1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 29 #include <linux/module.h> 30 31 #include <asm/unaligned.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 38 #include "aacraid.h" 39 40 /* values for inqd_pdt: Peripheral device type in plain English */ 41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 42 #define INQD_PDT_PROC 0x03 /* Processor device */ 43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 47 48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 50 51 /* 52 * Sense codes 53 */ 54 55 #define SENCODE_NO_SENSE 0x00 56 #define SENCODE_END_OF_DATA 0x00 57 #define SENCODE_BECOMING_READY 0x04 58 #define SENCODE_INIT_CMD_REQUIRED 0x04 59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 61 #define SENCODE_INVALID_COMMAND 0x20 62 #define SENCODE_LBA_OUT_OF_RANGE 0x21 63 #define SENCODE_INVALID_CDB_FIELD 0x24 64 #define SENCODE_LUN_NOT_SUPPORTED 0x25 65 #define SENCODE_INVALID_PARAM_FIELD 0x26 66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 67 #define SENCODE_PARAM_VALUE_INVALID 0x26 68 #define SENCODE_RESET_OCCURRED 0x29 69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 76 #define SENCODE_OVERLAPPED_COMMAND 0x4E 77 78 /* 79 * Additional sense codes 80 */ 81 82 #define ASENCODE_NO_SENSE 0x00 83 #define ASENCODE_END_OF_DATA 0x05 84 #define ASENCODE_BECOMING_READY 0x01 85 #define ASENCODE_INIT_CMD_REQUIRED 0x02 86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 87 #define ASENCODE_INVALID_COMMAND 0x00 88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 89 #define ASENCODE_INVALID_CDB_FIELD 0x00 90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 91 #define ASENCODE_INVALID_PARAM_FIELD 0x00 92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 93 #define ASENCODE_PARAM_VALUE_INVALID 0x02 94 #define ASENCODE_RESET_OCCURRED 0x00 95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 102 #define ASENCODE_OVERLAPPED_COMMAND 0x00 103 104 #define BYTE0(x) (unsigned char)(x) 105 #define BYTE1(x) (unsigned char)((x) >> 8) 106 #define BYTE2(x) (unsigned char)((x) >> 16) 107 #define BYTE3(x) (unsigned char)((x) >> 24) 108 109 /* MODE_SENSE data format */ 110 typedef struct { 111 struct { 112 u8 data_length; 113 u8 med_type; 114 u8 dev_par; 115 u8 bd_length; 116 } __attribute__((packed)) hd; 117 struct { 118 u8 dens_code; 119 u8 block_count[3]; 120 u8 reserved; 121 u8 block_length[3]; 122 } __attribute__((packed)) bd; 123 u8 mpc_buf[3]; 124 } __attribute__((packed)) aac_modep_data; 125 126 /* MODE_SENSE_10 data format */ 127 typedef struct { 128 struct { 129 u8 data_length[2]; 130 u8 med_type; 131 u8 dev_par; 132 u8 rsrvd[2]; 133 u8 bd_length[2]; 134 } __attribute__((packed)) hd; 135 struct { 136 u8 dens_code; 137 u8 block_count[3]; 138 u8 reserved; 139 u8 block_length[3]; 140 } __attribute__((packed)) bd; 141 u8 mpc_buf[3]; 142 } __attribute__((packed)) aac_modep10_data; 143 144 /*------------------------------------------------------------------------------ 145 * S T R U C T S / T Y P E D E F S 146 *----------------------------------------------------------------------------*/ 147 /* SCSI inquiry data */ 148 struct inquiry_data { 149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 150 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 153 u8 inqd_len; /* Additional length (n-4) */ 154 u8 inqd_pad1[2];/* Reserved - must be zero */ 155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 156 u8 inqd_vid[8]; /* Vendor ID */ 157 u8 inqd_pid[16];/* Product ID */ 158 u8 inqd_prl[4]; /* Product Revision Level */ 159 }; 160 161 /* Added for VPD 0x83 */ 162 struct tvpd_id_descriptor_type_1 { 163 u8 codeset:4; /* VPD_CODE_SET */ 164 u8 reserved:4; 165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 166 u8 reserved2:4; 167 u8 reserved3; 168 u8 identifierlength; 169 u8 venid[8]; 170 u8 productid[16]; 171 u8 serialnumber[8]; /* SN in ASCII */ 172 173 }; 174 175 struct tvpd_id_descriptor_type_2 { 176 u8 codeset:4; /* VPD_CODE_SET */ 177 u8 reserved:4; 178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 179 u8 reserved2:4; 180 u8 reserved3; 181 u8 identifierlength; 182 struct teu64id { 183 u32 Serial; 184 /* The serial number supposed to be 40 bits, 185 * bit we only support 32, so make the last byte zero. */ 186 u8 reserved; 187 u8 venid[3]; 188 } eu64id; 189 190 }; 191 192 struct tvpd_id_descriptor_type_3 { 193 u8 codeset : 4; /* VPD_CODE_SET */ 194 u8 reserved : 4; 195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 196 u8 reserved2 : 4; 197 u8 reserved3; 198 u8 identifierlength; 199 u8 Identifier[16]; 200 }; 201 202 struct tvpd_page83 { 203 u8 DeviceType:5; 204 u8 DeviceTypeQualifier:3; 205 u8 PageCode; 206 u8 reserved; 207 u8 PageLength; 208 struct tvpd_id_descriptor_type_1 type1; 209 struct tvpd_id_descriptor_type_2 type2; 210 struct tvpd_id_descriptor_type_3 type3; 211 }; 212 213 /* 214 * M O D U L E G L O B A L S 215 */ 216 217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 221 struct aac_raw_io2 *rio2, int sg_max); 222 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 223 struct aac_hba_cmd_req *hbacmd, 224 int sg_max, u64 sg_address); 225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 226 int pages, int nseg, int nseg_new); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 static int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 static int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @dev: aac driver data 354 * @commit_flag: force sending CT_COMMIT_CONFIG 355 * 356 * Query config status, and commit the configuration if needed. 357 */ 358 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 359 { 360 int status = 0; 361 struct fib * fibptr; 362 363 if (!(fibptr = aac_fib_alloc(dev))) 364 return -ENOMEM; 365 366 aac_fib_init(fibptr); 367 { 368 struct aac_get_config_status *dinfo; 369 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 370 371 dinfo->command = cpu_to_le32(VM_ContainerConfig); 372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 374 } 375 376 status = aac_fib_send(ContainerCommand, 377 fibptr, 378 sizeof (struct aac_get_config_status), 379 FsaNormal, 380 1, 1, 381 NULL, NULL); 382 if (status < 0) { 383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 384 } else { 385 struct aac_get_config_status_resp *reply 386 = (struct aac_get_config_status_resp *) fib_data(fibptr); 387 dprintk((KERN_WARNING 388 "aac_get_config_status: response=%d status=%d action=%d\n", 389 le32_to_cpu(reply->response), 390 le32_to_cpu(reply->status), 391 le32_to_cpu(reply->data.action))); 392 if ((le32_to_cpu(reply->response) != ST_OK) || 393 (le32_to_cpu(reply->status) != CT_OK) || 394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 396 status = -EINVAL; 397 } 398 } 399 /* Do not set XferState to zero unless receives a response from F/W */ 400 if (status >= 0) 401 aac_fib_complete(fibptr); 402 403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 404 if (status >= 0) { 405 if ((aac_commit == 1) || commit_flag) { 406 struct aac_commit_config * dinfo; 407 aac_fib_init(fibptr); 408 dinfo = (struct aac_commit_config *) fib_data(fibptr); 409 410 dinfo->command = cpu_to_le32(VM_ContainerConfig); 411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 412 413 status = aac_fib_send(ContainerCommand, 414 fibptr, 415 sizeof (struct aac_commit_config), 416 FsaNormal, 417 1, 1, 418 NULL, NULL); 419 /* Do not set XferState to zero unless 420 * receives a response from F/W */ 421 if (status >= 0) 422 aac_fib_complete(fibptr); 423 } else if (aac_commit == 0) { 424 printk(KERN_WARNING 425 "aac_get_config_status: Foreign device configurations are being ignored\n"); 426 } 427 } 428 /* FIB should be freed only after getting the response from the F/W */ 429 if (status != -ERESTARTSYS) 430 aac_fib_free(fibptr); 431 return status; 432 } 433 434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 435 { 436 char inq_data; 437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 439 inq_data &= 0xdf; 440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 441 } 442 } 443 444 /** 445 * aac_get_containers - list containers 446 * @dev: aac driver data 447 * 448 * Make a list of all containers on this controller 449 */ 450 int aac_get_containers(struct aac_dev *dev) 451 { 452 struct fsa_dev_info *fsa_dev_ptr; 453 u32 index; 454 int status = 0; 455 struct fib * fibptr; 456 struct aac_get_container_count *dinfo; 457 struct aac_get_container_count_resp *dresp; 458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 459 460 if (!(fibptr = aac_fib_alloc(dev))) 461 return -ENOMEM; 462 463 aac_fib_init(fibptr); 464 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 465 dinfo->command = cpu_to_le32(VM_ContainerConfig); 466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 467 468 status = aac_fib_send(ContainerCommand, 469 fibptr, 470 sizeof (struct aac_get_container_count), 471 FsaNormal, 472 1, 1, 473 NULL, NULL); 474 if (status >= 0) { 475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 477 if (fibptr->dev->supplement_adapter_info.supported_options2 & 478 AAC_OPTION_SUPPORTED_240_VOLUMES) { 479 maximum_num_containers = 480 le32_to_cpu(dresp->MaxSimpleVolumes); 481 } 482 aac_fib_complete(fibptr); 483 } 484 /* FIB should be freed only after getting the response from the F/W */ 485 if (status != -ERESTARTSYS) 486 aac_fib_free(fibptr); 487 488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 490 if (dev->fsa_dev == NULL || 491 dev->maximum_num_containers != maximum_num_containers) { 492 493 fsa_dev_ptr = dev->fsa_dev; 494 495 dev->fsa_dev = kcalloc(maximum_num_containers, 496 sizeof(*fsa_dev_ptr), GFP_KERNEL); 497 498 kfree(fsa_dev_ptr); 499 fsa_dev_ptr = NULL; 500 501 502 if (!dev->fsa_dev) 503 return -ENOMEM; 504 505 dev->maximum_num_containers = maximum_num_containers; 506 } 507 for (index = 0; index < dev->maximum_num_containers; index++) { 508 dev->fsa_dev[index].devname[0] = '\0'; 509 dev->fsa_dev[index].valid = 0; 510 511 status = aac_probe_container(dev, index); 512 513 if (status < 0) { 514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 515 break; 516 } 517 } 518 return status; 519 } 520 521 static void get_container_name_callback(void *context, struct fib * fibptr) 522 { 523 struct aac_get_name_resp * get_name_reply; 524 struct scsi_cmnd * scsicmd; 525 526 scsicmd = (struct scsi_cmnd *) context; 527 528 if (!aac_valid_context(scsicmd, fibptr)) 529 return; 530 531 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 532 BUG_ON(fibptr == NULL); 533 534 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 535 /* Failure is irrelevant, using default value instead */ 536 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 537 && (get_name_reply->data[0] != '\0')) { 538 char *sp = get_name_reply->data; 539 int data_size = sizeof_field(struct aac_get_name_resp, data); 540 541 sp[data_size - 1] = '\0'; 542 while (*sp == ' ') 543 ++sp; 544 if (*sp) { 545 struct inquiry_data inq; 546 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 547 int count = sizeof(d); 548 char *dp = d; 549 do { 550 *dp++ = (*sp) ? *sp++ : ' '; 551 } while (--count > 0); 552 553 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 554 memcpy(inq.inqd_pid, d, sizeof(d)); 555 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 556 } 557 } 558 559 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 560 561 aac_fib_complete(fibptr); 562 scsicmd->scsi_done(scsicmd); 563 } 564 565 /* 566 * aac_get_container_name - get container name, none blocking. 567 */ 568 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 569 { 570 int status; 571 int data_size; 572 struct aac_get_name *dinfo; 573 struct fib * cmd_fibcontext; 574 struct aac_dev * dev; 575 576 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 577 578 data_size = sizeof_field(struct aac_get_name_resp, data); 579 580 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 581 582 aac_fib_init(cmd_fibcontext); 583 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 584 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 585 586 dinfo->command = cpu_to_le32(VM_ContainerConfig); 587 dinfo->type = cpu_to_le32(CT_READ_NAME); 588 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 589 dinfo->count = cpu_to_le32(data_size - 1); 590 591 status = aac_fib_send(ContainerCommand, 592 cmd_fibcontext, 593 sizeof(struct aac_get_name_resp), 594 FsaNormal, 595 0, 1, 596 (fib_callback)get_container_name_callback, 597 (void *) scsicmd); 598 599 /* 600 * Check that the command queued to the controller 601 */ 602 if (status == -EINPROGRESS) 603 return 0; 604 605 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 606 aac_fib_complete(cmd_fibcontext); 607 return -1; 608 } 609 610 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 611 { 612 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 613 614 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 615 return aac_scsi_cmd(scsicmd); 616 617 scsicmd->result = DID_NO_CONNECT << 16; 618 scsicmd->scsi_done(scsicmd); 619 return 0; 620 } 621 622 static void _aac_probe_container2(void * context, struct fib * fibptr) 623 { 624 struct fsa_dev_info *fsa_dev_ptr; 625 int (*callback)(struct scsi_cmnd *); 626 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 627 int i; 628 629 630 if (!aac_valid_context(scsicmd, fibptr)) 631 return; 632 633 scsicmd->SCp.Status = 0; 634 fsa_dev_ptr = fibptr->dev->fsa_dev; 635 if (fsa_dev_ptr) { 636 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 637 __le32 sup_options2; 638 639 fsa_dev_ptr += scmd_id(scsicmd); 640 sup_options2 = 641 fibptr->dev->supplement_adapter_info.supported_options2; 642 643 if ((le32_to_cpu(dresp->status) == ST_OK) && 644 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 645 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 646 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 647 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 648 fsa_dev_ptr->block_size = 0x200; 649 } else { 650 fsa_dev_ptr->block_size = 651 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 652 } 653 for (i = 0; i < 16; i++) 654 fsa_dev_ptr->identifier[i] = 655 dresp->mnt[0].fileinfo.bdevinfo 656 .identifier[i]; 657 fsa_dev_ptr->valid = 1; 658 /* sense_key holds the current state of the spin-up */ 659 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 660 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 661 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 662 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 663 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 664 fsa_dev_ptr->size 665 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 666 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 667 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 668 } 669 if ((fsa_dev_ptr->valid & 1) == 0) 670 fsa_dev_ptr->valid = 0; 671 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 672 } 673 aac_fib_complete(fibptr); 674 aac_fib_free(fibptr); 675 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 676 scsicmd->SCp.ptr = NULL; 677 (*callback)(scsicmd); 678 return; 679 } 680 681 static void _aac_probe_container1(void * context, struct fib * fibptr) 682 { 683 struct scsi_cmnd * scsicmd; 684 struct aac_mount * dresp; 685 struct aac_query_mount *dinfo; 686 int status; 687 688 dresp = (struct aac_mount *) fib_data(fibptr); 689 if (!aac_supports_2T(fibptr->dev)) { 690 dresp->mnt[0].capacityhigh = 0; 691 if ((le32_to_cpu(dresp->status) == ST_OK) && 692 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 693 _aac_probe_container2(context, fibptr); 694 return; 695 } 696 } 697 scsicmd = (struct scsi_cmnd *) context; 698 699 if (!aac_valid_context(scsicmd, fibptr)) 700 return; 701 702 aac_fib_init(fibptr); 703 704 dinfo = (struct aac_query_mount *)fib_data(fibptr); 705 706 if (fibptr->dev->supplement_adapter_info.supported_options2 & 707 AAC_OPTION_VARIABLE_BLOCK_SIZE) 708 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 709 else 710 dinfo->command = cpu_to_le32(VM_NameServe64); 711 712 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 713 dinfo->type = cpu_to_le32(FT_FILESYS); 714 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 715 716 status = aac_fib_send(ContainerCommand, 717 fibptr, 718 sizeof(struct aac_query_mount), 719 FsaNormal, 720 0, 1, 721 _aac_probe_container2, 722 (void *) scsicmd); 723 /* 724 * Check that the command queued to the controller 725 */ 726 if (status < 0 && status != -EINPROGRESS) { 727 /* Inherit results from VM_NameServe, if any */ 728 dresp->status = cpu_to_le32(ST_OK); 729 _aac_probe_container2(context, fibptr); 730 } 731 } 732 733 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 734 { 735 struct fib * fibptr; 736 int status = -ENOMEM; 737 738 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 739 struct aac_query_mount *dinfo; 740 741 aac_fib_init(fibptr); 742 743 dinfo = (struct aac_query_mount *)fib_data(fibptr); 744 745 if (fibptr->dev->supplement_adapter_info.supported_options2 & 746 AAC_OPTION_VARIABLE_BLOCK_SIZE) 747 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 748 else 749 dinfo->command = cpu_to_le32(VM_NameServe); 750 751 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 752 dinfo->type = cpu_to_le32(FT_FILESYS); 753 scsicmd->SCp.ptr = (char *)callback; 754 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 755 756 status = aac_fib_send(ContainerCommand, 757 fibptr, 758 sizeof(struct aac_query_mount), 759 FsaNormal, 760 0, 1, 761 _aac_probe_container1, 762 (void *) scsicmd); 763 /* 764 * Check that the command queued to the controller 765 */ 766 if (status == -EINPROGRESS) 767 return 0; 768 769 if (status < 0) { 770 scsicmd->SCp.ptr = NULL; 771 aac_fib_complete(fibptr); 772 aac_fib_free(fibptr); 773 } 774 } 775 if (status < 0) { 776 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 777 if (fsa_dev_ptr) { 778 fsa_dev_ptr += scmd_id(scsicmd); 779 if ((fsa_dev_ptr->valid & 1) == 0) { 780 fsa_dev_ptr->valid = 0; 781 return (*callback)(scsicmd); 782 } 783 } 784 } 785 return status; 786 } 787 788 /** 789 * aac_probe_container_callback1 - query a logical volume 790 * @scsicmd: the scsi command block 791 * 792 * Queries the controller about the given volume. The volume information 793 * is updated in the struct fsa_dev_info structure rather than returned. 794 */ 795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 796 { 797 scsicmd->device = NULL; 798 return 0; 799 } 800 801 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 802 { 803 aac_probe_container_callback1(scsi_cmnd); 804 } 805 806 int aac_probe_container(struct aac_dev *dev, int cid) 807 { 808 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 809 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 810 int status; 811 812 if (!scsicmd || !scsidev) { 813 kfree(scsicmd); 814 kfree(scsidev); 815 return -ENOMEM; 816 } 817 scsicmd->scsi_done = aac_probe_container_scsi_done; 818 819 scsicmd->device = scsidev; 820 scsidev->sdev_state = 0; 821 scsidev->id = cid; 822 scsidev->host = dev->scsi_host_ptr; 823 824 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 825 while (scsicmd->device == scsidev) 826 schedule(); 827 kfree(scsidev); 828 status = scsicmd->SCp.Status; 829 kfree(scsicmd); 830 return status; 831 } 832 833 /* Local Structure to set SCSI inquiry data strings */ 834 struct scsi_inq { 835 char vid[8]; /* Vendor ID */ 836 char pid[16]; /* Product ID */ 837 char prl[4]; /* Product Revision Level */ 838 }; 839 840 /** 841 * inqstrcpy - string merge 842 * @a: string to copy from 843 * @b: string to copy to 844 * 845 * Copy a String from one location to another 846 * without copying \0 847 */ 848 849 static void inqstrcpy(char *a, char *b) 850 { 851 852 while (*a != (char)0) 853 *b++ = *a++; 854 } 855 856 static char *container_types[] = { 857 "None", 858 "Volume", 859 "Mirror", 860 "Stripe", 861 "RAID5", 862 "SSRW", 863 "SSRO", 864 "Morph", 865 "Legacy", 866 "RAID4", 867 "RAID10", 868 "RAID00", 869 "V-MIRRORS", 870 "PSEUDO R4", 871 "RAID50", 872 "RAID5D", 873 "RAID5D0", 874 "RAID1E", 875 "RAID6", 876 "RAID60", 877 "Unknown" 878 }; 879 880 char * get_container_type(unsigned tindex) 881 { 882 if (tindex >= ARRAY_SIZE(container_types)) 883 tindex = ARRAY_SIZE(container_types) - 1; 884 return container_types[tindex]; 885 } 886 887 /* Function: setinqstr 888 * 889 * Arguments: [1] pointer to void [1] int 890 * 891 * Purpose: Sets SCSI inquiry data strings for vendor, product 892 * and revision level. Allows strings to be set in platform dependent 893 * files instead of in OS dependent driver source. 894 */ 895 896 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 897 { 898 struct scsi_inq *str; 899 struct aac_supplement_adapter_info *sup_adap_info; 900 901 sup_adap_info = &dev->supplement_adapter_info; 902 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 903 memset(str, ' ', sizeof(*str)); 904 905 if (sup_adap_info->adapter_type_text[0]) { 906 int c; 907 char *cp; 908 char *cname = kmemdup(sup_adap_info->adapter_type_text, 909 sizeof(sup_adap_info->adapter_type_text), 910 GFP_ATOMIC); 911 if (!cname) 912 return; 913 914 cp = cname; 915 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 916 inqstrcpy("SMC", str->vid); 917 else { 918 c = sizeof(str->vid); 919 while (*cp && *cp != ' ' && --c) 920 ++cp; 921 c = *cp; 922 *cp = '\0'; 923 inqstrcpy(cname, str->vid); 924 *cp = c; 925 while (*cp && *cp != ' ') 926 ++cp; 927 } 928 while (*cp == ' ') 929 ++cp; 930 /* last six chars reserved for vol type */ 931 if (strlen(cp) > sizeof(str->pid)) 932 cp[sizeof(str->pid)] = '\0'; 933 inqstrcpy (cp, str->pid); 934 935 kfree(cname); 936 } else { 937 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 938 939 inqstrcpy (mp->vname, str->vid); 940 /* last six chars reserved for vol type */ 941 inqstrcpy (mp->model, str->pid); 942 } 943 944 if (tindex < ARRAY_SIZE(container_types)){ 945 char *findit = str->pid; 946 947 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 948 /* RAID is superfluous in the context of a RAID device */ 949 if (memcmp(findit-4, "RAID", 4) == 0) 950 *(findit -= 4) = ' '; 951 if (((findit - str->pid) + strlen(container_types[tindex])) 952 < (sizeof(str->pid) + sizeof(str->prl))) 953 inqstrcpy (container_types[tindex], findit + 1); 954 } 955 inqstrcpy ("V1.0", str->prl); 956 } 957 958 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 959 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 960 { 961 int container; 962 963 vpdpage83data->type3.codeset = 1; 964 vpdpage83data->type3.identifiertype = 3; 965 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 966 - 4; 967 968 for (container = 0; container < dev->maximum_num_containers; 969 container++) { 970 971 if (scmd_id(scsicmd) == container) { 972 memcpy(vpdpage83data->type3.Identifier, 973 dev->fsa_dev[container].identifier, 974 16); 975 break; 976 } 977 } 978 } 979 980 static void get_container_serial_callback(void *context, struct fib * fibptr) 981 { 982 struct aac_get_serial_resp * get_serial_reply; 983 struct scsi_cmnd * scsicmd; 984 985 BUG_ON(fibptr == NULL); 986 987 scsicmd = (struct scsi_cmnd *) context; 988 if (!aac_valid_context(scsicmd, fibptr)) 989 return; 990 991 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 992 /* Failure is irrelevant, using default value instead */ 993 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 994 /*Check to see if it's for VPD 0x83 or 0x80 */ 995 if (scsicmd->cmnd[2] == 0x83) { 996 /* vpd page 0x83 - Device Identification Page */ 997 struct aac_dev *dev; 998 int i; 999 struct tvpd_page83 vpdpage83data; 1000 1001 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1002 1003 memset(((u8 *)&vpdpage83data), 0, 1004 sizeof(vpdpage83data)); 1005 1006 /* DIRECT_ACCESS_DEVIC */ 1007 vpdpage83data.DeviceType = 0; 1008 /* DEVICE_CONNECTED */ 1009 vpdpage83data.DeviceTypeQualifier = 0; 1010 /* VPD_DEVICE_IDENTIFIERS */ 1011 vpdpage83data.PageCode = 0x83; 1012 vpdpage83data.reserved = 0; 1013 vpdpage83data.PageLength = 1014 sizeof(vpdpage83data.type1) + 1015 sizeof(vpdpage83data.type2); 1016 1017 /* VPD 83 Type 3 is not supported for ARC */ 1018 if (dev->sa_firmware) 1019 vpdpage83data.PageLength += 1020 sizeof(vpdpage83data.type3); 1021 1022 /* T10 Vendor Identifier Field Format */ 1023 /* VpdcodesetAscii */ 1024 vpdpage83data.type1.codeset = 2; 1025 /* VpdIdentifierTypeVendorId */ 1026 vpdpage83data.type1.identifiertype = 1; 1027 vpdpage83data.type1.identifierlength = 1028 sizeof(vpdpage83data.type1) - 4; 1029 1030 /* "ADAPTEC " for adaptec */ 1031 memcpy(vpdpage83data.type1.venid, 1032 "ADAPTEC ", 1033 sizeof(vpdpage83data.type1.venid)); 1034 memcpy(vpdpage83data.type1.productid, 1035 "ARRAY ", 1036 sizeof( 1037 vpdpage83data.type1.productid)); 1038 1039 /* Convert to ascii based serial number. 1040 * The LSB is the the end. 1041 */ 1042 for (i = 0; i < 8; i++) { 1043 u8 temp = 1044 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1045 if (temp > 0x9) { 1046 vpdpage83data.type1.serialnumber[i] = 1047 'A' + (temp - 0xA); 1048 } else { 1049 vpdpage83data.type1.serialnumber[i] = 1050 '0' + temp; 1051 } 1052 } 1053 1054 /* VpdCodeSetBinary */ 1055 vpdpage83data.type2.codeset = 1; 1056 /* VpdidentifiertypeEUI64 */ 1057 vpdpage83data.type2.identifiertype = 2; 1058 vpdpage83data.type2.identifierlength = 1059 sizeof(vpdpage83data.type2) - 4; 1060 1061 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1062 vpdpage83data.type2.eu64id.venid[1] = 0; 1063 vpdpage83data.type2.eu64id.venid[2] = 0; 1064 1065 vpdpage83data.type2.eu64id.Serial = 1066 get_serial_reply->uid; 1067 vpdpage83data.type2.eu64id.reserved = 0; 1068 1069 /* 1070 * VpdIdentifierTypeFCPHName 1071 * VPD 0x83 Type 3 not supported for ARC 1072 */ 1073 if (dev->sa_firmware) { 1074 build_vpd83_type3(&vpdpage83data, 1075 dev, scsicmd); 1076 } 1077 1078 /* Move the inquiry data to the response buffer. */ 1079 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1080 sizeof(vpdpage83data)); 1081 } else { 1082 /* It must be for VPD 0x80 */ 1083 char sp[13]; 1084 /* EVPD bit set */ 1085 sp[0] = INQD_PDT_DA; 1086 sp[1] = scsicmd->cmnd[2]; 1087 sp[2] = 0; 1088 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1089 le32_to_cpu(get_serial_reply->uid)); 1090 scsi_sg_copy_from_buffer(scsicmd, sp, 1091 sizeof(sp)); 1092 } 1093 } 1094 1095 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 1096 1097 aac_fib_complete(fibptr); 1098 scsicmd->scsi_done(scsicmd); 1099 } 1100 1101 /* 1102 * aac_get_container_serial - get container serial, none blocking. 1103 */ 1104 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1105 { 1106 int status; 1107 struct aac_get_serial *dinfo; 1108 struct fib * cmd_fibcontext; 1109 struct aac_dev * dev; 1110 1111 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1112 1113 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1114 1115 aac_fib_init(cmd_fibcontext); 1116 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1117 1118 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1119 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1120 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1121 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1122 1123 status = aac_fib_send(ContainerCommand, 1124 cmd_fibcontext, 1125 sizeof(struct aac_get_serial_resp), 1126 FsaNormal, 1127 0, 1, 1128 (fib_callback) get_container_serial_callback, 1129 (void *) scsicmd); 1130 1131 /* 1132 * Check that the command queued to the controller 1133 */ 1134 if (status == -EINPROGRESS) 1135 return 0; 1136 1137 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1138 aac_fib_complete(cmd_fibcontext); 1139 return -1; 1140 } 1141 1142 /* Function: setinqserial 1143 * 1144 * Arguments: [1] pointer to void [1] int 1145 * 1146 * Purpose: Sets SCSI Unit Serial number. 1147 * This is a fake. We should read a proper 1148 * serial number from the container. <SuSE>But 1149 * without docs it's quite hard to do it :-) 1150 * So this will have to do in the meantime.</SuSE> 1151 */ 1152 1153 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1154 { 1155 /* 1156 * This breaks array migration. 1157 */ 1158 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1159 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1160 } 1161 1162 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1163 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1164 { 1165 u8 *sense_buf = (u8 *)sense_data; 1166 /* Sense data valid, err code 70h */ 1167 sense_buf[0] = 0x70; /* No info field */ 1168 sense_buf[1] = 0; /* Segment number, always zero */ 1169 1170 sense_buf[2] = sense_key; /* Sense key */ 1171 1172 sense_buf[12] = sense_code; /* Additional sense code */ 1173 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1174 1175 if (sense_key == ILLEGAL_REQUEST) { 1176 sense_buf[7] = 10; /* Additional sense length */ 1177 1178 sense_buf[15] = bit_pointer; 1179 /* Illegal parameter is in the parameter block */ 1180 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1181 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1182 /* Illegal parameter is in the CDB block */ 1183 sense_buf[16] = field_pointer >> 8; /* MSB */ 1184 sense_buf[17] = field_pointer; /* LSB */ 1185 } else 1186 sense_buf[7] = 6; /* Additional sense length */ 1187 } 1188 1189 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1190 { 1191 if (lba & 0xffffffff00000000LL) { 1192 int cid = scmd_id(cmd); 1193 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1194 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 1195 set_sense(&dev->fsa_dev[cid].sense_data, 1196 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1197 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1198 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1199 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1200 SCSI_SENSE_BUFFERSIZE)); 1201 cmd->scsi_done(cmd); 1202 return 1; 1203 } 1204 return 0; 1205 } 1206 1207 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1208 { 1209 return 0; 1210 } 1211 1212 static void io_callback(void *context, struct fib * fibptr); 1213 1214 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1215 { 1216 struct aac_dev *dev = fib->dev; 1217 u16 fibsize, command; 1218 long ret; 1219 1220 aac_fib_init(fib); 1221 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1222 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1223 !dev->sync_mode) { 1224 struct aac_raw_io2 *readcmd2; 1225 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1226 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1227 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1228 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1229 readcmd2->byteCount = cpu_to_le32(count * 1230 dev->fsa_dev[scmd_id(cmd)].block_size); 1231 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1232 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1233 ret = aac_build_sgraw2(cmd, readcmd2, 1234 dev->scsi_host_ptr->sg_tablesize); 1235 if (ret < 0) 1236 return ret; 1237 command = ContainerRawIo2; 1238 fibsize = sizeof(struct aac_raw_io2) + 1239 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1240 } else { 1241 struct aac_raw_io *readcmd; 1242 readcmd = (struct aac_raw_io *) fib_data(fib); 1243 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1244 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1245 readcmd->count = cpu_to_le32(count * 1246 dev->fsa_dev[scmd_id(cmd)].block_size); 1247 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1248 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1249 readcmd->bpTotal = 0; 1250 readcmd->bpComplete = 0; 1251 ret = aac_build_sgraw(cmd, &readcmd->sg); 1252 if (ret < 0) 1253 return ret; 1254 command = ContainerRawIo; 1255 fibsize = sizeof(struct aac_raw_io) + 1256 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1257 } 1258 1259 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1260 /* 1261 * Now send the Fib to the adapter 1262 */ 1263 return aac_fib_send(command, 1264 fib, 1265 fibsize, 1266 FsaNormal, 1267 0, 1, 1268 (fib_callback) io_callback, 1269 (void *) cmd); 1270 } 1271 1272 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1273 { 1274 u16 fibsize; 1275 struct aac_read64 *readcmd; 1276 long ret; 1277 1278 aac_fib_init(fib); 1279 readcmd = (struct aac_read64 *) fib_data(fib); 1280 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1281 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1282 readcmd->sector_count = cpu_to_le16(count); 1283 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1284 readcmd->pad = 0; 1285 readcmd->flags = 0; 1286 1287 ret = aac_build_sg64(cmd, &readcmd->sg); 1288 if (ret < 0) 1289 return ret; 1290 fibsize = sizeof(struct aac_read64) + 1291 ((le32_to_cpu(readcmd->sg.count) - 1) * 1292 sizeof (struct sgentry64)); 1293 BUG_ON (fibsize > (fib->dev->max_fib_size - 1294 sizeof(struct aac_fibhdr))); 1295 /* 1296 * Now send the Fib to the adapter 1297 */ 1298 return aac_fib_send(ContainerCommand64, 1299 fib, 1300 fibsize, 1301 FsaNormal, 1302 0, 1, 1303 (fib_callback) io_callback, 1304 (void *) cmd); 1305 } 1306 1307 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1308 { 1309 u16 fibsize; 1310 struct aac_read *readcmd; 1311 struct aac_dev *dev = fib->dev; 1312 long ret; 1313 1314 aac_fib_init(fib); 1315 readcmd = (struct aac_read *) fib_data(fib); 1316 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1317 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1318 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1319 readcmd->count = cpu_to_le32(count * 1320 dev->fsa_dev[scmd_id(cmd)].block_size); 1321 1322 ret = aac_build_sg(cmd, &readcmd->sg); 1323 if (ret < 0) 1324 return ret; 1325 fibsize = sizeof(struct aac_read) + 1326 ((le32_to_cpu(readcmd->sg.count) - 1) * 1327 sizeof (struct sgentry)); 1328 BUG_ON (fibsize > (fib->dev->max_fib_size - 1329 sizeof(struct aac_fibhdr))); 1330 /* 1331 * Now send the Fib to the adapter 1332 */ 1333 return aac_fib_send(ContainerCommand, 1334 fib, 1335 fibsize, 1336 FsaNormal, 1337 0, 1, 1338 (fib_callback) io_callback, 1339 (void *) cmd); 1340 } 1341 1342 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1343 { 1344 struct aac_dev *dev = fib->dev; 1345 u16 fibsize, command; 1346 long ret; 1347 1348 aac_fib_init(fib); 1349 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1350 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1351 !dev->sync_mode) { 1352 struct aac_raw_io2 *writecmd2; 1353 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1354 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1355 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1356 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1357 writecmd2->byteCount = cpu_to_le32(count * 1358 dev->fsa_dev[scmd_id(cmd)].block_size); 1359 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1360 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1361 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1362 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1363 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1364 ret = aac_build_sgraw2(cmd, writecmd2, 1365 dev->scsi_host_ptr->sg_tablesize); 1366 if (ret < 0) 1367 return ret; 1368 command = ContainerRawIo2; 1369 fibsize = sizeof(struct aac_raw_io2) + 1370 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1371 } else { 1372 struct aac_raw_io *writecmd; 1373 writecmd = (struct aac_raw_io *) fib_data(fib); 1374 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1375 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1376 writecmd->count = cpu_to_le32(count * 1377 dev->fsa_dev[scmd_id(cmd)].block_size); 1378 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1379 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1380 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1381 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1382 cpu_to_le16(RIO_TYPE_WRITE); 1383 writecmd->bpTotal = 0; 1384 writecmd->bpComplete = 0; 1385 ret = aac_build_sgraw(cmd, &writecmd->sg); 1386 if (ret < 0) 1387 return ret; 1388 command = ContainerRawIo; 1389 fibsize = sizeof(struct aac_raw_io) + 1390 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1391 } 1392 1393 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1394 /* 1395 * Now send the Fib to the adapter 1396 */ 1397 return aac_fib_send(command, 1398 fib, 1399 fibsize, 1400 FsaNormal, 1401 0, 1, 1402 (fib_callback) io_callback, 1403 (void *) cmd); 1404 } 1405 1406 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1407 { 1408 u16 fibsize; 1409 struct aac_write64 *writecmd; 1410 long ret; 1411 1412 aac_fib_init(fib); 1413 writecmd = (struct aac_write64 *) fib_data(fib); 1414 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1415 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1416 writecmd->sector_count = cpu_to_le16(count); 1417 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1418 writecmd->pad = 0; 1419 writecmd->flags = 0; 1420 1421 ret = aac_build_sg64(cmd, &writecmd->sg); 1422 if (ret < 0) 1423 return ret; 1424 fibsize = sizeof(struct aac_write64) + 1425 ((le32_to_cpu(writecmd->sg.count) - 1) * 1426 sizeof (struct sgentry64)); 1427 BUG_ON (fibsize > (fib->dev->max_fib_size - 1428 sizeof(struct aac_fibhdr))); 1429 /* 1430 * Now send the Fib to the adapter 1431 */ 1432 return aac_fib_send(ContainerCommand64, 1433 fib, 1434 fibsize, 1435 FsaNormal, 1436 0, 1, 1437 (fib_callback) io_callback, 1438 (void *) cmd); 1439 } 1440 1441 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1442 { 1443 u16 fibsize; 1444 struct aac_write *writecmd; 1445 struct aac_dev *dev = fib->dev; 1446 long ret; 1447 1448 aac_fib_init(fib); 1449 writecmd = (struct aac_write *) fib_data(fib); 1450 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1451 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1452 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1453 writecmd->count = cpu_to_le32(count * 1454 dev->fsa_dev[scmd_id(cmd)].block_size); 1455 writecmd->sg.count = cpu_to_le32(1); 1456 /* ->stable is not used - it did mean which type of write */ 1457 1458 ret = aac_build_sg(cmd, &writecmd->sg); 1459 if (ret < 0) 1460 return ret; 1461 fibsize = sizeof(struct aac_write) + 1462 ((le32_to_cpu(writecmd->sg.count) - 1) * 1463 sizeof (struct sgentry)); 1464 BUG_ON (fibsize > (fib->dev->max_fib_size - 1465 sizeof(struct aac_fibhdr))); 1466 /* 1467 * Now send the Fib to the adapter 1468 */ 1469 return aac_fib_send(ContainerCommand, 1470 fib, 1471 fibsize, 1472 FsaNormal, 1473 0, 1, 1474 (fib_callback) io_callback, 1475 (void *) cmd); 1476 } 1477 1478 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1479 { 1480 struct aac_srb * srbcmd; 1481 u32 flag; 1482 u32 timeout; 1483 struct aac_dev *dev = fib->dev; 1484 1485 aac_fib_init(fib); 1486 switch(cmd->sc_data_direction){ 1487 case DMA_TO_DEVICE: 1488 flag = SRB_DataOut; 1489 break; 1490 case DMA_BIDIRECTIONAL: 1491 flag = SRB_DataIn | SRB_DataOut; 1492 break; 1493 case DMA_FROM_DEVICE: 1494 flag = SRB_DataIn; 1495 break; 1496 case DMA_NONE: 1497 default: /* shuts up some versions of gcc */ 1498 flag = SRB_NoDataXfer; 1499 break; 1500 } 1501 1502 srbcmd = (struct aac_srb*) fib_data(fib); 1503 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1504 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1505 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1506 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1507 srbcmd->flags = cpu_to_le32(flag); 1508 timeout = cmd->request->timeout/HZ; 1509 if (timeout == 0) 1510 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1511 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1512 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1513 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1514 return srbcmd; 1515 } 1516 1517 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1518 struct scsi_cmnd *cmd) 1519 { 1520 struct aac_hba_cmd_req *hbacmd; 1521 struct aac_dev *dev; 1522 int bus, target; 1523 u64 address; 1524 1525 dev = (struct aac_dev *)cmd->device->host->hostdata; 1526 1527 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1528 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1529 /* iu_type is a parameter of aac_hba_send */ 1530 switch (cmd->sc_data_direction) { 1531 case DMA_TO_DEVICE: 1532 hbacmd->byte1 = 2; 1533 break; 1534 case DMA_FROM_DEVICE: 1535 case DMA_BIDIRECTIONAL: 1536 hbacmd->byte1 = 1; 1537 break; 1538 case DMA_NONE: 1539 default: 1540 break; 1541 } 1542 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1543 1544 bus = aac_logical_to_phys(scmd_channel(cmd)); 1545 target = scmd_id(cmd); 1546 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1547 1548 /* we fill in reply_qid later in aac_src_deliver_message */ 1549 /* we fill in iu_type, request_id later in aac_hba_send */ 1550 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1551 1552 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1553 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1554 1555 address = (u64)fib->hw_error_pa; 1556 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1557 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1558 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1559 1560 return hbacmd; 1561 } 1562 1563 static void aac_srb_callback(void *context, struct fib * fibptr); 1564 1565 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1566 { 1567 u16 fibsize; 1568 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1569 long ret; 1570 1571 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1572 if (ret < 0) 1573 return ret; 1574 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1575 1576 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1577 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1578 /* 1579 * Build Scatter/Gather list 1580 */ 1581 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1582 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1583 sizeof (struct sgentry64)); 1584 BUG_ON (fibsize > (fib->dev->max_fib_size - 1585 sizeof(struct aac_fibhdr))); 1586 1587 /* 1588 * Now send the Fib to the adapter 1589 */ 1590 return aac_fib_send(ScsiPortCommand64, fib, 1591 fibsize, FsaNormal, 0, 1, 1592 (fib_callback) aac_srb_callback, 1593 (void *) cmd); 1594 } 1595 1596 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1597 { 1598 u16 fibsize; 1599 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1600 long ret; 1601 1602 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1603 if (ret < 0) 1604 return ret; 1605 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1606 1607 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1608 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1609 /* 1610 * Build Scatter/Gather list 1611 */ 1612 fibsize = sizeof (struct aac_srb) + 1613 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1614 sizeof (struct sgentry)); 1615 BUG_ON (fibsize > (fib->dev->max_fib_size - 1616 sizeof(struct aac_fibhdr))); 1617 1618 /* 1619 * Now send the Fib to the adapter 1620 */ 1621 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1622 (fib_callback) aac_srb_callback, (void *) cmd); 1623 } 1624 1625 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1626 { 1627 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1628 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1629 return FAILED; 1630 return aac_scsi_32(fib, cmd); 1631 } 1632 1633 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1634 { 1635 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1636 struct aac_dev *dev; 1637 long ret; 1638 1639 dev = (struct aac_dev *)cmd->device->host->hostdata; 1640 1641 ret = aac_build_sghba(cmd, hbacmd, 1642 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1643 if (ret < 0) 1644 return ret; 1645 1646 /* 1647 * Now send the HBA command to the adapter 1648 */ 1649 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1650 sizeof(struct aac_hba_sgl); 1651 1652 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1653 (fib_callback) aac_hba_callback, 1654 (void *) cmd); 1655 } 1656 1657 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1658 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1659 { 1660 struct fib *fibptr; 1661 dma_addr_t addr; 1662 int rcode; 1663 int fibsize; 1664 struct aac_srb *srb; 1665 struct aac_srb_reply *srb_reply; 1666 struct sgmap64 *sg64; 1667 u32 vbus; 1668 u32 vid; 1669 1670 if (!dev->sa_firmware) 1671 return 0; 1672 1673 /* allocate FIB */ 1674 fibptr = aac_fib_alloc(dev); 1675 if (!fibptr) 1676 return -ENOMEM; 1677 1678 aac_fib_init(fibptr); 1679 fibptr->hw_fib_va->header.XferState &= 1680 ~cpu_to_le32(FastResponseCapable); 1681 1682 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1683 sizeof(struct sgentry64); 1684 1685 /* allocate DMA buffer for response */ 1686 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1687 DMA_BIDIRECTIONAL); 1688 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1689 rcode = -ENOMEM; 1690 goto fib_error; 1691 } 1692 1693 srb = fib_data(fibptr); 1694 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1695 1696 vbus = (u32)le16_to_cpu( 1697 dev->supplement_adapter_info.virt_device_bus); 1698 vid = (u32)le16_to_cpu( 1699 dev->supplement_adapter_info.virt_device_target); 1700 1701 /* set the common request fields */ 1702 srb->channel = cpu_to_le32(vbus); 1703 srb->id = cpu_to_le32(vid); 1704 srb->lun = 0; 1705 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1706 srb->timeout = 0; 1707 srb->retry_limit = 0; 1708 srb->cdb_size = cpu_to_le32(16); 1709 srb->count = cpu_to_le32(xfer_len); 1710 1711 sg64 = (struct sgmap64 *)&srb->sg; 1712 sg64->count = cpu_to_le32(1); 1713 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1714 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1715 sg64->sg[0].count = cpu_to_le32(xfer_len); 1716 1717 /* 1718 * Copy the updated data for other dumping or other usage if needed 1719 */ 1720 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1721 1722 /* issue request to the controller */ 1723 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1724 1, 1, NULL, NULL); 1725 1726 if (rcode == -ERESTARTSYS) 1727 rcode = -ERESTART; 1728 1729 if (unlikely(rcode < 0)) 1730 goto bmic_error; 1731 1732 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1733 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1734 1735 bmic_error: 1736 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1737 fib_error: 1738 aac_fib_complete(fibptr); 1739 aac_fib_free(fibptr); 1740 return rcode; 1741 } 1742 1743 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1744 { 1745 1746 struct aac_ciss_identify_pd *identify_resp; 1747 1748 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1749 return; 1750 1751 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1752 if (identify_resp == NULL) { 1753 dev->hba_map[bus][target].qd_limit = 32; 1754 return; 1755 } 1756 1757 if (identify_resp->current_queue_depth_limit <= 0 || 1758 identify_resp->current_queue_depth_limit > 255) 1759 dev->hba_map[bus][target].qd_limit = 32; 1760 else 1761 dev->hba_map[bus][target].qd_limit = 1762 identify_resp->current_queue_depth_limit; 1763 } 1764 1765 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1766 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1767 { 1768 int rcode = -ENOMEM; 1769 int datasize; 1770 struct aac_srb_unit srbu; 1771 struct aac_srb *srbcmd; 1772 struct aac_ciss_identify_pd *identify_reply; 1773 1774 datasize = sizeof(struct aac_ciss_identify_pd); 1775 identify_reply = kmalloc(datasize, GFP_KERNEL); 1776 if (!identify_reply) 1777 goto out; 1778 1779 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1780 1781 srbcmd = &srbu.srb; 1782 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1783 srbcmd->cdb[0] = 0x26; 1784 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1785 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1786 1787 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1788 if (unlikely(rcode < 0)) 1789 goto mem_free_all; 1790 1791 *identify_resp = identify_reply; 1792 1793 out: 1794 return rcode; 1795 mem_free_all: 1796 kfree(identify_reply); 1797 goto out; 1798 } 1799 1800 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1801 { 1802 kfree(dev->safw_phys_luns); 1803 dev->safw_phys_luns = NULL; 1804 } 1805 1806 /** 1807 * aac_get_safw_ciss_luns() - Process topology change 1808 * @dev: aac_dev structure 1809 * 1810 * Execute a CISS REPORT PHYS LUNS and process the results into 1811 * the current hba_map. 1812 */ 1813 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1814 { 1815 int rcode = -ENOMEM; 1816 int datasize; 1817 struct aac_srb *srbcmd; 1818 struct aac_srb_unit srbu; 1819 struct aac_ciss_phys_luns_resp *phys_luns; 1820 1821 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1822 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1823 phys_luns = kmalloc(datasize, GFP_KERNEL); 1824 if (phys_luns == NULL) 1825 goto out; 1826 1827 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1828 1829 srbcmd = &srbu.srb; 1830 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1831 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1832 srbcmd->cdb[1] = 2; /* extended reporting */ 1833 srbcmd->cdb[8] = (u8)(datasize >> 8); 1834 srbcmd->cdb[9] = (u8)(datasize); 1835 1836 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1837 if (unlikely(rcode < 0)) 1838 goto mem_free_all; 1839 1840 if (phys_luns->resp_flag != 2) { 1841 rcode = -ENOMSG; 1842 goto mem_free_all; 1843 } 1844 1845 dev->safw_phys_luns = phys_luns; 1846 1847 out: 1848 return rcode; 1849 mem_free_all: 1850 kfree(phys_luns); 1851 goto out; 1852 } 1853 1854 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1855 { 1856 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1857 } 1858 1859 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1860 { 1861 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1862 } 1863 1864 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1865 { 1866 return dev->safw_phys_luns->lun[lun].level2[0]; 1867 } 1868 1869 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1870 { 1871 return dev->safw_phys_luns->lun[lun].bus >> 6; 1872 } 1873 1874 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1875 { 1876 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1877 } 1878 1879 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1880 { 1881 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1882 } 1883 1884 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1885 int bus, int target) 1886 { 1887 kfree(dev->hba_map[bus][target].safw_identify_resp); 1888 dev->hba_map[bus][target].safw_identify_resp = NULL; 1889 } 1890 1891 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1892 int lun_count) 1893 { 1894 int luns; 1895 int i; 1896 u32 bus; 1897 u32 target; 1898 1899 luns = aac_get_safw_phys_lun_count(dev); 1900 1901 if (luns < lun_count) 1902 lun_count = luns; 1903 else if (lun_count < 0) 1904 lun_count = luns; 1905 1906 for (i = 0; i < lun_count; i++) { 1907 bus = aac_get_safw_phys_bus(dev, i); 1908 target = aac_get_safw_phys_target(dev, i); 1909 1910 aac_free_safw_identify_resp(dev, bus, target); 1911 } 1912 } 1913 1914 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1915 { 1916 int i; 1917 int rcode = 0; 1918 u32 lun_count; 1919 u32 bus; 1920 u32 target; 1921 struct aac_ciss_identify_pd *identify_resp = NULL; 1922 1923 lun_count = aac_get_safw_phys_lun_count(dev); 1924 1925 for (i = 0; i < lun_count; ++i) { 1926 1927 bus = aac_get_safw_phys_bus(dev, i); 1928 target = aac_get_safw_phys_target(dev, i); 1929 1930 rcode = aac_issue_safw_bmic_identify(dev, 1931 &identify_resp, bus, target); 1932 1933 if (unlikely(rcode < 0)) 1934 goto free_identify_resp; 1935 1936 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1937 } 1938 1939 out: 1940 return rcode; 1941 free_identify_resp: 1942 aac_free_safw_all_identify_resp(dev, i); 1943 goto out; 1944 } 1945 1946 /** 1947 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1948 * @dev: aac_dev structure 1949 * 1950 * Update our hba map with the information gathered from the FW 1951 */ 1952 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1953 { 1954 /* ok and extended reporting */ 1955 u32 lun_count, nexus; 1956 u32 i, bus, target; 1957 u8 expose_flag, attribs; 1958 1959 lun_count = aac_get_safw_phys_lun_count(dev); 1960 1961 dev->scan_counter++; 1962 1963 for (i = 0; i < lun_count; ++i) { 1964 1965 bus = aac_get_safw_phys_bus(dev, i); 1966 target = aac_get_safw_phys_target(dev, i); 1967 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1968 attribs = aac_get_safw_phys_attribs(dev, i); 1969 nexus = aac_get_safw_phys_nexus(dev, i); 1970 1971 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1972 continue; 1973 1974 if (expose_flag != 0) { 1975 dev->hba_map[bus][target].devtype = 1976 AAC_DEVTYPE_RAID_MEMBER; 1977 continue; 1978 } 1979 1980 if (nexus != 0 && (attribs & 8)) { 1981 dev->hba_map[bus][target].devtype = 1982 AAC_DEVTYPE_NATIVE_RAW; 1983 dev->hba_map[bus][target].rmw_nexus = 1984 nexus; 1985 } else 1986 dev->hba_map[bus][target].devtype = 1987 AAC_DEVTYPE_ARC_RAW; 1988 1989 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1990 1991 aac_set_safw_target_qd(dev, bus, target); 1992 } 1993 } 1994 1995 static int aac_setup_safw_targets(struct aac_dev *dev) 1996 { 1997 int rcode = 0; 1998 1999 rcode = aac_get_containers(dev); 2000 if (unlikely(rcode < 0)) 2001 goto out; 2002 2003 rcode = aac_get_safw_ciss_luns(dev); 2004 if (unlikely(rcode < 0)) 2005 goto out; 2006 2007 rcode = aac_get_safw_attr_all_targets(dev); 2008 if (unlikely(rcode < 0)) 2009 goto free_ciss_luns; 2010 2011 aac_set_safw_attr_all_targets(dev); 2012 2013 aac_free_safw_all_identify_resp(dev, -1); 2014 free_ciss_luns: 2015 aac_free_safw_ciss_luns(dev); 2016 out: 2017 return rcode; 2018 } 2019 2020 int aac_setup_safw_adapter(struct aac_dev *dev) 2021 { 2022 return aac_setup_safw_targets(dev); 2023 } 2024 2025 int aac_get_adapter_info(struct aac_dev* dev) 2026 { 2027 struct fib* fibptr; 2028 int rcode; 2029 u32 tmp, bus, target; 2030 struct aac_adapter_info *info; 2031 struct aac_bus_info *command; 2032 struct aac_bus_info_response *bus_info; 2033 2034 if (!(fibptr = aac_fib_alloc(dev))) 2035 return -ENOMEM; 2036 2037 aac_fib_init(fibptr); 2038 info = (struct aac_adapter_info *) fib_data(fibptr); 2039 memset(info,0,sizeof(*info)); 2040 2041 rcode = aac_fib_send(RequestAdapterInfo, 2042 fibptr, 2043 sizeof(*info), 2044 FsaNormal, 2045 -1, 1, /* First `interrupt' command uses special wait */ 2046 NULL, 2047 NULL); 2048 2049 if (rcode < 0) { 2050 /* FIB should be freed only after 2051 * getting the response from the F/W */ 2052 if (rcode != -ERESTARTSYS) { 2053 aac_fib_complete(fibptr); 2054 aac_fib_free(fibptr); 2055 } 2056 return rcode; 2057 } 2058 memcpy(&dev->adapter_info, info, sizeof(*info)); 2059 2060 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2061 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2062 struct aac_supplement_adapter_info * sinfo; 2063 2064 aac_fib_init(fibptr); 2065 2066 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2067 2068 memset(sinfo,0,sizeof(*sinfo)); 2069 2070 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2071 fibptr, 2072 sizeof(*sinfo), 2073 FsaNormal, 2074 1, 1, 2075 NULL, 2076 NULL); 2077 2078 if (rcode >= 0) 2079 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2080 if (rcode == -ERESTARTSYS) { 2081 fibptr = aac_fib_alloc(dev); 2082 if (!fibptr) 2083 return -ENOMEM; 2084 } 2085 2086 } 2087 2088 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2089 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2090 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2091 dev->hba_map[bus][target].devtype = 0; 2092 dev->hba_map[bus][target].qd_limit = 0; 2093 } 2094 } 2095 2096 /* 2097 * GetBusInfo 2098 */ 2099 2100 aac_fib_init(fibptr); 2101 2102 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2103 2104 memset(bus_info, 0, sizeof(*bus_info)); 2105 2106 command = (struct aac_bus_info *)bus_info; 2107 2108 command->Command = cpu_to_le32(VM_Ioctl); 2109 command->ObjType = cpu_to_le32(FT_DRIVE); 2110 command->MethodId = cpu_to_le32(1); 2111 command->CtlCmd = cpu_to_le32(GetBusInfo); 2112 2113 rcode = aac_fib_send(ContainerCommand, 2114 fibptr, 2115 sizeof (*bus_info), 2116 FsaNormal, 2117 1, 1, 2118 NULL, NULL); 2119 2120 /* reasoned default */ 2121 dev->maximum_num_physicals = 16; 2122 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2123 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2124 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2125 } 2126 2127 if (!dev->in_reset) { 2128 char buffer[16]; 2129 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2130 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2131 dev->name, 2132 dev->id, 2133 tmp>>24, 2134 (tmp>>16)&0xff, 2135 tmp&0xff, 2136 le32_to_cpu(dev->adapter_info.kernelbuild), 2137 (int)sizeof(dev->supplement_adapter_info.build_date), 2138 dev->supplement_adapter_info.build_date); 2139 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2140 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2141 dev->name, dev->id, 2142 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2143 le32_to_cpu(dev->adapter_info.monitorbuild)); 2144 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2145 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2146 dev->name, dev->id, 2147 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2148 le32_to_cpu(dev->adapter_info.biosbuild)); 2149 buffer[0] = '\0'; 2150 if (aac_get_serial_number( 2151 shost_to_class(dev->scsi_host_ptr), buffer)) 2152 printk(KERN_INFO "%s%d: serial %s", 2153 dev->name, dev->id, buffer); 2154 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2155 printk(KERN_INFO "%s%d: TSID %.*s\n", 2156 dev->name, dev->id, 2157 (int)sizeof(dev->supplement_adapter_info 2158 .vpd_info.tsid), 2159 dev->supplement_adapter_info.vpd_info.tsid); 2160 } 2161 if (!aac_check_reset || ((aac_check_reset == 1) && 2162 (dev->supplement_adapter_info.supported_options2 & 2163 AAC_OPTION_IGNORE_RESET))) { 2164 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2165 dev->name, dev->id); 2166 } 2167 } 2168 2169 dev->cache_protected = 0; 2170 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2171 AAC_FEATURE_JBOD) != 0); 2172 dev->nondasd_support = 0; 2173 dev->raid_scsi_mode = 0; 2174 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2175 dev->nondasd_support = 1; 2176 2177 /* 2178 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2179 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2180 * force nondasd support on. If we decide to allow the non-dasd flag 2181 * additional changes changes will have to be made to support 2182 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2183 * changed to support the new dev->raid_scsi_mode flag instead of 2184 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2185 * function aac_detect will have to be modified where it sets up the 2186 * max number of channels based on the aac->nondasd_support flag only. 2187 */ 2188 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2189 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2190 dev->nondasd_support = 1; 2191 dev->raid_scsi_mode = 1; 2192 } 2193 if (dev->raid_scsi_mode != 0) 2194 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2195 dev->name, dev->id); 2196 2197 if (nondasd != -1) 2198 dev->nondasd_support = (nondasd!=0); 2199 if (dev->nondasd_support && !dev->in_reset) 2200 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2201 2202 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2203 dev->needs_dac = 1; 2204 dev->dac_support = 0; 2205 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2206 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2207 if (!dev->in_reset) 2208 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2209 dev->name, dev->id); 2210 dev->dac_support = 1; 2211 } 2212 2213 if(dacmode != -1) { 2214 dev->dac_support = (dacmode!=0); 2215 } 2216 2217 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2218 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2219 & AAC_QUIRK_SCSI_32)) { 2220 dev->nondasd_support = 0; 2221 dev->jbod = 0; 2222 expose_physicals = 0; 2223 } 2224 2225 if (dev->dac_support) { 2226 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) { 2227 if (!dev->in_reset) 2228 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2229 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) { 2230 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2231 dev->dac_support = 0; 2232 } else { 2233 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2234 rcode = -ENOMEM; 2235 } 2236 } 2237 /* 2238 * Deal with configuring for the individualized limits of each packet 2239 * interface. 2240 */ 2241 dev->a_ops.adapter_scsi = (dev->dac_support) 2242 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2243 ? aac_scsi_32_64 2244 : aac_scsi_64) 2245 : aac_scsi_32; 2246 if (dev->raw_io_interface) { 2247 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2248 ? aac_bounds_64 2249 : aac_bounds_32; 2250 dev->a_ops.adapter_read = aac_read_raw_io; 2251 dev->a_ops.adapter_write = aac_write_raw_io; 2252 } else { 2253 dev->a_ops.adapter_bounds = aac_bounds_32; 2254 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2255 sizeof(struct aac_fibhdr) - 2256 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2257 sizeof(struct sgentry); 2258 if (dev->dac_support) { 2259 dev->a_ops.adapter_read = aac_read_block64; 2260 dev->a_ops.adapter_write = aac_write_block64; 2261 /* 2262 * 38 scatter gather elements 2263 */ 2264 dev->scsi_host_ptr->sg_tablesize = 2265 (dev->max_fib_size - 2266 sizeof(struct aac_fibhdr) - 2267 sizeof(struct aac_write64) + 2268 sizeof(struct sgentry64)) / 2269 sizeof(struct sgentry64); 2270 } else { 2271 dev->a_ops.adapter_read = aac_read_block; 2272 dev->a_ops.adapter_write = aac_write_block; 2273 } 2274 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2275 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2276 /* 2277 * Worst case size that could cause sg overflow when 2278 * we break up SG elements that are larger than 64KB. 2279 * Would be nice if we could tell the SCSI layer what 2280 * the maximum SG element size can be. Worst case is 2281 * (sg_tablesize-1) 4KB elements with one 64KB 2282 * element. 2283 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2284 */ 2285 dev->scsi_host_ptr->max_sectors = 2286 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2287 } 2288 } 2289 if (!dev->sync_mode && dev->sa_firmware && 2290 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2291 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2292 HBA_MAX_SG_SEPARATE; 2293 2294 /* FIB should be freed only after getting the response from the F/W */ 2295 if (rcode != -ERESTARTSYS) { 2296 aac_fib_complete(fibptr); 2297 aac_fib_free(fibptr); 2298 } 2299 2300 return rcode; 2301 } 2302 2303 2304 static void io_callback(void *context, struct fib * fibptr) 2305 { 2306 struct aac_dev *dev; 2307 struct aac_read_reply *readreply; 2308 struct scsi_cmnd *scsicmd; 2309 u32 cid; 2310 2311 scsicmd = (struct scsi_cmnd *) context; 2312 2313 if (!aac_valid_context(scsicmd, fibptr)) 2314 return; 2315 2316 dev = fibptr->dev; 2317 cid = scmd_id(scsicmd); 2318 2319 if (nblank(dprintk(x))) { 2320 u64 lba; 2321 switch (scsicmd->cmnd[0]) { 2322 case WRITE_6: 2323 case READ_6: 2324 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2325 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2326 break; 2327 case WRITE_16: 2328 case READ_16: 2329 lba = ((u64)scsicmd->cmnd[2] << 56) | 2330 ((u64)scsicmd->cmnd[3] << 48) | 2331 ((u64)scsicmd->cmnd[4] << 40) | 2332 ((u64)scsicmd->cmnd[5] << 32) | 2333 ((u64)scsicmd->cmnd[6] << 24) | 2334 (scsicmd->cmnd[7] << 16) | 2335 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2336 break; 2337 case WRITE_12: 2338 case READ_12: 2339 lba = ((u64)scsicmd->cmnd[2] << 24) | 2340 (scsicmd->cmnd[3] << 16) | 2341 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2342 break; 2343 default: 2344 lba = ((u64)scsicmd->cmnd[2] << 24) | 2345 (scsicmd->cmnd[3] << 16) | 2346 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2347 break; 2348 } 2349 printk(KERN_DEBUG 2350 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2351 smp_processor_id(), (unsigned long long)lba, jiffies); 2352 } 2353 2354 BUG_ON(fibptr == NULL); 2355 2356 scsi_dma_unmap(scsicmd); 2357 2358 readreply = (struct aac_read_reply *)fib_data(fibptr); 2359 switch (le32_to_cpu(readreply->status)) { 2360 case ST_OK: 2361 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2362 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2363 break; 2364 case ST_NOT_READY: 2365 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2366 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2367 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2368 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2369 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2370 SCSI_SENSE_BUFFERSIZE)); 2371 break; 2372 case ST_MEDERR: 2373 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2374 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2375 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2376 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2377 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2378 SCSI_SENSE_BUFFERSIZE)); 2379 break; 2380 default: 2381 #ifdef AAC_DETAILED_STATUS_INFO 2382 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2383 le32_to_cpu(readreply->status)); 2384 #endif 2385 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2386 set_sense(&dev->fsa_dev[cid].sense_data, 2387 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2388 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2389 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2390 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2391 SCSI_SENSE_BUFFERSIZE)); 2392 break; 2393 } 2394 aac_fib_complete(fibptr); 2395 2396 scsicmd->scsi_done(scsicmd); 2397 } 2398 2399 static int aac_read(struct scsi_cmnd * scsicmd) 2400 { 2401 u64 lba; 2402 u32 count; 2403 int status; 2404 struct aac_dev *dev; 2405 struct fib * cmd_fibcontext; 2406 int cid; 2407 2408 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2409 /* 2410 * Get block address and transfer length 2411 */ 2412 switch (scsicmd->cmnd[0]) { 2413 case READ_6: 2414 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2415 2416 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2417 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2418 count = scsicmd->cmnd[4]; 2419 2420 if (count == 0) 2421 count = 256; 2422 break; 2423 case READ_16: 2424 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2425 2426 lba = ((u64)scsicmd->cmnd[2] << 56) | 2427 ((u64)scsicmd->cmnd[3] << 48) | 2428 ((u64)scsicmd->cmnd[4] << 40) | 2429 ((u64)scsicmd->cmnd[5] << 32) | 2430 ((u64)scsicmd->cmnd[6] << 24) | 2431 (scsicmd->cmnd[7] << 16) | 2432 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2433 count = (scsicmd->cmnd[10] << 24) | 2434 (scsicmd->cmnd[11] << 16) | 2435 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2436 break; 2437 case READ_12: 2438 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2439 2440 lba = ((u64)scsicmd->cmnd[2] << 24) | 2441 (scsicmd->cmnd[3] << 16) | 2442 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2443 count = (scsicmd->cmnd[6] << 24) | 2444 (scsicmd->cmnd[7] << 16) | 2445 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2446 break; 2447 default: 2448 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2449 2450 lba = ((u64)scsicmd->cmnd[2] << 24) | 2451 (scsicmd->cmnd[3] << 16) | 2452 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2453 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2454 break; 2455 } 2456 2457 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2458 cid = scmd_id(scsicmd); 2459 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2460 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2461 set_sense(&dev->fsa_dev[cid].sense_data, 2462 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2463 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2464 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2465 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2466 SCSI_SENSE_BUFFERSIZE)); 2467 scsicmd->scsi_done(scsicmd); 2468 return 0; 2469 } 2470 2471 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2472 smp_processor_id(), (unsigned long long)lba, jiffies)); 2473 if (aac_adapter_bounds(dev,scsicmd,lba)) 2474 return 0; 2475 /* 2476 * Alocate and initialize a Fib 2477 */ 2478 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2479 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2480 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2481 2482 /* 2483 * Check that the command queued to the controller 2484 */ 2485 if (status == -EINPROGRESS) 2486 return 0; 2487 2488 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2489 /* 2490 * For some reason, the Fib didn't queue, return QUEUE_FULL 2491 */ 2492 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2493 scsicmd->scsi_done(scsicmd); 2494 aac_fib_complete(cmd_fibcontext); 2495 aac_fib_free(cmd_fibcontext); 2496 return 0; 2497 } 2498 2499 static int aac_write(struct scsi_cmnd * scsicmd) 2500 { 2501 u64 lba; 2502 u32 count; 2503 int fua; 2504 int status; 2505 struct aac_dev *dev; 2506 struct fib * cmd_fibcontext; 2507 int cid; 2508 2509 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2510 /* 2511 * Get block address and transfer length 2512 */ 2513 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2514 { 2515 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2516 count = scsicmd->cmnd[4]; 2517 if (count == 0) 2518 count = 256; 2519 fua = 0; 2520 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2521 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2522 2523 lba = ((u64)scsicmd->cmnd[2] << 56) | 2524 ((u64)scsicmd->cmnd[3] << 48) | 2525 ((u64)scsicmd->cmnd[4] << 40) | 2526 ((u64)scsicmd->cmnd[5] << 32) | 2527 ((u64)scsicmd->cmnd[6] << 24) | 2528 (scsicmd->cmnd[7] << 16) | 2529 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2530 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2531 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2532 fua = scsicmd->cmnd[1] & 0x8; 2533 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2534 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2535 2536 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2537 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2538 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2539 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2540 fua = scsicmd->cmnd[1] & 0x8; 2541 } else { 2542 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2543 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2544 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2545 fua = scsicmd->cmnd[1] & 0x8; 2546 } 2547 2548 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2549 cid = scmd_id(scsicmd); 2550 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2551 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2552 set_sense(&dev->fsa_dev[cid].sense_data, 2553 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2554 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2555 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2556 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2557 SCSI_SENSE_BUFFERSIZE)); 2558 scsicmd->scsi_done(scsicmd); 2559 return 0; 2560 } 2561 2562 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2563 smp_processor_id(), (unsigned long long)lba, jiffies)); 2564 if (aac_adapter_bounds(dev,scsicmd,lba)) 2565 return 0; 2566 /* 2567 * Allocate and initialize a Fib then setup a BlockWrite command 2568 */ 2569 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2570 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2571 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2572 2573 /* 2574 * Check that the command queued to the controller 2575 */ 2576 if (status == -EINPROGRESS) 2577 return 0; 2578 2579 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2580 /* 2581 * For some reason, the Fib didn't queue, return QUEUE_FULL 2582 */ 2583 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL; 2584 scsicmd->scsi_done(scsicmd); 2585 2586 aac_fib_complete(cmd_fibcontext); 2587 aac_fib_free(cmd_fibcontext); 2588 return 0; 2589 } 2590 2591 static void synchronize_callback(void *context, struct fib *fibptr) 2592 { 2593 struct aac_synchronize_reply *synchronizereply; 2594 struct scsi_cmnd *cmd = context; 2595 2596 if (!aac_valid_context(cmd, fibptr)) 2597 return; 2598 2599 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2600 smp_processor_id(), jiffies)); 2601 BUG_ON(fibptr == NULL); 2602 2603 2604 synchronizereply = fib_data(fibptr); 2605 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2606 cmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2607 else { 2608 struct scsi_device *sdev = cmd->device; 2609 struct aac_dev *dev = fibptr->dev; 2610 u32 cid = sdev_id(sdev); 2611 printk(KERN_WARNING 2612 "synchronize_callback: synchronize failed, status = %d\n", 2613 le32_to_cpu(synchronizereply->status)); 2614 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2615 set_sense(&dev->fsa_dev[cid].sense_data, 2616 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2617 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2618 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2619 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2620 SCSI_SENSE_BUFFERSIZE)); 2621 } 2622 2623 aac_fib_complete(fibptr); 2624 aac_fib_free(fibptr); 2625 cmd->scsi_done(cmd); 2626 } 2627 2628 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2629 { 2630 int status; 2631 struct fib *cmd_fibcontext; 2632 struct aac_synchronize *synchronizecmd; 2633 struct scsi_device *sdev = scsicmd->device; 2634 struct aac_dev *aac; 2635 2636 aac = (struct aac_dev *)sdev->host->hostdata; 2637 if (aac->in_reset) 2638 return SCSI_MLQUEUE_HOST_BUSY; 2639 2640 /* 2641 * Allocate and initialize a Fib 2642 */ 2643 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2644 2645 aac_fib_init(cmd_fibcontext); 2646 2647 synchronizecmd = fib_data(cmd_fibcontext); 2648 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2649 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2650 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2651 synchronizecmd->count = 2652 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2653 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2654 2655 /* 2656 * Now send the Fib to the adapter 2657 */ 2658 status = aac_fib_send(ContainerCommand, 2659 cmd_fibcontext, 2660 sizeof(struct aac_synchronize), 2661 FsaNormal, 2662 0, 1, 2663 (fib_callback)synchronize_callback, 2664 (void *)scsicmd); 2665 2666 /* 2667 * Check that the command queued to the controller 2668 */ 2669 if (status == -EINPROGRESS) 2670 return 0; 2671 2672 printk(KERN_WARNING 2673 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2674 aac_fib_complete(cmd_fibcontext); 2675 aac_fib_free(cmd_fibcontext); 2676 return SCSI_MLQUEUE_HOST_BUSY; 2677 } 2678 2679 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2680 { 2681 struct scsi_cmnd *scsicmd = context; 2682 2683 if (!aac_valid_context(scsicmd, fibptr)) 2684 return; 2685 2686 BUG_ON(fibptr == NULL); 2687 2688 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2689 2690 aac_fib_complete(fibptr); 2691 aac_fib_free(fibptr); 2692 scsicmd->scsi_done(scsicmd); 2693 } 2694 2695 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2696 { 2697 int status; 2698 struct fib *cmd_fibcontext; 2699 struct aac_power_management *pmcmd; 2700 struct scsi_device *sdev = scsicmd->device; 2701 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2702 2703 if (!(aac->supplement_adapter_info.supported_options2 & 2704 AAC_OPTION_POWER_MANAGEMENT)) { 2705 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2706 scsicmd->scsi_done(scsicmd); 2707 return 0; 2708 } 2709 2710 if (aac->in_reset) 2711 return SCSI_MLQUEUE_HOST_BUSY; 2712 2713 /* 2714 * Allocate and initialize a Fib 2715 */ 2716 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2717 2718 aac_fib_init(cmd_fibcontext); 2719 2720 pmcmd = fib_data(cmd_fibcontext); 2721 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2722 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2723 /* Eject bit ignored, not relevant */ 2724 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2725 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2726 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2727 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2728 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2729 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2730 2731 /* 2732 * Now send the Fib to the adapter 2733 */ 2734 status = aac_fib_send(ContainerCommand, 2735 cmd_fibcontext, 2736 sizeof(struct aac_power_management), 2737 FsaNormal, 2738 0, 1, 2739 (fib_callback)aac_start_stop_callback, 2740 (void *)scsicmd); 2741 2742 /* 2743 * Check that the command queued to the controller 2744 */ 2745 if (status == -EINPROGRESS) 2746 return 0; 2747 2748 aac_fib_complete(cmd_fibcontext); 2749 aac_fib_free(cmd_fibcontext); 2750 return SCSI_MLQUEUE_HOST_BUSY; 2751 } 2752 2753 /** 2754 * aac_scsi_cmd() - Process SCSI command 2755 * @scsicmd: SCSI command block 2756 * 2757 * Emulate a SCSI command and queue the required request for the 2758 * aacraid firmware. 2759 */ 2760 2761 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2762 { 2763 u32 cid, bus; 2764 struct Scsi_Host *host = scsicmd->device->host; 2765 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2766 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2767 2768 if (fsa_dev_ptr == NULL) 2769 return -1; 2770 /* 2771 * If the bus, id or lun is out of range, return fail 2772 * Test does not apply to ID 16, the pseudo id for the controller 2773 * itself. 2774 */ 2775 cid = scmd_id(scsicmd); 2776 if (cid != host->this_id) { 2777 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2778 if((cid >= dev->maximum_num_containers) || 2779 (scsicmd->device->lun != 0)) { 2780 scsicmd->result = DID_NO_CONNECT << 16; 2781 goto scsi_done_ret; 2782 } 2783 2784 /* 2785 * If the target container doesn't exist, it may have 2786 * been newly created 2787 */ 2788 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2789 (fsa_dev_ptr[cid].sense_data.sense_key == 2790 NOT_READY)) { 2791 switch (scsicmd->cmnd[0]) { 2792 case SERVICE_ACTION_IN_16: 2793 if (!(dev->raw_io_interface) || 2794 !(dev->raw_io_64) || 2795 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2796 break; 2797 fallthrough; 2798 case INQUIRY: 2799 case READ_CAPACITY: 2800 case TEST_UNIT_READY: 2801 if (dev->in_reset) 2802 return -1; 2803 return _aac_probe_container(scsicmd, 2804 aac_probe_container_callback2); 2805 default: 2806 break; 2807 } 2808 } 2809 } else { /* check for physical non-dasd devices */ 2810 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2811 2812 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2813 dev->hba_map[bus][cid].devtype 2814 == AAC_DEVTYPE_NATIVE_RAW) { 2815 if (dev->in_reset) 2816 return -1; 2817 return aac_send_hba_fib(scsicmd); 2818 } else if (dev->nondasd_support || expose_physicals || 2819 dev->jbod) { 2820 if (dev->in_reset) 2821 return -1; 2822 return aac_send_srb_fib(scsicmd); 2823 } else { 2824 scsicmd->result = DID_NO_CONNECT << 16; 2825 goto scsi_done_ret; 2826 } 2827 } 2828 } 2829 /* 2830 * else Command for the controller itself 2831 */ 2832 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2833 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2834 { 2835 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2836 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2837 set_sense(&dev->fsa_dev[cid].sense_data, 2838 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2839 ASENCODE_INVALID_COMMAND, 0, 0); 2840 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2841 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2842 SCSI_SENSE_BUFFERSIZE)); 2843 goto scsi_done_ret; 2844 } 2845 2846 switch (scsicmd->cmnd[0]) { 2847 case READ_6: 2848 case READ_10: 2849 case READ_12: 2850 case READ_16: 2851 if (dev->in_reset) 2852 return -1; 2853 return aac_read(scsicmd); 2854 2855 case WRITE_6: 2856 case WRITE_10: 2857 case WRITE_12: 2858 case WRITE_16: 2859 if (dev->in_reset) 2860 return -1; 2861 return aac_write(scsicmd); 2862 2863 case SYNCHRONIZE_CACHE: 2864 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2865 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2866 break; 2867 } 2868 /* Issue FIB to tell Firmware to flush it's cache */ 2869 if ((aac_cache & 6) != 2) 2870 return aac_synchronize(scsicmd); 2871 fallthrough; 2872 case INQUIRY: 2873 { 2874 struct inquiry_data inq_data; 2875 2876 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2877 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2878 2879 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2880 char *arr = (char *)&inq_data; 2881 2882 /* EVPD bit set */ 2883 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2884 INQD_PDT_PROC : INQD_PDT_DA; 2885 if (scsicmd->cmnd[2] == 0) { 2886 /* supported vital product data pages */ 2887 arr[3] = 3; 2888 arr[4] = 0x0; 2889 arr[5] = 0x80; 2890 arr[6] = 0x83; 2891 arr[1] = scsicmd->cmnd[2]; 2892 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2893 sizeof(inq_data)); 2894 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2895 } else if (scsicmd->cmnd[2] == 0x80) { 2896 /* unit serial number page */ 2897 arr[3] = setinqserial(dev, &arr[4], 2898 scmd_id(scsicmd)); 2899 arr[1] = scsicmd->cmnd[2]; 2900 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2901 sizeof(inq_data)); 2902 if (aac_wwn != 2) 2903 return aac_get_container_serial( 2904 scsicmd); 2905 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2906 } else if (scsicmd->cmnd[2] == 0x83) { 2907 /* vpd page 0x83 - Device Identification Page */ 2908 char *sno = (char *)&inq_data; 2909 sno[3] = setinqserial(dev, &sno[4], 2910 scmd_id(scsicmd)); 2911 if (aac_wwn != 2) 2912 return aac_get_container_serial( 2913 scsicmd); 2914 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2915 } else { 2916 /* vpd page not implemented */ 2917 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 2918 set_sense(&dev->fsa_dev[cid].sense_data, 2919 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2920 ASENCODE_NO_SENSE, 7, 2); 2921 memcpy(scsicmd->sense_buffer, 2922 &dev->fsa_dev[cid].sense_data, 2923 min_t(size_t, 2924 sizeof(dev->fsa_dev[cid].sense_data), 2925 SCSI_SENSE_BUFFERSIZE)); 2926 } 2927 break; 2928 } 2929 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2930 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2931 inq_data.inqd_len = 31; 2932 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2933 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2934 /* 2935 * Set the Vendor, Product, and Revision Level 2936 * see: <vendor>.c i.e. aac.c 2937 */ 2938 if (cid == host->this_id) { 2939 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2940 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2941 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2942 sizeof(inq_data)); 2943 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2944 break; 2945 } 2946 if (dev->in_reset) 2947 return -1; 2948 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2949 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2950 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2951 return aac_get_container_name(scsicmd); 2952 } 2953 case SERVICE_ACTION_IN_16: 2954 if (!(dev->raw_io_interface) || 2955 !(dev->raw_io_64) || 2956 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2957 break; 2958 { 2959 u64 capacity; 2960 char cp[13]; 2961 unsigned int alloc_len; 2962 2963 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2964 capacity = fsa_dev_ptr[cid].size - 1; 2965 cp[0] = (capacity >> 56) & 0xff; 2966 cp[1] = (capacity >> 48) & 0xff; 2967 cp[2] = (capacity >> 40) & 0xff; 2968 cp[3] = (capacity >> 32) & 0xff; 2969 cp[4] = (capacity >> 24) & 0xff; 2970 cp[5] = (capacity >> 16) & 0xff; 2971 cp[6] = (capacity >> 8) & 0xff; 2972 cp[7] = (capacity >> 0) & 0xff; 2973 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2974 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 2975 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 2976 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 2977 cp[12] = 0; 2978 2979 alloc_len = ((scsicmd->cmnd[10] << 24) 2980 + (scsicmd->cmnd[11] << 16) 2981 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 2982 2983 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 2984 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 2985 if (alloc_len < scsi_bufflen(scsicmd)) 2986 scsi_set_resid(scsicmd, 2987 scsi_bufflen(scsicmd) - alloc_len); 2988 2989 /* Do not cache partition table for arrays */ 2990 scsicmd->device->removable = 1; 2991 2992 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 2993 break; 2994 } 2995 2996 case READ_CAPACITY: 2997 { 2998 u32 capacity; 2999 char cp[8]; 3000 3001 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3002 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3003 capacity = fsa_dev_ptr[cid].size - 1; 3004 else 3005 capacity = (u32)-1; 3006 3007 cp[0] = (capacity >> 24) & 0xff; 3008 cp[1] = (capacity >> 16) & 0xff; 3009 cp[2] = (capacity >> 8) & 0xff; 3010 cp[3] = (capacity >> 0) & 0xff; 3011 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3012 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3013 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3014 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3015 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3016 /* Do not cache partition table for arrays */ 3017 scsicmd->device->removable = 1; 3018 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3019 break; 3020 } 3021 3022 case MODE_SENSE: 3023 { 3024 int mode_buf_length = 4; 3025 u32 capacity; 3026 aac_modep_data mpd; 3027 3028 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3029 capacity = fsa_dev_ptr[cid].size - 1; 3030 else 3031 capacity = (u32)-1; 3032 3033 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3034 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3035 3036 /* Mode data length */ 3037 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3038 /* Medium type - default */ 3039 mpd.hd.med_type = 0; 3040 /* Device-specific param, 3041 bit 8: 0/1 = write enabled/protected 3042 bit 4: 0/1 = FUA enabled */ 3043 mpd.hd.dev_par = 0; 3044 3045 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3046 mpd.hd.dev_par = 0x10; 3047 if (scsicmd->cmnd[1] & 0x8) 3048 mpd.hd.bd_length = 0; /* Block descriptor length */ 3049 else { 3050 mpd.hd.bd_length = sizeof(mpd.bd); 3051 mpd.hd.data_length += mpd.hd.bd_length; 3052 mpd.bd.block_length[0] = 3053 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3054 mpd.bd.block_length[1] = 3055 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3056 mpd.bd.block_length[2] = 3057 fsa_dev_ptr[cid].block_size & 0xff; 3058 3059 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3060 if (scsicmd->cmnd[2] == 0x1C) { 3061 /* page length */ 3062 mpd.mpc_buf[1] = 0xa; 3063 /* Mode data length */ 3064 mpd.hd.data_length = 23; 3065 } else { 3066 /* Mode data length */ 3067 mpd.hd.data_length = 15; 3068 } 3069 3070 if (capacity > 0xffffff) { 3071 mpd.bd.block_count[0] = 0xff; 3072 mpd.bd.block_count[1] = 0xff; 3073 mpd.bd.block_count[2] = 0xff; 3074 } else { 3075 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3076 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3077 mpd.bd.block_count[2] = capacity & 0xff; 3078 } 3079 } 3080 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3081 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3082 mpd.hd.data_length += 3; 3083 mpd.mpc_buf[0] = 8; 3084 mpd.mpc_buf[1] = 1; 3085 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3086 ? 0 : 0x04; /* WCE */ 3087 mode_buf_length = sizeof(mpd); 3088 } 3089 3090 if (mode_buf_length > scsicmd->cmnd[4]) 3091 mode_buf_length = scsicmd->cmnd[4]; 3092 else 3093 mode_buf_length = sizeof(mpd); 3094 scsi_sg_copy_from_buffer(scsicmd, 3095 (char *)&mpd, 3096 mode_buf_length); 3097 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3098 break; 3099 } 3100 case MODE_SENSE_10: 3101 { 3102 u32 capacity; 3103 int mode_buf_length = 8; 3104 aac_modep10_data mpd10; 3105 3106 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3107 capacity = fsa_dev_ptr[cid].size - 1; 3108 else 3109 capacity = (u32)-1; 3110 3111 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3112 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3113 /* Mode data length (MSB) */ 3114 mpd10.hd.data_length[0] = 0; 3115 /* Mode data length (LSB) */ 3116 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3117 /* Medium type - default */ 3118 mpd10.hd.med_type = 0; 3119 /* Device-specific param, 3120 bit 8: 0/1 = write enabled/protected 3121 bit 4: 0/1 = FUA enabled */ 3122 mpd10.hd.dev_par = 0; 3123 3124 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3125 mpd10.hd.dev_par = 0x10; 3126 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3127 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3128 if (scsicmd->cmnd[1] & 0x8) { 3129 /* Block descriptor length (MSB) */ 3130 mpd10.hd.bd_length[0] = 0; 3131 /* Block descriptor length (LSB) */ 3132 mpd10.hd.bd_length[1] = 0; 3133 } else { 3134 mpd10.hd.bd_length[0] = 0; 3135 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3136 3137 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3138 3139 mpd10.bd.block_length[0] = 3140 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3141 mpd10.bd.block_length[1] = 3142 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3143 mpd10.bd.block_length[2] = 3144 fsa_dev_ptr[cid].block_size & 0xff; 3145 3146 if (capacity > 0xffffff) { 3147 mpd10.bd.block_count[0] = 0xff; 3148 mpd10.bd.block_count[1] = 0xff; 3149 mpd10.bd.block_count[2] = 0xff; 3150 } else { 3151 mpd10.bd.block_count[0] = 3152 (capacity >> 16) & 0xff; 3153 mpd10.bd.block_count[1] = 3154 (capacity >> 8) & 0xff; 3155 mpd10.bd.block_count[2] = 3156 capacity & 0xff; 3157 } 3158 } 3159 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3160 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3161 mpd10.hd.data_length[1] += 3; 3162 mpd10.mpc_buf[0] = 8; 3163 mpd10.mpc_buf[1] = 1; 3164 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3165 ? 0 : 0x04; /* WCE */ 3166 mode_buf_length = sizeof(mpd10); 3167 if (mode_buf_length > scsicmd->cmnd[8]) 3168 mode_buf_length = scsicmd->cmnd[8]; 3169 } 3170 scsi_sg_copy_from_buffer(scsicmd, 3171 (char *)&mpd10, 3172 mode_buf_length); 3173 3174 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3175 break; 3176 } 3177 case REQUEST_SENSE: 3178 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3179 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3180 sizeof(struct sense_data)); 3181 memset(&dev->fsa_dev[cid].sense_data, 0, 3182 sizeof(struct sense_data)); 3183 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3184 break; 3185 3186 case ALLOW_MEDIUM_REMOVAL: 3187 dprintk((KERN_DEBUG "LOCK command.\n")); 3188 if (scsicmd->cmnd[4]) 3189 fsa_dev_ptr[cid].locked = 1; 3190 else 3191 fsa_dev_ptr[cid].locked = 0; 3192 3193 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3194 break; 3195 /* 3196 * These commands are all No-Ops 3197 */ 3198 case TEST_UNIT_READY: 3199 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3200 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3201 set_sense(&dev->fsa_dev[cid].sense_data, 3202 NOT_READY, SENCODE_BECOMING_READY, 3203 ASENCODE_BECOMING_READY, 0, 0); 3204 memcpy(scsicmd->sense_buffer, 3205 &dev->fsa_dev[cid].sense_data, 3206 min_t(size_t, 3207 sizeof(dev->fsa_dev[cid].sense_data), 3208 SCSI_SENSE_BUFFERSIZE)); 3209 break; 3210 } 3211 fallthrough; 3212 case RESERVE: 3213 case RELEASE: 3214 case REZERO_UNIT: 3215 case REASSIGN_BLOCKS: 3216 case SEEK_10: 3217 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD; 3218 break; 3219 3220 case START_STOP: 3221 return aac_start_stop(scsicmd); 3222 3223 default: 3224 /* 3225 * Unhandled commands 3226 */ 3227 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3228 scsicmd->cmnd[0])); 3229 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION; 3230 set_sense(&dev->fsa_dev[cid].sense_data, 3231 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3232 ASENCODE_INVALID_COMMAND, 0, 0); 3233 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3234 min_t(size_t, 3235 sizeof(dev->fsa_dev[cid].sense_data), 3236 SCSI_SENSE_BUFFERSIZE)); 3237 } 3238 3239 scsi_done_ret: 3240 3241 scsicmd->scsi_done(scsicmd); 3242 return 0; 3243 } 3244 3245 static int query_disk(struct aac_dev *dev, void __user *arg) 3246 { 3247 struct aac_query_disk qd; 3248 struct fsa_dev_info *fsa_dev_ptr; 3249 3250 fsa_dev_ptr = dev->fsa_dev; 3251 if (!fsa_dev_ptr) 3252 return -EBUSY; 3253 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3254 return -EFAULT; 3255 if (qd.cnum == -1) { 3256 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3257 return -EINVAL; 3258 qd.cnum = qd.id; 3259 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3260 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3261 return -EINVAL; 3262 qd.instance = dev->scsi_host_ptr->host_no; 3263 qd.bus = 0; 3264 qd.id = CONTAINER_TO_ID(qd.cnum); 3265 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3266 } 3267 else return -EINVAL; 3268 3269 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3270 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3271 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3272 3273 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3274 qd.unmapped = 1; 3275 else 3276 qd.unmapped = 0; 3277 3278 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3279 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3280 3281 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3282 return -EFAULT; 3283 return 0; 3284 } 3285 3286 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3287 { 3288 struct aac_delete_disk dd; 3289 struct fsa_dev_info *fsa_dev_ptr; 3290 3291 fsa_dev_ptr = dev->fsa_dev; 3292 if (!fsa_dev_ptr) 3293 return -EBUSY; 3294 3295 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3296 return -EFAULT; 3297 3298 if (dd.cnum >= dev->maximum_num_containers) 3299 return -EINVAL; 3300 /* 3301 * Mark this container as being deleted. 3302 */ 3303 fsa_dev_ptr[dd.cnum].deleted = 1; 3304 /* 3305 * Mark the container as no longer valid 3306 */ 3307 fsa_dev_ptr[dd.cnum].valid = 0; 3308 return 0; 3309 } 3310 3311 static int delete_disk(struct aac_dev *dev, void __user *arg) 3312 { 3313 struct aac_delete_disk dd; 3314 struct fsa_dev_info *fsa_dev_ptr; 3315 3316 fsa_dev_ptr = dev->fsa_dev; 3317 if (!fsa_dev_ptr) 3318 return -EBUSY; 3319 3320 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3321 return -EFAULT; 3322 3323 if (dd.cnum >= dev->maximum_num_containers) 3324 return -EINVAL; 3325 /* 3326 * If the container is locked, it can not be deleted by the API. 3327 */ 3328 if (fsa_dev_ptr[dd.cnum].locked) 3329 return -EBUSY; 3330 else { 3331 /* 3332 * Mark the container as no longer being valid. 3333 */ 3334 fsa_dev_ptr[dd.cnum].valid = 0; 3335 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3336 return 0; 3337 } 3338 } 3339 3340 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3341 { 3342 switch (cmd) { 3343 case FSACTL_QUERY_DISK: 3344 return query_disk(dev, arg); 3345 case FSACTL_DELETE_DISK: 3346 return delete_disk(dev, arg); 3347 case FSACTL_FORCE_DELETE_DISK: 3348 return force_delete_disk(dev, arg); 3349 case FSACTL_GET_CONTAINERS: 3350 return aac_get_containers(dev); 3351 default: 3352 return -ENOTTY; 3353 } 3354 } 3355 3356 /** 3357 * aac_srb_callback 3358 * @context: the context set in the fib - here it is scsi cmd 3359 * @fibptr: pointer to the fib 3360 * 3361 * Handles the completion of a scsi command to a non dasd device 3362 */ 3363 static void aac_srb_callback(void *context, struct fib * fibptr) 3364 { 3365 struct aac_srb_reply *srbreply; 3366 struct scsi_cmnd *scsicmd; 3367 3368 scsicmd = (struct scsi_cmnd *) context; 3369 3370 if (!aac_valid_context(scsicmd, fibptr)) 3371 return; 3372 3373 BUG_ON(fibptr == NULL); 3374 3375 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3376 3377 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3378 3379 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3380 /* fast response */ 3381 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3382 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3383 } else { 3384 /* 3385 * Calculate resid for sg 3386 */ 3387 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3388 - le32_to_cpu(srbreply->data_xfer_length)); 3389 } 3390 3391 3392 scsi_dma_unmap(scsicmd); 3393 3394 /* expose physical device if expose_physicald flag is on */ 3395 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3396 && expose_physicals > 0) 3397 aac_expose_phy_device(scsicmd); 3398 3399 /* 3400 * First check the fib status 3401 */ 3402 3403 if (le32_to_cpu(srbreply->status) != ST_OK) { 3404 int len; 3405 3406 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3407 le32_to_cpu(srbreply->status)); 3408 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3409 SCSI_SENSE_BUFFERSIZE); 3410 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION; 3411 memcpy(scsicmd->sense_buffer, 3412 srbreply->sense_data, len); 3413 } 3414 3415 /* 3416 * Next check the srb status 3417 */ 3418 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3419 case SRB_STATUS_ERROR_RECOVERY: 3420 case SRB_STATUS_PENDING: 3421 case SRB_STATUS_SUCCESS: 3422 scsicmd->result = DID_OK << 16; 3423 break; 3424 case SRB_STATUS_DATA_OVERRUN: 3425 switch (scsicmd->cmnd[0]) { 3426 case READ_6: 3427 case WRITE_6: 3428 case READ_10: 3429 case WRITE_10: 3430 case READ_12: 3431 case WRITE_12: 3432 case READ_16: 3433 case WRITE_16: 3434 if (le32_to_cpu(srbreply->data_xfer_length) 3435 < scsicmd->underflow) 3436 pr_warn("aacraid: SCSI CMD underflow\n"); 3437 else 3438 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3439 scsicmd->result = DID_ERROR << 16; 3440 break; 3441 case INQUIRY: 3442 scsicmd->result = DID_OK << 16; 3443 break; 3444 default: 3445 scsicmd->result = DID_OK << 16; 3446 break; 3447 } 3448 break; 3449 case SRB_STATUS_ABORTED: 3450 scsicmd->result = DID_ABORT << 16; 3451 break; 3452 case SRB_STATUS_ABORT_FAILED: 3453 /* 3454 * Not sure about this one - but assuming the 3455 * hba was trying to abort for some reason 3456 */ 3457 scsicmd->result = DID_ERROR << 16; 3458 break; 3459 case SRB_STATUS_PARITY_ERROR: 3460 scsicmd->result = DID_PARITY << 16; 3461 break; 3462 case SRB_STATUS_NO_DEVICE: 3463 case SRB_STATUS_INVALID_PATH_ID: 3464 case SRB_STATUS_INVALID_TARGET_ID: 3465 case SRB_STATUS_INVALID_LUN: 3466 case SRB_STATUS_SELECTION_TIMEOUT: 3467 scsicmd->result = DID_NO_CONNECT << 16; 3468 break; 3469 3470 case SRB_STATUS_COMMAND_TIMEOUT: 3471 case SRB_STATUS_TIMEOUT: 3472 scsicmd->result = DID_TIME_OUT << 16; 3473 break; 3474 3475 case SRB_STATUS_BUSY: 3476 scsicmd->result = DID_BUS_BUSY << 16; 3477 break; 3478 3479 case SRB_STATUS_BUS_RESET: 3480 scsicmd->result = DID_RESET << 16; 3481 break; 3482 3483 case SRB_STATUS_MESSAGE_REJECTED: 3484 scsicmd->result = DID_ERROR << 16; 3485 break; 3486 case SRB_STATUS_REQUEST_FLUSHED: 3487 case SRB_STATUS_ERROR: 3488 case SRB_STATUS_INVALID_REQUEST: 3489 case SRB_STATUS_REQUEST_SENSE_FAILED: 3490 case SRB_STATUS_NO_HBA: 3491 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3492 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3493 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3494 case SRB_STATUS_DELAYED_RETRY: 3495 case SRB_STATUS_BAD_FUNCTION: 3496 case SRB_STATUS_NOT_STARTED: 3497 case SRB_STATUS_NOT_IN_USE: 3498 case SRB_STATUS_FORCE_ABORT: 3499 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3500 default: 3501 #ifdef AAC_DETAILED_STATUS_INFO 3502 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3503 le32_to_cpu(srbreply->srb_status) & 0x3F, 3504 aac_get_status_string( 3505 le32_to_cpu(srbreply->srb_status) & 0x3F), 3506 scsicmd->cmnd[0], 3507 le32_to_cpu(srbreply->scsi_status)); 3508 #endif 3509 /* 3510 * When the CC bit is SET by the host in ATA pass thru CDB, 3511 * driver is supposed to return DID_OK 3512 * 3513 * When the CC bit is RESET by the host, driver should 3514 * return DID_ERROR 3515 */ 3516 if ((scsicmd->cmnd[0] == ATA_12) 3517 || (scsicmd->cmnd[0] == ATA_16)) { 3518 3519 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3520 scsicmd->result = DID_OK << 16; 3521 } else { 3522 scsicmd->result = DID_ERROR << 16; 3523 } 3524 } else { 3525 scsicmd->result = DID_ERROR << 16; 3526 } 3527 break; 3528 } 3529 if (le32_to_cpu(srbreply->scsi_status) 3530 == SAM_STAT_CHECK_CONDITION) { 3531 int len; 3532 3533 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3534 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3535 SCSI_SENSE_BUFFERSIZE); 3536 #ifdef AAC_DETAILED_STATUS_INFO 3537 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3538 le32_to_cpu(srbreply->status), len); 3539 #endif 3540 memcpy(scsicmd->sense_buffer, 3541 srbreply->sense_data, len); 3542 } 3543 3544 /* 3545 * OR in the scsi status (already shifted up a bit) 3546 */ 3547 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3548 3549 aac_fib_complete(fibptr); 3550 scsicmd->scsi_done(scsicmd); 3551 } 3552 3553 static void hba_resp_task_complete(struct aac_dev *dev, 3554 struct scsi_cmnd *scsicmd, 3555 struct aac_hba_resp *err) { 3556 3557 scsicmd->result = err->status; 3558 /* set residual count */ 3559 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3560 3561 switch (err->status) { 3562 case SAM_STAT_GOOD: 3563 scsicmd->result |= DID_OK << 16; 3564 break; 3565 case SAM_STAT_CHECK_CONDITION: 3566 { 3567 int len; 3568 3569 len = min_t(u8, err->sense_response_data_len, 3570 SCSI_SENSE_BUFFERSIZE); 3571 if (len) 3572 memcpy(scsicmd->sense_buffer, 3573 err->sense_response_buf, len); 3574 scsicmd->result |= DID_OK << 16; 3575 break; 3576 } 3577 case SAM_STAT_BUSY: 3578 scsicmd->result |= DID_BUS_BUSY << 16; 3579 break; 3580 case SAM_STAT_TASK_ABORTED: 3581 scsicmd->result |= DID_ABORT << 16; 3582 break; 3583 case SAM_STAT_RESERVATION_CONFLICT: 3584 case SAM_STAT_TASK_SET_FULL: 3585 default: 3586 scsicmd->result |= DID_ERROR << 16; 3587 break; 3588 } 3589 } 3590 3591 static void hba_resp_task_failure(struct aac_dev *dev, 3592 struct scsi_cmnd *scsicmd, 3593 struct aac_hba_resp *err) 3594 { 3595 switch (err->status) { 3596 case HBA_RESP_STAT_HBAMODE_DISABLED: 3597 { 3598 u32 bus, cid; 3599 3600 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3601 cid = scmd_id(scsicmd); 3602 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3603 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3604 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3605 } 3606 scsicmd->result = DID_NO_CONNECT << 16; 3607 break; 3608 } 3609 case HBA_RESP_STAT_IO_ERROR: 3610 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3611 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY; 3612 break; 3613 case HBA_RESP_STAT_IO_ABORTED: 3614 scsicmd->result = DID_ABORT << 16; 3615 break; 3616 case HBA_RESP_STAT_INVALID_DEVICE: 3617 scsicmd->result = DID_NO_CONNECT << 16; 3618 break; 3619 case HBA_RESP_STAT_UNDERRUN: 3620 /* UNDERRUN is OK */ 3621 scsicmd->result = DID_OK << 16; 3622 break; 3623 case HBA_RESP_STAT_OVERRUN: 3624 default: 3625 scsicmd->result = DID_ERROR << 16; 3626 break; 3627 } 3628 } 3629 3630 /** 3631 * aac_hba_callback 3632 * @context: the context set in the fib - here it is scsi cmd 3633 * @fibptr: pointer to the fib 3634 * 3635 * Handles the completion of a native HBA scsi command 3636 */ 3637 void aac_hba_callback(void *context, struct fib *fibptr) 3638 { 3639 struct aac_dev *dev; 3640 struct scsi_cmnd *scsicmd; 3641 3642 struct aac_hba_resp *err = 3643 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3644 3645 scsicmd = (struct scsi_cmnd *) context; 3646 3647 if (!aac_valid_context(scsicmd, fibptr)) 3648 return; 3649 3650 WARN_ON(fibptr == NULL); 3651 dev = fibptr->dev; 3652 3653 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3654 scsi_dma_unmap(scsicmd); 3655 3656 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3657 /* fast response */ 3658 scsicmd->result = DID_OK << 16; 3659 goto out; 3660 } 3661 3662 switch (err->service_response) { 3663 case HBA_RESP_SVCRES_TASK_COMPLETE: 3664 hba_resp_task_complete(dev, scsicmd, err); 3665 break; 3666 case HBA_RESP_SVCRES_FAILURE: 3667 hba_resp_task_failure(dev, scsicmd, err); 3668 break; 3669 case HBA_RESP_SVCRES_TMF_REJECTED: 3670 scsicmd->result = DID_ERROR << 16; 3671 break; 3672 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3673 scsicmd->result = DID_NO_CONNECT << 16; 3674 break; 3675 case HBA_RESP_SVCRES_TMF_COMPLETE: 3676 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3677 scsicmd->result = DID_OK << 16; 3678 break; 3679 default: 3680 scsicmd->result = DID_ERROR << 16; 3681 break; 3682 } 3683 3684 out: 3685 aac_fib_complete(fibptr); 3686 3687 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3688 scsicmd->SCp.sent_command = 1; 3689 else 3690 scsicmd->scsi_done(scsicmd); 3691 } 3692 3693 /** 3694 * aac_send_srb_fib 3695 * @scsicmd: the scsi command block 3696 * 3697 * This routine will form a FIB and fill in the aac_srb from the 3698 * scsicmd passed in. 3699 */ 3700 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3701 { 3702 struct fib* cmd_fibcontext; 3703 struct aac_dev* dev; 3704 int status; 3705 3706 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3707 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3708 scsicmd->device->lun > 7) { 3709 scsicmd->result = DID_NO_CONNECT << 16; 3710 scsicmd->scsi_done(scsicmd); 3711 return 0; 3712 } 3713 3714 /* 3715 * Allocate and initialize a Fib then setup a BlockWrite command 3716 */ 3717 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3718 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3719 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3720 3721 /* 3722 * Check that the command queued to the controller 3723 */ 3724 if (status == -EINPROGRESS) 3725 return 0; 3726 3727 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3728 aac_fib_complete(cmd_fibcontext); 3729 aac_fib_free(cmd_fibcontext); 3730 3731 return -1; 3732 } 3733 3734 /** 3735 * aac_send_hba_fib 3736 * @scsicmd: the scsi command block 3737 * 3738 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3739 * scsicmd passed in. 3740 */ 3741 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3742 { 3743 struct fib *cmd_fibcontext; 3744 struct aac_dev *dev; 3745 int status; 3746 3747 dev = shost_priv(scsicmd->device->host); 3748 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3749 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3750 scsicmd->result = DID_NO_CONNECT << 16; 3751 scsicmd->scsi_done(scsicmd); 3752 return 0; 3753 } 3754 3755 /* 3756 * Allocate and initialize a Fib then setup a BlockWrite command 3757 */ 3758 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3759 if (!cmd_fibcontext) 3760 return -1; 3761 3762 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3763 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3764 3765 /* 3766 * Check that the command queued to the controller 3767 */ 3768 if (status == -EINPROGRESS) 3769 return 0; 3770 3771 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3772 status); 3773 aac_fib_complete(cmd_fibcontext); 3774 aac_fib_free(cmd_fibcontext); 3775 3776 return -1; 3777 } 3778 3779 3780 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3781 { 3782 unsigned long byte_count = 0; 3783 int nseg; 3784 struct scatterlist *sg; 3785 int i; 3786 3787 // Get rid of old data 3788 psg->count = 0; 3789 psg->sg[0].addr = 0; 3790 psg->sg[0].count = 0; 3791 3792 nseg = scsi_dma_map(scsicmd); 3793 if (nseg <= 0) 3794 return nseg; 3795 3796 psg->count = cpu_to_le32(nseg); 3797 3798 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3799 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3800 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3801 byte_count += sg_dma_len(sg); 3802 } 3803 /* hba wants the size to be exact */ 3804 if (byte_count > scsi_bufflen(scsicmd)) { 3805 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3806 (byte_count - scsi_bufflen(scsicmd)); 3807 psg->sg[i-1].count = cpu_to_le32(temp); 3808 byte_count = scsi_bufflen(scsicmd); 3809 } 3810 /* Check for command underflow */ 3811 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3812 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3813 byte_count, scsicmd->underflow); 3814 } 3815 3816 return byte_count; 3817 } 3818 3819 3820 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3821 { 3822 unsigned long byte_count = 0; 3823 u64 addr; 3824 int nseg; 3825 struct scatterlist *sg; 3826 int i; 3827 3828 // Get rid of old data 3829 psg->count = 0; 3830 psg->sg[0].addr[0] = 0; 3831 psg->sg[0].addr[1] = 0; 3832 psg->sg[0].count = 0; 3833 3834 nseg = scsi_dma_map(scsicmd); 3835 if (nseg <= 0) 3836 return nseg; 3837 3838 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3839 int count = sg_dma_len(sg); 3840 addr = sg_dma_address(sg); 3841 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3842 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3843 psg->sg[i].count = cpu_to_le32(count); 3844 byte_count += count; 3845 } 3846 psg->count = cpu_to_le32(nseg); 3847 /* hba wants the size to be exact */ 3848 if (byte_count > scsi_bufflen(scsicmd)) { 3849 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3850 (byte_count - scsi_bufflen(scsicmd)); 3851 psg->sg[i-1].count = cpu_to_le32(temp); 3852 byte_count = scsi_bufflen(scsicmd); 3853 } 3854 /* Check for command underflow */ 3855 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3856 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3857 byte_count, scsicmd->underflow); 3858 } 3859 3860 return byte_count; 3861 } 3862 3863 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3864 { 3865 unsigned long byte_count = 0; 3866 int nseg; 3867 struct scatterlist *sg; 3868 int i; 3869 3870 // Get rid of old data 3871 psg->count = 0; 3872 psg->sg[0].next = 0; 3873 psg->sg[0].prev = 0; 3874 psg->sg[0].addr[0] = 0; 3875 psg->sg[0].addr[1] = 0; 3876 psg->sg[0].count = 0; 3877 psg->sg[0].flags = 0; 3878 3879 nseg = scsi_dma_map(scsicmd); 3880 if (nseg <= 0) 3881 return nseg; 3882 3883 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3884 int count = sg_dma_len(sg); 3885 u64 addr = sg_dma_address(sg); 3886 psg->sg[i].next = 0; 3887 psg->sg[i].prev = 0; 3888 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3889 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3890 psg->sg[i].count = cpu_to_le32(count); 3891 psg->sg[i].flags = 0; 3892 byte_count += count; 3893 } 3894 psg->count = cpu_to_le32(nseg); 3895 /* hba wants the size to be exact */ 3896 if (byte_count > scsi_bufflen(scsicmd)) { 3897 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3898 (byte_count - scsi_bufflen(scsicmd)); 3899 psg->sg[i-1].count = cpu_to_le32(temp); 3900 byte_count = scsi_bufflen(scsicmd); 3901 } 3902 /* Check for command underflow */ 3903 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3904 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3905 byte_count, scsicmd->underflow); 3906 } 3907 3908 return byte_count; 3909 } 3910 3911 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3912 struct aac_raw_io2 *rio2, int sg_max) 3913 { 3914 unsigned long byte_count = 0; 3915 int nseg; 3916 struct scatterlist *sg; 3917 int i, conformable = 0; 3918 u32 min_size = PAGE_SIZE, cur_size; 3919 3920 nseg = scsi_dma_map(scsicmd); 3921 if (nseg <= 0) 3922 return nseg; 3923 3924 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3925 int count = sg_dma_len(sg); 3926 u64 addr = sg_dma_address(sg); 3927 3928 BUG_ON(i >= sg_max); 3929 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3930 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3931 cur_size = cpu_to_le32(count); 3932 rio2->sge[i].length = cur_size; 3933 rio2->sge[i].flags = 0; 3934 if (i == 0) { 3935 conformable = 1; 3936 rio2->sgeFirstSize = cur_size; 3937 } else if (i == 1) { 3938 rio2->sgeNominalSize = cur_size; 3939 min_size = cur_size; 3940 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3941 conformable = 0; 3942 if (cur_size < min_size) 3943 min_size = cur_size; 3944 } 3945 byte_count += count; 3946 } 3947 3948 /* hba wants the size to be exact */ 3949 if (byte_count > scsi_bufflen(scsicmd)) { 3950 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 3951 (byte_count - scsi_bufflen(scsicmd)); 3952 rio2->sge[i-1].length = cpu_to_le32(temp); 3953 byte_count = scsi_bufflen(scsicmd); 3954 } 3955 3956 rio2->sgeCnt = cpu_to_le32(nseg); 3957 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 3958 /* not conformable: evaluate required sg elements */ 3959 if (!conformable) { 3960 int j, nseg_new = nseg, err_found; 3961 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 3962 err_found = 0; 3963 nseg_new = 2; 3964 for (j = 1; j < nseg - 1; ++j) { 3965 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 3966 err_found = 1; 3967 break; 3968 } 3969 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 3970 } 3971 if (!err_found) 3972 break; 3973 } 3974 if (i > 0 && nseg_new <= sg_max) { 3975 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 3976 3977 if (ret < 0) 3978 return ret; 3979 } 3980 } else 3981 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 3982 3983 /* Check for command underflow */ 3984 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3985 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3986 byte_count, scsicmd->underflow); 3987 } 3988 3989 return byte_count; 3990 } 3991 3992 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 3993 { 3994 struct sge_ieee1212 *sge; 3995 int i, j, pos; 3996 u32 addr_low; 3997 3998 if (aac_convert_sgl == 0) 3999 return 0; 4000 4001 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4002 if (sge == NULL) 4003 return -ENOMEM; 4004 4005 for (i = 1, pos = 1; i < nseg-1; ++i) { 4006 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4007 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4008 sge[pos].addrLow = addr_low; 4009 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4010 if (addr_low < rio2->sge[i].addrLow) 4011 sge[pos].addrHigh++; 4012 sge[pos].length = pages * PAGE_SIZE; 4013 sge[pos].flags = 0; 4014 pos++; 4015 } 4016 } 4017 sge[pos] = rio2->sge[nseg-1]; 4018 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4019 4020 kfree(sge); 4021 rio2->sgeCnt = cpu_to_le32(nseg_new); 4022 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4023 rio2->sgeNominalSize = pages * PAGE_SIZE; 4024 return 0; 4025 } 4026 4027 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4028 struct aac_hba_cmd_req *hbacmd, 4029 int sg_max, 4030 u64 sg_address) 4031 { 4032 unsigned long byte_count = 0; 4033 int nseg; 4034 struct scatterlist *sg; 4035 int i; 4036 u32 cur_size; 4037 struct aac_hba_sgl *sge; 4038 4039 nseg = scsi_dma_map(scsicmd); 4040 if (nseg <= 0) { 4041 byte_count = nseg; 4042 goto out; 4043 } 4044 4045 if (nseg > HBA_MAX_SG_EMBEDDED) 4046 sge = &hbacmd->sge[2]; 4047 else 4048 sge = &hbacmd->sge[0]; 4049 4050 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4051 int count = sg_dma_len(sg); 4052 u64 addr = sg_dma_address(sg); 4053 4054 WARN_ON(i >= sg_max); 4055 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4056 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4057 cur_size = cpu_to_le32(count); 4058 sge->len = cur_size; 4059 sge->flags = 0; 4060 byte_count += count; 4061 sge++; 4062 } 4063 4064 sge--; 4065 /* hba wants the size to be exact */ 4066 if (byte_count > scsi_bufflen(scsicmd)) { 4067 u32 temp; 4068 4069 temp = le32_to_cpu(sge->len) - byte_count 4070 - scsi_bufflen(scsicmd); 4071 sge->len = cpu_to_le32(temp); 4072 byte_count = scsi_bufflen(scsicmd); 4073 } 4074 4075 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4076 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4077 sge->flags = cpu_to_le32(0x40000000); 4078 } else { 4079 /* not embedded */ 4080 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4081 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4082 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4083 hbacmd->sge[0].addr_lo = 4084 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4085 } 4086 4087 /* Check for command underflow */ 4088 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4089 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4090 byte_count, scsicmd->underflow); 4091 } 4092 out: 4093 return byte_count; 4094 } 4095 4096 #ifdef AAC_DETAILED_STATUS_INFO 4097 4098 struct aac_srb_status_info { 4099 u32 status; 4100 char *str; 4101 }; 4102 4103 4104 static struct aac_srb_status_info srb_status_info[] = { 4105 { SRB_STATUS_PENDING, "Pending Status"}, 4106 { SRB_STATUS_SUCCESS, "Success"}, 4107 { SRB_STATUS_ABORTED, "Aborted Command"}, 4108 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4109 { SRB_STATUS_ERROR, "Error Event"}, 4110 { SRB_STATUS_BUSY, "Device Busy"}, 4111 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4112 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4113 { SRB_STATUS_NO_DEVICE, "No Device"}, 4114 { SRB_STATUS_TIMEOUT, "Timeout"}, 4115 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4116 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4117 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4118 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4119 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4120 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4121 { SRB_STATUS_NO_HBA, "No HBA"}, 4122 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4123 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4124 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4125 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4126 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4127 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4128 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4129 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4130 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4131 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4132 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4133 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4134 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4135 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4136 { 0xff, "Unknown Error"} 4137 }; 4138 4139 char *aac_get_status_string(u32 status) 4140 { 4141 int i; 4142 4143 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4144 if (srb_status_info[i].status == status) 4145 return srb_status_info[i].str; 4146 4147 return "Bad Status Code"; 4148 } 4149 4150 #endif 4151