 sense_buf[15] = bit_pointer; 1192 /* Illegal parameter is in the parameter block */ 1193 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1194 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1195 /* Illegal parameter is in the CDB block */ 1196 sense_buf[16] = field_pointer >> 8; /* MSB */ 1197 sense_buf[17] = field_pointer; /* LSB */ 1198 } else 1199 sense_buf[7] = 6; /* Additional sense length */ 1200 } 1201 1202 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1203 { 1204 if (lba & 0xffffffff00000000LL) { 1205 int cid = scmd_id(cmd); 1206 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1207 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 1208 set_sense(&dev->fsa_dev[cid].sense_data, 1209 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1210 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1211 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1212 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1213 SCSI_SENSE_BUFFERSIZE)); 1214 aac_scsi_done(cmd); 1215 return 1; 1216 } 1217 return 0; 1218 } 1219 1220 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1221 { 1222 return 0; 1223 } 1224 1225 static void io_callback(void *context, struct fib * fibptr); 1226 1227 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1228 { 1229 struct aac_dev *dev = fib->dev; 1230 u16 fibsize, command; 1231 long ret; 1232 1233 aac_fib_init(fib); 1234 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1235 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1236 !dev->sync_mode) { 1237 struct aac_raw_io2 *readcmd2; 1238 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1239 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1240 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1241 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1242 readcmd2->byteCount = cpu_to_le32(count * 1243 dev->fsa_dev[scmd_id(cmd)].block_size); 1244 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1245 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1246 ret = aac_build_sgraw2(cmd, readcmd2, 1247 dev->scsi_host_ptr->sg_tablesize); 1248 if (ret < 0) 1249 return ret; 1250 command = ContainerRawIo2; 1251 fibsize = struct_size(readcmd2, sge, 1252 le32_to_cpu(readcmd2->sgeCnt)); 1253 } else { 1254 struct aac_raw_io *readcmd; 1255 readcmd = (struct aac_raw_io *) fib_data(fib); 1256 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1257 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1258 readcmd->count = cpu_to_le32(count * 1259 dev->fsa_dev[scmd_id(cmd)].block_size); 1260 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1261 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1262 readcmd->bpTotal = 0; 1263 readcmd->bpComplete = 0; 1264 ret = aac_build_sgraw(cmd, &readcmd->sg); 1265 if (ret < 0) 1266 return ret; 1267 command = ContainerRawIo; 1268 fibsize = sizeof(struct aac_raw_io) + 1269 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1270 } 1271 1272 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1273 /* 1274 * Now send the Fib to the adapter 1275 */ 1276 return aac_fib_send(command, 1277 fib, 1278 fibsize, 1279 FsaNormal, 1280 0, 1, 1281 (fib_callback) io_callback, 1282 (void *) cmd); 1283 } 1284 1285 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1286 { 1287 u16 fibsize; 1288 struct aac_read64 *readcmd; 1289 long ret; 1290 1291 aac_fib_init(fib); 1292 readcmd = (struct aac_read64 *) fib_data(fib); 1293 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1294 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1295 readcmd->sector_count = cpu_to_le16(count); 1296 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1297 readcmd->pad = 0; 1298 readcmd->flags = 0; 1299 1300 ret = aac_build_sg64(cmd, &readcmd->sg); 1301 if (ret < 0) 1302 return ret; 1303 fibsize = sizeof(struct aac_read64) + 1304 ((le32_to_cpu(readcmd->sg.count) - 1) * 1305 sizeof (struct sgentry64)); 1306 BUG_ON (fibsize > (fib->dev->max_fib_size - 1307 sizeof(struct aac_fibhdr))); 1308 /* 1309 * Now send the Fib to the adapter 1310 */ 1311 return aac_fib_send(ContainerCommand64, 1312 fib, 1313 fibsize, 1314 FsaNormal, 1315 0, 1, 1316 (fib_callback) io_callback, 1317 (void *) cmd); 1318 } 1319 1320 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1321 { 1322 u16 fibsize; 1323 struct aac_read *readcmd; 1324 struct aac_dev *dev = fib->dev; 1325 long ret; 1326 1327 aac_fib_init(fib); 1328 readcmd = (struct aac_read *) fib_data(fib); 1329 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1330 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1331 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1332 readcmd->count = cpu_to_le32(count * 1333 dev->fsa_dev[scmd_id(cmd)].block_size); 1334 1335 ret = aac_build_sg(cmd, &readcmd->sg); 1336 if (ret < 0) 1337 return ret; 1338 fibsize = sizeof(struct aac_read) + 1339 ((le32_to_cpu(readcmd->sg.count) - 1) * 1340 sizeof (struct sgentry)); 1341 BUG_ON (fibsize > (fib->dev->max_fib_size - 1342 sizeof(struct aac_fibhdr))); 1343 /* 1344 * Now send the Fib to the adapter 1345 */ 1346 return aac_fib_send(ContainerCommand, 1347 fib, 1348 fibsize, 1349 FsaNormal, 1350 0, 1, 1351 (fib_callback) io_callback, 1352 (void *) cmd); 1353 } 1354 1355 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1356 { 1357 struct aac_dev *dev = fib->dev; 1358 u16 fibsize, command; 1359 long ret; 1360 1361 aac_fib_init(fib); 1362 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1363 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1364 !dev->sync_mode) { 1365 struct aac_raw_io2 *writecmd2; 1366 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1367 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1368 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1369 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1370 writecmd2->byteCount = cpu_to_le32(count * 1371 dev->fsa_dev[scmd_id(cmd)].block_size); 1372 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1373 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1374 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1375 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1376 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1377 ret = aac_build_sgraw2(cmd, writecmd2, 1378 dev->scsi_host_ptr->sg_tablesize); 1379 if (ret < 0) 1380 return ret; 1381 command = ContainerRawIo2; 1382 fibsize = struct_size(writecmd2, sge, 1383 le32_to_cpu(writecmd2->sgeCnt)); 1384 } else { 1385 struct aac_raw_io *writecmd; 1386 writecmd = (struct aac_raw_io *) fib_data(fib); 1387 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1388 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1389 writecmd->count = cpu_to_le32(count * 1390 dev->fsa_dev[scmd_id(cmd)].block_size); 1391 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1392 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1393 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1394 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1395 cpu_to_le16(RIO_TYPE_WRITE); 1396 writecmd->bpTotal = 0; 1397 writecmd->bpComplete = 0; 1398 ret = aac_build_sgraw(cmd, &writecmd->sg); 1399 if (ret < 0) 1400 return ret; 1401 command = ContainerRawIo; 1402 fibsize = sizeof(struct aac_raw_io) + 1403 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1404 } 1405 1406 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1407 /* 1408 * Now send the Fib to the adapter 1409 */ 1410 return aac_fib_send(command, 1411 fib, 1412 fibsize, 1413 FsaNormal, 1414 0, 1, 1415 (fib_callback) io_callback, 1416 (void *) cmd); 1417 } 1418 1419 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1420 { 1421 u16 fibsize; 1422 struct aac_write64 *writecmd; 1423 long ret; 1424 1425 aac_fib_init(fib); 1426 writecmd = (struct aac_write64 *) fib_data(fib); 1427 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1428 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1429 writecmd->sector_count = cpu_to_le16(count); 1430 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1431 writecmd->pad = 0; 1432 writecmd->flags = 0; 1433 1434 ret = aac_build_sg64(cmd, &writecmd->sg); 1435 if (ret < 0) 1436 return ret; 1437 fibsize = sizeof(struct aac_write64) + 1438 ((le32_to_cpu(writecmd->sg.count) - 1) * 1439 sizeof (struct sgentry64)); 1440 BUG_ON (fibsize > (fib->dev->max_fib_size - 1441 sizeof(struct aac_fibhdr))); 1442 /* 1443 * Now send the Fib to the adapter 1444 */ 1445 return aac_fib_send(ContainerCommand64, 1446 fib, 1447 fibsize, 1448 FsaNormal, 1449 0, 1, 1450 (fib_callback) io_callback, 1451 (void *) cmd); 1452 } 1453 1454 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1455 { 1456 u16 fibsize; 1457 struct aac_write *writecmd; 1458 struct aac_dev *dev = fib->dev; 1459 long ret; 1460 1461 aac_fib_init(fib); 1462 writecmd = (struct aac_write *) fib_data(fib); 1463 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1464 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1465 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1466 writecmd->count = cpu_to_le32(count * 1467 dev->fsa_dev[scmd_id(cmd)].block_size); 1468 writecmd->sg.count = cpu_to_le32(1); 1469 /* ->stable is not used - it did mean which type of write */ 1470 1471 ret = aac_build_sg(cmd, &writecmd->sg); 1472 if (ret < 0) 1473 return ret; 1474 fibsize = sizeof(struct aac_write) + 1475 ((le32_to_cpu(writecmd->sg.count) - 1) * 1476 sizeof (struct sgentry)); 1477 BUG_ON (fibsize > (fib->dev->max_fib_size - 1478 sizeof(struct aac_fibhdr))); 1479 /* 1480 * Now send the Fib to the adapter 1481 */ 1482 return aac_fib_send(ContainerCommand, 1483 fib, 1484 fibsize, 1485 FsaNormal, 1486 0, 1, 1487 (fib_callback) io_callback, 1488 (void *) cmd); 1489 } 1490 1491 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1492 { 1493 struct aac_srb * srbcmd; 1494 u32 flag; 1495 u32 timeout; 1496 struct aac_dev *dev = fib->dev; 1497 1498 aac_fib_init(fib); 1499 switch(cmd->sc_data_direction){ 1500 case DMA_TO_DEVICE: 1501 flag = SRB_DataOut; 1502 break; 1503 case DMA_BIDIRECTIONAL: 1504 flag = SRB_DataIn | SRB_DataOut; 1505 break; 1506 case DMA_FROM_DEVICE: 1507 flag = SRB_DataIn; 1508 break; 1509 case DMA_NONE: 1510 default: /* shuts up some versions of gcc */ 1511 flag = SRB_NoDataXfer; 1512 break; 1513 } 1514 1515 srbcmd = (struct aac_srb*) fib_data(fib); 1516 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1517 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1518 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1519 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1520 srbcmd->flags = cpu_to_le32(flag); 1521 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ; 1522 if (timeout == 0) 1523 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1524 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1525 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1526 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1527 return srbcmd; 1528 } 1529 1530 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1531 struct scsi_cmnd *cmd) 1532 { 1533 struct aac_hba_cmd_req *hbacmd; 1534 struct aac_dev *dev; 1535 int bus, target; 1536 u64 address; 1537 1538 dev = (struct aac_dev *)cmd->device->host->hostdata; 1539 1540 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1541 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1542 /* iu_type is a parameter of aac_hba_send */ 1543 switch (cmd->sc_data_direction) { 1544 case DMA_TO_DEVICE: 1545 hbacmd->byte1 = 2; 1546 break; 1547 case DMA_FROM_DEVICE: 1548 case DMA_BIDIRECTIONAL: 1549 hbacmd->byte1 = 1; 1550 break; 1551 case DMA_NONE: 1552 default: 1553 break; 1554 } 1555 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1556 1557 bus = aac_logical_to_phys(scmd_channel(cmd)); 1558 target = scmd_id(cmd); 1559 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1560 1561 /* we fill in reply_qid later in aac_src_deliver_message */ 1562 /* we fill in iu_type, request_id later in aac_hba_send */ 1563 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1564 1565 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1566 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1567 1568 address = (u64)fib->hw_error_pa; 1569 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1570 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1571 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1572 1573 return hbacmd; 1574 } 1575 1576 static void aac_srb_callback(void *context, struct fib * fibptr); 1577 1578 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1579 { 1580 u16 fibsize; 1581 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1582 long ret; 1583 1584 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1585 if (ret < 0) 1586 return ret; 1587 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1588 1589 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1590 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1591 /* 1592 * Build Scatter/Gather list 1593 */ 1594 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1595 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1596 sizeof (struct sgentry64)); 1597 BUG_ON (fibsize > (fib->dev->max_fib_size - 1598 sizeof(struct aac_fibhdr))); 1599 1600 /* 1601 * Now send the Fib to the adapter 1602 */ 1603 return aac_fib_send(ScsiPortCommand64, fib, 1604 fibsize, FsaNormal, 0, 1, 1605 (fib_callback) aac_srb_callback, 1606 (void *) cmd); 1607 } 1608 1609 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1610 { 1611 u16 fibsize; 1612 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1613 long ret; 1614 1615 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1616 if (ret < 0) 1617 return ret; 1618 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1619 1620 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1621 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1622 /* 1623 * Build Scatter/Gather list 1624 */ 1625 fibsize = sizeof (struct aac_srb) + 1626 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1627 sizeof (struct sgentry)); 1628 BUG_ON (fibsize > (fib->dev->max_fib_size - 1629 sizeof(struct aac_fibhdr))); 1630 1631 /* 1632 * Now send the Fib to the adapter 1633 */ 1634 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1635 (fib_callback) aac_srb_callback, (void *) cmd); 1636 } 1637 1638 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1639 { 1640 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1641 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1642 return FAILED; 1643 return aac_scsi_32(fib, cmd); 1644 } 1645 1646 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1647 { 1648 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1649 struct aac_dev *dev; 1650 long ret; 1651 1652 dev = (struct aac_dev *)cmd->device->host->hostdata; 1653 1654 ret = aac_build_sghba(cmd, hbacmd, 1655 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1656 if (ret < 0) 1657 return ret; 1658 1659 /* 1660 * Now send the HBA command to the adapter 1661 */ 1662 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1663 sizeof(struct aac_hba_sgl); 1664 1665 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1666 (fib_callback) aac_hba_callback, 1667 (void *) cmd); 1668 } 1669 1670 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1671 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1672 { 1673 struct fib *fibptr; 1674 dma_addr_t addr; 1675 int rcode; 1676 int fibsize; 1677 struct aac_srb *srb; 1678 struct aac_srb_reply *srb_reply; 1679 struct sgmap64 *sg64; 1680 u32 vbus; 1681 u32 vid; 1682 1683 if (!dev->sa_firmware) 1684 return 0; 1685 1686 /* allocate FIB */ 1687 fibptr = aac_fib_alloc(dev); 1688 if (!fibptr) 1689 return -ENOMEM; 1690 1691 aac_fib_init(fibptr); 1692 fibptr->hw_fib_va->header.XferState &= 1693 ~cpu_to_le32(FastResponseCapable); 1694 1695 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1696 sizeof(struct sgentry64); 1697 1698 /* allocate DMA buffer for response */ 1699 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1700 DMA_BIDIRECTIONAL); 1701 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1702 rcode = -ENOMEM; 1703 goto fib_error; 1704 } 1705 1706 srb = fib_data(fibptr); 1707 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1708 1709 vbus = (u32)le16_to_cpu( 1710 dev->supplement_adapter_info.virt_device_bus); 1711 vid = (u32)le16_to_cpu( 1712 dev->supplement_adapter_info.virt_device_target); 1713 1714 /* set the common request fields */ 1715 srb->channel = cpu_to_le32(vbus); 1716 srb->id = cpu_to_le32(vid); 1717 srb->lun = 0; 1718 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1719 srb->timeout = 0; 1720 srb->retry_limit = 0; 1721 srb->cdb_size = cpu_to_le32(16); 1722 srb->count = cpu_to_le32(xfer_len); 1723 1724 sg64 = (struct sgmap64 *)&srb->sg; 1725 sg64->count = cpu_to_le32(1); 1726 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1727 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1728 sg64->sg[0].count = cpu_to_le32(xfer_len); 1729 1730 /* 1731 * Copy the updated data for other dumping or other usage if needed 1732 */ 1733 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1734 1735 /* issue request to the controller */ 1736 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1737 1, 1, NULL, NULL); 1738 1739 if (rcode == -ERESTARTSYS) 1740 rcode = -ERESTART; 1741 1742 if (unlikely(rcode < 0)) 1743 goto bmic_error; 1744 1745 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1746 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1747 1748 bmic_error: 1749 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1750 fib_error: 1751 aac_fib_complete(fibptr); 1752 aac_fib_free(fibptr); 1753 return rcode; 1754 } 1755 1756 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1757 { 1758 1759 struct aac_ciss_identify_pd *identify_resp; 1760 1761 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1762 return; 1763 1764 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1765 if (identify_resp == NULL) { 1766 dev->hba_map[bus][target].qd_limit = 32; 1767 return; 1768 } 1769 1770 if (identify_resp->current_queue_depth_limit <= 0 || 1771 identify_resp->current_queue_depth_limit > 255) 1772 dev->hba_map[bus][target].qd_limit = 32; 1773 else 1774 dev->hba_map[bus][target].qd_limit = 1775 identify_resp->current_queue_depth_limit; 1776 } 1777 1778 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1779 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1780 { 1781 int rcode = -ENOMEM; 1782 int datasize; 1783 struct aac_srb_unit srbu; 1784 struct aac_srb *srbcmd; 1785 struct aac_ciss_identify_pd *identify_reply; 1786 1787 datasize = sizeof(struct aac_ciss_identify_pd); 1788 identify_reply = kmalloc(datasize, GFP_KERNEL); 1789 if (!identify_reply) 1790 goto out; 1791 1792 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1793 1794 srbcmd = &srbu.srb; 1795 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1796 srbcmd->cdb[0] = 0x26; 1797 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1798 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1799 1800 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1801 if (unlikely(rcode < 0)) 1802 goto mem_free_all; 1803 1804 *identify_resp = identify_reply; 1805 1806 out: 1807 return rcode; 1808 mem_free_all: 1809 kfree(identify_reply); 1810 goto out; 1811 } 1812 1813 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1814 { 1815 kfree(dev->safw_phys_luns); 1816 dev->safw_phys_luns = NULL; 1817 } 1818 1819 /** 1820 * aac_get_safw_ciss_luns() - Process topology change 1821 * @dev: aac_dev structure 1822 * 1823 * Execute a CISS REPORT PHYS LUNS and process the results into 1824 * the current hba_map. 1825 */ 1826 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1827 { 1828 int rcode = -ENOMEM; 1829 int datasize; 1830 struct aac_srb *srbcmd; 1831 struct aac_srb_unit srbu; 1832 struct aac_ciss_phys_luns_resp *phys_luns; 1833 1834 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1835 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1836 phys_luns = kmalloc(datasize, GFP_KERNEL); 1837 if (phys_luns == NULL) 1838 goto out; 1839 1840 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1841 1842 srbcmd = &srbu.srb; 1843 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1844 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1845 srbcmd->cdb[1] = 2; /* extended reporting */ 1846 srbcmd->cdb[8] = (u8)(datasize >> 8); 1847 srbcmd->cdb[9] = (u8)(datasize); 1848 1849 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1850 if (unlikely(rcode < 0)) 1851 goto mem_free_all; 1852 1853 if (phys_luns->resp_flag != 2) { 1854 rcode = -ENOMSG; 1855 goto mem_free_all; 1856 } 1857 1858 dev->safw_phys_luns = phys_luns; 1859 1860 out: 1861 return rcode; 1862 mem_free_all: 1863 kfree(phys_luns); 1864 goto out; 1865 } 1866 1867 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1868 { 1869 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1870 } 1871 1872 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1873 { 1874 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1875 } 1876 1877 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1878 { 1879 return dev->safw_phys_luns->lun[lun].level2[0]; 1880 } 1881 1882 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1883 { 1884 return dev->safw_phys_luns->lun[lun].bus >> 6; 1885 } 1886 1887 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1888 { 1889 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1890 } 1891 1892 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1893 { 1894 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1895 } 1896 1897 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1898 int bus, int target) 1899 { 1900 kfree(dev->hba_map[bus][target].safw_identify_resp); 1901 dev->hba_map[bus][target].safw_identify_resp = NULL; 1902 } 1903 1904 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1905 int lun_count) 1906 { 1907 int luns; 1908 int i; 1909 u32 bus; 1910 u32 target; 1911 1912 luns = aac_get_safw_phys_lun_count(dev); 1913 1914 if (luns < lun_count) 1915 lun_count = luns; 1916 else if (lun_count < 0) 1917 lun_count = luns; 1918 1919 for (i = 0; i < lun_count; i++) { 1920 bus = aac_get_safw_phys_bus(dev, i); 1921 target = aac_get_safw_phys_target(dev, i); 1922 1923 aac_free_safw_identify_resp(dev, bus, target); 1924 } 1925 } 1926 1927 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1928 { 1929 int i; 1930 int rcode = 0; 1931 u32 lun_count; 1932 u32 bus; 1933 u32 target; 1934 struct aac_ciss_identify_pd *identify_resp = NULL; 1935 1936 lun_count = aac_get_safw_phys_lun_count(dev); 1937 1938 for (i = 0; i < lun_count; ++i) { 1939 1940 bus = aac_get_safw_phys_bus(dev, i); 1941 target = aac_get_safw_phys_target(dev, i); 1942 1943 rcode = aac_issue_safw_bmic_identify(dev, 1944 &identify_resp, bus, target); 1945 1946 if (unlikely(rcode < 0)) 1947 goto free_identify_resp; 1948 1949 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1950 } 1951 1952 out: 1953 return rcode; 1954 free_identify_resp: 1955 aac_free_safw_all_identify_resp(dev, i); 1956 goto out; 1957 } 1958 1959 /** 1960 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1961 * @dev: aac_dev structure 1962 * 1963 * Update our hba map with the information gathered from the FW 1964 */ 1965 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1966 { 1967 /* ok and extended reporting */ 1968 u32 lun_count, nexus; 1969 u32 i, bus, target; 1970 u8 expose_flag, attribs; 1971 1972 lun_count = aac_get_safw_phys_lun_count(dev); 1973 1974 dev->scan_counter++; 1975 1976 for (i = 0; i < lun_count; ++i) { 1977 1978 bus = aac_get_safw_phys_bus(dev, i); 1979 target = aac_get_safw_phys_target(dev, i); 1980 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1981 attribs = aac_get_safw_phys_attribs(dev, i); 1982 nexus = aac_get_safw_phys_nexus(dev, i); 1983 1984 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1985 continue; 1986 1987 if (expose_flag != 0) { 1988 dev->hba_map[bus][target].devtype = 1989 AAC_DEVTYPE_RAID_MEMBER; 1990 continue; 1991 } 1992 1993 if (nexus != 0 && (attribs & 8)) { 1994 dev->hba_map[bus][target].devtype = 1995 AAC_DEVTYPE_NATIVE_RAW; 1996 dev->hba_map[bus][target].rmw_nexus = 1997 nexus; 1998 } else 1999 dev->hba_map[bus][target].devtype = 2000 AAC_DEVTYPE_ARC_RAW; 2001 2002 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 2003 2004 aac_set_safw_target_qd(dev, bus, target); 2005 } 2006 } 2007 2008 static int aac_setup_safw_targets(struct aac_dev *dev) 2009 { 2010 int rcode = 0; 2011 2012 rcode = aac_get_containers(dev); 2013 if (unlikely(rcode < 0)) 2014 goto out; 2015 2016 rcode = aac_get_safw_ciss_luns(dev); 2017 if (unlikely(rcode < 0)) 2018 goto out; 2019 2020 rcode = aac_get_safw_attr_all_targets(dev); 2021 if (unlikely(rcode < 0)) 2022 goto free_ciss_luns; 2023 2024 aac_set_safw_attr_all_targets(dev); 2025 2026 aac_free_safw_all_identify_resp(dev, -1); 2027 free_ciss_luns: 2028 aac_free_safw_ciss_luns(dev); 2029 out: 2030 return rcode; 2031 } 2032 2033 int aac_setup_safw_adapter(struct aac_dev *dev) 2034 { 2035 return aac_setup_safw_targets(dev); 2036 } 2037 2038 int aac_get_adapter_info(struct aac_dev* dev) 2039 { 2040 struct fib* fibptr; 2041 int rcode; 2042 u32 tmp, bus, target; 2043 struct aac_adapter_info *info; 2044 struct aac_bus_info *command; 2045 struct aac_bus_info_response *bus_info; 2046 2047 if (!(fibptr = aac_fib_alloc(dev))) 2048 return -ENOMEM; 2049 2050 aac_fib_init(fibptr); 2051 info = (struct aac_adapter_info *) fib_data(fibptr); 2052 memset(info,0,sizeof(*info)); 2053 2054 rcode = aac_fib_send(RequestAdapterInfo, 2055 fibptr, 2056 sizeof(*info), 2057 FsaNormal, 2058 -1, 1, /* First `interrupt' command uses special wait */ 2059 NULL, 2060 NULL); 2061 2062 if (rcode < 0) { 2063 /* FIB should be freed only after 2064 * getting the response from the F/W */ 2065 if (rcode != -ERESTARTSYS) { 2066 aac_fib_complete(fibptr); 2067 aac_fib_free(fibptr); 2068 } 2069 return rcode; 2070 } 2071 memcpy(&dev->adapter_info, info, sizeof(*info)); 2072 2073 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2074 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2075 struct aac_supplement_adapter_info * sinfo; 2076 2077 aac_fib_init(fibptr); 2078 2079 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2080 2081 memset(sinfo,0,sizeof(*sinfo)); 2082 2083 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2084 fibptr, 2085 sizeof(*sinfo), 2086 FsaNormal, 2087 1, 1, 2088 NULL, 2089 NULL); 2090 2091 if (rcode >= 0) 2092 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2093 if (rcode == -ERESTARTSYS) { 2094 fibptr = aac_fib_alloc(dev); 2095 if (!fibptr) 2096 return -ENOMEM; 2097 } 2098 2099 } 2100 2101 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2102 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2103 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2104 dev->hba_map[bus][target].devtype = 0; 2105 dev->hba_map[bus][target].qd_limit = 0; 2106 } 2107 } 2108 2109 /* 2110 * GetBusInfo 2111 */ 2112 2113 aac_fib_init(fibptr); 2114 2115 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2116 2117 memset(bus_info, 0, sizeof(*bus_info)); 2118 2119 command = (struct aac_bus_info *)bus_info; 2120 2121 command->Command = cpu_to_le32(VM_Ioctl); 2122 command->ObjType = cpu_to_le32(FT_DRIVE); 2123 command->MethodId = cpu_to_le32(1); 2124 command->CtlCmd = cpu_to_le32(GetBusInfo); 2125 2126 rcode = aac_fib_send(ContainerCommand, 2127 fibptr, 2128 sizeof (*bus_info), 2129 FsaNormal, 2130 1, 1, 2131 NULL, NULL); 2132 2133 /* reasoned default */ 2134 dev->maximum_num_physicals = 16; 2135 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2136 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2137 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2138 } 2139 2140 if (!dev->in_reset) { 2141 char buffer[16]; 2142 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2143 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2144 dev->name, 2145 dev->id, 2146 tmp>>24, 2147 (tmp>>16)&0xff, 2148 tmp&0xff, 2149 le32_to_cpu(dev->adapter_info.kernelbuild), 2150 (int)sizeof(dev->supplement_adapter_info.build_date), 2151 dev->supplement_adapter_info.build_date); 2152 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2153 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2154 dev->name, dev->id, 2155 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2156 le32_to_cpu(dev->adapter_info.monitorbuild)); 2157 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2158 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2159 dev->name, dev->id, 2160 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2161 le32_to_cpu(dev->adapter_info.biosbuild)); 2162 buffer[0] = '\0'; 2163 if (aac_get_serial_number( 2164 shost_to_class(dev->scsi_host_ptr), buffer)) 2165 printk(KERN_INFO "%s%d: serial %s", 2166 dev->name, dev->id, buffer); 2167 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2168 printk(KERN_INFO "%s%d: TSID %.*s\n", 2169 dev->name, dev->id, 2170 (int)sizeof(dev->supplement_adapter_info 2171 .vpd_info.tsid), 2172 dev->supplement_adapter_info.vpd_info.tsid); 2173 } 2174 if (!aac_check_reset || ((aac_check_reset == 1) && 2175 (dev->supplement_adapter_info.supported_options2 & 2176 AAC_OPTION_IGNORE_RESET))) { 2177 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2178 dev->name, dev->id); 2179 } 2180 } 2181 2182 dev->cache_protected = 0; 2183 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2184 AAC_FEATURE_JBOD) != 0); 2185 dev->nondasd_support = 0; 2186 dev->raid_scsi_mode = 0; 2187 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2188 dev->nondasd_support = 1; 2189 2190 /* 2191 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2192 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2193 * force nondasd support on. If we decide to allow the non-dasd flag 2194 * additional changes changes will have to be made to support 2195 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2196 * changed to support the new dev->raid_scsi_mode flag instead of 2197 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2198 * function aac_detect will have to be modified where it sets up the 2199 * max number of channels based on the aac->nondasd_support flag only. 2200 */ 2201 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2202 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2203 dev->nondasd_support = 1; 2204 dev->raid_scsi_mode = 1; 2205 } 2206 if (dev->raid_scsi_mode != 0) 2207 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2208 dev->name, dev->id); 2209 2210 if (nondasd != -1) 2211 dev->nondasd_support = (nondasd!=0); 2212 if (dev->nondasd_support && !dev->in_reset) 2213 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2214 2215 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2216 dev->needs_dac = 1; 2217 dev->dac_support = 0; 2218 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2219 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2220 if (!dev->in_reset) 2221 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2222 dev->name, dev->id); 2223 dev->dac_support = 1; 2224 } 2225 2226 if(dacmode != -1) { 2227 dev->dac_support = (dacmode!=0); 2228 } 2229 2230 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2231 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2232 & AAC_QUIRK_SCSI_32)) { 2233 dev->nondasd_support = 0; 2234 dev->jbod = 0; 2235 expose_physicals = 0; 2236 } 2237 2238 if (dev->dac_support) { 2239 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) { 2240 if (!dev->in_reset) 2241 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2242 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) { 2243 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2244 dev->dac_support = 0; 2245 } else { 2246 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2247 rcode = -ENOMEM; 2248 } 2249 } 2250 /* 2251 * Deal with configuring for the individualized limits of each packet 2252 * interface. 2253 */ 2254 dev->a_ops.adapter_scsi = (dev->dac_support) 2255 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2256 ? aac_scsi_32_64 2257 : aac_scsi_64) 2258 : aac_scsi_32; 2259 if (dev->raw_io_interface) { 2260 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2261 ? aac_bounds_64 2262 : aac_bounds_32; 2263 dev->a_ops.adapter_read = aac_read_raw_io; 2264 dev->a_ops.adapter_write = aac_write_raw_io; 2265 } else { 2266 dev->a_ops.adapter_bounds = aac_bounds_32; 2267 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2268 sizeof(struct aac_fibhdr) - 2269 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2270 sizeof(struct sgentry); 2271 if (dev->dac_support) { 2272 dev->a_ops.adapter_read = aac_read_block64; 2273 dev->a_ops.adapter_write = aac_write_block64; 2274 /* 2275 * 38 scatter gather elements 2276 */ 2277 dev->scsi_host_ptr->sg_tablesize = 2278 (dev->max_fib_size - 2279 sizeof(struct aac_fibhdr) - 2280 sizeof(struct aac_write64) + 2281 sizeof(struct sgentry64)) / 2282 sizeof(struct sgentry64); 2283 } else { 2284 dev->a_ops.adapter_read = aac_read_block; 2285 dev->a_ops.adapter_write = aac_write_block; 2286 } 2287 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2288 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2289 /* 2290 * Worst case size that could cause sg overflow when 2291 * we break up SG elements that are larger than 64KB. 2292 * Would be nice if we could tell the SCSI layer what 2293 * the maximum SG element size can be. Worst case is 2294 * (sg_tablesize-1) 4KB elements with one 64KB 2295 * element. 2296 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2297 */ 2298 dev->scsi_host_ptr->max_sectors = 2299 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2300 } 2301 } 2302 if (!dev->sync_mode && dev->sa_firmware && 2303 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2304 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2305 HBA_MAX_SG_SEPARATE; 2306 2307 /* FIB should be freed only after getting the response from the F/W */ 2308 if (rcode != -ERESTARTSYS) { 2309 aac_fib_complete(fibptr); 2310 aac_fib_free(fibptr); 2311 } 2312 2313 return rcode; 2314 } 2315 2316 2317 static void io_callback(void *context, struct fib * fibptr) 2318 { 2319 struct aac_dev *dev; 2320 struct aac_read_reply *readreply; 2321 struct scsi_cmnd *scsicmd; 2322 u32 cid; 2323 2324 scsicmd = (struct scsi_cmnd *) context; 2325 2326 if (!aac_valid_context(scsicmd, fibptr)) 2327 return; 2328 2329 dev = fibptr->dev; 2330 cid = scmd_id(scsicmd); 2331 2332 if (nblank(dprintk(x))) { 2333 u64 lba; 2334 switch (scsicmd->cmnd[0]) { 2335 case WRITE_6: 2336 case READ_6: 2337 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2338 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2339 break; 2340 case WRITE_16: 2341 case READ_16: 2342 lba = ((u64)scsicmd->cmnd[2] << 56) | 2343 ((u64)scsicmd->cmnd[3] << 48) | 2344 ((u64)scsicmd->cmnd[4] << 40) | 2345 ((u64)scsicmd->cmnd[5] << 32) | 2346 ((u64)scsicmd->cmnd[6] << 24) | 2347 (scsicmd->cmnd[7] << 16) | 2348 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2349 break; 2350 case WRITE_12: 2351 case READ_12: 2352 lba = ((u64)scsicmd->cmnd[2] << 24) | 2353 (scsicmd->cmnd[3] << 16) | 2354 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2355 break; 2356 default: 2357 lba = ((u64)scsicmd->cmnd[2] << 24) | 2358 (scsicmd->cmnd[3] << 16) | 2359 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2360 break; 2361 } 2362 printk(KERN_DEBUG 2363 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2364 smp_processor_id(), (unsigned long long)lba, jiffies); 2365 } 2366 2367 BUG_ON(fibptr == NULL); 2368 2369 scsi_dma_unmap(scsicmd); 2370 2371 readreply = (struct aac_read_reply *)fib_data(fibptr); 2372 switch (le32_to_cpu(readreply->status)) { 2373 case ST_OK: 2374 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2375 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2376 break; 2377 case ST_NOT_READY: 2378 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2379 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2380 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2381 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2382 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2383 SCSI_SENSE_BUFFERSIZE)); 2384 break; 2385 case ST_MEDERR: 2386 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2387 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2388 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2389 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2390 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2391 SCSI_SENSE_BUFFERSIZE)); 2392 break; 2393 default: 2394 #ifdef AAC_DETAILED_STATUS_INFO 2395 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2396 le32_to_cpu(readreply->status)); 2397 #endif 2398 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2399 set_sense(&dev->fsa_dev[cid].sense_data, 2400 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2401 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2402 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2403 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2404 SCSI_SENSE_BUFFERSIZE)); 2405 break; 2406 } 2407 aac_fib_complete(fibptr); 2408 2409 aac_scsi_done(scsicmd); 2410 } 2411 2412 static int aac_read(struct scsi_cmnd * scsicmd) 2413 { 2414 u64 lba; 2415 u32 count; 2416 int status; 2417 struct aac_dev *dev; 2418 struct fib * cmd_fibcontext; 2419 int cid; 2420 2421 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2422 /* 2423 * Get block address and transfer length 2424 */ 2425 switch (scsicmd->cmnd[0]) { 2426 case READ_6: 2427 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2428 2429 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2430 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2431 count = scsicmd->cmnd[4]; 2432 2433 if (count == 0) 2434 count = 256; 2435 break; 2436 case READ_16: 2437 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2438 2439 lba = ((u64)scsicmd->cmnd[2] << 56) | 2440 ((u64)scsicmd->cmnd[3] << 48) | 2441 ((u64)scsicmd->cmnd[4] << 40) | 2442 ((u64)scsicmd->cmnd[5] << 32) | 2443 ((u64)scsicmd->cmnd[6] << 24) | 2444 (scsicmd->cmnd[7] << 16) | 2445 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2446 count = (scsicmd->cmnd[10] << 24) | 2447 (scsicmd->cmnd[11] << 16) | 2448 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2449 break; 2450 case READ_12: 2451 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2452 2453 lba = ((u64)scsicmd->cmnd[2] << 24) | 2454 (scsicmd->cmnd[3] << 16) | 2455 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2456 count = (scsicmd->cmnd[6] << 24) | 2457 (scsicmd->cmnd[7] << 16) | 2458 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2459 break; 2460 default: 2461 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2462 2463 lba = ((u64)scsicmd->cmnd[2] << 24) | 2464 (scsicmd->cmnd[3] << 16) | 2465 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2466 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2467 break; 2468 } 2469 2470 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2471 cid = scmd_id(scsicmd); 2472 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2473 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2474 set_sense(&dev->fsa_dev[cid].sense_data, 2475 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2476 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2477 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2478 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2479 SCSI_SENSE_BUFFERSIZE)); 2480 aac_scsi_done(scsicmd); 2481 return 0; 2482 } 2483 2484 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2485 smp_processor_id(), (unsigned long long)lba, jiffies)); 2486 if (aac_adapter_bounds(dev,scsicmd,lba)) 2487 return 0; 2488 /* 2489 * Alocate and initialize a Fib 2490 */ 2491 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2492 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2493 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2494 2495 /* 2496 * Check that the command queued to the controller 2497 */ 2498 if (status == -EINPROGRESS) 2499 return 0; 2500 2501 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2502 /* 2503 * For some reason, the Fib didn't queue, return QUEUE_FULL 2504 */ 2505 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2506 aac_scsi_done(scsicmd); 2507 aac_fib_complete(cmd_fibcontext); 2508 aac_fib_free(cmd_fibcontext); 2509 return 0; 2510 } 2511 2512 static int aac_write(struct scsi_cmnd * scsicmd) 2513 { 2514 u64 lba; 2515 u32 count; 2516 int fua; 2517 int status; 2518 struct aac_dev *dev; 2519 struct fib * cmd_fibcontext; 2520 int cid; 2521 2522 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2523 /* 2524 * Get block address and transfer length 2525 */ 2526 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2527 { 2528 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2529 count = scsicmd->cmnd[4]; 2530 if (count == 0) 2531 count = 256; 2532 fua = 0; 2533 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2534 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2535 2536 lba = ((u64)scsicmd->cmnd[2] << 56) | 2537 ((u64)scsicmd->cmnd[3] << 48) | 2538 ((u64)scsicmd->cmnd[4] << 40) | 2539 ((u64)scsicmd->cmnd[5] << 32) | 2540 ((u64)scsicmd->cmnd[6] << 24) | 2541 (scsicmd->cmnd[7] << 16) | 2542 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2543 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2544 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2545 fua = scsicmd->cmnd[1] & 0x8; 2546 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2547 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2548 2549 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2550 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2551 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2552 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2553 fua = scsicmd->cmnd[1] & 0x8; 2554 } else { 2555 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2556 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2557 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2558 fua = scsicmd->cmnd[1] & 0x8; 2559 } 2560 2561 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2562 cid = scmd_id(scsicmd); 2563 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2564 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2565 set_sense(&dev->fsa_dev[cid].sense_data, 2566 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2567 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2568 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2569 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2570 SCSI_SENSE_BUFFERSIZE)); 2571 aac_scsi_done(scsicmd); 2572 return 0; 2573 } 2574 2575 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2576 smp_processor_id(), (unsigned long long)lba, jiffies)); 2577 if (aac_adapter_bounds(dev,scsicmd,lba)) 2578 return 0; 2579 /* 2580 * Allocate and initialize a Fib then setup a BlockWrite command 2581 */ 2582 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2583 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2584 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2585 2586 /* 2587 * Check that the command queued to the controller 2588 */ 2589 if (status == -EINPROGRESS) 2590 return 0; 2591 2592 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2593 /* 2594 * For some reason, the Fib didn't queue, return QUEUE_FULL 2595 */ 2596 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2597 aac_scsi_done(scsicmd); 2598 2599 aac_fib_complete(cmd_fibcontext); 2600 aac_fib_free(cmd_fibcontext); 2601 return 0; 2602 } 2603 2604 static void synchronize_callback(void *context, struct fib *fibptr) 2605 { 2606 struct aac_synchronize_reply *synchronizereply; 2607 struct scsi_cmnd *cmd = context; 2608 2609 if (!aac_valid_context(cmd, fibptr)) 2610 return; 2611 2612 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2613 smp_processor_id(), jiffies)); 2614 BUG_ON(fibptr == NULL); 2615 2616 2617 synchronizereply = fib_data(fibptr); 2618 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2619 cmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2620 else { 2621 struct scsi_device *sdev = cmd->device; 2622 struct aac_dev *dev = fibptr->dev; 2623 u32 cid = sdev_id(sdev); 2624 printk(KERN_WARNING 2625 "synchronize_callback: synchronize failed, status = %d\n", 2626 le32_to_cpu(synchronizereply->status)); 2627 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2628 set_sense(&dev->fsa_dev[cid].sense_data, 2629 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2630 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2631 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2632 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2633 SCSI_SENSE_BUFFERSIZE)); 2634 } 2635 2636 aac_fib_complete(fibptr); 2637 aac_fib_free(fibptr); 2638 aac_scsi_done(cmd); 2639 } 2640 2641 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2642 { 2643 int status; 2644 struct fib *cmd_fibcontext; 2645 struct aac_synchronize *synchronizecmd; 2646 struct scsi_device *sdev = scsicmd->device; 2647 struct aac_dev *aac; 2648 2649 aac = (struct aac_dev *)sdev->host->hostdata; 2650 if (aac->in_reset) 2651 return SCSI_MLQUEUE_HOST_BUSY; 2652 2653 /* 2654 * Allocate and initialize a Fib 2655 */ 2656 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2657 2658 aac_fib_init(cmd_fibcontext); 2659 2660 synchronizecmd = fib_data(cmd_fibcontext); 2661 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2662 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2663 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2664 synchronizecmd->count = 2665 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2666 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2667 2668 /* 2669 * Now send the Fib to the adapter 2670 */ 2671 status = aac_fib_send(ContainerCommand, 2672 cmd_fibcontext, 2673 sizeof(struct aac_synchronize), 2674 FsaNormal, 2675 0, 1, 2676 (fib_callback)synchronize_callback, 2677 (void *)scsicmd); 2678 2679 /* 2680 * Check that the command queued to the controller 2681 */ 2682 if (status == -EINPROGRESS) 2683 return 0; 2684 2685 printk(KERN_WARNING 2686 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2687 aac_fib_complete(cmd_fibcontext); 2688 aac_fib_free(cmd_fibcontext); 2689 return SCSI_MLQUEUE_HOST_BUSY; 2690 } 2691 2692 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2693 { 2694 struct scsi_cmnd *scsicmd = context; 2695 2696 if (!aac_valid_context(scsicmd, fibptr)) 2697 return; 2698 2699 BUG_ON(fibptr == NULL); 2700 2701 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2702 2703 aac_fib_complete(fibptr); 2704 aac_fib_free(fibptr); 2705 aac_scsi_done(scsicmd); 2706 } 2707 2708 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2709 { 2710 int status; 2711 struct fib *cmd_fibcontext; 2712 struct aac_power_management *pmcmd; 2713 struct scsi_device *sdev = scsicmd->device; 2714 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2715 2716 if (!(aac->supplement_adapter_info.supported_options2 & 2717 AAC_OPTION_POWER_MANAGEMENT)) { 2718 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2719 aac_scsi_done(scsicmd); 2720 return 0; 2721 } 2722 2723 if (aac->in_reset) 2724 return SCSI_MLQUEUE_HOST_BUSY; 2725 2726 /* 2727 * Allocate and initialize a Fib 2728 */ 2729 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2730 2731 aac_fib_init(cmd_fibcontext); 2732 2733 pmcmd = fib_data(cmd_fibcontext); 2734 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2735 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2736 /* Eject bit ignored, not relevant */ 2737 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2738 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2739 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2740 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2741 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2742 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 2743 2744 /* 2745 * Now send the Fib to the adapter 2746 */ 2747 status = aac_fib_send(ContainerCommand, 2748 cmd_fibcontext, 2749 sizeof(struct aac_power_management), 2750 FsaNormal, 2751 0, 1, 2752 (fib_callback)aac_start_stop_callback, 2753 (void *)scsicmd); 2754 2755 /* 2756 * Check that the command queued to the controller 2757 */ 2758 if (status == -EINPROGRESS) 2759 return 0; 2760 2761 aac_fib_complete(cmd_fibcontext); 2762 aac_fib_free(cmd_fibcontext); 2763 return SCSI_MLQUEUE_HOST_BUSY; 2764 } 2765 2766 /** 2767 * aac_scsi_cmd() - Process SCSI command 2768 * @scsicmd: SCSI command block 2769 * 2770 * Emulate a SCSI command and queue the required request for the 2771 * aacraid firmware. 2772 */ 2773 2774 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2775 { 2776 u32 cid, bus; 2777 struct Scsi_Host *host = scsicmd->device->host; 2778 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2779 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2780 2781 if (fsa_dev_ptr == NULL) 2782 return -1; 2783 /* 2784 * If the bus, id or lun is out of range, return fail 2785 * Test does not apply to ID 16, the pseudo id for the controller 2786 * itself. 2787 */ 2788 cid = scmd_id(scsicmd); 2789 if (cid != host->this_id) { 2790 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2791 if((cid >= dev->maximum_num_containers) || 2792 (scsicmd->device->lun != 0)) { 2793 scsicmd->result = DID_NO_CONNECT << 16; 2794 goto scsi_done_ret; 2795 } 2796 2797 /* 2798 * If the target container doesn't exist, it may have 2799 * been newly created 2800 */ 2801 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2802 (fsa_dev_ptr[cid].sense_data.sense_key == 2803 NOT_READY)) { 2804 switch (scsicmd->cmnd[0]) { 2805 case SERVICE_ACTION_IN_16: 2806 if (!(dev->raw_io_interface) || 2807 !(dev->raw_io_64) || 2808 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2809 break; 2810 fallthrough; 2811 case INQUIRY: 2812 case READ_CAPACITY: 2813 case TEST_UNIT_READY: 2814 if (dev->in_reset) 2815 return -1; 2816 return _aac_probe_container(scsicmd, 2817 aac_probe_container_callback2); 2818 default: 2819 break; 2820 } 2821 } 2822 } else { /* check for physical non-dasd devices */ 2823 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2824 2825 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2826 dev->hba_map[bus][cid].devtype 2827 == AAC_DEVTYPE_NATIVE_RAW) { 2828 if (dev->in_reset) 2829 return -1; 2830 return aac_send_hba_fib(scsicmd); 2831 } else if (dev->nondasd_support || expose_physicals || 2832 dev->jbod) { 2833 if (dev->in_reset) 2834 return -1; 2835 return aac_send_srb_fib(scsicmd); 2836 } else { 2837 scsicmd->result = DID_NO_CONNECT << 16; 2838 goto scsi_done_ret; 2839 } 2840 } 2841 } 2842 /* 2843 * else Command for the controller itself 2844 */ 2845 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2846 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2847 { 2848 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2849 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2850 set_sense(&dev->fsa_dev[cid].sense_data, 2851 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2852 ASENCODE_INVALID_COMMAND, 0, 0); 2853 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2854 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2855 SCSI_SENSE_BUFFERSIZE)); 2856 goto scsi_done_ret; 2857 } 2858 2859 switch (scsicmd->cmnd[0]) { 2860 case READ_6: 2861 case READ_10: 2862 case READ_12: 2863 case READ_16: 2864 if (dev->in_reset) 2865 return -1; 2866 return aac_read(scsicmd); 2867 2868 case WRITE_6: 2869 case WRITE_10: 2870 case WRITE_12: 2871 case WRITE_16: 2872 if (dev->in_reset) 2873 return -1; 2874 return aac_write(scsicmd); 2875 2876 case SYNCHRONIZE_CACHE: 2877 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2878 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2879 break; 2880 } 2881 /* Issue FIB to tell Firmware to flush it's cache */ 2882 if ((aac_cache & 6) != 2) 2883 return aac_synchronize(scsicmd); 2884 fallthrough; 2885 case INQUIRY: 2886 { 2887 struct inquiry_data inq_data; 2888 2889 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2890 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2891 2892 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2893 char *arr = (char *)&inq_data; 2894 2895 /* EVPD bit set */ 2896 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2897 INQD_PDT_PROC : INQD_PDT_DA; 2898 if (scsicmd->cmnd[2] == 0) { 2899 /* supported vital product data pages */ 2900 arr[3] = 3; 2901 arr[4] = 0x0; 2902 arr[5] = 0x80; 2903 arr[6] = 0x83; 2904 arr[1] = scsicmd->cmnd[2]; 2905 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2906 sizeof(inq_data)); 2907 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2908 } else if (scsicmd->cmnd[2] == 0x80) { 2909 /* unit serial number page */ 2910 arr[3] = setinqserial(dev, &arr[4], 2911 scmd_id(scsicmd)); 2912 arr[1] = scsicmd->cmnd[2]; 2913 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2914 sizeof(inq_data)); 2915 if (aac_wwn != 2) 2916 return aac_get_container_serial( 2917 scsicmd); 2918 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2919 } else if (scsicmd->cmnd[2] == 0x83) { 2920 /* vpd page 0x83 - Device Identification Page */ 2921 char *sno = (char *)&inq_data; 2922 sno[3] = setinqserial(dev, &sno[4], 2923 scmd_id(scsicmd)); 2924 if (aac_wwn != 2) 2925 return aac_get_container_serial( 2926 scsicmd); 2927 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2928 } else { 2929 /* vpd page not implemented */ 2930 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2931 set_sense(&dev->fsa_dev[cid].sense_data, 2932 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2933 ASENCODE_NO_SENSE, 7, 2); 2934 memcpy(scsicmd->sense_buffer, 2935 &dev->fsa_dev[cid].sense_data, 2936 min_t(size_t, 2937 sizeof(dev->fsa_dev[cid].sense_data), 2938 SCSI_SENSE_BUFFERSIZE)); 2939 } 2940 break; 2941 } 2942 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2943 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2944 inq_data.inqd_len = 31; 2945 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2946 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2947 /* 2948 * Set the Vendor, Product, and Revision Level 2949 * see: <vendor>.c i.e. aac.c 2950 */ 2951 if (cid == host->this_id) { 2952 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2953 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2954 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2955 sizeof(inq_data)); 2956 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2957 break; 2958 } 2959 if (dev->in_reset) 2960 return -1; 2961 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2962 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2963 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2964 return aac_get_container_name(scsicmd); 2965 } 2966 case SERVICE_ACTION_IN_16: 2967 if (!(dev->raw_io_interface) || 2968 !(dev->raw_io_64) || 2969 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2970 break; 2971 { 2972 u64 capacity; 2973 char cp[13]; 2974 unsigned int alloc_len; 2975 2976 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2977 capacity = fsa_dev_ptr[cid].size - 1; 2978 cp[0] = (capacity >> 56) & 0xff; 2979 cp[1] = (capacity >> 48) & 0xff; 2980 cp[2] = (capacity >> 40) & 0xff; 2981 cp[3] = (capacity >> 32) & 0xff; 2982 cp[4] = (capacity >> 24) & 0xff; 2983 cp[5] = (capacity >> 16) & 0xff; 2984 cp[6] = (capacity >> 8) & 0xff; 2985 cp[7] = (capacity >> 0) & 0xff; 2986 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2987 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2988 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2989 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 2990 cp[12] = 0; 2991 2992 alloc_len = ((scsicmd->cmnd[10] << 24) 2993 + (scsicmd->cmnd[11] << 16) 2994 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 2995 2996 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 2997 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 2998 if (alloc_len < scsi_bufflen(scsicmd)) 2999 scsi_set_resid(scsicmd, 3000 scsi_bufflen(scsicmd) - alloc_len); 3001 3002 /* Do not cache partition table for arrays */ 3003 scsicmd->device->removable = 1; 3004 3005 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3006 break; 3007 } 3008 3009 case READ_CAPACITY: 3010 { 3011 u32 capacity; 3012 char cp[8]; 3013 3014 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3015 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3016 capacity = fsa_dev_ptr[cid].size - 1; 3017 else 3018 capacity = (u32)-1; 3019 3020 cp[0] = (capacity >> 24) & 0xff; 3021 cp[1] = (capacity >> 16) & 0xff; 3022 cp[2] = (capacity >> 8) & 0xff; 3023 cp[3] = (capacity >> 0) & 0xff; 3024 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3025 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3026 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3027 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3028 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3029 /* Do not cache partition table for arrays */ 3030 scsicmd->device->removable = 1; 3031 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3032 break; 3033 } 3034 3035 case MODE_SENSE: 3036 { 3037 int mode_buf_length = 4; 3038 u32 capacity; 3039 aac_modep_data mpd; 3040 3041 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3042 capacity = fsa_dev_ptr[cid].size - 1; 3043 else 3044 capacity = (u32)-1; 3045 3046 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3047 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3048 3049 /* Mode data length */ 3050 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3051 /* Medium type - default */ 3052 mpd.hd.med_type = 0; 3053 /* Device-specific param, 3054 bit 8: 0/1 = write enabled/protected 3055 bit 4: 0/1 = FUA enabled */ 3056 mpd.hd.dev_par = 0; 3057 3058 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3059 mpd.hd.dev_par = 0x10; 3060 if (scsicmd->cmnd[1] & 0x8) 3061 mpd.hd.bd_length = 0; /* Block descriptor length */ 3062 else { 3063 mpd.hd.bd_length = sizeof(mpd.bd); 3064 mpd.hd.data_length += mpd.hd.bd_length; 3065 mpd.bd.block_length[0] = 3066 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3067 mpd.bd.block_length[1] = 3068 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3069 mpd.bd.block_length[2] = 3070 fsa_dev_ptr[cid].block_size & 0xff; 3071 3072 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3073 if (scsicmd->cmnd[2] == 0x1C) { 3074 /* page length */ 3075 mpd.mpc_buf[1] = 0xa; 3076 /* Mode data length */ 3077 mpd.hd.data_length = 23; 3078 } else { 3079 /* Mode data length */ 3080 mpd.hd.data_length = 15; 3081 } 3082 3083 if (capacity > 0xffffff) { 3084 mpd.bd.block_count[0] = 0xff; 3085 mpd.bd.block_count[1] = 0xff; 3086 mpd.bd.block_count[2] = 0xff; 3087 } else { 3088 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3089 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3090 mpd.bd.block_count[2] = capacity & 0xff; 3091 } 3092 } 3093 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3094 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3095 mpd.hd.data_length += 3; 3096 mpd.mpc_buf[0] = 8; 3097 mpd.mpc_buf[1] = 1; 3098 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3099 ? 0 : 0x04; /* WCE */ 3100 mode_buf_length = sizeof(mpd); 3101 } 3102 3103 if (mode_buf_length > scsicmd->cmnd[4]) 3104 mode_buf_length = scsicmd->cmnd[4]; 3105 else 3106 mode_buf_length = sizeof(mpd); 3107 scsi_sg_copy_from_buffer(scsicmd, 3108 (char *)&mpd, 3109 mode_buf_length); 3110 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3111 break; 3112 } 3113 case MODE_SENSE_10: 3114 { 3115 u32 capacity; 3116 int mode_buf_length = 8; 3117 aac_modep10_data mpd10; 3118 3119 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3120 capacity = fsa_dev_ptr[cid].size - 1; 3121 else 3122 capacity = (u32)-1; 3123 3124 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3125 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3126 /* Mode data length (MSB) */ 3127 mpd10.hd.data_length[0] = 0; 3128 /* Mode data length (LSB) */ 3129 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3130 /* Medium type - default */ 3131 mpd10.hd.med_type = 0; 3132 /* Device-specific param, 3133 bit 8: 0/1 = write enabled/protected 3134 bit 4: 0/1 = FUA enabled */ 3135 mpd10.hd.dev_par = 0; 3136 3137 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3138 mpd10.hd.dev_par = 0x10; 3139 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3140 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3141 if (scsicmd->cmnd[1] & 0x8) { 3142 /* Block descriptor length (MSB) */ 3143 mpd10.hd.bd_length[0] = 0; 3144 /* Block descriptor length (LSB) */ 3145 mpd10.hd.bd_length[1] = 0; 3146 } else { 3147 mpd10.hd.bd_length[0] = 0; 3148 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3149 3150 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3151 3152 mpd10.bd.block_length[0] = 3153 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3154 mpd10.bd.block_length[1] = 3155 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3156 mpd10.bd.block_length[2] = 3157 fsa_dev_ptr[cid].block_size & 0xff; 3158 3159 if (capacity > 0xffffff) { 3160 mpd10.bd.block_count[0] = 0xff; 3161 mpd10.bd.block_count[1] = 0xff; 3162 mpd10.bd.block_count[2] = 0xff; 3163 } else { 3164 mpd10.bd.block_count[0] = 3165 (capacity >> 16) & 0xff; 3166 mpd10.bd.block_count[1] = 3167 (capacity >> 8) & 0xff; 3168 mpd10.bd.block_count[2] = 3169 capacity & 0xff; 3170 } 3171 } 3172 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3173 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3174 mpd10.hd.data_length[1] += 3; 3175 mpd10.mpc_buf[0] = 8; 3176 mpd10.mpc_buf[1] = 1; 3177 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3178 ? 0 : 0x04; /* WCE */ 3179 mode_buf_length = sizeof(mpd10); 3180 if (mode_buf_length > scsicmd->cmnd[8]) 3181 mode_buf_length = scsicmd->cmnd[8]; 3182 } 3183 scsi_sg_copy_from_buffer(scsicmd, 3184 (char *)&mpd10, 3185 mode_buf_length); 3186 3187 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3188 break; 3189 } 3190 case REQUEST_SENSE: 3191 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3192 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3193 sizeof(struct sense_data)); 3194 memset(&dev->fsa_dev[cid].sense_data, 0, 3195 sizeof(struct sense_data)); 3196 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3197 break; 3198 3199 case ALLOW_MEDIUM_REMOVAL: 3200 dprintk((KERN_DEBUG "LOCK command.\n")); 3201 if (scsicmd->cmnd[4]) 3202 fsa_dev_ptr[cid].locked = 1; 3203 else 3204 fsa_dev_ptr[cid].locked = 0; 3205 3206 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3207 break; 3208 /* 3209 * These commands are all No-Ops 3210 */ 3211 case TEST_UNIT_READY: 3212 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3213 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3214 set_sense(&dev->fsa_dev[cid].sense_data, 3215 NOT_READY, SENCODE_BECOMING_READY, 3216 ASENCODE_BECOMING_READY, 0, 0); 3217 memcpy(scsicmd->sense_buffer, 3218 &dev->fsa_dev[cid].sense_data, 3219 min_t(size_t, 3220 sizeof(dev->fsa_dev[cid].sense_data), 3221 SCSI_SENSE_BUFFERSIZE)); 3222 break; 3223 } 3224 fallthrough; 3225 case RESERVE: 3226 case RELEASE: 3227 case REZERO_UNIT: 3228 case REASSIGN_BLOCKS: 3229 case SEEK_10: 3230 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3231 break; 3232 3233 case START_STOP: 3234 return aac_start_stop(scsicmd); 3235 3236 default: 3237 /* 3238 * Unhandled commands 3239 */ 3240 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3241 scsicmd->cmnd[0])); 3242 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3243 set_sense(&dev->fsa_dev[cid].sense_data, 3244 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3245 ASENCODE_INVALID_COMMAND, 0, 0); 3246 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3247 min_t(size_t, 3248 sizeof(dev->fsa_dev[cid].sense_data), 3249 SCSI_SENSE_BUFFERSIZE)); 3250 } 3251 3252 scsi_done_ret: 3253 3254 aac_scsi_done(scsicmd); 3255 return 0; 3256 } 3257 3258 static int query_disk(struct aac_dev *dev, void __user *arg) 3259 { 3260 struct aac_query_disk qd; 3261 struct fsa_dev_info *fsa_dev_ptr; 3262 3263 fsa_dev_ptr = dev->fsa_dev; 3264 if (!fsa_dev_ptr) 3265 return -EBUSY; 3266 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3267 return -EFAULT; 3268 if (qd.cnum == -1) { 3269 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3270 return -EINVAL; 3271 qd.cnum = qd.id; 3272 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3273 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3274 return -EINVAL; 3275 qd.instance = dev->scsi_host_ptr->host_no; 3276 qd.bus = 0; 3277 qd.id = CONTAINER_TO_ID(qd.cnum); 3278 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3279 } 3280 else return -EINVAL; 3281 3282 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3283 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3284 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3285 3286 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3287 qd.unmapped = 1; 3288 else 3289 qd.unmapped = 0; 3290 3291 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3292 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3293 3294 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3295 return -EFAULT; 3296 return 0; 3297 } 3298 3299 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3300 { 3301 struct aac_delete_disk dd; 3302 struct fsa_dev_info *fsa_dev_ptr; 3303 3304 fsa_dev_ptr = dev->fsa_dev; 3305 if (!fsa_dev_ptr) 3306 return -EBUSY; 3307 3308 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3309 return -EFAULT; 3310 3311 if (dd.cnum >= dev->maximum_num_containers) 3312 return -EINVAL; 3313 /* 3314 * Mark this container as being deleted. 3315 */ 3316 fsa_dev_ptr[dd.cnum].deleted = 1; 3317 /* 3318 * Mark the container as no longer valid 3319 */ 3320 fsa_dev_ptr[dd.cnum].valid = 0; 3321 return 0; 3322 } 3323 3324 static int delete_disk(struct aac_dev *dev, void __user *arg) 3325 { 3326 struct aac_delete_disk dd; 3327 struct fsa_dev_info *fsa_dev_ptr; 3328 3329 fsa_dev_ptr = dev->fsa_dev; 3330 if (!fsa_dev_ptr) 3331 return -EBUSY; 3332 3333 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3334 return -EFAULT; 3335 3336 if (dd.cnum >= dev->maximum_num_containers) 3337 return -EINVAL; 3338 /* 3339 * If the container is locked, it can not be deleted by the API. 3340 */ 3341 if (fsa_dev_ptr[dd.cnum].locked) 3342 return -EBUSY; 3343 else { 3344 /* 3345 * Mark the container as no longer being valid. 3346 */ 3347 fsa_dev_ptr[dd.cnum].valid = 0; 3348 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3349 return 0; 3350 } 3351 } 3352 3353 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3354 { 3355 switch (cmd) { 3356 case FSACTL_QUERY_DISK: 3357 return query_disk(dev, arg); 3358 case FSACTL_DELETE_DISK: 3359 return delete_disk(dev, arg); 3360 case FSACTL_FORCE_DELETE_DISK: 3361 return force_delete_disk(dev, arg); 3362 case FSACTL_GET_CONTAINERS: 3363 return aac_get_containers(dev); 3364 default: 3365 return -ENOTTY; 3366 } 3367 } 3368 3369 /** 3370 * aac_srb_callback 3371 * @context: the context set in the fib - here it is scsi cmd 3372 * @fibptr: pointer to the fib 3373 * 3374 * Handles the completion of a scsi command to a non dasd device 3375 */ 3376 static void aac_srb_callback(void *context, struct fib * fibptr) 3377 { 3378 struct aac_srb_reply *srbreply; 3379 struct scsi_cmnd *scsicmd; 3380 3381 scsicmd = (struct scsi_cmnd *) context; 3382 3383 if (!aac_valid_context(scsicmd, fibptr)) 3384 return; 3385 3386 BUG_ON(fibptr == NULL); 3387 3388 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3389 3390 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3391 3392 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3393 /* fast response */ 3394 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3395 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3396 } else { 3397 /* 3398 * Calculate resid for sg 3399 */ 3400 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3401 - le32_to_cpu(srbreply->data_xfer_length)); 3402 } 3403 3404 3405 scsi_dma_unmap(scsicmd); 3406 3407 /* expose physical device if expose_physicald flag is on */ 3408 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3409 && expose_physicals > 0) 3410 aac_expose_phy_device(scsicmd); 3411 3412 /* 3413 * First check the fib status 3414 */ 3415 3416 if (le32_to_cpu(srbreply->status) != ST_OK) { 3417 int len; 3418 3419 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3420 le32_to_cpu(srbreply->status)); 3421 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3422 SCSI_SENSE_BUFFERSIZE); 3423 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION; 3424 memcpy(scsicmd->sense_buffer, 3425 srbreply->sense_data, len); 3426 } 3427 3428 /* 3429 * Next check the srb status 3430 */ 3431 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3432 case SRB_STATUS_ERROR_RECOVERY: 3433 case SRB_STATUS_PENDING: 3434 case SRB_STATUS_SUCCESS: 3435 scsicmd->result = DID_OK << 16; 3436 break; 3437 case SRB_STATUS_DATA_OVERRUN: 3438 switch (scsicmd->cmnd[0]) { 3439 case READ_6: 3440 case WRITE_6: 3441 case READ_10: 3442 case WRITE_10: 3443 case READ_12: 3444 case WRITE_12: 3445 case READ_16: 3446 case WRITE_16: 3447 if (le32_to_cpu(srbreply->data_xfer_length) 3448 < scsicmd->underflow) 3449 pr_warn("aacraid: SCSI CMD underflow\n"); 3450 else 3451 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3452 scsicmd->result = DID_ERROR << 16; 3453 break; 3454 case INQUIRY: 3455 scsicmd->result = DID_OK << 16; 3456 break; 3457 default: 3458 scsicmd->result = DID_OK << 16; 3459 break; 3460 } 3461 break; 3462 case SRB_STATUS_ABORTED: 3463 scsicmd->result = DID_ABORT << 16; 3464 break; 3465 case SRB_STATUS_ABORT_FAILED: 3466 /* 3467 * Not sure about this one - but assuming the 3468 * hba was trying to abort for some reason 3469 */ 3470 scsicmd->result = DID_ERROR << 16; 3471 break; 3472 case SRB_STATUS_PARITY_ERROR: 3473 scsicmd->result = DID_PARITY << 16; 3474 break; 3475 case SRB_STATUS_NO_DEVICE: 3476 case SRB_STATUS_INVALID_PATH_ID: 3477 case SRB_STATUS_INVALID_TARGET_ID: 3478 case SRB_STATUS_INVALID_LUN: 3479 case SRB_STATUS_SELECTION_TIMEOUT: 3480 scsicmd->result = DID_NO_CONNECT << 16; 3481 break; 3482 3483 case SRB_STATUS_COMMAND_TIMEOUT: 3484 case SRB_STATUS_TIMEOUT: 3485 scsicmd->result = DID_TIME_OUT << 16; 3486 break; 3487 3488 case SRB_STATUS_BUSY: 3489 scsicmd->result = DID_BUS_BUSY << 16; 3490 break; 3491 3492 case SRB_STATUS_BUS_RESET: 3493 scsicmd->result = DID_RESET << 16; 3494 break; 3495 3496 case SRB_STATUS_MESSAGE_REJECTED: 3497 scsicmd->result = DID_ERROR << 16; 3498 break; 3499 case SRB_STATUS_REQUEST_FLUSHED: 3500 case SRB_STATUS_ERROR: 3501 case SRB_STATUS_INVALID_REQUEST: 3502 case SRB_STATUS_REQUEST_SENSE_FAILED: 3503 case SRB_STATUS_NO_HBA: 3504 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3505 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3506 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3507 case SRB_STATUS_DELAYED_RETRY: 3508 case SRB_STATUS_BAD_FUNCTION: 3509 case SRB_STATUS_NOT_STARTED: 3510 case SRB_STATUS_NOT_IN_USE: 3511 case SRB_STATUS_FORCE_ABORT: 3512 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3513 default: 3514 #ifdef AAC_DETAILED_STATUS_INFO 3515 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3516 le32_to_cpu(srbreply->srb_status) & 0x3F, 3517 aac_get_status_string( 3518 le32_to_cpu(srbreply->srb_status) & 0x3F), 3519 scsicmd->cmnd[0], 3520 le32_to_cpu(srbreply->scsi_status)); 3521 #endif 3522 /* 3523 * When the CC bit is SET by the host in ATA pass thru CDB, 3524 * driver is supposed to return DID_OK 3525 * 3526 * When the CC bit is RESET by the host, driver should 3527 * return DID_ERROR 3528 */ 3529 if ((scsicmd->cmnd[0] == ATA_12) 3530 || (scsicmd->cmnd[0] == ATA_16)) { 3531 3532 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3533 scsicmd->result = DID_OK << 16; 3534 } else { 3535 scsicmd->result = DID_ERROR << 16; 3536 } 3537 } else { 3538 scsicmd->result = DID_ERROR << 16; 3539 } 3540 break; 3541 } 3542 if (le32_to_cpu(srbreply->scsi_status) 3543 == SAM_STAT_CHECK_CONDITION) { 3544 int len; 3545 3546 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3547 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3548 SCSI_SENSE_BUFFERSIZE); 3549 #ifdef AAC_DETAILED_STATUS_INFO 3550 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3551 le32_to_cpu(srbreply->status), len); 3552 #endif 3553 memcpy(scsicmd->sense_buffer, 3554 srbreply->sense_data, len); 3555 } 3556 3557 /* 3558 * OR in the scsi status (already shifted up a bit) 3559 */ 3560 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3561 3562 aac_fib_complete(fibptr); 3563 aac_scsi_done(scsicmd); 3564 } 3565 3566 static void hba_resp_task_complete(struct aac_dev *dev, 3567 struct scsi_cmnd *scsicmd, 3568 struct aac_hba_resp *err) { 3569 3570 scsicmd->result = err->status; 3571 /* set residual count */ 3572 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3573 3574 switch (err->status) { 3575 case SAM_STAT_GOOD: 3576 scsicmd->result |= DID_OK << 16; 3577 break; 3578 case SAM_STAT_CHECK_CONDITION: 3579 { 3580 int len; 3581 3582 len = min_t(u8, err->sense_response_data_len, 3583 SCSI_SENSE_BUFFERSIZE); 3584 if (len) 3585 memcpy(scsicmd->sense_buffer, 3586 err->sense_response_buf, len); 3587 scsicmd->result |= DID_OK << 16; 3588 break; 3589 } 3590 case SAM_STAT_BUSY: 3591 scsicmd->result |= DID_BUS_BUSY << 16; 3592 break; 3593 case SAM_STAT_TASK_ABORTED: 3594 scsicmd->result |= DID_ABORT << 16; 3595 break; 3596 case SAM_STAT_RESERVATION_CONFLICT: 3597 case SAM_STAT_TASK_SET_FULL: 3598 default: 3599 scsicmd->result |= DID_ERROR << 16; 3600 break; 3601 } 3602 } 3603 3604 static void hba_resp_task_failure(struct aac_dev *dev, 3605 struct scsi_cmnd *scsicmd, 3606 struct aac_hba_resp *err) 3607 { 3608 switch (err->status) { 3609 case HBA_RESP_STAT_HBAMODE_DISABLED: 3610 { 3611 u32 bus, cid; 3612 3613 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3614 cid = scmd_id(scsicmd); 3615 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3616 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3617 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3618 } 3619 scsicmd->result = DID_NO_CONNECT << 16; 3620 break; 3621 } 3622 case HBA_RESP_STAT_IO_ERROR: 3623 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3624 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY; 3625 break; 3626 case HBA_RESP_STAT_IO_ABORTED: 3627 scsicmd->result = DID_ABORT << 16; 3628 break; 3629 case HBA_RESP_STAT_INVALID_DEVICE: 3630 scsicmd->result = DID_NO_CONNECT << 16; 3631 break; 3632 case HBA_RESP_STAT_UNDERRUN: 3633 /* UNDERRUN is OK */ 3634 scsicmd->result = DID_OK << 16; 3635 break; 3636 case HBA_RESP_STAT_OVERRUN: 3637 default: 3638 scsicmd->result = DID_ERROR << 16; 3639 break; 3640 } 3641 } 3642 3643 /** 3644 * aac_hba_callback 3645 * @context: the context set in the fib - here it is scsi cmd 3646 * @fibptr: pointer to the fib 3647 * 3648 * Handles the completion of a native HBA scsi command 3649 */ 3650 void aac_hba_callback(void *context, struct fib *fibptr) 3651 { 3652 struct aac_dev *dev; 3653 struct scsi_cmnd *scsicmd; 3654 3655 struct aac_hba_resp *err = 3656 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3657 3658 scsicmd = (struct scsi_cmnd *) context; 3659 3660 if (!aac_valid_context(scsicmd, fibptr)) 3661 return; 3662 3663 WARN_ON(fibptr == NULL); 3664 dev = fibptr->dev; 3665 3666 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3667 scsi_dma_unmap(scsicmd); 3668 3669 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3670 /* fast response */ 3671 scsicmd->result = DID_OK << 16; 3672 goto out; 3673 } 3674 3675 switch (err->service_response) { 3676 case HBA_RESP_SVCRES_TASK_COMPLETE: 3677 hba_resp_task_complete(dev, scsicmd, err); 3678 break; 3679 case HBA_RESP_SVCRES_FAILURE: 3680 hba_resp_task_failure(dev, scsicmd, err); 3681 break; 3682 case HBA_RESP_SVCRES_TMF_REJECTED: 3683 scsicmd->result = DID_ERROR << 16; 3684 break; 3685 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3686 scsicmd->result = DID_NO_CONNECT << 16; 3687 break; 3688 case HBA_RESP_SVCRES_TMF_COMPLETE: 3689 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3690 scsicmd->result = DID_OK << 16; 3691 break; 3692 default: 3693 scsicmd->result = DID_ERROR << 16; 3694 break; 3695 } 3696 3697 out: 3698 aac_fib_complete(fibptr); 3699 3700 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3701 aac_priv(scsicmd)->sent_command = 1; 3702 else 3703 aac_scsi_done(scsicmd); 3704 } 3705 3706 /** 3707 * aac_send_srb_fib 3708 * @scsicmd: the scsi command block 3709 * 3710 * This routine will form a FIB and fill in the aac_srb from the 3711 * scsicmd passed in. 3712 */ 3713 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3714 { 3715 struct fib* cmd_fibcontext; 3716 struct aac_dev* dev; 3717 int status; 3718 3719 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3720 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3721 scsicmd->device->lun > 7) { 3722 scsicmd->result = DID_NO_CONNECT << 16; 3723 aac_scsi_done(scsicmd); 3724 return 0; 3725 } 3726 3727 /* 3728 * Allocate and initialize a Fib then setup a BlockWrite command 3729 */ 3730 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3731 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 3732 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3733 3734 /* 3735 * Check that the command queued to the controller 3736 */ 3737 if (status == -EINPROGRESS) 3738 return 0; 3739 3740 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3741 aac_fib_complete(cmd_fibcontext); 3742 aac_fib_free(cmd_fibcontext); 3743 3744 return -1; 3745 } 3746 3747 /** 3748 * aac_send_hba_fib 3749 * @scsicmd: the scsi command block 3750 * 3751 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3752 * scsicmd passed in. 3753 */ 3754 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3755 { 3756 struct fib *cmd_fibcontext; 3757 struct aac_dev *dev; 3758 int status; 3759 3760 dev = shost_priv(scsicmd->device->host); 3761 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3762 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3763 scsicmd->result = DID_NO_CONNECT << 16; 3764 aac_scsi_done(scsicmd); 3765 return 0; 3766 } 3767 3768 /* 3769 * Allocate and initialize a Fib then setup a BlockWrite command 3770 */ 3771 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3772 if (!cmd_fibcontext) 3773 return -1; 3774 3775 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE; 3776 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3777 3778 /* 3779 * Check that the command queued to the controller 3780 */ 3781 if (status == -EINPROGRESS) 3782 return 0; 3783 3784 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3785 status); 3786 aac_fib_complete(cmd_fibcontext); 3787 aac_fib_free(cmd_fibcontext); 3788 3789 return -1; 3790 } 3791 3792 3793 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3794 { 3795 unsigned long byte_count = 0; 3796 int nseg; 3797 struct scatterlist *sg; 3798 int i; 3799 3800 // Get rid of old data 3801 psg->count = 0; 3802 psg->sg[0].addr = 0; 3803 psg->sg[0].count = 0; 3804 3805 nseg = scsi_dma_map(scsicmd); 3806 if (nseg <= 0) 3807 return nseg; 3808 3809 psg->count = cpu_to_le32(nseg); 3810 3811 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3812 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3813 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3814 byte_count += sg_dma_len(sg); 3815 } 3816 /* hba wants the size to be exact */ 3817 if (byte_count > scsi_bufflen(scsicmd)) { 3818 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3819 (byte_count - scsi_bufflen(scsicmd)); 3820 psg->sg[i-1].count = cpu_to_le32(temp); 3821 byte_count = scsi_bufflen(scsicmd); 3822 } 3823 /* Check for command underflow */ 3824 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3825 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3826 byte_count, scsicmd->underflow); 3827 } 3828 3829 return byte_count; 3830 } 3831 3832 3833 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3834 { 3835 unsigned long byte_count = 0; 3836 u64 addr; 3837 int nseg; 3838 struct scatterlist *sg; 3839 int i; 3840 3841 // Get rid of old data 3842 psg->count = 0; 3843 psg->sg[0].addr[0] = 0; 3844 psg->sg[0].addr[1] = 0; 3845 psg->sg[0].count = 0; 3846 3847 nseg = scsi_dma_map(scsicmd); 3848 if (nseg <= 0) 3849 return nseg; 3850 3851 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3852 int count = sg_dma_len(sg); 3853 addr = sg_dma_address(sg); 3854 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3855 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3856 psg->sg[i].count = cpu_to_le32(count); 3857 byte_count += count; 3858 } 3859 psg->count = cpu_to_le32(nseg); 3860 /* hba wants the size to be exact */ 3861 if (byte_count > scsi_bufflen(scsicmd)) { 3862 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3863 (byte_count - scsi_bufflen(scsicmd)); 3864 psg->sg[i-1].count = cpu_to_le32(temp); 3865 byte_count = scsi_bufflen(scsicmd); 3866 } 3867 /* Check for command underflow */ 3868 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3869 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3870 byte_count, scsicmd->underflow); 3871 } 3872 3873 return byte_count; 3874 } 3875 3876 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3877 { 3878 unsigned long byte_count = 0; 3879 int nseg; 3880 struct scatterlist *sg; 3881 int i; 3882 3883 // Get rid of old data 3884 psg->count = 0; 3885 psg->sg[0].next = 0; 3886 psg->sg[0].prev = 0; 3887 psg->sg[0].addr[0] = 0; 3888 psg->sg[0].addr[1] = 0; 3889 psg->sg[0].count = 0; 3890 psg->sg[0].flags = 0; 3891 3892 nseg = scsi_dma_map(scsicmd); 3893 if (nseg <= 0) 3894 return nseg; 3895 3896 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3897 int count = sg_dma_len(sg); 3898 u64 addr = sg_dma_address(sg); 3899 psg->sg[i].next = 0; 3900 psg->sg[i].prev = 0; 3901 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3902 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3903 psg->sg[i].count = cpu_to_le32(count); 3904 psg->sg[i].flags = 0; 3905 byte_count += count; 3906 } 3907 psg->count = cpu_to_le32(nseg); 3908 /* hba wants the size to be exact */ 3909 if (byte_count > scsi_bufflen(scsicmd)) { 3910 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3911 (byte_count - scsi_bufflen(scsicmd)); 3912 psg->sg[i-1].count = cpu_to_le32(temp); 3913 byte_count = scsi_bufflen(scsicmd); 3914 } 3915 /* Check for command underflow */ 3916 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3917 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3918 byte_count, scsicmd->underflow); 3919 } 3920 3921 return byte_count; 3922 } 3923 3924 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3925 struct aac_raw_io2 *rio2, int sg_max) 3926 { 3927 unsigned long byte_count = 0; 3928 int nseg; 3929 struct scatterlist *sg; 3930 int i, conformable = 0; 3931 u32 min_size = PAGE_SIZE, cur_size; 3932 3933 nseg = scsi_dma_map(scsicmd); 3934 if (nseg <= 0) 3935 return nseg; 3936 3937 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3938 int count = sg_dma_len(sg); 3939 u64 addr = sg_dma_address(sg); 3940 3941 BUG_ON(i >= sg_max); 3942 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3943 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3944 cur_size = cpu_to_le32(count); 3945 rio2->sge[i].length = cur_size; 3946 rio2->sge[i].flags = 0; 3947 if (i == 0) { 3948 conformable = 1; 3949 rio2->sgeFirstSize = cur_size; 3950 } else if (i == 1) { 3951 rio2->sgeNominalSize = cur_size; 3952 min_size = cur_size; 3953 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3954 conformable = 0; 3955 if (cur_size < min_size) 3956 min_size = cur_size; 3957 } 3958 byte_count += count; 3959 } 3960 3961 /* hba wants the size to be exact */ 3962 if (byte_count > scsi_bufflen(scsicmd)) { 3963 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 3964 (byte_count - scsi_bufflen(scsicmd)); 3965 rio2->sge[i-1].length = cpu_to_le32(temp); 3966 byte_count = scsi_bufflen(scsicmd); 3967 } 3968 3969 rio2->sgeCnt = cpu_to_le32(nseg); 3970 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 3971 /* not conformable: evaluate required sg elements */ 3972 if (!conformable) { 3973 int j, nseg_new = nseg, err_found; 3974 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 3975 err_found = 0; 3976 nseg_new = 2; 3977 for (j = 1; j < nseg - 1; ++j) { 3978 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 3979 err_found = 1; 3980 break; 3981 } 3982 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 3983 } 3984 if (!err_found) 3985 break; 3986 } 3987 if (i > 0 && nseg_new <= sg_max) { 3988 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 3989 3990 if (ret < 0) 3991 return ret; 3992 } 3993 } else 3994 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 3995 3996 /* Check for command underflow */ 3997 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3998 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3999 byte_count, scsicmd->underflow); 4000 } 4001 4002 return byte_count; 4003 } 4004 4005 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4006 { 4007 struct sge_ieee1212 *sge; 4008 int i, j, pos; 4009 u32 addr_low; 4010 4011 if (aac_convert_sgl == 0) 4012 return 0; 4013 4014 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC); 4015 if (sge == NULL) 4016 return -ENOMEM; 4017 4018 for (i = 1, pos = 1; i < nseg-1; ++i) { 4019 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4020 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4021 sge[pos].addrLow = addr_low; 4022 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4023 if (addr_low < rio2->sge[i].addrLow) 4024 sge[pos].addrHigh++; 4025 sge[pos].length = pages * PAGE_SIZE; 4026 sge[pos].flags = 0; 4027 pos++; 4028 } 4029 } 4030 sge[pos] = rio2->sge[nseg-1]; 4031 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4032 4033 kfree(sge); 4034 rio2->sgeCnt = cpu_to_le32(nseg_new); 4035 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4036 rio2->sgeNominalSize = pages * PAGE_SIZE; 4037 return 0; 4038 } 4039 4040 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4041 struct aac_hba_cmd_req *hbacmd, 4042 int sg_max, 4043 u64 sg_address) 4044 { 4045 unsigned long byte_count = 0; 4046 int nseg; 4047 struct scatterlist *sg; 4048 int i; 4049 u32 cur_size; 4050 struct aac_hba_sgl *sge; 4051 4052 nseg = scsi_dma_map(scsicmd); 4053 if (nseg <= 0) { 4054 byte_count = nseg; 4055 goto out; 4056 } 4057 4058 if (nseg > HBA_MAX_SG_EMBEDDED) 4059 sge = &hbacmd->sge[2]; 4060 else 4061 sge = &hbacmd->sge[0]; 4062 4063 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4064 int count = sg_dma_len(sg); 4065 u64 addr = sg_dma_address(sg); 4066 4067 WARN_ON(i >= sg_max); 4068 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4069 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4070 cur_size = cpu_to_le32(count); 4071 sge->len = cur_size; 4072 sge->flags = 0; 4073 byte_count += count; 4074 sge++; 4075 } 4076 4077 sge--; 4078 /* hba wants the size to be exact */ 4079 if (byte_count > scsi_bufflen(scsicmd)) { 4080 u32 temp; 4081 4082 temp = le32_to_cpu(sge->len) - byte_count 4083 - scsi_bufflen(scsicmd); 4084 sge->len = cpu_to_le32(temp); 4085 byte_count = scsi_bufflen(scsicmd); 4086 } 4087 4088 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4089 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4090 sge->flags = cpu_to_le32(0x40000000); 4091 } else { 4092 /* not embedded */ 4093 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4094 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4095 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4096 hbacmd->sge[0].addr_lo = 4097 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4098 } 4099 4100 /* Check for command underflow */ 4101 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4102 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4103 byte_count, scsicmd->underflow); 4104 } 4105 out: 4106 return byte_count; 4107 } 4108 4109 #ifdef AAC_DETAILED_STATUS_INFO 4110 4111 struct aac_srb_status_info { 4112 u32 status; 4113 char *str; 4114 }; 4115 4116 4117 static struct aac_srb_status_info srb_status_info[] = { 4118 { SRB_STATUS_PENDING, "Pending Status"}, 4119 { SRB_STATUS_SUCCESS, "Success"}, 4120 { SRB_STATUS_ABORTED, "Aborted Command"}, 4121 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4122 { SRB_STATUS_ERROR, "Error Event"}, 4123 { SRB_STATUS_BUSY, "Device Busy"}, 4124 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4125 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4126 { SRB_STATUS_NO_DEVICE, "No Device"}, 4127 { SRB_STATUS_TIMEOUT, "Timeout"}, 4128 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4129 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4130 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4131 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4132 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4133 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4134 { SRB_STATUS_NO_HBA, "No HBA"}, 4135 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4136 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4137 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4138 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4139 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4140 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4141 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4142 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4143 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4144 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4145 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4146 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4147 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4148 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4149 { 0xff, "Unknown Error"} 4150 }; 4151 4152 char *aac_get_status_string(u32 status) 4153 { 4154 int i; 4155 4156 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4157 if (srb_status_info[i].status == status) 4158 return srb_status_info[i].str; 4159 4160 return "Bad Status Code"; 4161 } 4162 4163 #endif 4164