xref: /openbmc/linux/drivers/scsi/aacraid/aachba.c (revision 08193d1a)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  aachba.c
28  *
29  * Abstract: Contains Interfaces to manage IOs.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/uaccess.h>
42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
43 #include <linux/module.h>
44 
45 #include <asm/unaligned.h>
46 
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51 
52 #include "aacraid.h"
53 
54 /* values for inqd_pdt: Peripheral device type in plain English */
55 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
56 #define	INQD_PDT_PROC	0x03	/* Processor device */
57 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
58 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
59 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
60 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
61 
62 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
63 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
64 
65 /*
66  *	Sense codes
67  */
68 
69 #define SENCODE_NO_SENSE			0x00
70 #define SENCODE_END_OF_DATA			0x00
71 #define SENCODE_BECOMING_READY			0x04
72 #define SENCODE_INIT_CMD_REQUIRED		0x04
73 #define SENCODE_UNRECOVERED_READ_ERROR		0x11
74 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
75 #define SENCODE_INVALID_COMMAND			0x20
76 #define SENCODE_LBA_OUT_OF_RANGE		0x21
77 #define SENCODE_INVALID_CDB_FIELD		0x24
78 #define SENCODE_LUN_NOT_SUPPORTED		0x25
79 #define SENCODE_INVALID_PARAM_FIELD		0x26
80 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
81 #define SENCODE_PARAM_VALUE_INVALID		0x26
82 #define SENCODE_RESET_OCCURRED			0x29
83 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
84 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
85 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
86 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
87 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
88 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
89 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
90 #define SENCODE_OVERLAPPED_COMMAND		0x4E
91 
92 /*
93  *	Additional sense codes
94  */
95 
96 #define ASENCODE_NO_SENSE			0x00
97 #define ASENCODE_END_OF_DATA			0x05
98 #define ASENCODE_BECOMING_READY			0x01
99 #define ASENCODE_INIT_CMD_REQUIRED		0x02
100 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
101 #define ASENCODE_INVALID_COMMAND		0x00
102 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
103 #define ASENCODE_INVALID_CDB_FIELD		0x00
104 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
105 #define ASENCODE_INVALID_PARAM_FIELD		0x00
106 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
107 #define ASENCODE_PARAM_VALUE_INVALID		0x02
108 #define ASENCODE_RESET_OCCURRED			0x00
109 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
110 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
111 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
112 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
113 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
114 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
115 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
116 #define ASENCODE_OVERLAPPED_COMMAND		0x00
117 
118 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD)
119 
120 #define BYTE0(x) (unsigned char)(x)
121 #define BYTE1(x) (unsigned char)((x) >> 8)
122 #define BYTE2(x) (unsigned char)((x) >> 16)
123 #define BYTE3(x) (unsigned char)((x) >> 24)
124 
125 /* MODE_SENSE data format */
126 typedef struct {
127 	struct {
128 		u8	data_length;
129 		u8	med_type;
130 		u8	dev_par;
131 		u8	bd_length;
132 	} __attribute__((packed)) hd;
133 	struct {
134 		u8	dens_code;
135 		u8	block_count[3];
136 		u8	reserved;
137 		u8	block_length[3];
138 	} __attribute__((packed)) bd;
139 		u8	mpc_buf[3];
140 } __attribute__((packed)) aac_modep_data;
141 
142 /* MODE_SENSE_10 data format */
143 typedef struct {
144 	struct {
145 		u8	data_length[2];
146 		u8	med_type;
147 		u8	dev_par;
148 		u8	rsrvd[2];
149 		u8	bd_length[2];
150 	} __attribute__((packed)) hd;
151 	struct {
152 		u8	dens_code;
153 		u8	block_count[3];
154 		u8	reserved;
155 		u8	block_length[3];
156 	} __attribute__((packed)) bd;
157 		u8	mpc_buf[3];
158 } __attribute__((packed)) aac_modep10_data;
159 
160 /*------------------------------------------------------------------------------
161  *              S T R U C T S / T Y P E D E F S
162  *----------------------------------------------------------------------------*/
163 /* SCSI inquiry data */
164 struct inquiry_data {
165 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
166 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
167 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
168 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
169 	u8 inqd_len;	/* Additional length (n-4) */
170 	u8 inqd_pad1[2];/* Reserved - must be zero */
171 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
172 	u8 inqd_vid[8];	/* Vendor ID */
173 	u8 inqd_pid[16];/* Product ID */
174 	u8 inqd_prl[4];	/* Product Revision Level */
175 };
176 
177 /* Added for VPD 0x83 */
178 struct  tvpd_id_descriptor_type_1 {
179 	u8 codeset:4;		/* VPD_CODE_SET */
180 	u8 reserved:4;
181 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
182 	u8 reserved2:4;
183 	u8 reserved3;
184 	u8 identifierlength;
185 	u8 venid[8];
186 	u8 productid[16];
187 	u8 serialnumber[8];	/* SN in ASCII */
188 
189 };
190 
191 struct tvpd_id_descriptor_type_2 {
192 	u8 codeset:4;		/* VPD_CODE_SET */
193 	u8 reserved:4;
194 	u8 identifiertype:4;	/* VPD_IDENTIFIER_TYPE */
195 	u8 reserved2:4;
196 	u8 reserved3;
197 	u8 identifierlength;
198 	struct teu64id {
199 		u32 Serial;
200 		 /* The serial number supposed to be 40 bits,
201 		  * bit we only support 32, so make the last byte zero. */
202 		u8 reserved;
203 		u8 venid[3];
204 	} eu64id;
205 
206 };
207 
208 struct tvpd_id_descriptor_type_3 {
209 	u8 codeset : 4;          /* VPD_CODE_SET */
210 	u8 reserved : 4;
211 	u8 identifiertype : 4;   /* VPD_IDENTIFIER_TYPE */
212 	u8 reserved2 : 4;
213 	u8 reserved3;
214 	u8 identifierlength;
215 	u8 Identifier[16];
216 };
217 
218 struct tvpd_page83 {
219 	u8 DeviceType:5;
220 	u8 DeviceTypeQualifier:3;
221 	u8 PageCode;
222 	u8 reserved;
223 	u8 PageLength;
224 	struct tvpd_id_descriptor_type_1 type1;
225 	struct tvpd_id_descriptor_type_2 type2;
226 	struct tvpd_id_descriptor_type_3 type3;
227 };
228 
229 /*
230  *              M O D U L E   G L O B A L S
231  */
232 
233 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
234 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
235 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
236 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
237 				struct aac_raw_io2 *rio2, int sg_max);
238 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
239 				struct aac_hba_cmd_req *hbacmd,
240 				int sg_max, u64 sg_address);
241 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
242 				int pages, int nseg, int nseg_new);
243 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
244 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
245 #ifdef AAC_DETAILED_STATUS_INFO
246 static char *aac_get_status_string(u32 status);
247 #endif
248 
249 /*
250  *	Non dasd selection is handled entirely in aachba now
251  */
252 
253 static int nondasd = -1;
254 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
255 static int dacmode = -1;
256 int aac_msi;
257 int aac_commit = -1;
258 int startup_timeout = 180;
259 int aif_timeout = 120;
260 int aac_sync_mode;  /* Only Sync. transfer - disabled */
261 int aac_convert_sgl = 1;	/* convert non-conformable s/g list - enabled */
262 
263 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
264 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
265 	" 0=off, 1=on");
266 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
267 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
268 	" 0=off, 1=on");
269 module_param(nondasd, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
271 	" 0=off, 1=on");
272 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
274 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
275 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
276 	"\tbit 2 - Disable only if Battery is protecting Cache");
277 module_param(dacmode, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
279 	" 0=off, 1=on");
280 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
281 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
282 	" adapter for foreign arrays.\n"
283 	"This is typically needed in systems that do not have a BIOS."
284 	" 0=off, 1=on");
285 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
286 MODULE_PARM_DESC(msi, "IRQ handling."
287 	" 0=PIC(default), 1=MSI, 2=MSI-X)");
288 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
290 	" adapter to have it's kernel up and\n"
291 	"running. This is typically adjusted for large systems that do not"
292 	" have a BIOS.");
293 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
294 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
295 	" applications to pick up AIFs before\n"
296 	"deregistering them. This is typically adjusted for heavily burdened"
297 	" systems.");
298 
299 int aac_fib_dump;
300 module_param(aac_fib_dump, int, 0644);
301 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
302 
303 int numacb = -1;
304 module_param(numacb, int, S_IRUGO|S_IWUSR);
305 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
306 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
307 	" to use suggestion from Firmware.");
308 
309 int acbsize = -1;
310 module_param(acbsize, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
312 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
313 	" suggestion from Firmware.");
314 
315 int update_interval = 30 * 60;
316 module_param(update_interval, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
318 	" updates issued to adapter.");
319 
320 int check_interval = 60;
321 module_param(check_interval, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
323 	" checks.");
324 
325 int aac_check_reset = 1;
326 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
327 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
328 	" adapter. a value of -1 forces the reset to adapters programmed to"
329 	" ignore it.");
330 
331 int expose_physicals = -1;
332 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
333 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
334 	" -1=protect 0=off, 1=on");
335 
336 int aac_reset_devices;
337 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
338 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
339 
340 int aac_wwn = 1;
341 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
342 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
343 	"\t0 - Disable\n"
344 	"\t1 - Array Meta Data Signature (default)\n"
345 	"\t2 - Adapter Serial Number");
346 
347 
348 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
349 		struct fib *fibptr) {
350 	struct scsi_device *device;
351 
352 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
353 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
354 		aac_fib_complete(fibptr);
355 		return 0;
356 	}
357 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
358 	device = scsicmd->device;
359 	if (unlikely(!device)) {
360 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
361 		aac_fib_complete(fibptr);
362 		return 0;
363 	}
364 	return 1;
365 }
366 
367 /**
368  *	aac_get_config_status	-	check the adapter configuration
369  *	@common: adapter to query
370  *
371  *	Query config status, and commit the configuration if needed.
372  */
373 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
374 {
375 	int status = 0;
376 	struct fib * fibptr;
377 
378 	if (!(fibptr = aac_fib_alloc(dev)))
379 		return -ENOMEM;
380 
381 	aac_fib_init(fibptr);
382 	{
383 		struct aac_get_config_status *dinfo;
384 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
385 
386 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
387 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
388 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
389 	}
390 
391 	status = aac_fib_send(ContainerCommand,
392 			    fibptr,
393 			    sizeof (struct aac_get_config_status),
394 			    FsaNormal,
395 			    1, 1,
396 			    NULL, NULL);
397 	if (status < 0) {
398 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
399 	} else {
400 		struct aac_get_config_status_resp *reply
401 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
402 		dprintk((KERN_WARNING
403 		  "aac_get_config_status: response=%d status=%d action=%d\n",
404 		  le32_to_cpu(reply->response),
405 		  le32_to_cpu(reply->status),
406 		  le32_to_cpu(reply->data.action)));
407 		if ((le32_to_cpu(reply->response) != ST_OK) ||
408 		     (le32_to_cpu(reply->status) != CT_OK) ||
409 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
410 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
411 			status = -EINVAL;
412 		}
413 	}
414 	/* Do not set XferState to zero unless receives a response from F/W */
415 	if (status >= 0)
416 		aac_fib_complete(fibptr);
417 
418 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
419 	if (status >= 0) {
420 		if ((aac_commit == 1) || commit_flag) {
421 			struct aac_commit_config * dinfo;
422 			aac_fib_init(fibptr);
423 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
424 
425 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
426 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
427 
428 			status = aac_fib_send(ContainerCommand,
429 				    fibptr,
430 				    sizeof (struct aac_commit_config),
431 				    FsaNormal,
432 				    1, 1,
433 				    NULL, NULL);
434 			/* Do not set XferState to zero unless
435 			 * receives a response from F/W */
436 			if (status >= 0)
437 				aac_fib_complete(fibptr);
438 		} else if (aac_commit == 0) {
439 			printk(KERN_WARNING
440 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
441 		}
442 	}
443 	/* FIB should be freed only after getting the response from the F/W */
444 	if (status != -ERESTARTSYS)
445 		aac_fib_free(fibptr);
446 	return status;
447 }
448 
449 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
450 {
451 	char inq_data;
452 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
453 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
454 		inq_data &= 0xdf;
455 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
456 	}
457 }
458 
459 /**
460  *	aac_get_containers	-	list containers
461  *	@common: adapter to probe
462  *
463  *	Make a list of all containers on this controller
464  */
465 int aac_get_containers(struct aac_dev *dev)
466 {
467 	struct fsa_dev_info *fsa_dev_ptr;
468 	u32 index;
469 	int status = 0;
470 	struct fib * fibptr;
471 	struct aac_get_container_count *dinfo;
472 	struct aac_get_container_count_resp *dresp;
473 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
474 
475 	if (!(fibptr = aac_fib_alloc(dev)))
476 		return -ENOMEM;
477 
478 	aac_fib_init(fibptr);
479 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
480 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
481 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
482 
483 	status = aac_fib_send(ContainerCommand,
484 		    fibptr,
485 		    sizeof (struct aac_get_container_count),
486 		    FsaNormal,
487 		    1, 1,
488 		    NULL, NULL);
489 	if (status >= 0) {
490 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
491 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
492 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
493 		    AAC_OPTION_SUPPORTED_240_VOLUMES) {
494 			maximum_num_containers =
495 				le32_to_cpu(dresp->MaxSimpleVolumes);
496 		}
497 		aac_fib_complete(fibptr);
498 	}
499 	/* FIB should be freed only after getting the response from the F/W */
500 	if (status != -ERESTARTSYS)
501 		aac_fib_free(fibptr);
502 
503 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
504 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
505 	if (dev->fsa_dev == NULL ||
506 		dev->maximum_num_containers != maximum_num_containers) {
507 
508 		fsa_dev_ptr = dev->fsa_dev;
509 
510 		dev->fsa_dev = kcalloc(maximum_num_containers,
511 					sizeof(*fsa_dev_ptr), GFP_KERNEL);
512 
513 		kfree(fsa_dev_ptr);
514 		fsa_dev_ptr = NULL;
515 
516 
517 		if (!dev->fsa_dev)
518 			return -ENOMEM;
519 
520 		dev->maximum_num_containers = maximum_num_containers;
521 	}
522 	for (index = 0; index < dev->maximum_num_containers; index++) {
523 		dev->fsa_dev[index].devname[0] = '\0';
524 		dev->fsa_dev[index].valid = 0;
525 
526 		status = aac_probe_container(dev, index);
527 
528 		if (status < 0) {
529 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
530 			break;
531 		}
532 	}
533 	return status;
534 }
535 
536 static void get_container_name_callback(void *context, struct fib * fibptr)
537 {
538 	struct aac_get_name_resp * get_name_reply;
539 	struct scsi_cmnd * scsicmd;
540 
541 	scsicmd = (struct scsi_cmnd *) context;
542 
543 	if (!aac_valid_context(scsicmd, fibptr))
544 		return;
545 
546 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
547 	BUG_ON(fibptr == NULL);
548 
549 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
550 	/* Failure is irrelevant, using default value instead */
551 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
552 	 && (get_name_reply->data[0] != '\0')) {
553 		char *sp = get_name_reply->data;
554 		int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
555 
556 		sp[data_size - 1] = '\0';
557 		while (*sp == ' ')
558 			++sp;
559 		if (*sp) {
560 			struct inquiry_data inq;
561 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
562 			int count = sizeof(d);
563 			char *dp = d;
564 			do {
565 				*dp++ = (*sp) ? *sp++ : ' ';
566 			} while (--count > 0);
567 
568 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
569 			memcpy(inq.inqd_pid, d, sizeof(d));
570 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
571 		}
572 	}
573 
574 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
575 
576 	aac_fib_complete(fibptr);
577 	scsicmd->scsi_done(scsicmd);
578 }
579 
580 /**
581  *	aac_get_container_name	-	get container name, none blocking.
582  */
583 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
584 {
585 	int status;
586 	int data_size;
587 	struct aac_get_name *dinfo;
588 	struct fib * cmd_fibcontext;
589 	struct aac_dev * dev;
590 
591 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
592 
593 	data_size = FIELD_SIZEOF(struct aac_get_name_resp, data);
594 
595 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
596 
597 	aac_fib_init(cmd_fibcontext);
598 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
599 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
600 
601 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
602 	dinfo->type = cpu_to_le32(CT_READ_NAME);
603 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
604 	dinfo->count = cpu_to_le32(data_size - 1);
605 
606 	status = aac_fib_send(ContainerCommand,
607 		  cmd_fibcontext,
608 		  sizeof(struct aac_get_name_resp),
609 		  FsaNormal,
610 		  0, 1,
611 		  (fib_callback)get_container_name_callback,
612 		  (void *) scsicmd);
613 
614 	/*
615 	 *	Check that the command queued to the controller
616 	 */
617 	if (status == -EINPROGRESS)
618 		return 0;
619 
620 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
621 	aac_fib_complete(cmd_fibcontext);
622 	return -1;
623 }
624 
625 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
626 {
627 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
628 
629 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
630 		return aac_scsi_cmd(scsicmd);
631 
632 	scsicmd->result = DID_NO_CONNECT << 16;
633 	scsicmd->scsi_done(scsicmd);
634 	return 0;
635 }
636 
637 static void _aac_probe_container2(void * context, struct fib * fibptr)
638 {
639 	struct fsa_dev_info *fsa_dev_ptr;
640 	int (*callback)(struct scsi_cmnd *);
641 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
642 	int i;
643 
644 
645 	if (!aac_valid_context(scsicmd, fibptr))
646 		return;
647 
648 	scsicmd->SCp.Status = 0;
649 	fsa_dev_ptr = fibptr->dev->fsa_dev;
650 	if (fsa_dev_ptr) {
651 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
652 		__le32 sup_options2;
653 
654 		fsa_dev_ptr += scmd_id(scsicmd);
655 		sup_options2 =
656 			fibptr->dev->supplement_adapter_info.supported_options2;
657 
658 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
659 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
660 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
661 			if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
662 				dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
663 				fsa_dev_ptr->block_size = 0x200;
664 			} else {
665 				fsa_dev_ptr->block_size =
666 					le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
667 			}
668 			for (i = 0; i < 16; i++)
669 				fsa_dev_ptr->identifier[i] =
670 					dresp->mnt[0].fileinfo.bdevinfo
671 								.identifier[i];
672 			fsa_dev_ptr->valid = 1;
673 			/* sense_key holds the current state of the spin-up */
674 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
675 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
676 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
677 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
678 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
679 			fsa_dev_ptr->size
680 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
681 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
682 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
683 		}
684 		if ((fsa_dev_ptr->valid & 1) == 0)
685 			fsa_dev_ptr->valid = 0;
686 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
687 	}
688 	aac_fib_complete(fibptr);
689 	aac_fib_free(fibptr);
690 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
691 	scsicmd->SCp.ptr = NULL;
692 	(*callback)(scsicmd);
693 	return;
694 }
695 
696 static void _aac_probe_container1(void * context, struct fib * fibptr)
697 {
698 	struct scsi_cmnd * scsicmd;
699 	struct aac_mount * dresp;
700 	struct aac_query_mount *dinfo;
701 	int status;
702 
703 	dresp = (struct aac_mount *) fib_data(fibptr);
704 	if (!aac_supports_2T(fibptr->dev)) {
705 		dresp->mnt[0].capacityhigh = 0;
706 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
707 			(le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
708 			_aac_probe_container2(context, fibptr);
709 			return;
710 		}
711 	}
712 	scsicmd = (struct scsi_cmnd *) context;
713 
714 	if (!aac_valid_context(scsicmd, fibptr))
715 		return;
716 
717 	aac_fib_init(fibptr);
718 
719 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
720 
721 	if (fibptr->dev->supplement_adapter_info.supported_options2 &
722 	    AAC_OPTION_VARIABLE_BLOCK_SIZE)
723 		dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
724 	else
725 		dinfo->command = cpu_to_le32(VM_NameServe64);
726 
727 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
728 	dinfo->type = cpu_to_le32(FT_FILESYS);
729 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
730 
731 	status = aac_fib_send(ContainerCommand,
732 			  fibptr,
733 			  sizeof(struct aac_query_mount),
734 			  FsaNormal,
735 			  0, 1,
736 			  _aac_probe_container2,
737 			  (void *) scsicmd);
738 	/*
739 	 *	Check that the command queued to the controller
740 	 */
741 	if (status < 0 && status != -EINPROGRESS) {
742 		/* Inherit results from VM_NameServe, if any */
743 		dresp->status = cpu_to_le32(ST_OK);
744 		_aac_probe_container2(context, fibptr);
745 	}
746 }
747 
748 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
749 {
750 	struct fib * fibptr;
751 	int status = -ENOMEM;
752 
753 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
754 		struct aac_query_mount *dinfo;
755 
756 		aac_fib_init(fibptr);
757 
758 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
759 
760 		if (fibptr->dev->supplement_adapter_info.supported_options2 &
761 		    AAC_OPTION_VARIABLE_BLOCK_SIZE)
762 			dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
763 		else
764 			dinfo->command = cpu_to_le32(VM_NameServe);
765 
766 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
767 		dinfo->type = cpu_to_le32(FT_FILESYS);
768 		scsicmd->SCp.ptr = (char *)callback;
769 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
770 
771 		status = aac_fib_send(ContainerCommand,
772 			  fibptr,
773 			  sizeof(struct aac_query_mount),
774 			  FsaNormal,
775 			  0, 1,
776 			  _aac_probe_container1,
777 			  (void *) scsicmd);
778 		/*
779 		 *	Check that the command queued to the controller
780 		 */
781 		if (status == -EINPROGRESS)
782 			return 0;
783 
784 		if (status < 0) {
785 			scsicmd->SCp.ptr = NULL;
786 			aac_fib_complete(fibptr);
787 			aac_fib_free(fibptr);
788 		}
789 	}
790 	if (status < 0) {
791 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
792 		if (fsa_dev_ptr) {
793 			fsa_dev_ptr += scmd_id(scsicmd);
794 			if ((fsa_dev_ptr->valid & 1) == 0) {
795 				fsa_dev_ptr->valid = 0;
796 				return (*callback)(scsicmd);
797 			}
798 		}
799 	}
800 	return status;
801 }
802 
803 /**
804  *	aac_probe_container		-	query a logical volume
805  *	@dev: device to query
806  *	@cid: container identifier
807  *
808  *	Queries the controller about the given volume. The volume information
809  *	is updated in the struct fsa_dev_info structure rather than returned.
810  */
811 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
812 {
813 	scsicmd->device = NULL;
814 	return 0;
815 }
816 
817 int aac_probe_container(struct aac_dev *dev, int cid)
818 {
819 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
820 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
821 	int status;
822 
823 	if (!scsicmd || !scsidev) {
824 		kfree(scsicmd);
825 		kfree(scsidev);
826 		return -ENOMEM;
827 	}
828 	scsicmd->list.next = NULL;
829 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
830 
831 	scsicmd->device = scsidev;
832 	scsidev->sdev_state = 0;
833 	scsidev->id = cid;
834 	scsidev->host = dev->scsi_host_ptr;
835 
836 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
837 		while (scsicmd->device == scsidev)
838 			schedule();
839 	kfree(scsidev);
840 	status = scsicmd->SCp.Status;
841 	kfree(scsicmd);
842 	return status;
843 }
844 
845 /* Local Structure to set SCSI inquiry data strings */
846 struct scsi_inq {
847 	char vid[8];         /* Vendor ID */
848 	char pid[16];        /* Product ID */
849 	char prl[4];         /* Product Revision Level */
850 };
851 
852 /**
853  *	InqStrCopy	-	string merge
854  *	@a:	string to copy from
855  *	@b:	string to copy to
856  *
857  *	Copy a String from one location to another
858  *	without copying \0
859  */
860 
861 static void inqstrcpy(char *a, char *b)
862 {
863 
864 	while (*a != (char)0)
865 		*b++ = *a++;
866 }
867 
868 static char *container_types[] = {
869 	"None",
870 	"Volume",
871 	"Mirror",
872 	"Stripe",
873 	"RAID5",
874 	"SSRW",
875 	"SSRO",
876 	"Morph",
877 	"Legacy",
878 	"RAID4",
879 	"RAID10",
880 	"RAID00",
881 	"V-MIRRORS",
882 	"PSEUDO R4",
883 	"RAID50",
884 	"RAID5D",
885 	"RAID5D0",
886 	"RAID1E",
887 	"RAID6",
888 	"RAID60",
889 	"Unknown"
890 };
891 
892 char * get_container_type(unsigned tindex)
893 {
894 	if (tindex >= ARRAY_SIZE(container_types))
895 		tindex = ARRAY_SIZE(container_types) - 1;
896 	return container_types[tindex];
897 }
898 
899 /* Function: setinqstr
900  *
901  * Arguments: [1] pointer to void [1] int
902  *
903  * Purpose: Sets SCSI inquiry data strings for vendor, product
904  * and revision level. Allows strings to be set in platform dependent
905  * files instead of in OS dependent driver source.
906  */
907 
908 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
909 {
910 	struct scsi_inq *str;
911 	struct aac_supplement_adapter_info *sup_adap_info;
912 
913 	sup_adap_info = &dev->supplement_adapter_info;
914 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
915 	memset(str, ' ', sizeof(*str));
916 
917 	if (sup_adap_info->adapter_type_text[0]) {
918 		int c;
919 		char *cp;
920 		char *cname = kmemdup(sup_adap_info->adapter_type_text,
921 				sizeof(sup_adap_info->adapter_type_text),
922 								GFP_ATOMIC);
923 		if (!cname)
924 			return;
925 
926 		cp = cname;
927 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
928 			inqstrcpy("SMC", str->vid);
929 		else {
930 			c = sizeof(str->vid);
931 			while (*cp && *cp != ' ' && --c)
932 				++cp;
933 			c = *cp;
934 			*cp = '\0';
935 			inqstrcpy(cname, str->vid);
936 			*cp = c;
937 			while (*cp && *cp != ' ')
938 				++cp;
939 		}
940 		while (*cp == ' ')
941 			++cp;
942 		/* last six chars reserved for vol type */
943 		if (strlen(cp) > sizeof(str->pid))
944 			cp[sizeof(str->pid)] = '\0';
945 		inqstrcpy (cp, str->pid);
946 
947 		kfree(cname);
948 	} else {
949 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
950 
951 		inqstrcpy (mp->vname, str->vid);
952 		/* last six chars reserved for vol type */
953 		inqstrcpy (mp->model, str->pid);
954 	}
955 
956 	if (tindex < ARRAY_SIZE(container_types)){
957 		char *findit = str->pid;
958 
959 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
960 		/* RAID is superfluous in the context of a RAID device */
961 		if (memcmp(findit-4, "RAID", 4) == 0)
962 			*(findit -= 4) = ' ';
963 		if (((findit - str->pid) + strlen(container_types[tindex]))
964 		 < (sizeof(str->pid) + sizeof(str->prl)))
965 			inqstrcpy (container_types[tindex], findit + 1);
966 	}
967 	inqstrcpy ("V1.0", str->prl);
968 }
969 
970 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
971 		struct aac_dev *dev, struct scsi_cmnd *scsicmd)
972 {
973 	int container;
974 
975 	vpdpage83data->type3.codeset = 1;
976 	vpdpage83data->type3.identifiertype = 3;
977 	vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
978 			- 4;
979 
980 	for (container = 0; container < dev->maximum_num_containers;
981 			container++) {
982 
983 		if (scmd_id(scsicmd) == container) {
984 			memcpy(vpdpage83data->type3.Identifier,
985 					dev->fsa_dev[container].identifier,
986 					16);
987 			break;
988 		}
989 	}
990 }
991 
992 static void get_container_serial_callback(void *context, struct fib * fibptr)
993 {
994 	struct aac_get_serial_resp * get_serial_reply;
995 	struct scsi_cmnd * scsicmd;
996 
997 	BUG_ON(fibptr == NULL);
998 
999 	scsicmd = (struct scsi_cmnd *) context;
1000 	if (!aac_valid_context(scsicmd, fibptr))
1001 		return;
1002 
1003 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
1004 	/* Failure is irrelevant, using default value instead */
1005 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1006 		/*Check to see if it's for VPD 0x83 or 0x80 */
1007 		if (scsicmd->cmnd[2] == 0x83) {
1008 			/* vpd page 0x83 - Device Identification Page */
1009 			struct aac_dev *dev;
1010 			int i;
1011 			struct tvpd_page83 vpdpage83data;
1012 
1013 			dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1014 
1015 			memset(((u8 *)&vpdpage83data), 0,
1016 			       sizeof(vpdpage83data));
1017 
1018 			/* DIRECT_ACCESS_DEVIC */
1019 			vpdpage83data.DeviceType = 0;
1020 			/* DEVICE_CONNECTED */
1021 			vpdpage83data.DeviceTypeQualifier = 0;
1022 			/* VPD_DEVICE_IDENTIFIERS */
1023 			vpdpage83data.PageCode = 0x83;
1024 			vpdpage83data.reserved = 0;
1025 			vpdpage83data.PageLength =
1026 				sizeof(vpdpage83data.type1) +
1027 				sizeof(vpdpage83data.type2);
1028 
1029 			/* VPD 83 Type 3 is not supported for ARC */
1030 			if (dev->sa_firmware)
1031 				vpdpage83data.PageLength +=
1032 				sizeof(vpdpage83data.type3);
1033 
1034 			/* T10 Vendor Identifier Field Format */
1035 			/* VpdcodesetAscii */
1036 			vpdpage83data.type1.codeset = 2;
1037 			/* VpdIdentifierTypeVendorId */
1038 			vpdpage83data.type1.identifiertype = 1;
1039 			vpdpage83data.type1.identifierlength =
1040 				sizeof(vpdpage83data.type1) - 4;
1041 
1042 			/* "ADAPTEC " for adaptec */
1043 			memcpy(vpdpage83data.type1.venid,
1044 				"ADAPTEC ",
1045 				sizeof(vpdpage83data.type1.venid));
1046 			memcpy(vpdpage83data.type1.productid,
1047 				"ARRAY           ",
1048 				sizeof(
1049 				vpdpage83data.type1.productid));
1050 
1051 			/* Convert to ascii based serial number.
1052 			 * The LSB is the the end.
1053 			 */
1054 			for (i = 0; i < 8; i++) {
1055 				u8 temp =
1056 					(u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1057 				if (temp  > 0x9) {
1058 					vpdpage83data.type1.serialnumber[i] =
1059 							'A' + (temp - 0xA);
1060 				} else {
1061 					vpdpage83data.type1.serialnumber[i] =
1062 							'0' + temp;
1063 				}
1064 			}
1065 
1066 			/* VpdCodeSetBinary */
1067 			vpdpage83data.type2.codeset = 1;
1068 			/* VpdidentifiertypeEUI64 */
1069 			vpdpage83data.type2.identifiertype = 2;
1070 			vpdpage83data.type2.identifierlength =
1071 				sizeof(vpdpage83data.type2) - 4;
1072 
1073 			vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1074 			vpdpage83data.type2.eu64id.venid[1] = 0;
1075 			vpdpage83data.type2.eu64id.venid[2] = 0;
1076 
1077 			vpdpage83data.type2.eu64id.Serial =
1078 							get_serial_reply->uid;
1079 			vpdpage83data.type2.eu64id.reserved = 0;
1080 
1081 			/*
1082 			 * VpdIdentifierTypeFCPHName
1083 			 * VPD 0x83 Type 3 not supported for ARC
1084 			 */
1085 			if (dev->sa_firmware) {
1086 				build_vpd83_type3(&vpdpage83data,
1087 						dev, scsicmd);
1088 			}
1089 
1090 			/* Move the inquiry data to the response buffer. */
1091 			scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1092 						 sizeof(vpdpage83data));
1093 		} else {
1094 			/* It must be for VPD 0x80 */
1095 			char sp[13];
1096 			/* EVPD bit set */
1097 			sp[0] = INQD_PDT_DA;
1098 			sp[1] = scsicmd->cmnd[2];
1099 			sp[2] = 0;
1100 			sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
1101 				le32_to_cpu(get_serial_reply->uid));
1102 			scsi_sg_copy_from_buffer(scsicmd, sp,
1103 						 sizeof(sp));
1104 		}
1105 	}
1106 
1107 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1108 
1109 	aac_fib_complete(fibptr);
1110 	scsicmd->scsi_done(scsicmd);
1111 }
1112 
1113 /**
1114  *	aac_get_container_serial - get container serial, none blocking.
1115  */
1116 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1117 {
1118 	int status;
1119 	struct aac_get_serial *dinfo;
1120 	struct fib * cmd_fibcontext;
1121 	struct aac_dev * dev;
1122 
1123 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1124 
1125 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1126 
1127 	aac_fib_init(cmd_fibcontext);
1128 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1129 
1130 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
1131 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1132 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1133 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1134 
1135 	status = aac_fib_send(ContainerCommand,
1136 		  cmd_fibcontext,
1137 		  sizeof(struct aac_get_serial_resp),
1138 		  FsaNormal,
1139 		  0, 1,
1140 		  (fib_callback) get_container_serial_callback,
1141 		  (void *) scsicmd);
1142 
1143 	/*
1144 	 *	Check that the command queued to the controller
1145 	 */
1146 	if (status == -EINPROGRESS)
1147 		return 0;
1148 
1149 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1150 	aac_fib_complete(cmd_fibcontext);
1151 	return -1;
1152 }
1153 
1154 /* Function: setinqserial
1155  *
1156  * Arguments: [1] pointer to void [1] int
1157  *
1158  * Purpose: Sets SCSI Unit Serial number.
1159  *          This is a fake. We should read a proper
1160  *          serial number from the container. <SuSE>But
1161  *          without docs it's quite hard to do it :-)
1162  *          So this will have to do in the meantime.</SuSE>
1163  */
1164 
1165 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1166 {
1167 	/*
1168 	 *	This breaks array migration.
1169 	 */
1170 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1171 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
1172 }
1173 
1174 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1175 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1176 {
1177 	u8 *sense_buf = (u8 *)sense_data;
1178 	/* Sense data valid, err code 70h */
1179 	sense_buf[0] = 0x70; /* No info field */
1180 	sense_buf[1] = 0;	/* Segment number, always zero */
1181 
1182 	sense_buf[2] = sense_key;	/* Sense key */
1183 
1184 	sense_buf[12] = sense_code;	/* Additional sense code */
1185 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
1186 
1187 	if (sense_key == ILLEGAL_REQUEST) {
1188 		sense_buf[7] = 10;	/* Additional sense length */
1189 
1190 		sense_buf[15] = bit_pointer;
1191 		/* Illegal parameter is in the parameter block */
1192 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
1193 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
1194 		/* Illegal parameter is in the CDB block */
1195 		sense_buf[16] = field_pointer >> 8;	/* MSB */
1196 		sense_buf[17] = field_pointer;		/* LSB */
1197 	} else
1198 		sense_buf[7] = 6;	/* Additional sense length */
1199 }
1200 
1201 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1202 {
1203 	if (lba & 0xffffffff00000000LL) {
1204 		int cid = scmd_id(cmd);
1205 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1206 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1207 			SAM_STAT_CHECK_CONDITION;
1208 		set_sense(&dev->fsa_dev[cid].sense_data,
1209 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1210 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1211 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1212 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1213 			     SCSI_SENSE_BUFFERSIZE));
1214 		cmd->scsi_done(cmd);
1215 		return 1;
1216 	}
1217 	return 0;
1218 }
1219 
1220 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1221 {
1222 	return 0;
1223 }
1224 
1225 static void io_callback(void *context, struct fib * fibptr);
1226 
1227 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1228 {
1229 	struct aac_dev *dev = fib->dev;
1230 	u16 fibsize, command;
1231 	long ret;
1232 
1233 	aac_fib_init(fib);
1234 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1235 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1236 		!dev->sync_mode) {
1237 		struct aac_raw_io2 *readcmd2;
1238 		readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1239 		memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1240 		readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1241 		readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1242 		readcmd2->byteCount = cpu_to_le32(count *
1243 			dev->fsa_dev[scmd_id(cmd)].block_size);
1244 		readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1245 		readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1246 		ret = aac_build_sgraw2(cmd, readcmd2,
1247 				dev->scsi_host_ptr->sg_tablesize);
1248 		if (ret < 0)
1249 			return ret;
1250 		command = ContainerRawIo2;
1251 		fibsize = sizeof(struct aac_raw_io2) +
1252 			((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1253 	} else {
1254 		struct aac_raw_io *readcmd;
1255 		readcmd = (struct aac_raw_io *) fib_data(fib);
1256 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1257 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1258 		readcmd->count = cpu_to_le32(count *
1259 			dev->fsa_dev[scmd_id(cmd)].block_size);
1260 		readcmd->cid = cpu_to_le16(scmd_id(cmd));
1261 		readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1262 		readcmd->bpTotal = 0;
1263 		readcmd->bpComplete = 0;
1264 		ret = aac_build_sgraw(cmd, &readcmd->sg);
1265 		if (ret < 0)
1266 			return ret;
1267 		command = ContainerRawIo;
1268 		fibsize = sizeof(struct aac_raw_io) +
1269 			((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1270 	}
1271 
1272 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1273 	/*
1274 	 *	Now send the Fib to the adapter
1275 	 */
1276 	return aac_fib_send(command,
1277 			  fib,
1278 			  fibsize,
1279 			  FsaNormal,
1280 			  0, 1,
1281 			  (fib_callback) io_callback,
1282 			  (void *) cmd);
1283 }
1284 
1285 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1286 {
1287 	u16 fibsize;
1288 	struct aac_read64 *readcmd;
1289 	long ret;
1290 
1291 	aac_fib_init(fib);
1292 	readcmd = (struct aac_read64 *) fib_data(fib);
1293 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1294 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1295 	readcmd->sector_count = cpu_to_le16(count);
1296 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1297 	readcmd->pad   = 0;
1298 	readcmd->flags = 0;
1299 
1300 	ret = aac_build_sg64(cmd, &readcmd->sg);
1301 	if (ret < 0)
1302 		return ret;
1303 	fibsize = sizeof(struct aac_read64) +
1304 		((le32_to_cpu(readcmd->sg.count) - 1) *
1305 		 sizeof (struct sgentry64));
1306 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1307 				sizeof(struct aac_fibhdr)));
1308 	/*
1309 	 *	Now send the Fib to the adapter
1310 	 */
1311 	return aac_fib_send(ContainerCommand64,
1312 			  fib,
1313 			  fibsize,
1314 			  FsaNormal,
1315 			  0, 1,
1316 			  (fib_callback) io_callback,
1317 			  (void *) cmd);
1318 }
1319 
1320 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1321 {
1322 	u16 fibsize;
1323 	struct aac_read *readcmd;
1324 	struct aac_dev *dev = fib->dev;
1325 	long ret;
1326 
1327 	aac_fib_init(fib);
1328 	readcmd = (struct aac_read *) fib_data(fib);
1329 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1330 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1331 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1332 	readcmd->count = cpu_to_le32(count *
1333 		dev->fsa_dev[scmd_id(cmd)].block_size);
1334 
1335 	ret = aac_build_sg(cmd, &readcmd->sg);
1336 	if (ret < 0)
1337 		return ret;
1338 	fibsize = sizeof(struct aac_read) +
1339 			((le32_to_cpu(readcmd->sg.count) - 1) *
1340 			 sizeof (struct sgentry));
1341 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1342 				sizeof(struct aac_fibhdr)));
1343 	/*
1344 	 *	Now send the Fib to the adapter
1345 	 */
1346 	return aac_fib_send(ContainerCommand,
1347 			  fib,
1348 			  fibsize,
1349 			  FsaNormal,
1350 			  0, 1,
1351 			  (fib_callback) io_callback,
1352 			  (void *) cmd);
1353 }
1354 
1355 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1356 {
1357 	struct aac_dev *dev = fib->dev;
1358 	u16 fibsize, command;
1359 	long ret;
1360 
1361 	aac_fib_init(fib);
1362 	if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1363 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1364 		!dev->sync_mode) {
1365 		struct aac_raw_io2 *writecmd2;
1366 		writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1367 		memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1368 		writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1369 		writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1370 		writecmd2->byteCount = cpu_to_le32(count *
1371 			dev->fsa_dev[scmd_id(cmd)].block_size);
1372 		writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1373 		writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1374 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1375 			cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1376 			cpu_to_le16(RIO2_IO_TYPE_WRITE);
1377 		ret = aac_build_sgraw2(cmd, writecmd2,
1378 				dev->scsi_host_ptr->sg_tablesize);
1379 		if (ret < 0)
1380 			return ret;
1381 		command = ContainerRawIo2;
1382 		fibsize = sizeof(struct aac_raw_io2) +
1383 			((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1384 	} else {
1385 		struct aac_raw_io *writecmd;
1386 		writecmd = (struct aac_raw_io *) fib_data(fib);
1387 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1388 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1389 		writecmd->count = cpu_to_le32(count *
1390 			dev->fsa_dev[scmd_id(cmd)].block_size);
1391 		writecmd->cid = cpu_to_le16(scmd_id(cmd));
1392 		writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1393 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1394 			cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1395 			cpu_to_le16(RIO_TYPE_WRITE);
1396 		writecmd->bpTotal = 0;
1397 		writecmd->bpComplete = 0;
1398 		ret = aac_build_sgraw(cmd, &writecmd->sg);
1399 		if (ret < 0)
1400 			return ret;
1401 		command = ContainerRawIo;
1402 		fibsize = sizeof(struct aac_raw_io) +
1403 			((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1404 	}
1405 
1406 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1407 	/*
1408 	 *	Now send the Fib to the adapter
1409 	 */
1410 	return aac_fib_send(command,
1411 			  fib,
1412 			  fibsize,
1413 			  FsaNormal,
1414 			  0, 1,
1415 			  (fib_callback) io_callback,
1416 			  (void *) cmd);
1417 }
1418 
1419 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1420 {
1421 	u16 fibsize;
1422 	struct aac_write64 *writecmd;
1423 	long ret;
1424 
1425 	aac_fib_init(fib);
1426 	writecmd = (struct aac_write64 *) fib_data(fib);
1427 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1428 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1429 	writecmd->sector_count = cpu_to_le16(count);
1430 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1431 	writecmd->pad	= 0;
1432 	writecmd->flags	= 0;
1433 
1434 	ret = aac_build_sg64(cmd, &writecmd->sg);
1435 	if (ret < 0)
1436 		return ret;
1437 	fibsize = sizeof(struct aac_write64) +
1438 		((le32_to_cpu(writecmd->sg.count) - 1) *
1439 		 sizeof (struct sgentry64));
1440 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1441 				sizeof(struct aac_fibhdr)));
1442 	/*
1443 	 *	Now send the Fib to the adapter
1444 	 */
1445 	return aac_fib_send(ContainerCommand64,
1446 			  fib,
1447 			  fibsize,
1448 			  FsaNormal,
1449 			  0, 1,
1450 			  (fib_callback) io_callback,
1451 			  (void *) cmd);
1452 }
1453 
1454 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1455 {
1456 	u16 fibsize;
1457 	struct aac_write *writecmd;
1458 	struct aac_dev *dev = fib->dev;
1459 	long ret;
1460 
1461 	aac_fib_init(fib);
1462 	writecmd = (struct aac_write *) fib_data(fib);
1463 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1464 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1465 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1466 	writecmd->count = cpu_to_le32(count *
1467 		dev->fsa_dev[scmd_id(cmd)].block_size);
1468 	writecmd->sg.count = cpu_to_le32(1);
1469 	/* ->stable is not used - it did mean which type of write */
1470 
1471 	ret = aac_build_sg(cmd, &writecmd->sg);
1472 	if (ret < 0)
1473 		return ret;
1474 	fibsize = sizeof(struct aac_write) +
1475 		((le32_to_cpu(writecmd->sg.count) - 1) *
1476 		 sizeof (struct sgentry));
1477 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1478 				sizeof(struct aac_fibhdr)));
1479 	/*
1480 	 *	Now send the Fib to the adapter
1481 	 */
1482 	return aac_fib_send(ContainerCommand,
1483 			  fib,
1484 			  fibsize,
1485 			  FsaNormal,
1486 			  0, 1,
1487 			  (fib_callback) io_callback,
1488 			  (void *) cmd);
1489 }
1490 
1491 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1492 {
1493 	struct aac_srb * srbcmd;
1494 	u32 flag;
1495 	u32 timeout;
1496 
1497 	aac_fib_init(fib);
1498 	switch(cmd->sc_data_direction){
1499 	case DMA_TO_DEVICE:
1500 		flag = SRB_DataOut;
1501 		break;
1502 	case DMA_BIDIRECTIONAL:
1503 		flag = SRB_DataIn | SRB_DataOut;
1504 		break;
1505 	case DMA_FROM_DEVICE:
1506 		flag = SRB_DataIn;
1507 		break;
1508 	case DMA_NONE:
1509 	default:	/* shuts up some versions of gcc */
1510 		flag = SRB_NoDataXfer;
1511 		break;
1512 	}
1513 
1514 	srbcmd = (struct aac_srb*) fib_data(fib);
1515 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1516 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1517 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1518 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1519 	srbcmd->flags    = cpu_to_le32(flag);
1520 	timeout = cmd->request->timeout/HZ;
1521 	if (timeout == 0)
1522 		timeout = 1;
1523 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1524 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1525 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1526 	return srbcmd;
1527 }
1528 
1529 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1530 							struct scsi_cmnd *cmd)
1531 {
1532 	struct aac_hba_cmd_req *hbacmd;
1533 	struct aac_dev *dev;
1534 	int bus, target;
1535 	u64 address;
1536 
1537 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1538 
1539 	hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1540 	memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */
1541 	/* iu_type is a parameter of aac_hba_send */
1542 	switch (cmd->sc_data_direction) {
1543 	case DMA_TO_DEVICE:
1544 		hbacmd->byte1 = 2;
1545 		break;
1546 	case DMA_FROM_DEVICE:
1547 	case DMA_BIDIRECTIONAL:
1548 		hbacmd->byte1 = 1;
1549 		break;
1550 	case DMA_NONE:
1551 	default:
1552 		break;
1553 	}
1554 	hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1555 
1556 	bus = aac_logical_to_phys(scmd_channel(cmd));
1557 	target = scmd_id(cmd);
1558 	hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1559 
1560 	/* we fill in reply_qid later in aac_src_deliver_message */
1561 	/* we fill in iu_type, request_id later in aac_hba_send */
1562 	/* we fill in emb_data_desc_count later in aac_build_sghba */
1563 
1564 	memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1565 	hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1566 
1567 	address = (u64)fib->hw_error_pa;
1568 	hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1569 	hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1570 	hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1571 
1572 	return hbacmd;
1573 }
1574 
1575 static void aac_srb_callback(void *context, struct fib * fibptr);
1576 
1577 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1578 {
1579 	u16 fibsize;
1580 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1581 	long ret;
1582 
1583 	ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1584 	if (ret < 0)
1585 		return ret;
1586 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1587 
1588 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1589 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1590 	/*
1591 	 *	Build Scatter/Gather list
1592 	 */
1593 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1594 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1595 		 sizeof (struct sgentry64));
1596 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1597 				sizeof(struct aac_fibhdr)));
1598 
1599 	/*
1600 	 *	Now send the Fib to the adapter
1601 	 */
1602 	return aac_fib_send(ScsiPortCommand64, fib,
1603 				fibsize, FsaNormal, 0, 1,
1604 				  (fib_callback) aac_srb_callback,
1605 				  (void *) cmd);
1606 }
1607 
1608 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1609 {
1610 	u16 fibsize;
1611 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1612 	long ret;
1613 
1614 	ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1615 	if (ret < 0)
1616 		return ret;
1617 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1618 
1619 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1620 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1621 	/*
1622 	 *	Build Scatter/Gather list
1623 	 */
1624 	fibsize = sizeof (struct aac_srb) +
1625 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1626 		 sizeof (struct sgentry));
1627 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1628 				sizeof(struct aac_fibhdr)));
1629 
1630 	/*
1631 	 *	Now send the Fib to the adapter
1632 	 */
1633 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1634 				  (fib_callback) aac_srb_callback, (void *) cmd);
1635 }
1636 
1637 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1638 {
1639 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1640 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1641 		return FAILED;
1642 	return aac_scsi_32(fib, cmd);
1643 }
1644 
1645 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1646 {
1647 	struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1648 	struct aac_dev *dev;
1649 	long ret;
1650 
1651 	dev = (struct aac_dev *)cmd->device->host->hostdata;
1652 
1653 	ret = aac_build_sghba(cmd, hbacmd,
1654 		dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1655 	if (ret < 0)
1656 		return ret;
1657 
1658 	/*
1659 	 *	Now send the HBA command to the adapter
1660 	 */
1661 	fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1662 		sizeof(struct aac_hba_sgl);
1663 
1664 	return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1665 				  (fib_callback) aac_hba_callback,
1666 				  (void *) cmd);
1667 }
1668 
1669 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1670 	struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1671 {
1672 	struct fib	*fibptr;
1673 	dma_addr_t	addr;
1674 	int		rcode;
1675 	int		fibsize;
1676 	struct aac_srb	*srb;
1677 	struct aac_srb_reply *srb_reply;
1678 	struct sgmap64	*sg64;
1679 	u32 vbus;
1680 	u32 vid;
1681 
1682 	if (!dev->sa_firmware)
1683 		return 0;
1684 
1685 	/* allocate FIB */
1686 	fibptr = aac_fib_alloc(dev);
1687 	if (!fibptr)
1688 		return -ENOMEM;
1689 
1690 	aac_fib_init(fibptr);
1691 	fibptr->hw_fib_va->header.XferState &=
1692 		~cpu_to_le32(FastResponseCapable);
1693 
1694 	fibsize  = sizeof(struct aac_srb) - sizeof(struct sgentry) +
1695 						sizeof(struct sgentry64);
1696 
1697 	/* allocate DMA buffer for response */
1698 	addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1699 							DMA_BIDIRECTIONAL);
1700 	if (dma_mapping_error(&dev->pdev->dev, addr)) {
1701 		rcode = -ENOMEM;
1702 		goto fib_error;
1703 	}
1704 
1705 	srb = fib_data(fibptr);
1706 	memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1707 
1708 	vbus = (u32)le16_to_cpu(
1709 			dev->supplement_adapter_info.virt_device_bus);
1710 	vid  = (u32)le16_to_cpu(
1711 			dev->supplement_adapter_info.virt_device_target);
1712 
1713 	/* set the common request fields */
1714 	srb->channel		= cpu_to_le32(vbus);
1715 	srb->id			= cpu_to_le32(vid);
1716 	srb->lun		= 0;
1717 	srb->function		= cpu_to_le32(SRBF_ExecuteScsi);
1718 	srb->timeout		= 0;
1719 	srb->retry_limit	= 0;
1720 	srb->cdb_size		= cpu_to_le32(16);
1721 	srb->count		= cpu_to_le32(xfer_len);
1722 
1723 	sg64 = (struct sgmap64 *)&srb->sg;
1724 	sg64->count		= cpu_to_le32(1);
1725 	sg64->sg[0].addr[1]	= cpu_to_le32(upper_32_bits(addr));
1726 	sg64->sg[0].addr[0]	= cpu_to_le32(lower_32_bits(addr));
1727 	sg64->sg[0].count	= cpu_to_le32(xfer_len);
1728 
1729 	/*
1730 	 * Copy the updated data for other dumping or other usage if needed
1731 	 */
1732 	memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1733 
1734 	/* issue request to the controller */
1735 	rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1736 					1, 1, NULL, NULL);
1737 
1738 	if (rcode == -ERESTARTSYS)
1739 		rcode = -ERESTART;
1740 
1741 	if (unlikely(rcode < 0))
1742 		goto bmic_error;
1743 
1744 	srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1745 	memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1746 
1747 bmic_error:
1748 	dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1749 fib_error:
1750 	aac_fib_complete(fibptr);
1751 	aac_fib_free(fibptr);
1752 	return rcode;
1753 }
1754 
1755 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1756 {
1757 
1758 	struct aac_ciss_identify_pd *identify_resp;
1759 
1760 	if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1761 		return;
1762 
1763 	identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1764 	if (identify_resp == NULL) {
1765 		dev->hba_map[bus][target].qd_limit = 32;
1766 		return;
1767 	}
1768 
1769 	if (identify_resp->current_queue_depth_limit <= 0 ||
1770 		identify_resp->current_queue_depth_limit > 255)
1771 		dev->hba_map[bus][target].qd_limit = 32;
1772 	else
1773 		dev->hba_map[bus][target].qd_limit =
1774 			identify_resp->current_queue_depth_limit;
1775 }
1776 
1777 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1778 	struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1779 {
1780 	int rcode = -ENOMEM;
1781 	int datasize;
1782 	struct aac_srb_unit srbu;
1783 	struct aac_srb *srbcmd;
1784 	struct aac_ciss_identify_pd *identify_reply;
1785 
1786 	datasize = sizeof(struct aac_ciss_identify_pd);
1787 	identify_reply = kmalloc(datasize, GFP_KERNEL);
1788 	if (!identify_reply)
1789 		goto out;
1790 
1791 	memset(&srbu, 0, sizeof(struct aac_srb_unit));
1792 
1793 	srbcmd = &srbu.srb;
1794 	srbcmd->flags	= cpu_to_le32(SRB_DataIn);
1795 	srbcmd->cdb[0]	= 0x26;
1796 	srbcmd->cdb[2]	= (u8)((AAC_MAX_LUN + target) & 0x00FF);
1797 	srbcmd->cdb[6]	= CISS_IDENTIFY_PHYSICAL_DEVICE;
1798 
1799 	rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1800 	if (unlikely(rcode < 0))
1801 		goto mem_free_all;
1802 
1803 	*identify_resp = identify_reply;
1804 
1805 out:
1806 	return rcode;
1807 mem_free_all:
1808 	kfree(identify_reply);
1809 	goto out;
1810 }
1811 
1812 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1813 {
1814 	kfree(dev->safw_phys_luns);
1815 	dev->safw_phys_luns = NULL;
1816 }
1817 
1818 /**
1819  *	aac_get_safw_ciss_luns()	Process topology change
1820  *	@dev:		aac_dev structure
1821  *
1822  *	Execute a CISS REPORT PHYS LUNS and process the results into
1823  *	the current hba_map.
1824  */
1825 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1826 {
1827 	int rcode = -ENOMEM;
1828 	int datasize;
1829 	struct aac_srb *srbcmd;
1830 	struct aac_srb_unit srbu;
1831 	struct aac_ciss_phys_luns_resp *phys_luns;
1832 
1833 	datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1834 		(AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun);
1835 	phys_luns = kmalloc(datasize, GFP_KERNEL);
1836 	if (phys_luns == NULL)
1837 		goto out;
1838 
1839 	memset(&srbu, 0, sizeof(struct aac_srb_unit));
1840 
1841 	srbcmd = &srbu.srb;
1842 	srbcmd->flags	= cpu_to_le32(SRB_DataIn);
1843 	srbcmd->cdb[0]	= CISS_REPORT_PHYSICAL_LUNS;
1844 	srbcmd->cdb[1]	= 2; /* extended reporting */
1845 	srbcmd->cdb[8]	= (u8)(datasize >> 8);
1846 	srbcmd->cdb[9]	= (u8)(datasize);
1847 
1848 	rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1849 	if (unlikely(rcode < 0))
1850 		goto mem_free_all;
1851 
1852 	if (phys_luns->resp_flag != 2) {
1853 		rcode = -ENOMSG;
1854 		goto mem_free_all;
1855 	}
1856 
1857 	dev->safw_phys_luns = phys_luns;
1858 
1859 out:
1860 	return rcode;
1861 mem_free_all:
1862 	kfree(phys_luns);
1863 	goto out;
1864 }
1865 
1866 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1867 {
1868 	return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1869 }
1870 
1871 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1872 {
1873 	return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1874 }
1875 
1876 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1877 {
1878 	return dev->safw_phys_luns->lun[lun].level2[0];
1879 }
1880 
1881 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1882 {
1883 	return dev->safw_phys_luns->lun[lun].bus >> 6;
1884 }
1885 
1886 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1887 {
1888 	return dev->safw_phys_luns->lun[lun].node_ident[9];
1889 }
1890 
1891 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1892 {
1893 	return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1894 }
1895 
1896 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun)
1897 {
1898 	return dev->safw_phys_luns->lun[lun].node_ident[8];
1899 }
1900 
1901 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1902 						int bus, int target)
1903 {
1904 	kfree(dev->hba_map[bus][target].safw_identify_resp);
1905 	dev->hba_map[bus][target].safw_identify_resp = NULL;
1906 }
1907 
1908 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1909 	int lun_count)
1910 {
1911 	int luns;
1912 	int i;
1913 	u32 bus;
1914 	u32 target;
1915 
1916 	luns = aac_get_safw_phys_lun_count(dev);
1917 
1918 	if (luns < lun_count)
1919 		lun_count = luns;
1920 	else if (lun_count < 0)
1921 		lun_count = luns;
1922 
1923 	for (i = 0; i < lun_count; i++) {
1924 		bus = aac_get_safw_phys_bus(dev, i);
1925 		target = aac_get_safw_phys_target(dev, i);
1926 
1927 		aac_free_safw_identify_resp(dev, bus, target);
1928 	}
1929 }
1930 
1931 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1932 {
1933 	int i;
1934 	int rcode = 0;
1935 	u32 lun_count;
1936 	u32 bus;
1937 	u32 target;
1938 	struct aac_ciss_identify_pd *identify_resp = NULL;
1939 
1940 	lun_count = aac_get_safw_phys_lun_count(dev);
1941 
1942 	for (i = 0; i < lun_count; ++i) {
1943 
1944 		bus = aac_get_safw_phys_bus(dev, i);
1945 		target = aac_get_safw_phys_target(dev, i);
1946 
1947 		rcode = aac_issue_safw_bmic_identify(dev,
1948 						&identify_resp, bus, target);
1949 
1950 		if (unlikely(rcode < 0))
1951 			goto free_identify_resp;
1952 
1953 		dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1954 	}
1955 
1956 out:
1957 	return rcode;
1958 free_identify_resp:
1959 	aac_free_safw_all_identify_resp(dev, i);
1960 	goto out;
1961 }
1962 
1963 /**
1964  *	aac_set_safw_attr_all_targets-	update current hba map with data from FW
1965  *	@dev:	aac_dev structure
1966  *	@phys_luns: FW information from report phys luns
1967  *	@rescan: Indicates scan type
1968  *
1969  *	Update our hba map with the information gathered from the FW
1970  */
1971 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1972 {
1973 	/* ok and extended reporting */
1974 	u32 lun_count, nexus;
1975 	u32 i, bus, target;
1976 	u8 expose_flag, attribs;
1977 
1978 	lun_count = aac_get_safw_phys_lun_count(dev);
1979 
1980 	dev->scan_counter++;
1981 
1982 	for (i = 0; i < lun_count; ++i) {
1983 
1984 		bus = aac_get_safw_phys_bus(dev, i);
1985 		target = aac_get_safw_phys_target(dev, i);
1986 		expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1987 		attribs = aac_get_safw_phys_attribs(dev, i);
1988 		nexus = aac_get_safw_phys_nexus(dev, i);
1989 
1990 		if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1991 			continue;
1992 
1993 		if (expose_flag != 0) {
1994 			dev->hba_map[bus][target].devtype =
1995 				AAC_DEVTYPE_RAID_MEMBER;
1996 			continue;
1997 		}
1998 
1999 		if (nexus != 0 && (attribs & 8)) {
2000 			dev->hba_map[bus][target].devtype =
2001 				AAC_DEVTYPE_NATIVE_RAW;
2002 			dev->hba_map[bus][target].rmw_nexus =
2003 					nexus;
2004 		} else
2005 			dev->hba_map[bus][target].devtype =
2006 				AAC_DEVTYPE_ARC_RAW;
2007 
2008 		dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2009 
2010 		aac_set_safw_target_qd(dev, bus, target);
2011 	}
2012 }
2013 
2014 static int aac_setup_safw_targets(struct aac_dev *dev)
2015 {
2016 	int rcode = 0;
2017 
2018 	rcode = aac_get_containers(dev);
2019 	if (unlikely(rcode < 0))
2020 		goto out;
2021 
2022 	rcode = aac_get_safw_ciss_luns(dev);
2023 	if (unlikely(rcode < 0))
2024 		goto out;
2025 
2026 	rcode = aac_get_safw_attr_all_targets(dev);
2027 	if (unlikely(rcode < 0))
2028 		goto free_ciss_luns;
2029 
2030 	aac_set_safw_attr_all_targets(dev);
2031 
2032 	aac_free_safw_all_identify_resp(dev, -1);
2033 free_ciss_luns:
2034 	aac_free_safw_ciss_luns(dev);
2035 out:
2036 	return rcode;
2037 }
2038 
2039 int aac_setup_safw_adapter(struct aac_dev *dev)
2040 {
2041 	return aac_setup_safw_targets(dev);
2042 }
2043 
2044 int aac_get_adapter_info(struct aac_dev* dev)
2045 {
2046 	struct fib* fibptr;
2047 	int rcode;
2048 	u32 tmp, bus, target;
2049 	struct aac_adapter_info *info;
2050 	struct aac_bus_info *command;
2051 	struct aac_bus_info_response *bus_info;
2052 
2053 	if (!(fibptr = aac_fib_alloc(dev)))
2054 		return -ENOMEM;
2055 
2056 	aac_fib_init(fibptr);
2057 	info = (struct aac_adapter_info *) fib_data(fibptr);
2058 	memset(info,0,sizeof(*info));
2059 
2060 	rcode = aac_fib_send(RequestAdapterInfo,
2061 			 fibptr,
2062 			 sizeof(*info),
2063 			 FsaNormal,
2064 			 -1, 1, /* First `interrupt' command uses special wait */
2065 			 NULL,
2066 			 NULL);
2067 
2068 	if (rcode < 0) {
2069 		/* FIB should be freed only after
2070 		 * getting the response from the F/W */
2071 		if (rcode != -ERESTARTSYS) {
2072 			aac_fib_complete(fibptr);
2073 			aac_fib_free(fibptr);
2074 		}
2075 		return rcode;
2076 	}
2077 	memcpy(&dev->adapter_info, info, sizeof(*info));
2078 
2079 	dev->supplement_adapter_info.virt_device_bus = 0xffff;
2080 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2081 		struct aac_supplement_adapter_info * sinfo;
2082 
2083 		aac_fib_init(fibptr);
2084 
2085 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2086 
2087 		memset(sinfo,0,sizeof(*sinfo));
2088 
2089 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
2090 				 fibptr,
2091 				 sizeof(*sinfo),
2092 				 FsaNormal,
2093 				 1, 1,
2094 				 NULL,
2095 				 NULL);
2096 
2097 		if (rcode >= 0)
2098 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2099 		if (rcode == -ERESTARTSYS) {
2100 			fibptr = aac_fib_alloc(dev);
2101 			if (!fibptr)
2102 				return -ENOMEM;
2103 		}
2104 
2105 	}
2106 
2107 	/* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2108 	for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2109 		for (target = 0; target < AAC_MAX_TARGETS; target++) {
2110 			dev->hba_map[bus][target].devtype = 0;
2111 			dev->hba_map[bus][target].qd_limit = 0;
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * GetBusInfo
2117 	 */
2118 
2119 	aac_fib_init(fibptr);
2120 
2121 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2122 
2123 	memset(bus_info, 0, sizeof(*bus_info));
2124 
2125 	command = (struct aac_bus_info *)bus_info;
2126 
2127 	command->Command = cpu_to_le32(VM_Ioctl);
2128 	command->ObjType = cpu_to_le32(FT_DRIVE);
2129 	command->MethodId = cpu_to_le32(1);
2130 	command->CtlCmd = cpu_to_le32(GetBusInfo);
2131 
2132 	rcode = aac_fib_send(ContainerCommand,
2133 			 fibptr,
2134 			 sizeof (*bus_info),
2135 			 FsaNormal,
2136 			 1, 1,
2137 			 NULL, NULL);
2138 
2139 	/* reasoned default */
2140 	dev->maximum_num_physicals = 16;
2141 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2142 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2143 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2144 	}
2145 
2146 	if (!dev->in_reset) {
2147 		char buffer[16];
2148 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2149 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2150 			dev->name,
2151 			dev->id,
2152 			tmp>>24,
2153 			(tmp>>16)&0xff,
2154 			tmp&0xff,
2155 			le32_to_cpu(dev->adapter_info.kernelbuild),
2156 			(int)sizeof(dev->supplement_adapter_info.build_date),
2157 			dev->supplement_adapter_info.build_date);
2158 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2159 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2160 			dev->name, dev->id,
2161 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2162 			le32_to_cpu(dev->adapter_info.monitorbuild));
2163 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
2164 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2165 			dev->name, dev->id,
2166 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2167 			le32_to_cpu(dev->adapter_info.biosbuild));
2168 		buffer[0] = '\0';
2169 		if (aac_get_serial_number(
2170 		  shost_to_class(dev->scsi_host_ptr), buffer))
2171 			printk(KERN_INFO "%s%d: serial %s",
2172 			  dev->name, dev->id, buffer);
2173 		if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2174 			printk(KERN_INFO "%s%d: TSID %.*s\n",
2175 			  dev->name, dev->id,
2176 			  (int)sizeof(dev->supplement_adapter_info
2177 							.vpd_info.tsid),
2178 				dev->supplement_adapter_info.vpd_info.tsid);
2179 		}
2180 		if (!aac_check_reset || ((aac_check_reset == 1) &&
2181 		  (dev->supplement_adapter_info.supported_options2 &
2182 		  AAC_OPTION_IGNORE_RESET))) {
2183 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2184 			  dev->name, dev->id);
2185 		}
2186 	}
2187 
2188 	dev->cache_protected = 0;
2189 	dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2190 		AAC_FEATURE_JBOD) != 0);
2191 	dev->nondasd_support = 0;
2192 	dev->raid_scsi_mode = 0;
2193 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
2194 		dev->nondasd_support = 1;
2195 
2196 	/*
2197 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2198 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2199 	 * force nondasd support on. If we decide to allow the non-dasd flag
2200 	 * additional changes changes will have to be made to support
2201 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
2202 	 * changed to support the new dev->raid_scsi_mode flag instead of
2203 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2204 	 * function aac_detect will have to be modified where it sets up the
2205 	 * max number of channels based on the aac->nondasd_support flag only.
2206 	 */
2207 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2208 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2209 		dev->nondasd_support = 1;
2210 		dev->raid_scsi_mode = 1;
2211 	}
2212 	if (dev->raid_scsi_mode != 0)
2213 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2214 				dev->name, dev->id);
2215 
2216 	if (nondasd != -1)
2217 		dev->nondasd_support = (nondasd!=0);
2218 	if (dev->nondasd_support && !dev->in_reset)
2219 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2220 
2221 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2222 		dev->needs_dac = 1;
2223 	dev->dac_support = 0;
2224 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2225 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2226 		if (!dev->in_reset)
2227 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2228 				dev->name, dev->id);
2229 		dev->dac_support = 1;
2230 	}
2231 
2232 	if(dacmode != -1) {
2233 		dev->dac_support = (dacmode!=0);
2234 	}
2235 
2236 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2237 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
2238 		& AAC_QUIRK_SCSI_32)) {
2239 		dev->nondasd_support = 0;
2240 		dev->jbod = 0;
2241 		expose_physicals = 0;
2242 	}
2243 
2244 	if (dev->dac_support) {
2245 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
2246 			if (!dev->in_reset)
2247 				dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2248 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
2249 			dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2250 			dev->dac_support = 0;
2251 		} else {
2252 			dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2253 			rcode = -ENOMEM;
2254 		}
2255 	}
2256 	/*
2257 	 * Deal with configuring for the individualized limits of each packet
2258 	 * interface.
2259 	 */
2260 	dev->a_ops.adapter_scsi = (dev->dac_support)
2261 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2262 				? aac_scsi_32_64
2263 				: aac_scsi_64)
2264 				: aac_scsi_32;
2265 	if (dev->raw_io_interface) {
2266 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
2267 					? aac_bounds_64
2268 					: aac_bounds_32;
2269 		dev->a_ops.adapter_read = aac_read_raw_io;
2270 		dev->a_ops.adapter_write = aac_write_raw_io;
2271 	} else {
2272 		dev->a_ops.adapter_bounds = aac_bounds_32;
2273 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2274 			sizeof(struct aac_fibhdr) -
2275 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
2276 				sizeof(struct sgentry);
2277 		if (dev->dac_support) {
2278 			dev->a_ops.adapter_read = aac_read_block64;
2279 			dev->a_ops.adapter_write = aac_write_block64;
2280 			/*
2281 			 * 38 scatter gather elements
2282 			 */
2283 			dev->scsi_host_ptr->sg_tablesize =
2284 				(dev->max_fib_size -
2285 				sizeof(struct aac_fibhdr) -
2286 				sizeof(struct aac_write64) +
2287 				sizeof(struct sgentry64)) /
2288 					sizeof(struct sgentry64);
2289 		} else {
2290 			dev->a_ops.adapter_read = aac_read_block;
2291 			dev->a_ops.adapter_write = aac_write_block;
2292 		}
2293 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2294 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2295 			/*
2296 			 * Worst case size that could cause sg overflow when
2297 			 * we break up SG elements that are larger than 64KB.
2298 			 * Would be nice if we could tell the SCSI layer what
2299 			 * the maximum SG element size can be. Worst case is
2300 			 * (sg_tablesize-1) 4KB elements with one 64KB
2301 			 * element.
2302 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
2303 			 */
2304 			dev->scsi_host_ptr->max_sectors =
2305 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2306 		}
2307 	}
2308 	if (!dev->sync_mode && dev->sa_firmware &&
2309 		dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2310 		dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2311 			HBA_MAX_SG_SEPARATE;
2312 
2313 	/* FIB should be freed only after getting the response from the F/W */
2314 	if (rcode != -ERESTARTSYS) {
2315 		aac_fib_complete(fibptr);
2316 		aac_fib_free(fibptr);
2317 	}
2318 
2319 	return rcode;
2320 }
2321 
2322 
2323 static void io_callback(void *context, struct fib * fibptr)
2324 {
2325 	struct aac_dev *dev;
2326 	struct aac_read_reply *readreply;
2327 	struct scsi_cmnd *scsicmd;
2328 	u32 cid;
2329 
2330 	scsicmd = (struct scsi_cmnd *) context;
2331 
2332 	if (!aac_valid_context(scsicmd, fibptr))
2333 		return;
2334 
2335 	dev = fibptr->dev;
2336 	cid = scmd_id(scsicmd);
2337 
2338 	if (nblank(dprintk(x))) {
2339 		u64 lba;
2340 		switch (scsicmd->cmnd[0]) {
2341 		case WRITE_6:
2342 		case READ_6:
2343 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2344 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2345 			break;
2346 		case WRITE_16:
2347 		case READ_16:
2348 			lba = ((u64)scsicmd->cmnd[2] << 56) |
2349 			      ((u64)scsicmd->cmnd[3] << 48) |
2350 			      ((u64)scsicmd->cmnd[4] << 40) |
2351 			      ((u64)scsicmd->cmnd[5] << 32) |
2352 			      ((u64)scsicmd->cmnd[6] << 24) |
2353 			      (scsicmd->cmnd[7] << 16) |
2354 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2355 			break;
2356 		case WRITE_12:
2357 		case READ_12:
2358 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2359 			      (scsicmd->cmnd[3] << 16) |
2360 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2361 			break;
2362 		default:
2363 			lba = ((u64)scsicmd->cmnd[2] << 24) |
2364 			       (scsicmd->cmnd[3] << 16) |
2365 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2366 			break;
2367 		}
2368 		printk(KERN_DEBUG
2369 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2370 		  smp_processor_id(), (unsigned long long)lba, jiffies);
2371 	}
2372 
2373 	BUG_ON(fibptr == NULL);
2374 
2375 	scsi_dma_unmap(scsicmd);
2376 
2377 	readreply = (struct aac_read_reply *)fib_data(fibptr);
2378 	switch (le32_to_cpu(readreply->status)) {
2379 	case ST_OK:
2380 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2381 			SAM_STAT_GOOD;
2382 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2383 		break;
2384 	case ST_NOT_READY:
2385 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2386 			SAM_STAT_CHECK_CONDITION;
2387 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2388 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2389 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2390 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2391 			     SCSI_SENSE_BUFFERSIZE));
2392 		break;
2393 	case ST_MEDERR:
2394 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2395 			SAM_STAT_CHECK_CONDITION;
2396 		set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2397 		  SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2398 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2399 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2400 			     SCSI_SENSE_BUFFERSIZE));
2401 		break;
2402 	default:
2403 #ifdef AAC_DETAILED_STATUS_INFO
2404 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2405 		  le32_to_cpu(readreply->status));
2406 #endif
2407 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2408 			SAM_STAT_CHECK_CONDITION;
2409 		set_sense(&dev->fsa_dev[cid].sense_data,
2410 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2411 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2412 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2413 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2414 			     SCSI_SENSE_BUFFERSIZE));
2415 		break;
2416 	}
2417 	aac_fib_complete(fibptr);
2418 
2419 	scsicmd->scsi_done(scsicmd);
2420 }
2421 
2422 static int aac_read(struct scsi_cmnd * scsicmd)
2423 {
2424 	u64 lba;
2425 	u32 count;
2426 	int status;
2427 	struct aac_dev *dev;
2428 	struct fib * cmd_fibcontext;
2429 	int cid;
2430 
2431 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2432 	/*
2433 	 *	Get block address and transfer length
2434 	 */
2435 	switch (scsicmd->cmnd[0]) {
2436 	case READ_6:
2437 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2438 
2439 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2440 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2441 		count = scsicmd->cmnd[4];
2442 
2443 		if (count == 0)
2444 			count = 256;
2445 		break;
2446 	case READ_16:
2447 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2448 
2449 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2450 			((u64)scsicmd->cmnd[3] << 48) |
2451 			((u64)scsicmd->cmnd[4] << 40) |
2452 			((u64)scsicmd->cmnd[5] << 32) |
2453 			((u64)scsicmd->cmnd[6] << 24) |
2454 			(scsicmd->cmnd[7] << 16) |
2455 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2456 		count = (scsicmd->cmnd[10] << 24) |
2457 			(scsicmd->cmnd[11] << 16) |
2458 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2459 		break;
2460 	case READ_12:
2461 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2462 
2463 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2464 			(scsicmd->cmnd[3] << 16) |
2465 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2466 		count = (scsicmd->cmnd[6] << 24) |
2467 			(scsicmd->cmnd[7] << 16) |
2468 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2469 		break;
2470 	default:
2471 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2472 
2473 		lba = ((u64)scsicmd->cmnd[2] << 24) |
2474 			(scsicmd->cmnd[3] << 16) |
2475 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2476 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2477 		break;
2478 	}
2479 
2480 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2481 		cid = scmd_id(scsicmd);
2482 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2483 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2484 			SAM_STAT_CHECK_CONDITION;
2485 		set_sense(&dev->fsa_dev[cid].sense_data,
2486 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2487 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2488 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2489 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2490 			     SCSI_SENSE_BUFFERSIZE));
2491 		scsicmd->scsi_done(scsicmd);
2492 		return 1;
2493 	}
2494 
2495 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2496 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2497 	if (aac_adapter_bounds(dev,scsicmd,lba))
2498 		return 0;
2499 	/*
2500 	 *	Alocate and initialize a Fib
2501 	 */
2502 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2503 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2504 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2505 
2506 	/*
2507 	 *	Check that the command queued to the controller
2508 	 */
2509 	if (status == -EINPROGRESS)
2510 		return 0;
2511 
2512 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2513 	/*
2514 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2515 	 */
2516 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2517 	scsicmd->scsi_done(scsicmd);
2518 	aac_fib_complete(cmd_fibcontext);
2519 	aac_fib_free(cmd_fibcontext);
2520 	return 0;
2521 }
2522 
2523 static int aac_write(struct scsi_cmnd * scsicmd)
2524 {
2525 	u64 lba;
2526 	u32 count;
2527 	int fua;
2528 	int status;
2529 	struct aac_dev *dev;
2530 	struct fib * cmd_fibcontext;
2531 	int cid;
2532 
2533 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2534 	/*
2535 	 *	Get block address and transfer length
2536 	 */
2537 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
2538 	{
2539 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2540 		count = scsicmd->cmnd[4];
2541 		if (count == 0)
2542 			count = 256;
2543 		fua = 0;
2544 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2545 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2546 
2547 		lba =	((u64)scsicmd->cmnd[2] << 56) |
2548 			((u64)scsicmd->cmnd[3] << 48) |
2549 			((u64)scsicmd->cmnd[4] << 40) |
2550 			((u64)scsicmd->cmnd[5] << 32) |
2551 			((u64)scsicmd->cmnd[6] << 24) |
2552 			(scsicmd->cmnd[7] << 16) |
2553 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2554 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2555 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2556 		fua = scsicmd->cmnd[1] & 0x8;
2557 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2558 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2559 
2560 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2561 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2562 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2563 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2564 		fua = scsicmd->cmnd[1] & 0x8;
2565 	} else {
2566 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2567 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2568 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2569 		fua = scsicmd->cmnd[1] & 0x8;
2570 	}
2571 
2572 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2573 		cid = scmd_id(scsicmd);
2574 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2575 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2576 			SAM_STAT_CHECK_CONDITION;
2577 		set_sense(&dev->fsa_dev[cid].sense_data,
2578 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2579 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2580 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2581 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2582 			     SCSI_SENSE_BUFFERSIZE));
2583 		scsicmd->scsi_done(scsicmd);
2584 		return 1;
2585 	}
2586 
2587 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2588 	  smp_processor_id(), (unsigned long long)lba, jiffies));
2589 	if (aac_adapter_bounds(dev,scsicmd,lba))
2590 		return 0;
2591 	/*
2592 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2593 	 */
2594 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2595 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2596 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2597 
2598 	/*
2599 	 *	Check that the command queued to the controller
2600 	 */
2601 	if (status == -EINPROGRESS)
2602 		return 0;
2603 
2604 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2605 	/*
2606 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
2607 	 */
2608 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
2609 	scsicmd->scsi_done(scsicmd);
2610 
2611 	aac_fib_complete(cmd_fibcontext);
2612 	aac_fib_free(cmd_fibcontext);
2613 	return 0;
2614 }
2615 
2616 static void synchronize_callback(void *context, struct fib *fibptr)
2617 {
2618 	struct aac_synchronize_reply *synchronizereply;
2619 	struct scsi_cmnd *cmd;
2620 
2621 	cmd = context;
2622 
2623 	if (!aac_valid_context(cmd, fibptr))
2624 		return;
2625 
2626 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2627 				smp_processor_id(), jiffies));
2628 	BUG_ON(fibptr == NULL);
2629 
2630 
2631 	synchronizereply = fib_data(fibptr);
2632 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
2633 		cmd->result = DID_OK << 16 |
2634 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2635 	else {
2636 		struct scsi_device *sdev = cmd->device;
2637 		struct aac_dev *dev = fibptr->dev;
2638 		u32 cid = sdev_id(sdev);
2639 		printk(KERN_WARNING
2640 		     "synchronize_callback: synchronize failed, status = %d\n",
2641 		     le32_to_cpu(synchronizereply->status));
2642 		cmd->result = DID_OK << 16 |
2643 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2644 		set_sense(&dev->fsa_dev[cid].sense_data,
2645 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2646 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2647 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2648 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2649 			     SCSI_SENSE_BUFFERSIZE));
2650 	}
2651 
2652 	aac_fib_complete(fibptr);
2653 	aac_fib_free(fibptr);
2654 	cmd->scsi_done(cmd);
2655 }
2656 
2657 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2658 {
2659 	int status;
2660 	struct fib *cmd_fibcontext;
2661 	struct aac_synchronize *synchronizecmd;
2662 	struct scsi_cmnd *cmd;
2663 	struct scsi_device *sdev = scsicmd->device;
2664 	int active = 0;
2665 	struct aac_dev *aac;
2666 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
2667 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2668 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2669 	unsigned long flags;
2670 
2671 	/*
2672 	 * Wait for all outstanding queued commands to complete to this
2673 	 * specific target (block).
2674 	 */
2675 	spin_lock_irqsave(&sdev->list_lock, flags);
2676 	list_for_each_entry(cmd, &sdev->cmd_list, list)
2677 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
2678 			u64 cmnd_lba;
2679 			u32 cmnd_count;
2680 
2681 			if (cmd->cmnd[0] == WRITE_6) {
2682 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
2683 					(cmd->cmnd[2] << 8) |
2684 					cmd->cmnd[3];
2685 				cmnd_count = cmd->cmnd[4];
2686 				if (cmnd_count == 0)
2687 					cmnd_count = 256;
2688 			} else if (cmd->cmnd[0] == WRITE_16) {
2689 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
2690 					((u64)cmd->cmnd[3] << 48) |
2691 					((u64)cmd->cmnd[4] << 40) |
2692 					((u64)cmd->cmnd[5] << 32) |
2693 					((u64)cmd->cmnd[6] << 24) |
2694 					(cmd->cmnd[7] << 16) |
2695 					(cmd->cmnd[8] << 8) |
2696 					cmd->cmnd[9];
2697 				cmnd_count = (cmd->cmnd[10] << 24) |
2698 					(cmd->cmnd[11] << 16) |
2699 					(cmd->cmnd[12] << 8) |
2700 					cmd->cmnd[13];
2701 			} else if (cmd->cmnd[0] == WRITE_12) {
2702 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2703 					(cmd->cmnd[3] << 16) |
2704 					(cmd->cmnd[4] << 8) |
2705 					cmd->cmnd[5];
2706 				cmnd_count = (cmd->cmnd[6] << 24) |
2707 					(cmd->cmnd[7] << 16) |
2708 					(cmd->cmnd[8] << 8) |
2709 					cmd->cmnd[9];
2710 			} else if (cmd->cmnd[0] == WRITE_10) {
2711 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
2712 					(cmd->cmnd[3] << 16) |
2713 					(cmd->cmnd[4] << 8) |
2714 					cmd->cmnd[5];
2715 				cmnd_count = (cmd->cmnd[7] << 8) |
2716 					cmd->cmnd[8];
2717 			} else
2718 				continue;
2719 			if (((cmnd_lba + cmnd_count) < lba) ||
2720 			  (count && ((lba + count) < cmnd_lba)))
2721 				continue;
2722 			++active;
2723 			break;
2724 		}
2725 
2726 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2727 
2728 	/*
2729 	 *	Yield the processor (requeue for later)
2730 	 */
2731 	if (active)
2732 		return SCSI_MLQUEUE_DEVICE_BUSY;
2733 
2734 	aac = (struct aac_dev *)sdev->host->hostdata;
2735 	if (aac->in_reset)
2736 		return SCSI_MLQUEUE_HOST_BUSY;
2737 
2738 	/*
2739 	 *	Allocate and initialize a Fib
2740 	 */
2741 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2742 		return SCSI_MLQUEUE_HOST_BUSY;
2743 
2744 	aac_fib_init(cmd_fibcontext);
2745 
2746 	synchronizecmd = fib_data(cmd_fibcontext);
2747 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2748 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2749 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2750 	synchronizecmd->count =
2751 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2752 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2753 
2754 	/*
2755 	 *	Now send the Fib to the adapter
2756 	 */
2757 	status = aac_fib_send(ContainerCommand,
2758 		  cmd_fibcontext,
2759 		  sizeof(struct aac_synchronize),
2760 		  FsaNormal,
2761 		  0, 1,
2762 		  (fib_callback)synchronize_callback,
2763 		  (void *)scsicmd);
2764 
2765 	/*
2766 	 *	Check that the command queued to the controller
2767 	 */
2768 	if (status == -EINPROGRESS)
2769 		return 0;
2770 
2771 	printk(KERN_WARNING
2772 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2773 	aac_fib_complete(cmd_fibcontext);
2774 	aac_fib_free(cmd_fibcontext);
2775 	return SCSI_MLQUEUE_HOST_BUSY;
2776 }
2777 
2778 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2779 {
2780 	struct scsi_cmnd *scsicmd = context;
2781 
2782 	if (!aac_valid_context(scsicmd, fibptr))
2783 		return;
2784 
2785 	BUG_ON(fibptr == NULL);
2786 
2787 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2788 
2789 	aac_fib_complete(fibptr);
2790 	aac_fib_free(fibptr);
2791 	scsicmd->scsi_done(scsicmd);
2792 }
2793 
2794 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2795 {
2796 	int status;
2797 	struct fib *cmd_fibcontext;
2798 	struct aac_power_management *pmcmd;
2799 	struct scsi_device *sdev = scsicmd->device;
2800 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2801 
2802 	if (!(aac->supplement_adapter_info.supported_options2 &
2803 	      AAC_OPTION_POWER_MANAGEMENT)) {
2804 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2805 				  SAM_STAT_GOOD;
2806 		scsicmd->scsi_done(scsicmd);
2807 		return 0;
2808 	}
2809 
2810 	if (aac->in_reset)
2811 		return SCSI_MLQUEUE_HOST_BUSY;
2812 
2813 	/*
2814 	 *	Allocate and initialize a Fib
2815 	 */
2816 	cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2817 
2818 	aac_fib_init(cmd_fibcontext);
2819 
2820 	pmcmd = fib_data(cmd_fibcontext);
2821 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2822 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2823 	/* Eject bit ignored, not relevant */
2824 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2825 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2826 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2827 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2828 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2829 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2830 
2831 	/*
2832 	 *	Now send the Fib to the adapter
2833 	 */
2834 	status = aac_fib_send(ContainerCommand,
2835 		  cmd_fibcontext,
2836 		  sizeof(struct aac_power_management),
2837 		  FsaNormal,
2838 		  0, 1,
2839 		  (fib_callback)aac_start_stop_callback,
2840 		  (void *)scsicmd);
2841 
2842 	/*
2843 	 *	Check that the command queued to the controller
2844 	 */
2845 	if (status == -EINPROGRESS)
2846 		return 0;
2847 
2848 	aac_fib_complete(cmd_fibcontext);
2849 	aac_fib_free(cmd_fibcontext);
2850 	return SCSI_MLQUEUE_HOST_BUSY;
2851 }
2852 
2853 /**
2854  *	aac_scsi_cmd()		-	Process SCSI command
2855  *	@scsicmd:		SCSI command block
2856  *
2857  *	Emulate a SCSI command and queue the required request for the
2858  *	aacraid firmware.
2859  */
2860 
2861 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2862 {
2863 	u32 cid, bus;
2864 	struct Scsi_Host *host = scsicmd->device->host;
2865 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2866 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2867 
2868 	if (fsa_dev_ptr == NULL)
2869 		return -1;
2870 	/*
2871 	 *	If the bus, id or lun is out of range, return fail
2872 	 *	Test does not apply to ID 16, the pseudo id for the controller
2873 	 *	itself.
2874 	 */
2875 	cid = scmd_id(scsicmd);
2876 	if (cid != host->this_id) {
2877 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2878 			if((cid >= dev->maximum_num_containers) ||
2879 					(scsicmd->device->lun != 0)) {
2880 				scsicmd->result = DID_NO_CONNECT << 16;
2881 				goto scsi_done_ret;
2882 			}
2883 
2884 			/*
2885 			 *	If the target container doesn't exist, it may have
2886 			 *	been newly created
2887 			 */
2888 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2889 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2890 			   NOT_READY)) {
2891 				switch (scsicmd->cmnd[0]) {
2892 				case SERVICE_ACTION_IN_16:
2893 					if (!(dev->raw_io_interface) ||
2894 					    !(dev->raw_io_64) ||
2895 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2896 						break;
2897 				case INQUIRY:
2898 				case READ_CAPACITY:
2899 				case TEST_UNIT_READY:
2900 					if (dev->in_reset)
2901 						return -1;
2902 					return _aac_probe_container(scsicmd,
2903 							aac_probe_container_callback2);
2904 				default:
2905 					break;
2906 				}
2907 			}
2908 		} else {  /* check for physical non-dasd devices */
2909 			bus = aac_logical_to_phys(scmd_channel(scsicmd));
2910 
2911 			if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2912 				dev->hba_map[bus][cid].devtype
2913 					== AAC_DEVTYPE_NATIVE_RAW) {
2914 				if (dev->in_reset)
2915 					return -1;
2916 				return aac_send_hba_fib(scsicmd);
2917 			} else if (dev->nondasd_support || expose_physicals ||
2918 				dev->jbod) {
2919 				if (dev->in_reset)
2920 					return -1;
2921 				return aac_send_srb_fib(scsicmd);
2922 			} else {
2923 				scsicmd->result = DID_NO_CONNECT << 16;
2924 				goto scsi_done_ret;
2925 			}
2926 		}
2927 	}
2928 	/*
2929 	 * else Command for the controller itself
2930 	 */
2931 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2932 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2933 	{
2934 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2935 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2936 		set_sense(&dev->fsa_dev[cid].sense_data,
2937 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2938 		  ASENCODE_INVALID_COMMAND, 0, 0);
2939 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2940 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2941 			     SCSI_SENSE_BUFFERSIZE));
2942 		goto scsi_done_ret;
2943 	}
2944 
2945 	switch (scsicmd->cmnd[0]) {
2946 	case READ_6:
2947 	case READ_10:
2948 	case READ_12:
2949 	case READ_16:
2950 		if (dev->in_reset)
2951 			return -1;
2952 		return aac_read(scsicmd);
2953 
2954 	case WRITE_6:
2955 	case WRITE_10:
2956 	case WRITE_12:
2957 	case WRITE_16:
2958 		if (dev->in_reset)
2959 			return -1;
2960 		return aac_write(scsicmd);
2961 
2962 	case SYNCHRONIZE_CACHE:
2963 		if (((aac_cache & 6) == 6) && dev->cache_protected) {
2964 			scsicmd->result = AAC_STAT_GOOD;
2965 			break;
2966 		}
2967 		/* Issue FIB to tell Firmware to flush it's cache */
2968 		if ((aac_cache & 6) != 2)
2969 			return aac_synchronize(scsicmd);
2970 	case INQUIRY:
2971 	{
2972 		struct inquiry_data inq_data;
2973 
2974 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2975 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2976 
2977 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2978 			char *arr = (char *)&inq_data;
2979 
2980 			/* EVPD bit set */
2981 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2982 			  INQD_PDT_PROC : INQD_PDT_DA;
2983 			if (scsicmd->cmnd[2] == 0) {
2984 				/* supported vital product data pages */
2985 				arr[3] = 3;
2986 				arr[4] = 0x0;
2987 				arr[5] = 0x80;
2988 				arr[6] = 0x83;
2989 				arr[1] = scsicmd->cmnd[2];
2990 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2991 							 sizeof(inq_data));
2992 				scsicmd->result = AAC_STAT_GOOD;
2993 			} else if (scsicmd->cmnd[2] == 0x80) {
2994 				/* unit serial number page */
2995 				arr[3] = setinqserial(dev, &arr[4],
2996 				  scmd_id(scsicmd));
2997 				arr[1] = scsicmd->cmnd[2];
2998 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2999 							 sizeof(inq_data));
3000 				if (aac_wwn != 2)
3001 					return aac_get_container_serial(
3002 						scsicmd);
3003 				scsicmd->result = AAC_STAT_GOOD;
3004 			} else if (scsicmd->cmnd[2] == 0x83) {
3005 				/* vpd page 0x83 - Device Identification Page */
3006 				char *sno = (char *)&inq_data;
3007 				sno[3] = setinqserial(dev, &sno[4],
3008 						      scmd_id(scsicmd));
3009 				if (aac_wwn != 2)
3010 					return aac_get_container_serial(
3011 						scsicmd);
3012 				scsicmd->result = AAC_STAT_GOOD;
3013 			} else {
3014 				/* vpd page not implemented */
3015 				scsicmd->result = DID_OK << 16 |
3016 				  COMMAND_COMPLETE << 8 |
3017 				  SAM_STAT_CHECK_CONDITION;
3018 				set_sense(&dev->fsa_dev[cid].sense_data,
3019 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
3020 				  ASENCODE_NO_SENSE, 7, 2);
3021 				memcpy(scsicmd->sense_buffer,
3022 				  &dev->fsa_dev[cid].sense_data,
3023 				  min_t(size_t,
3024 					sizeof(dev->fsa_dev[cid].sense_data),
3025 					SCSI_SENSE_BUFFERSIZE));
3026 			}
3027 			break;
3028 		}
3029 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
3030 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
3031 		inq_data.inqd_len = 31;
3032 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
3033 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
3034 		/*
3035 		 *	Set the Vendor, Product, and Revision Level
3036 		 *	see: <vendor>.c i.e. aac.c
3037 		 */
3038 		if (cid == host->this_id) {
3039 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
3040 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
3041 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
3042 						 sizeof(inq_data));
3043 			scsicmd->result = AAC_STAT_GOOD;
3044 			break;
3045 		}
3046 		if (dev->in_reset)
3047 			return -1;
3048 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
3049 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
3050 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
3051 		return aac_get_container_name(scsicmd);
3052 	}
3053 	case SERVICE_ACTION_IN_16:
3054 		if (!(dev->raw_io_interface) ||
3055 		    !(dev->raw_io_64) ||
3056 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
3057 			break;
3058 	{
3059 		u64 capacity;
3060 		char cp[13];
3061 		unsigned int alloc_len;
3062 
3063 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
3064 		capacity = fsa_dev_ptr[cid].size - 1;
3065 		cp[0] = (capacity >> 56) & 0xff;
3066 		cp[1] = (capacity >> 48) & 0xff;
3067 		cp[2] = (capacity >> 40) & 0xff;
3068 		cp[3] = (capacity >> 32) & 0xff;
3069 		cp[4] = (capacity >> 24) & 0xff;
3070 		cp[5] = (capacity >> 16) & 0xff;
3071 		cp[6] = (capacity >> 8) & 0xff;
3072 		cp[7] = (capacity >> 0) & 0xff;
3073 		cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3074 		cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3075 		cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3076 		cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
3077 		cp[12] = 0;
3078 
3079 		alloc_len = ((scsicmd->cmnd[10] << 24)
3080 			     + (scsicmd->cmnd[11] << 16)
3081 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
3082 
3083 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
3084 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
3085 		if (alloc_len < scsi_bufflen(scsicmd))
3086 			scsi_set_resid(scsicmd,
3087 				       scsi_bufflen(scsicmd) - alloc_len);
3088 
3089 		/* Do not cache partition table for arrays */
3090 		scsicmd->device->removable = 1;
3091 
3092 		scsicmd->result = AAC_STAT_GOOD;
3093 		break;
3094 	}
3095 
3096 	case READ_CAPACITY:
3097 	{
3098 		u32 capacity;
3099 		char cp[8];
3100 
3101 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3102 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3103 			capacity = fsa_dev_ptr[cid].size - 1;
3104 		else
3105 			capacity = (u32)-1;
3106 
3107 		cp[0] = (capacity >> 24) & 0xff;
3108 		cp[1] = (capacity >> 16) & 0xff;
3109 		cp[2] = (capacity >> 8) & 0xff;
3110 		cp[3] = (capacity >> 0) & 0xff;
3111 		cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3112 		cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3113 		cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3114 		cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3115 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3116 		/* Do not cache partition table for arrays */
3117 		scsicmd->device->removable = 1;
3118 		scsicmd->result = AAC_STAT_GOOD;
3119 		break;
3120 	}
3121 
3122 	case MODE_SENSE:
3123 	{
3124 		int mode_buf_length = 4;
3125 		u32 capacity;
3126 		aac_modep_data mpd;
3127 
3128 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3129 			capacity = fsa_dev_ptr[cid].size - 1;
3130 		else
3131 			capacity = (u32)-1;
3132 
3133 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3134 		memset((char *)&mpd, 0, sizeof(aac_modep_data));
3135 
3136 		/* Mode data length */
3137 		mpd.hd.data_length = sizeof(mpd.hd) - 1;
3138 		/* Medium type - default */
3139 		mpd.hd.med_type = 0;
3140 		/* Device-specific param,
3141 		   bit 8: 0/1 = write enabled/protected
3142 		   bit 4: 0/1 = FUA enabled */
3143 		mpd.hd.dev_par = 0;
3144 
3145 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3146 			mpd.hd.dev_par = 0x10;
3147 		if (scsicmd->cmnd[1] & 0x8)
3148 			mpd.hd.bd_length = 0;	/* Block descriptor length */
3149 		else {
3150 			mpd.hd.bd_length = sizeof(mpd.bd);
3151 			mpd.hd.data_length += mpd.hd.bd_length;
3152 			mpd.bd.block_length[0] =
3153 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3154 			mpd.bd.block_length[1] =
3155 				(fsa_dev_ptr[cid].block_size >> 8) &  0xff;
3156 			mpd.bd.block_length[2] =
3157 				fsa_dev_ptr[cid].block_size  & 0xff;
3158 
3159 			mpd.mpc_buf[0] = scsicmd->cmnd[2];
3160 			if (scsicmd->cmnd[2] == 0x1C) {
3161 				/* page length */
3162 				mpd.mpc_buf[1] = 0xa;
3163 				/* Mode data length */
3164 				mpd.hd.data_length = 23;
3165 			} else {
3166 				/* Mode data length */
3167 				mpd.hd.data_length = 15;
3168 			}
3169 
3170 			if (capacity > 0xffffff) {
3171 				mpd.bd.block_count[0] = 0xff;
3172 				mpd.bd.block_count[1] = 0xff;
3173 				mpd.bd.block_count[2] = 0xff;
3174 			} else {
3175 				mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3176 				mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3177 				mpd.bd.block_count[2] = capacity  & 0xff;
3178 			}
3179 		}
3180 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3181 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3182 			mpd.hd.data_length += 3;
3183 			mpd.mpc_buf[0] = 8;
3184 			mpd.mpc_buf[1] = 1;
3185 			mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3186 				? 0 : 0x04; /* WCE */
3187 			mode_buf_length = sizeof(mpd);
3188 		}
3189 
3190 		if (mode_buf_length > scsicmd->cmnd[4])
3191 			mode_buf_length = scsicmd->cmnd[4];
3192 		else
3193 			mode_buf_length = sizeof(mpd);
3194 		scsi_sg_copy_from_buffer(scsicmd,
3195 					 (char *)&mpd,
3196 					 mode_buf_length);
3197 		scsicmd->result = AAC_STAT_GOOD;
3198 		break;
3199 	}
3200 	case MODE_SENSE_10:
3201 	{
3202 		u32 capacity;
3203 		int mode_buf_length = 8;
3204 		aac_modep10_data mpd10;
3205 
3206 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3207 			capacity = fsa_dev_ptr[cid].size - 1;
3208 		else
3209 			capacity = (u32)-1;
3210 
3211 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3212 		memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3213 		/* Mode data length (MSB) */
3214 		mpd10.hd.data_length[0] = 0;
3215 		/* Mode data length (LSB) */
3216 		mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3217 		/* Medium type - default */
3218 		mpd10.hd.med_type = 0;
3219 		/* Device-specific param,
3220 		   bit 8: 0/1 = write enabled/protected
3221 		   bit 4: 0/1 = FUA enabled */
3222 		mpd10.hd.dev_par = 0;
3223 
3224 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3225 			mpd10.hd.dev_par = 0x10;
3226 		mpd10.hd.rsrvd[0] = 0;	/* reserved */
3227 		mpd10.hd.rsrvd[1] = 0;	/* reserved */
3228 		if (scsicmd->cmnd[1] & 0x8) {
3229 			/* Block descriptor length (MSB) */
3230 			mpd10.hd.bd_length[0] = 0;
3231 			/* Block descriptor length (LSB) */
3232 			mpd10.hd.bd_length[1] = 0;
3233 		} else {
3234 			mpd10.hd.bd_length[0] = 0;
3235 			mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3236 
3237 			mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3238 
3239 			mpd10.bd.block_length[0] =
3240 				(fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3241 			mpd10.bd.block_length[1] =
3242 				(fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3243 			mpd10.bd.block_length[2] =
3244 				fsa_dev_ptr[cid].block_size  & 0xff;
3245 
3246 			if (capacity > 0xffffff) {
3247 				mpd10.bd.block_count[0] = 0xff;
3248 				mpd10.bd.block_count[1] = 0xff;
3249 				mpd10.bd.block_count[2] = 0xff;
3250 			} else {
3251 				mpd10.bd.block_count[0] =
3252 					(capacity >> 16) & 0xff;
3253 				mpd10.bd.block_count[1] =
3254 					(capacity >> 8) & 0xff;
3255 				mpd10.bd.block_count[2] =
3256 					capacity  & 0xff;
3257 			}
3258 		}
3259 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3260 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3261 			mpd10.hd.data_length[1] += 3;
3262 			mpd10.mpc_buf[0] = 8;
3263 			mpd10.mpc_buf[1] = 1;
3264 			mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3265 				? 0 : 0x04; /* WCE */
3266 			mode_buf_length = sizeof(mpd10);
3267 			if (mode_buf_length > scsicmd->cmnd[8])
3268 				mode_buf_length = scsicmd->cmnd[8];
3269 		}
3270 		scsi_sg_copy_from_buffer(scsicmd,
3271 					 (char *)&mpd10,
3272 					 mode_buf_length);
3273 
3274 		scsicmd->result = AAC_STAT_GOOD;
3275 		break;
3276 	}
3277 	case REQUEST_SENSE:
3278 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3279 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3280 				sizeof(struct sense_data));
3281 		memset(&dev->fsa_dev[cid].sense_data, 0,
3282 				sizeof(struct sense_data));
3283 		scsicmd->result = AAC_STAT_GOOD;
3284 		break;
3285 
3286 	case ALLOW_MEDIUM_REMOVAL:
3287 		dprintk((KERN_DEBUG "LOCK command.\n"));
3288 		if (scsicmd->cmnd[4])
3289 			fsa_dev_ptr[cid].locked = 1;
3290 		else
3291 			fsa_dev_ptr[cid].locked = 0;
3292 
3293 		scsicmd->result = AAC_STAT_GOOD;
3294 		break;
3295 	/*
3296 	 *	These commands are all No-Ops
3297 	 */
3298 	case TEST_UNIT_READY:
3299 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3300 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3301 				SAM_STAT_CHECK_CONDITION;
3302 			set_sense(&dev->fsa_dev[cid].sense_data,
3303 				  NOT_READY, SENCODE_BECOMING_READY,
3304 				  ASENCODE_BECOMING_READY, 0, 0);
3305 			memcpy(scsicmd->sense_buffer,
3306 			       &dev->fsa_dev[cid].sense_data,
3307 			       min_t(size_t,
3308 				     sizeof(dev->fsa_dev[cid].sense_data),
3309 				     SCSI_SENSE_BUFFERSIZE));
3310 		break;
3311 		}
3312 	case RESERVE:
3313 	case RELEASE:
3314 	case REZERO_UNIT:
3315 	case REASSIGN_BLOCKS:
3316 	case SEEK_10:
3317 		scsicmd->result = AAC_STAT_GOOD;
3318 		break;
3319 
3320 	case START_STOP:
3321 		return aac_start_stop(scsicmd);
3322 
3323 	/* FALLTHRU */
3324 	default:
3325 	/*
3326 	 *	Unhandled commands
3327 	 */
3328 		dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3329 				scsicmd->cmnd[0]));
3330 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
3331 				SAM_STAT_CHECK_CONDITION;
3332 		set_sense(&dev->fsa_dev[cid].sense_data,
3333 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3334 			  ASENCODE_INVALID_COMMAND, 0, 0);
3335 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3336 				min_t(size_t,
3337 				      sizeof(dev->fsa_dev[cid].sense_data),
3338 				      SCSI_SENSE_BUFFERSIZE));
3339 	}
3340 
3341 scsi_done_ret:
3342 
3343 	scsicmd->scsi_done(scsicmd);
3344 	return 0;
3345 }
3346 
3347 static int query_disk(struct aac_dev *dev, void __user *arg)
3348 {
3349 	struct aac_query_disk qd;
3350 	struct fsa_dev_info *fsa_dev_ptr;
3351 
3352 	fsa_dev_ptr = dev->fsa_dev;
3353 	if (!fsa_dev_ptr)
3354 		return -EBUSY;
3355 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3356 		return -EFAULT;
3357 	if (qd.cnum == -1) {
3358 		if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3359 			return -EINVAL;
3360 		qd.cnum = qd.id;
3361 	} else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3362 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3363 			return -EINVAL;
3364 		qd.instance = dev->scsi_host_ptr->host_no;
3365 		qd.bus = 0;
3366 		qd.id = CONTAINER_TO_ID(qd.cnum);
3367 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
3368 	}
3369 	else return -EINVAL;
3370 
3371 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3372 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
3373 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3374 
3375 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3376 		qd.unmapped = 1;
3377 	else
3378 		qd.unmapped = 0;
3379 
3380 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3381 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3382 
3383 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3384 		return -EFAULT;
3385 	return 0;
3386 }
3387 
3388 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3389 {
3390 	struct aac_delete_disk dd;
3391 	struct fsa_dev_info *fsa_dev_ptr;
3392 
3393 	fsa_dev_ptr = dev->fsa_dev;
3394 	if (!fsa_dev_ptr)
3395 		return -EBUSY;
3396 
3397 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3398 		return -EFAULT;
3399 
3400 	if (dd.cnum >= dev->maximum_num_containers)
3401 		return -EINVAL;
3402 	/*
3403 	 *	Mark this container as being deleted.
3404 	 */
3405 	fsa_dev_ptr[dd.cnum].deleted = 1;
3406 	/*
3407 	 *	Mark the container as no longer valid
3408 	 */
3409 	fsa_dev_ptr[dd.cnum].valid = 0;
3410 	return 0;
3411 }
3412 
3413 static int delete_disk(struct aac_dev *dev, void __user *arg)
3414 {
3415 	struct aac_delete_disk dd;
3416 	struct fsa_dev_info *fsa_dev_ptr;
3417 
3418 	fsa_dev_ptr = dev->fsa_dev;
3419 	if (!fsa_dev_ptr)
3420 		return -EBUSY;
3421 
3422 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3423 		return -EFAULT;
3424 
3425 	if (dd.cnum >= dev->maximum_num_containers)
3426 		return -EINVAL;
3427 	/*
3428 	 *	If the container is locked, it can not be deleted by the API.
3429 	 */
3430 	if (fsa_dev_ptr[dd.cnum].locked)
3431 		return -EBUSY;
3432 	else {
3433 		/*
3434 		 *	Mark the container as no longer being valid.
3435 		 */
3436 		fsa_dev_ptr[dd.cnum].valid = 0;
3437 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3438 		return 0;
3439 	}
3440 }
3441 
3442 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
3443 {
3444 	switch (cmd) {
3445 	case FSACTL_QUERY_DISK:
3446 		return query_disk(dev, arg);
3447 	case FSACTL_DELETE_DISK:
3448 		return delete_disk(dev, arg);
3449 	case FSACTL_FORCE_DELETE_DISK:
3450 		return force_delete_disk(dev, arg);
3451 	case FSACTL_GET_CONTAINERS:
3452 		return aac_get_containers(dev);
3453 	default:
3454 		return -ENOTTY;
3455 	}
3456 }
3457 
3458 /**
3459  *
3460  * aac_srb_callback
3461  * @context: the context set in the fib - here it is scsi cmd
3462  * @fibptr: pointer to the fib
3463  *
3464  * Handles the completion of a scsi command to a non dasd device
3465  *
3466  */
3467 
3468 static void aac_srb_callback(void *context, struct fib * fibptr)
3469 {
3470 	struct aac_dev *dev;
3471 	struct aac_srb_reply *srbreply;
3472 	struct scsi_cmnd *scsicmd;
3473 
3474 	scsicmd = (struct scsi_cmnd *) context;
3475 
3476 	if (!aac_valid_context(scsicmd, fibptr))
3477 		return;
3478 
3479 	BUG_ON(fibptr == NULL);
3480 
3481 	dev = fibptr->dev;
3482 
3483 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3484 
3485 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
3486 
3487 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3488 		/* fast response */
3489 		srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3490 		srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3491 	} else {
3492 		/*
3493 		 *	Calculate resid for sg
3494 		 */
3495 		scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3496 				   - le32_to_cpu(srbreply->data_xfer_length));
3497 	}
3498 
3499 
3500 	scsi_dma_unmap(scsicmd);
3501 
3502 	/* expose physical device if expose_physicald flag is on */
3503 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3504 	  && expose_physicals > 0)
3505 		aac_expose_phy_device(scsicmd);
3506 
3507 	/*
3508 	 * First check the fib status
3509 	 */
3510 
3511 	if (le32_to_cpu(srbreply->status) != ST_OK) {
3512 		int len;
3513 
3514 		pr_warn("aac_srb_callback: srb failed, status = %d\n",
3515 				le32_to_cpu(srbreply->status));
3516 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3517 			    SCSI_SENSE_BUFFERSIZE);
3518 		scsicmd->result = DID_ERROR << 16
3519 				| COMMAND_COMPLETE << 8
3520 				| SAM_STAT_CHECK_CONDITION;
3521 		memcpy(scsicmd->sense_buffer,
3522 				srbreply->sense_data, len);
3523 	}
3524 
3525 	/*
3526 	 * Next check the srb status
3527 	 */
3528 	switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3529 	case SRB_STATUS_ERROR_RECOVERY:
3530 	case SRB_STATUS_PENDING:
3531 	case SRB_STATUS_SUCCESS:
3532 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3533 		break;
3534 	case SRB_STATUS_DATA_OVERRUN:
3535 		switch (scsicmd->cmnd[0]) {
3536 		case  READ_6:
3537 		case  WRITE_6:
3538 		case  READ_10:
3539 		case  WRITE_10:
3540 		case  READ_12:
3541 		case  WRITE_12:
3542 		case  READ_16:
3543 		case  WRITE_16:
3544 			if (le32_to_cpu(srbreply->data_xfer_length)
3545 						< scsicmd->underflow)
3546 				pr_warn("aacraid: SCSI CMD underflow\n");
3547 			else
3548 				pr_warn("aacraid: SCSI CMD Data Overrun\n");
3549 			scsicmd->result = DID_ERROR << 16
3550 					| COMMAND_COMPLETE << 8;
3551 			break;
3552 		case INQUIRY:
3553 			scsicmd->result = DID_OK << 16
3554 					| COMMAND_COMPLETE << 8;
3555 			break;
3556 		default:
3557 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3558 			break;
3559 		}
3560 		break;
3561 	case SRB_STATUS_ABORTED:
3562 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3563 		break;
3564 	case SRB_STATUS_ABORT_FAILED:
3565 		/*
3566 		 * Not sure about this one - but assuming the
3567 		 * hba was trying to abort for some reason
3568 		 */
3569 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
3570 		break;
3571 	case SRB_STATUS_PARITY_ERROR:
3572 		scsicmd->result = DID_PARITY << 16
3573 				| MSG_PARITY_ERROR << 8;
3574 		break;
3575 	case SRB_STATUS_NO_DEVICE:
3576 	case SRB_STATUS_INVALID_PATH_ID:
3577 	case SRB_STATUS_INVALID_TARGET_ID:
3578 	case SRB_STATUS_INVALID_LUN:
3579 	case SRB_STATUS_SELECTION_TIMEOUT:
3580 		scsicmd->result = DID_NO_CONNECT << 16
3581 				| COMMAND_COMPLETE << 8;
3582 		break;
3583 
3584 	case SRB_STATUS_COMMAND_TIMEOUT:
3585 	case SRB_STATUS_TIMEOUT:
3586 		scsicmd->result = DID_TIME_OUT << 16
3587 				| COMMAND_COMPLETE << 8;
3588 		break;
3589 
3590 	case SRB_STATUS_BUSY:
3591 		scsicmd->result = DID_BUS_BUSY << 16
3592 				| COMMAND_COMPLETE << 8;
3593 		break;
3594 
3595 	case SRB_STATUS_BUS_RESET:
3596 		scsicmd->result = DID_RESET << 16
3597 				| COMMAND_COMPLETE << 8;
3598 		break;
3599 
3600 	case SRB_STATUS_MESSAGE_REJECTED:
3601 		scsicmd->result = DID_ERROR << 16
3602 				| MESSAGE_REJECT << 8;
3603 		break;
3604 	case SRB_STATUS_REQUEST_FLUSHED:
3605 	case SRB_STATUS_ERROR:
3606 	case SRB_STATUS_INVALID_REQUEST:
3607 	case SRB_STATUS_REQUEST_SENSE_FAILED:
3608 	case SRB_STATUS_NO_HBA:
3609 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
3610 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3611 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3612 	case SRB_STATUS_DELAYED_RETRY:
3613 	case SRB_STATUS_BAD_FUNCTION:
3614 	case SRB_STATUS_NOT_STARTED:
3615 	case SRB_STATUS_NOT_IN_USE:
3616 	case SRB_STATUS_FORCE_ABORT:
3617 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3618 	default:
3619 #ifdef AAC_DETAILED_STATUS_INFO
3620 		pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3621 			le32_to_cpu(srbreply->srb_status) & 0x3F,
3622 			aac_get_status_string(
3623 				le32_to_cpu(srbreply->srb_status) & 0x3F),
3624 			scsicmd->cmnd[0],
3625 			le32_to_cpu(srbreply->scsi_status));
3626 #endif
3627 		/*
3628 		 * When the CC bit is SET by the host in ATA pass thru CDB,
3629 		 *  driver is supposed to return DID_OK
3630 		 *
3631 		 * When the CC bit is RESET by the host, driver should
3632 		 *  return DID_ERROR
3633 		 */
3634 		if ((scsicmd->cmnd[0] == ATA_12)
3635 			|| (scsicmd->cmnd[0] == ATA_16)) {
3636 
3637 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
3638 				scsicmd->result = DID_OK << 16
3639 					| COMMAND_COMPLETE << 8;
3640 			break;
3641 			} else {
3642 				scsicmd->result = DID_ERROR << 16
3643 					| COMMAND_COMPLETE << 8;
3644 			break;
3645 			}
3646 		} else {
3647 			scsicmd->result = DID_ERROR << 16
3648 				| COMMAND_COMPLETE << 8;
3649 			break;
3650 		}
3651 	}
3652 	if (le32_to_cpu(srbreply->scsi_status)
3653 			== SAM_STAT_CHECK_CONDITION) {
3654 		int len;
3655 
3656 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3657 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3658 			    SCSI_SENSE_BUFFERSIZE);
3659 #ifdef AAC_DETAILED_STATUS_INFO
3660 		pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3661 					le32_to_cpu(srbreply->status), len);
3662 #endif
3663 		memcpy(scsicmd->sense_buffer,
3664 				srbreply->sense_data, len);
3665 	}
3666 
3667 	/*
3668 	 * OR in the scsi status (already shifted up a bit)
3669 	 */
3670 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3671 
3672 	aac_fib_complete(fibptr);
3673 	scsicmd->scsi_done(scsicmd);
3674 }
3675 
3676 static void hba_resp_task_complete(struct aac_dev *dev,
3677 					struct scsi_cmnd *scsicmd,
3678 					struct aac_hba_resp *err) {
3679 
3680 	scsicmd->result = err->status;
3681 	/* set residual count */
3682 	scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3683 
3684 	switch (err->status) {
3685 	case SAM_STAT_GOOD:
3686 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3687 		break;
3688 	case SAM_STAT_CHECK_CONDITION:
3689 	{
3690 		int len;
3691 
3692 		len = min_t(u8, err->sense_response_data_len,
3693 			SCSI_SENSE_BUFFERSIZE);
3694 		if (len)
3695 			memcpy(scsicmd->sense_buffer,
3696 				err->sense_response_buf, len);
3697 		scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8;
3698 		break;
3699 	}
3700 	case SAM_STAT_BUSY:
3701 		scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
3702 		break;
3703 	case SAM_STAT_TASK_ABORTED:
3704 		scsicmd->result |= DID_ABORT << 16 | ABORT << 8;
3705 		break;
3706 	case SAM_STAT_RESERVATION_CONFLICT:
3707 	case SAM_STAT_TASK_SET_FULL:
3708 	default:
3709 		scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3710 		break;
3711 	}
3712 }
3713 
3714 static void hba_resp_task_failure(struct aac_dev *dev,
3715 					struct scsi_cmnd *scsicmd,
3716 					struct aac_hba_resp *err)
3717 {
3718 	switch (err->status) {
3719 	case HBA_RESP_STAT_HBAMODE_DISABLED:
3720 	{
3721 		u32 bus, cid;
3722 
3723 		bus = aac_logical_to_phys(scmd_channel(scsicmd));
3724 		cid = scmd_id(scsicmd);
3725 		if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3726 			dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3727 			dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3728 		}
3729 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3730 		break;
3731 	}
3732 	case HBA_RESP_STAT_IO_ERROR:
3733 	case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3734 		scsicmd->result = DID_OK << 16 |
3735 			COMMAND_COMPLETE << 8 | SAM_STAT_BUSY;
3736 		break;
3737 	case HBA_RESP_STAT_IO_ABORTED:
3738 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
3739 		break;
3740 	case HBA_RESP_STAT_INVALID_DEVICE:
3741 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3742 		break;
3743 	case HBA_RESP_STAT_UNDERRUN:
3744 		/* UNDERRUN is OK */
3745 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3746 		break;
3747 	case HBA_RESP_STAT_OVERRUN:
3748 	default:
3749 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3750 		break;
3751 	}
3752 }
3753 
3754 /**
3755  *
3756  * aac_hba_callback
3757  * @context: the context set in the fib - here it is scsi cmd
3758  * @fibptr: pointer to the fib
3759  *
3760  * Handles the completion of a native HBA scsi command
3761  *
3762  */
3763 void aac_hba_callback(void *context, struct fib *fibptr)
3764 {
3765 	struct aac_dev *dev;
3766 	struct scsi_cmnd *scsicmd;
3767 
3768 	struct aac_hba_resp *err =
3769 			&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3770 
3771 	scsicmd = (struct scsi_cmnd *) context;
3772 
3773 	if (!aac_valid_context(scsicmd, fibptr))
3774 		return;
3775 
3776 	WARN_ON(fibptr == NULL);
3777 	dev = fibptr->dev;
3778 
3779 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3780 		scsi_dma_unmap(scsicmd);
3781 
3782 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3783 		/* fast response */
3784 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3785 		goto out;
3786 	}
3787 
3788 	switch (err->service_response) {
3789 	case HBA_RESP_SVCRES_TASK_COMPLETE:
3790 		hba_resp_task_complete(dev, scsicmd, err);
3791 		break;
3792 	case HBA_RESP_SVCRES_FAILURE:
3793 		hba_resp_task_failure(dev, scsicmd, err);
3794 		break;
3795 	case HBA_RESP_SVCRES_TMF_REJECTED:
3796 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
3797 		break;
3798 	case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3799 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
3800 		break;
3801 	case HBA_RESP_SVCRES_TMF_COMPLETE:
3802 	case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3803 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
3804 		break;
3805 	default:
3806 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
3807 		break;
3808 	}
3809 
3810 out:
3811 	aac_fib_complete(fibptr);
3812 
3813 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3814 		scsicmd->SCp.sent_command = 1;
3815 	else
3816 		scsicmd->scsi_done(scsicmd);
3817 }
3818 
3819 /**
3820  *
3821  * aac_send_srb_fib
3822  * @scsicmd: the scsi command block
3823  *
3824  * This routine will form a FIB and fill in the aac_srb from the
3825  * scsicmd passed in.
3826  */
3827 
3828 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3829 {
3830 	struct fib* cmd_fibcontext;
3831 	struct aac_dev* dev;
3832 	int status;
3833 
3834 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3835 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3836 			scsicmd->device->lun > 7) {
3837 		scsicmd->result = DID_NO_CONNECT << 16;
3838 		scsicmd->scsi_done(scsicmd);
3839 		return 0;
3840 	}
3841 
3842 	/*
3843 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3844 	 */
3845 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3846 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3847 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3848 
3849 	/*
3850 	 *	Check that the command queued to the controller
3851 	 */
3852 	if (status == -EINPROGRESS)
3853 		return 0;
3854 
3855 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3856 	aac_fib_complete(cmd_fibcontext);
3857 	aac_fib_free(cmd_fibcontext);
3858 
3859 	return -1;
3860 }
3861 
3862 /**
3863  *
3864  * aac_send_hba_fib
3865  * @scsicmd: the scsi command block
3866  *
3867  * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3868  * scsicmd passed in.
3869  */
3870 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3871 {
3872 	struct fib *cmd_fibcontext;
3873 	struct aac_dev *dev;
3874 	int status;
3875 
3876 	dev = shost_priv(scsicmd->device->host);
3877 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3878 			scsicmd->device->lun > AAC_MAX_LUN - 1) {
3879 		scsicmd->result = DID_NO_CONNECT << 16;
3880 		scsicmd->scsi_done(scsicmd);
3881 		return 0;
3882 	}
3883 
3884 	/*
3885 	 *	Allocate and initialize a Fib then setup a BlockWrite command
3886 	 */
3887 	cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3888 	if (!cmd_fibcontext)
3889 		return -1;
3890 
3891 	scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
3892 	status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3893 
3894 	/*
3895 	 *	Check that the command queued to the controller
3896 	 */
3897 	if (status == -EINPROGRESS)
3898 		return 0;
3899 
3900 	pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3901 		status);
3902 	aac_fib_complete(cmd_fibcontext);
3903 	aac_fib_free(cmd_fibcontext);
3904 
3905 	return -1;
3906 }
3907 
3908 
3909 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3910 {
3911 	struct aac_dev *dev;
3912 	unsigned long byte_count = 0;
3913 	int nseg;
3914 	struct scatterlist *sg;
3915 	int i;
3916 
3917 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3918 	// Get rid of old data
3919 	psg->count = 0;
3920 	psg->sg[0].addr = 0;
3921 	psg->sg[0].count = 0;
3922 
3923 	nseg = scsi_dma_map(scsicmd);
3924 	if (nseg <= 0)
3925 		return nseg;
3926 
3927 	psg->count = cpu_to_le32(nseg);
3928 
3929 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3930 		psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3931 		psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3932 		byte_count += sg_dma_len(sg);
3933 	}
3934 	/* hba wants the size to be exact */
3935 	if (byte_count > scsi_bufflen(scsicmd)) {
3936 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3937 			(byte_count - scsi_bufflen(scsicmd));
3938 		psg->sg[i-1].count = cpu_to_le32(temp);
3939 		byte_count = scsi_bufflen(scsicmd);
3940 	}
3941 	/* Check for command underflow */
3942 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3943 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3944 		       byte_count, scsicmd->underflow);
3945 	}
3946 
3947 	return byte_count;
3948 }
3949 
3950 
3951 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3952 {
3953 	struct aac_dev *dev;
3954 	unsigned long byte_count = 0;
3955 	u64 addr;
3956 	int nseg;
3957 	struct scatterlist *sg;
3958 	int i;
3959 
3960 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3961 	// Get rid of old data
3962 	psg->count = 0;
3963 	psg->sg[0].addr[0] = 0;
3964 	psg->sg[0].addr[1] = 0;
3965 	psg->sg[0].count = 0;
3966 
3967 	nseg = scsi_dma_map(scsicmd);
3968 	if (nseg <= 0)
3969 		return nseg;
3970 
3971 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
3972 		int count = sg_dma_len(sg);
3973 		addr = sg_dma_address(sg);
3974 		psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3975 		psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3976 		psg->sg[i].count = cpu_to_le32(count);
3977 		byte_count += count;
3978 	}
3979 	psg->count = cpu_to_le32(nseg);
3980 	/* hba wants the size to be exact */
3981 	if (byte_count > scsi_bufflen(scsicmd)) {
3982 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3983 			(byte_count - scsi_bufflen(scsicmd));
3984 		psg->sg[i-1].count = cpu_to_le32(temp);
3985 		byte_count = scsi_bufflen(scsicmd);
3986 	}
3987 	/* Check for command underflow */
3988 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3989 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3990 		       byte_count, scsicmd->underflow);
3991 	}
3992 
3993 	return byte_count;
3994 }
3995 
3996 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3997 {
3998 	unsigned long byte_count = 0;
3999 	int nseg;
4000 	struct scatterlist *sg;
4001 	int i;
4002 
4003 	// Get rid of old data
4004 	psg->count = 0;
4005 	psg->sg[0].next = 0;
4006 	psg->sg[0].prev = 0;
4007 	psg->sg[0].addr[0] = 0;
4008 	psg->sg[0].addr[1] = 0;
4009 	psg->sg[0].count = 0;
4010 	psg->sg[0].flags = 0;
4011 
4012 	nseg = scsi_dma_map(scsicmd);
4013 	if (nseg <= 0)
4014 		return nseg;
4015 
4016 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4017 		int count = sg_dma_len(sg);
4018 		u64 addr = sg_dma_address(sg);
4019 		psg->sg[i].next = 0;
4020 		psg->sg[i].prev = 0;
4021 		psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
4022 		psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
4023 		psg->sg[i].count = cpu_to_le32(count);
4024 		psg->sg[i].flags = 0;
4025 		byte_count += count;
4026 	}
4027 	psg->count = cpu_to_le32(nseg);
4028 	/* hba wants the size to be exact */
4029 	if (byte_count > scsi_bufflen(scsicmd)) {
4030 		u32 temp = le32_to_cpu(psg->sg[i-1].count) -
4031 			(byte_count - scsi_bufflen(scsicmd));
4032 		psg->sg[i-1].count = cpu_to_le32(temp);
4033 		byte_count = scsi_bufflen(scsicmd);
4034 	}
4035 	/* Check for command underflow */
4036 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4037 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4038 		       byte_count, scsicmd->underflow);
4039 	}
4040 
4041 	return byte_count;
4042 }
4043 
4044 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
4045 				struct aac_raw_io2 *rio2, int sg_max)
4046 {
4047 	unsigned long byte_count = 0;
4048 	int nseg;
4049 	struct scatterlist *sg;
4050 	int i, conformable = 0;
4051 	u32 min_size = PAGE_SIZE, cur_size;
4052 
4053 	nseg = scsi_dma_map(scsicmd);
4054 	if (nseg <= 0)
4055 		return nseg;
4056 
4057 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4058 		int count = sg_dma_len(sg);
4059 		u64 addr = sg_dma_address(sg);
4060 
4061 		BUG_ON(i >= sg_max);
4062 		rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
4063 		rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
4064 		cur_size = cpu_to_le32(count);
4065 		rio2->sge[i].length = cur_size;
4066 		rio2->sge[i].flags = 0;
4067 		if (i == 0) {
4068 			conformable = 1;
4069 			rio2->sgeFirstSize = cur_size;
4070 		} else if (i == 1) {
4071 			rio2->sgeNominalSize = cur_size;
4072 			min_size = cur_size;
4073 		} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
4074 			conformable = 0;
4075 			if (cur_size < min_size)
4076 				min_size = cur_size;
4077 		}
4078 		byte_count += count;
4079 	}
4080 
4081 	/* hba wants the size to be exact */
4082 	if (byte_count > scsi_bufflen(scsicmd)) {
4083 		u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
4084 			(byte_count - scsi_bufflen(scsicmd));
4085 		rio2->sge[i-1].length = cpu_to_le32(temp);
4086 		byte_count = scsi_bufflen(scsicmd);
4087 	}
4088 
4089 	rio2->sgeCnt = cpu_to_le32(nseg);
4090 	rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
4091 	/* not conformable: evaluate required sg elements */
4092 	if (!conformable) {
4093 		int j, nseg_new = nseg, err_found;
4094 		for (i = min_size / PAGE_SIZE; i >= 1; --i) {
4095 			err_found = 0;
4096 			nseg_new = 2;
4097 			for (j = 1; j < nseg - 1; ++j) {
4098 				if (rio2->sge[j].length % (i*PAGE_SIZE)) {
4099 					err_found = 1;
4100 					break;
4101 				}
4102 				nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
4103 			}
4104 			if (!err_found)
4105 				break;
4106 		}
4107 		if (i > 0 && nseg_new <= sg_max) {
4108 			int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
4109 
4110 			if (ret < 0)
4111 				return ret;
4112 		}
4113 	} else
4114 		rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4115 
4116 	/* Check for command underflow */
4117 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4118 		printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
4119 		       byte_count, scsicmd->underflow);
4120 	}
4121 
4122 	return byte_count;
4123 }
4124 
4125 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4126 {
4127 	struct sge_ieee1212 *sge;
4128 	int i, j, pos;
4129 	u32 addr_low;
4130 
4131 	if (aac_convert_sgl == 0)
4132 		return 0;
4133 
4134 	sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC);
4135 	if (sge == NULL)
4136 		return -ENOMEM;
4137 
4138 	for (i = 1, pos = 1; i < nseg-1; ++i) {
4139 		for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4140 			addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4141 			sge[pos].addrLow = addr_low;
4142 			sge[pos].addrHigh = rio2->sge[i].addrHigh;
4143 			if (addr_low < rio2->sge[i].addrLow)
4144 				sge[pos].addrHigh++;
4145 			sge[pos].length = pages * PAGE_SIZE;
4146 			sge[pos].flags = 0;
4147 			pos++;
4148 		}
4149 	}
4150 	sge[pos] = rio2->sge[nseg-1];
4151 	memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4152 
4153 	kfree(sge);
4154 	rio2->sgeCnt = cpu_to_le32(nseg_new);
4155 	rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4156 	rio2->sgeNominalSize = pages * PAGE_SIZE;
4157 	return 0;
4158 }
4159 
4160 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4161 			struct aac_hba_cmd_req *hbacmd,
4162 			int sg_max,
4163 			u64 sg_address)
4164 {
4165 	unsigned long byte_count = 0;
4166 	int nseg;
4167 	struct scatterlist *sg;
4168 	int i;
4169 	u32 cur_size;
4170 	struct aac_hba_sgl *sge;
4171 
4172 	nseg = scsi_dma_map(scsicmd);
4173 	if (nseg <= 0) {
4174 		byte_count = nseg;
4175 		goto out;
4176 	}
4177 
4178 	if (nseg > HBA_MAX_SG_EMBEDDED)
4179 		sge = &hbacmd->sge[2];
4180 	else
4181 		sge = &hbacmd->sge[0];
4182 
4183 	scsi_for_each_sg(scsicmd, sg, nseg, i) {
4184 		int count = sg_dma_len(sg);
4185 		u64 addr = sg_dma_address(sg);
4186 
4187 		WARN_ON(i >= sg_max);
4188 		sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4189 		sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4190 		cur_size = cpu_to_le32(count);
4191 		sge->len = cur_size;
4192 		sge->flags = 0;
4193 		byte_count += count;
4194 		sge++;
4195 	}
4196 
4197 	sge--;
4198 	/* hba wants the size to be exact */
4199 	if (byte_count > scsi_bufflen(scsicmd)) {
4200 		u32 temp;
4201 
4202 		temp = le32_to_cpu(sge->len) - byte_count
4203 						- scsi_bufflen(scsicmd);
4204 		sge->len = cpu_to_le32(temp);
4205 		byte_count = scsi_bufflen(scsicmd);
4206 	}
4207 
4208 	if (nseg <= HBA_MAX_SG_EMBEDDED) {
4209 		hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4210 		sge->flags = cpu_to_le32(0x40000000);
4211 	} else {
4212 		/* not embedded */
4213 		hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4214 		hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4215 		hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4216 		hbacmd->sge[0].addr_lo =
4217 			cpu_to_le32((u32)(sg_address & 0xffffffff));
4218 	}
4219 
4220 	/* Check for command underflow */
4221 	if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4222 		pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4223 				byte_count, scsicmd->underflow);
4224 	}
4225 out:
4226 	return byte_count;
4227 }
4228 
4229 #ifdef AAC_DETAILED_STATUS_INFO
4230 
4231 struct aac_srb_status_info {
4232 	u32	status;
4233 	char	*str;
4234 };
4235 
4236 
4237 static struct aac_srb_status_info srb_status_info[] = {
4238 	{ SRB_STATUS_PENDING,		"Pending Status"},
4239 	{ SRB_STATUS_SUCCESS,		"Success"},
4240 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
4241 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
4242 	{ SRB_STATUS_ERROR,		"Error Event"},
4243 	{ SRB_STATUS_BUSY,		"Device Busy"},
4244 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
4245 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
4246 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
4247 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
4248 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
4249 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
4250 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
4251 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
4252 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
4253 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4254 	{ SRB_STATUS_NO_HBA,		"No HBA"},
4255 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
4256 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4257 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4258 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4259 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
4260 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
4261 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
4262 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
4263 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
4264 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
4265 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
4266 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
4267 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
4268 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4269 	{ 0xff,				"Unknown Error"}
4270 };
4271 
4272 char *aac_get_status_string(u32 status)
4273 {
4274 	int i;
4275 
4276 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4277 		if (srb_status_info[i].status == status)
4278 			return srb_status_info[i].str;
4279 
4280 	return "Bad Status Code";
4281 }
4282 
4283 #endif
4284