1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * aachba.c 28 * 29 * Abstract: Contains Interfaces to manage IOs. 30 * 31 */ 32 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/types.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/uaccess.h> 42 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 43 #include <linux/module.h> 44 45 #include <asm/unaligned.h> 46 47 #include <scsi/scsi.h> 48 #include <scsi/scsi_cmnd.h> 49 #include <scsi/scsi_device.h> 50 #include <scsi/scsi_host.h> 51 52 #include "aacraid.h" 53 54 /* values for inqd_pdt: Peripheral device type in plain English */ 55 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 56 #define INQD_PDT_PROC 0x03 /* Processor device */ 57 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 58 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 59 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 60 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 61 62 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 63 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 64 65 /* 66 * Sense codes 67 */ 68 69 #define SENCODE_NO_SENSE 0x00 70 #define SENCODE_END_OF_DATA 0x00 71 #define SENCODE_BECOMING_READY 0x04 72 #define SENCODE_INIT_CMD_REQUIRED 0x04 73 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 74 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 75 #define SENCODE_INVALID_COMMAND 0x20 76 #define SENCODE_LBA_OUT_OF_RANGE 0x21 77 #define SENCODE_INVALID_CDB_FIELD 0x24 78 #define SENCODE_LUN_NOT_SUPPORTED 0x25 79 #define SENCODE_INVALID_PARAM_FIELD 0x26 80 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 81 #define SENCODE_PARAM_VALUE_INVALID 0x26 82 #define SENCODE_RESET_OCCURRED 0x29 83 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 84 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 85 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 86 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 87 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 88 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 89 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 90 #define SENCODE_OVERLAPPED_COMMAND 0x4E 91 92 /* 93 * Additional sense codes 94 */ 95 96 #define ASENCODE_NO_SENSE 0x00 97 #define ASENCODE_END_OF_DATA 0x05 98 #define ASENCODE_BECOMING_READY 0x01 99 #define ASENCODE_INIT_CMD_REQUIRED 0x02 100 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 101 #define ASENCODE_INVALID_COMMAND 0x00 102 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 103 #define ASENCODE_INVALID_CDB_FIELD 0x00 104 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 105 #define ASENCODE_INVALID_PARAM_FIELD 0x00 106 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 107 #define ASENCODE_PARAM_VALUE_INVALID 0x02 108 #define ASENCODE_RESET_OCCURRED 0x00 109 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 110 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 111 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 112 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 113 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 114 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 115 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 116 #define ASENCODE_OVERLAPPED_COMMAND 0x00 117 118 #define AAC_STAT_GOOD (DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD) 119 120 #define BYTE0(x) (unsigned char)(x) 121 #define BYTE1(x) (unsigned char)((x) >> 8) 122 #define BYTE2(x) (unsigned char)((x) >> 16) 123 #define BYTE3(x) (unsigned char)((x) >> 24) 124 125 /* MODE_SENSE data format */ 126 typedef struct { 127 struct { 128 u8 data_length; 129 u8 med_type; 130 u8 dev_par; 131 u8 bd_length; 132 } __attribute__((packed)) hd; 133 struct { 134 u8 dens_code; 135 u8 block_count[3]; 136 u8 reserved; 137 u8 block_length[3]; 138 } __attribute__((packed)) bd; 139 u8 mpc_buf[3]; 140 } __attribute__((packed)) aac_modep_data; 141 142 /* MODE_SENSE_10 data format */ 143 typedef struct { 144 struct { 145 u8 data_length[2]; 146 u8 med_type; 147 u8 dev_par; 148 u8 rsrvd[2]; 149 u8 bd_length[2]; 150 } __attribute__((packed)) hd; 151 struct { 152 u8 dens_code; 153 u8 block_count[3]; 154 u8 reserved; 155 u8 block_length[3]; 156 } __attribute__((packed)) bd; 157 u8 mpc_buf[3]; 158 } __attribute__((packed)) aac_modep10_data; 159 160 /*------------------------------------------------------------------------------ 161 * S T R U C T S / T Y P E D E F S 162 *----------------------------------------------------------------------------*/ 163 /* SCSI inquiry data */ 164 struct inquiry_data { 165 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 166 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 167 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 168 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 169 u8 inqd_len; /* Additional length (n-4) */ 170 u8 inqd_pad1[2];/* Reserved - must be zero */ 171 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 172 u8 inqd_vid[8]; /* Vendor ID */ 173 u8 inqd_pid[16];/* Product ID */ 174 u8 inqd_prl[4]; /* Product Revision Level */ 175 }; 176 177 /* Added for VPD 0x83 */ 178 struct tvpd_id_descriptor_type_1 { 179 u8 codeset:4; /* VPD_CODE_SET */ 180 u8 reserved:4; 181 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 182 u8 reserved2:4; 183 u8 reserved3; 184 u8 identifierlength; 185 u8 venid[8]; 186 u8 productid[16]; 187 u8 serialnumber[8]; /* SN in ASCII */ 188 189 }; 190 191 struct tvpd_id_descriptor_type_2 { 192 u8 codeset:4; /* VPD_CODE_SET */ 193 u8 reserved:4; 194 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 195 u8 reserved2:4; 196 u8 reserved3; 197 u8 identifierlength; 198 struct teu64id { 199 u32 Serial; 200 /* The serial number supposed to be 40 bits, 201 * bit we only support 32, so make the last byte zero. */ 202 u8 reserved; 203 u8 venid[3]; 204 } eu64id; 205 206 }; 207 208 struct tvpd_id_descriptor_type_3 { 209 u8 codeset : 4; /* VPD_CODE_SET */ 210 u8 reserved : 4; 211 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 212 u8 reserved2 : 4; 213 u8 reserved3; 214 u8 identifierlength; 215 u8 Identifier[16]; 216 }; 217 218 struct tvpd_page83 { 219 u8 DeviceType:5; 220 u8 DeviceTypeQualifier:3; 221 u8 PageCode; 222 u8 reserved; 223 u8 PageLength; 224 struct tvpd_id_descriptor_type_1 type1; 225 struct tvpd_id_descriptor_type_2 type2; 226 struct tvpd_id_descriptor_type_3 type3; 227 }; 228 229 /* 230 * M O D U L E G L O B A L S 231 */ 232 233 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 234 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 235 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 236 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 237 struct aac_raw_io2 *rio2, int sg_max); 238 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 239 struct aac_hba_cmd_req *hbacmd, 240 int sg_max, u64 sg_address); 241 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 242 int pages, int nseg, int nseg_new); 243 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 244 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 245 #ifdef AAC_DETAILED_STATUS_INFO 246 static char *aac_get_status_string(u32 status); 247 #endif 248 249 /* 250 * Non dasd selection is handled entirely in aachba now 251 */ 252 253 static int nondasd = -1; 254 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 255 static int dacmode = -1; 256 int aac_msi; 257 int aac_commit = -1; 258 int startup_timeout = 180; 259 int aif_timeout = 120; 260 int aac_sync_mode; /* Only Sync. transfer - disabled */ 261 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 262 263 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 264 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 265 " 0=off, 1=on"); 266 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 267 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 268 " 0=off, 1=on"); 269 module_param(nondasd, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 271 " 0=off, 1=on"); 272 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 274 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 275 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 276 "\tbit 2 - Disable only if Battery is protecting Cache"); 277 module_param(dacmode, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 279 " 0=off, 1=on"); 280 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 281 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 282 " adapter for foreign arrays.\n" 283 "This is typically needed in systems that do not have a BIOS." 284 " 0=off, 1=on"); 285 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 286 MODULE_PARM_DESC(msi, "IRQ handling." 287 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 288 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 290 " adapter to have it's kernel up and\n" 291 "running. This is typically adjusted for large systems that do not" 292 " have a BIOS."); 293 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 294 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 295 " applications to pick up AIFs before\n" 296 "deregistering them. This is typically adjusted for heavily burdened" 297 " systems."); 298 299 int aac_fib_dump; 300 module_param(aac_fib_dump, int, 0644); 301 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 302 303 int numacb = -1; 304 module_param(numacb, int, S_IRUGO|S_IWUSR); 305 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 306 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 307 " to use suggestion from Firmware."); 308 309 int acbsize = -1; 310 module_param(acbsize, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 312 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 313 " suggestion from Firmware."); 314 315 int update_interval = 30 * 60; 316 module_param(update_interval, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 318 " updates issued to adapter."); 319 320 int check_interval = 60; 321 module_param(check_interval, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 323 " checks."); 324 325 int aac_check_reset = 1; 326 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 327 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 328 " adapter. a value of -1 forces the reset to adapters programmed to" 329 " ignore it."); 330 331 int expose_physicals = -1; 332 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 333 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 334 " -1=protect 0=off, 1=on"); 335 336 int aac_reset_devices; 337 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 338 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 339 340 int aac_wwn = 1; 341 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 342 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 343 "\t0 - Disable\n" 344 "\t1 - Array Meta Data Signature (default)\n" 345 "\t2 - Adapter Serial Number"); 346 347 348 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 349 struct fib *fibptr) { 350 struct scsi_device *device; 351 352 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 353 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 354 aac_fib_complete(fibptr); 355 return 0; 356 } 357 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 358 device = scsicmd->device; 359 if (unlikely(!device)) { 360 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 361 aac_fib_complete(fibptr); 362 return 0; 363 } 364 return 1; 365 } 366 367 /** 368 * aac_get_config_status - check the adapter configuration 369 * @common: adapter to query 370 * 371 * Query config status, and commit the configuration if needed. 372 */ 373 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 374 { 375 int status = 0; 376 struct fib * fibptr; 377 378 if (!(fibptr = aac_fib_alloc(dev))) 379 return -ENOMEM; 380 381 aac_fib_init(fibptr); 382 { 383 struct aac_get_config_status *dinfo; 384 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 385 386 dinfo->command = cpu_to_le32(VM_ContainerConfig); 387 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 388 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 389 } 390 391 status = aac_fib_send(ContainerCommand, 392 fibptr, 393 sizeof (struct aac_get_config_status), 394 FsaNormal, 395 1, 1, 396 NULL, NULL); 397 if (status < 0) { 398 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 399 } else { 400 struct aac_get_config_status_resp *reply 401 = (struct aac_get_config_status_resp *) fib_data(fibptr); 402 dprintk((KERN_WARNING 403 "aac_get_config_status: response=%d status=%d action=%d\n", 404 le32_to_cpu(reply->response), 405 le32_to_cpu(reply->status), 406 le32_to_cpu(reply->data.action))); 407 if ((le32_to_cpu(reply->response) != ST_OK) || 408 (le32_to_cpu(reply->status) != CT_OK) || 409 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 410 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 411 status = -EINVAL; 412 } 413 } 414 /* Do not set XferState to zero unless receives a response from F/W */ 415 if (status >= 0) 416 aac_fib_complete(fibptr); 417 418 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 419 if (status >= 0) { 420 if ((aac_commit == 1) || commit_flag) { 421 struct aac_commit_config * dinfo; 422 aac_fib_init(fibptr); 423 dinfo = (struct aac_commit_config *) fib_data(fibptr); 424 425 dinfo->command = cpu_to_le32(VM_ContainerConfig); 426 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 427 428 status = aac_fib_send(ContainerCommand, 429 fibptr, 430 sizeof (struct aac_commit_config), 431 FsaNormal, 432 1, 1, 433 NULL, NULL); 434 /* Do not set XferState to zero unless 435 * receives a response from F/W */ 436 if (status >= 0) 437 aac_fib_complete(fibptr); 438 } else if (aac_commit == 0) { 439 printk(KERN_WARNING 440 "aac_get_config_status: Foreign device configurations are being ignored\n"); 441 } 442 } 443 /* FIB should be freed only after getting the response from the F/W */ 444 if (status != -ERESTARTSYS) 445 aac_fib_free(fibptr); 446 return status; 447 } 448 449 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 450 { 451 char inq_data; 452 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 453 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 454 inq_data &= 0xdf; 455 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 456 } 457 } 458 459 /** 460 * aac_get_containers - list containers 461 * @common: adapter to probe 462 * 463 * Make a list of all containers on this controller 464 */ 465 int aac_get_containers(struct aac_dev *dev) 466 { 467 struct fsa_dev_info *fsa_dev_ptr; 468 u32 index; 469 int status = 0; 470 struct fib * fibptr; 471 struct aac_get_container_count *dinfo; 472 struct aac_get_container_count_resp *dresp; 473 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 474 475 if (!(fibptr = aac_fib_alloc(dev))) 476 return -ENOMEM; 477 478 aac_fib_init(fibptr); 479 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 480 dinfo->command = cpu_to_le32(VM_ContainerConfig); 481 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 482 483 status = aac_fib_send(ContainerCommand, 484 fibptr, 485 sizeof (struct aac_get_container_count), 486 FsaNormal, 487 1, 1, 488 NULL, NULL); 489 if (status >= 0) { 490 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 491 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 492 if (fibptr->dev->supplement_adapter_info.supported_options2 & 493 AAC_OPTION_SUPPORTED_240_VOLUMES) { 494 maximum_num_containers = 495 le32_to_cpu(dresp->MaxSimpleVolumes); 496 } 497 aac_fib_complete(fibptr); 498 } 499 /* FIB should be freed only after getting the response from the F/W */ 500 if (status != -ERESTARTSYS) 501 aac_fib_free(fibptr); 502 503 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 504 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 505 if (dev->fsa_dev == NULL || 506 dev->maximum_num_containers != maximum_num_containers) { 507 508 fsa_dev_ptr = dev->fsa_dev; 509 510 dev->fsa_dev = kcalloc(maximum_num_containers, 511 sizeof(*fsa_dev_ptr), GFP_KERNEL); 512 513 kfree(fsa_dev_ptr); 514 fsa_dev_ptr = NULL; 515 516 517 if (!dev->fsa_dev) 518 return -ENOMEM; 519 520 dev->maximum_num_containers = maximum_num_containers; 521 } 522 for (index = 0; index < dev->maximum_num_containers; index++) { 523 dev->fsa_dev[index].devname[0] = '\0'; 524 dev->fsa_dev[index].valid = 0; 525 526 status = aac_probe_container(dev, index); 527 528 if (status < 0) { 529 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 530 break; 531 } 532 } 533 return status; 534 } 535 536 static void get_container_name_callback(void *context, struct fib * fibptr) 537 { 538 struct aac_get_name_resp * get_name_reply; 539 struct scsi_cmnd * scsicmd; 540 541 scsicmd = (struct scsi_cmnd *) context; 542 543 if (!aac_valid_context(scsicmd, fibptr)) 544 return; 545 546 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 547 BUG_ON(fibptr == NULL); 548 549 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 550 /* Failure is irrelevant, using default value instead */ 551 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 552 && (get_name_reply->data[0] != '\0')) { 553 char *sp = get_name_reply->data; 554 int data_size = FIELD_SIZEOF(struct aac_get_name_resp, data); 555 556 sp[data_size - 1] = '\0'; 557 while (*sp == ' ') 558 ++sp; 559 if (*sp) { 560 struct inquiry_data inq; 561 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 562 int count = sizeof(d); 563 char *dp = d; 564 do { 565 *dp++ = (*sp) ? *sp++ : ' '; 566 } while (--count > 0); 567 568 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 569 memcpy(inq.inqd_pid, d, sizeof(d)); 570 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 571 } 572 } 573 574 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 575 576 aac_fib_complete(fibptr); 577 scsicmd->scsi_done(scsicmd); 578 } 579 580 /** 581 * aac_get_container_name - get container name, none blocking. 582 */ 583 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 584 { 585 int status; 586 int data_size; 587 struct aac_get_name *dinfo; 588 struct fib * cmd_fibcontext; 589 struct aac_dev * dev; 590 591 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 592 593 data_size = FIELD_SIZEOF(struct aac_get_name_resp, data); 594 595 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 596 597 aac_fib_init(cmd_fibcontext); 598 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 599 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 600 601 dinfo->command = cpu_to_le32(VM_ContainerConfig); 602 dinfo->type = cpu_to_le32(CT_READ_NAME); 603 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 604 dinfo->count = cpu_to_le32(data_size - 1); 605 606 status = aac_fib_send(ContainerCommand, 607 cmd_fibcontext, 608 sizeof(struct aac_get_name_resp), 609 FsaNormal, 610 0, 1, 611 (fib_callback)get_container_name_callback, 612 (void *) scsicmd); 613 614 /* 615 * Check that the command queued to the controller 616 */ 617 if (status == -EINPROGRESS) 618 return 0; 619 620 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 621 aac_fib_complete(cmd_fibcontext); 622 return -1; 623 } 624 625 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 626 { 627 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 628 629 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 630 return aac_scsi_cmd(scsicmd); 631 632 scsicmd->result = DID_NO_CONNECT << 16; 633 scsicmd->scsi_done(scsicmd); 634 return 0; 635 } 636 637 static void _aac_probe_container2(void * context, struct fib * fibptr) 638 { 639 struct fsa_dev_info *fsa_dev_ptr; 640 int (*callback)(struct scsi_cmnd *); 641 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 642 int i; 643 644 645 if (!aac_valid_context(scsicmd, fibptr)) 646 return; 647 648 scsicmd->SCp.Status = 0; 649 fsa_dev_ptr = fibptr->dev->fsa_dev; 650 if (fsa_dev_ptr) { 651 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 652 __le32 sup_options2; 653 654 fsa_dev_ptr += scmd_id(scsicmd); 655 sup_options2 = 656 fibptr->dev->supplement_adapter_info.supported_options2; 657 658 if ((le32_to_cpu(dresp->status) == ST_OK) && 659 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 660 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 661 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 662 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 663 fsa_dev_ptr->block_size = 0x200; 664 } else { 665 fsa_dev_ptr->block_size = 666 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 667 } 668 for (i = 0; i < 16; i++) 669 fsa_dev_ptr->identifier[i] = 670 dresp->mnt[0].fileinfo.bdevinfo 671 .identifier[i]; 672 fsa_dev_ptr->valid = 1; 673 /* sense_key holds the current state of the spin-up */ 674 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 675 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 676 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 677 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 678 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 679 fsa_dev_ptr->size 680 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 681 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 682 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 683 } 684 if ((fsa_dev_ptr->valid & 1) == 0) 685 fsa_dev_ptr->valid = 0; 686 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 687 } 688 aac_fib_complete(fibptr); 689 aac_fib_free(fibptr); 690 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 691 scsicmd->SCp.ptr = NULL; 692 (*callback)(scsicmd); 693 return; 694 } 695 696 static void _aac_probe_container1(void * context, struct fib * fibptr) 697 { 698 struct scsi_cmnd * scsicmd; 699 struct aac_mount * dresp; 700 struct aac_query_mount *dinfo; 701 int status; 702 703 dresp = (struct aac_mount *) fib_data(fibptr); 704 if (!aac_supports_2T(fibptr->dev)) { 705 dresp->mnt[0].capacityhigh = 0; 706 if ((le32_to_cpu(dresp->status) == ST_OK) && 707 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 708 _aac_probe_container2(context, fibptr); 709 return; 710 } 711 } 712 scsicmd = (struct scsi_cmnd *) context; 713 714 if (!aac_valid_context(scsicmd, fibptr)) 715 return; 716 717 aac_fib_init(fibptr); 718 719 dinfo = (struct aac_query_mount *)fib_data(fibptr); 720 721 if (fibptr->dev->supplement_adapter_info.supported_options2 & 722 AAC_OPTION_VARIABLE_BLOCK_SIZE) 723 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 724 else 725 dinfo->command = cpu_to_le32(VM_NameServe64); 726 727 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 728 dinfo->type = cpu_to_le32(FT_FILESYS); 729 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 730 731 status = aac_fib_send(ContainerCommand, 732 fibptr, 733 sizeof(struct aac_query_mount), 734 FsaNormal, 735 0, 1, 736 _aac_probe_container2, 737 (void *) scsicmd); 738 /* 739 * Check that the command queued to the controller 740 */ 741 if (status < 0 && status != -EINPROGRESS) { 742 /* Inherit results from VM_NameServe, if any */ 743 dresp->status = cpu_to_le32(ST_OK); 744 _aac_probe_container2(context, fibptr); 745 } 746 } 747 748 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 749 { 750 struct fib * fibptr; 751 int status = -ENOMEM; 752 753 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 754 struct aac_query_mount *dinfo; 755 756 aac_fib_init(fibptr); 757 758 dinfo = (struct aac_query_mount *)fib_data(fibptr); 759 760 if (fibptr->dev->supplement_adapter_info.supported_options2 & 761 AAC_OPTION_VARIABLE_BLOCK_SIZE) 762 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 763 else 764 dinfo->command = cpu_to_le32(VM_NameServe); 765 766 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 767 dinfo->type = cpu_to_le32(FT_FILESYS); 768 scsicmd->SCp.ptr = (char *)callback; 769 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 770 771 status = aac_fib_send(ContainerCommand, 772 fibptr, 773 sizeof(struct aac_query_mount), 774 FsaNormal, 775 0, 1, 776 _aac_probe_container1, 777 (void *) scsicmd); 778 /* 779 * Check that the command queued to the controller 780 */ 781 if (status == -EINPROGRESS) 782 return 0; 783 784 if (status < 0) { 785 scsicmd->SCp.ptr = NULL; 786 aac_fib_complete(fibptr); 787 aac_fib_free(fibptr); 788 } 789 } 790 if (status < 0) { 791 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 792 if (fsa_dev_ptr) { 793 fsa_dev_ptr += scmd_id(scsicmd); 794 if ((fsa_dev_ptr->valid & 1) == 0) { 795 fsa_dev_ptr->valid = 0; 796 return (*callback)(scsicmd); 797 } 798 } 799 } 800 return status; 801 } 802 803 /** 804 * aac_probe_container - query a logical volume 805 * @dev: device to query 806 * @cid: container identifier 807 * 808 * Queries the controller about the given volume. The volume information 809 * is updated in the struct fsa_dev_info structure rather than returned. 810 */ 811 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 812 { 813 scsicmd->device = NULL; 814 return 0; 815 } 816 817 int aac_probe_container(struct aac_dev *dev, int cid) 818 { 819 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 820 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 821 int status; 822 823 if (!scsicmd || !scsidev) { 824 kfree(scsicmd); 825 kfree(scsidev); 826 return -ENOMEM; 827 } 828 scsicmd->list.next = NULL; 829 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1; 830 831 scsicmd->device = scsidev; 832 scsidev->sdev_state = 0; 833 scsidev->id = cid; 834 scsidev->host = dev->scsi_host_ptr; 835 836 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 837 while (scsicmd->device == scsidev) 838 schedule(); 839 kfree(scsidev); 840 status = scsicmd->SCp.Status; 841 kfree(scsicmd); 842 return status; 843 } 844 845 /* Local Structure to set SCSI inquiry data strings */ 846 struct scsi_inq { 847 char vid[8]; /* Vendor ID */ 848 char pid[16]; /* Product ID */ 849 char prl[4]; /* Product Revision Level */ 850 }; 851 852 /** 853 * InqStrCopy - string merge 854 * @a: string to copy from 855 * @b: string to copy to 856 * 857 * Copy a String from one location to another 858 * without copying \0 859 */ 860 861 static void inqstrcpy(char *a, char *b) 862 { 863 864 while (*a != (char)0) 865 *b++ = *a++; 866 } 867 868 static char *container_types[] = { 869 "None", 870 "Volume", 871 "Mirror", 872 "Stripe", 873 "RAID5", 874 "SSRW", 875 "SSRO", 876 "Morph", 877 "Legacy", 878 "RAID4", 879 "RAID10", 880 "RAID00", 881 "V-MIRRORS", 882 "PSEUDO R4", 883 "RAID50", 884 "RAID5D", 885 "RAID5D0", 886 "RAID1E", 887 "RAID6", 888 "RAID60", 889 "Unknown" 890 }; 891 892 char * get_container_type(unsigned tindex) 893 { 894 if (tindex >= ARRAY_SIZE(container_types)) 895 tindex = ARRAY_SIZE(container_types) - 1; 896 return container_types[tindex]; 897 } 898 899 /* Function: setinqstr 900 * 901 * Arguments: [1] pointer to void [1] int 902 * 903 * Purpose: Sets SCSI inquiry data strings for vendor, product 904 * and revision level. Allows strings to be set in platform dependent 905 * files instead of in OS dependent driver source. 906 */ 907 908 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 909 { 910 struct scsi_inq *str; 911 struct aac_supplement_adapter_info *sup_adap_info; 912 913 sup_adap_info = &dev->supplement_adapter_info; 914 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 915 memset(str, ' ', sizeof(*str)); 916 917 if (sup_adap_info->adapter_type_text[0]) { 918 int c; 919 char *cp; 920 char *cname = kmemdup(sup_adap_info->adapter_type_text, 921 sizeof(sup_adap_info->adapter_type_text), 922 GFP_ATOMIC); 923 if (!cname) 924 return; 925 926 cp = cname; 927 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 928 inqstrcpy("SMC", str->vid); 929 else { 930 c = sizeof(str->vid); 931 while (*cp && *cp != ' ' && --c) 932 ++cp; 933 c = *cp; 934 *cp = '\0'; 935 inqstrcpy(cname, str->vid); 936 *cp = c; 937 while (*cp && *cp != ' ') 938 ++cp; 939 } 940 while (*cp == ' ') 941 ++cp; 942 /* last six chars reserved for vol type */ 943 if (strlen(cp) > sizeof(str->pid)) 944 cp[sizeof(str->pid)] = '\0'; 945 inqstrcpy (cp, str->pid); 946 947 kfree(cname); 948 } else { 949 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 950 951 inqstrcpy (mp->vname, str->vid); 952 /* last six chars reserved for vol type */ 953 inqstrcpy (mp->model, str->pid); 954 } 955 956 if (tindex < ARRAY_SIZE(container_types)){ 957 char *findit = str->pid; 958 959 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 960 /* RAID is superfluous in the context of a RAID device */ 961 if (memcmp(findit-4, "RAID", 4) == 0) 962 *(findit -= 4) = ' '; 963 if (((findit - str->pid) + strlen(container_types[tindex])) 964 < (sizeof(str->pid) + sizeof(str->prl))) 965 inqstrcpy (container_types[tindex], findit + 1); 966 } 967 inqstrcpy ("V1.0", str->prl); 968 } 969 970 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 971 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 972 { 973 int container; 974 975 vpdpage83data->type3.codeset = 1; 976 vpdpage83data->type3.identifiertype = 3; 977 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 978 - 4; 979 980 for (container = 0; container < dev->maximum_num_containers; 981 container++) { 982 983 if (scmd_id(scsicmd) == container) { 984 memcpy(vpdpage83data->type3.Identifier, 985 dev->fsa_dev[container].identifier, 986 16); 987 break; 988 } 989 } 990 } 991 992 static void get_container_serial_callback(void *context, struct fib * fibptr) 993 { 994 struct aac_get_serial_resp * get_serial_reply; 995 struct scsi_cmnd * scsicmd; 996 997 BUG_ON(fibptr == NULL); 998 999 scsicmd = (struct scsi_cmnd *) context; 1000 if (!aac_valid_context(scsicmd, fibptr)) 1001 return; 1002 1003 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 1004 /* Failure is irrelevant, using default value instead */ 1005 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 1006 /*Check to see if it's for VPD 0x83 or 0x80 */ 1007 if (scsicmd->cmnd[2] == 0x83) { 1008 /* vpd page 0x83 - Device Identification Page */ 1009 struct aac_dev *dev; 1010 int i; 1011 struct tvpd_page83 vpdpage83data; 1012 1013 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1014 1015 memset(((u8 *)&vpdpage83data), 0, 1016 sizeof(vpdpage83data)); 1017 1018 /* DIRECT_ACCESS_DEVIC */ 1019 vpdpage83data.DeviceType = 0; 1020 /* DEVICE_CONNECTED */ 1021 vpdpage83data.DeviceTypeQualifier = 0; 1022 /* VPD_DEVICE_IDENTIFIERS */ 1023 vpdpage83data.PageCode = 0x83; 1024 vpdpage83data.reserved = 0; 1025 vpdpage83data.PageLength = 1026 sizeof(vpdpage83data.type1) + 1027 sizeof(vpdpage83data.type2); 1028 1029 /* VPD 83 Type 3 is not supported for ARC */ 1030 if (dev->sa_firmware) 1031 vpdpage83data.PageLength += 1032 sizeof(vpdpage83data.type3); 1033 1034 /* T10 Vendor Identifier Field Format */ 1035 /* VpdcodesetAscii */ 1036 vpdpage83data.type1.codeset = 2; 1037 /* VpdIdentifierTypeVendorId */ 1038 vpdpage83data.type1.identifiertype = 1; 1039 vpdpage83data.type1.identifierlength = 1040 sizeof(vpdpage83data.type1) - 4; 1041 1042 /* "ADAPTEC " for adaptec */ 1043 memcpy(vpdpage83data.type1.venid, 1044 "ADAPTEC ", 1045 sizeof(vpdpage83data.type1.venid)); 1046 memcpy(vpdpage83data.type1.productid, 1047 "ARRAY ", 1048 sizeof( 1049 vpdpage83data.type1.productid)); 1050 1051 /* Convert to ascii based serial number. 1052 * The LSB is the the end. 1053 */ 1054 for (i = 0; i < 8; i++) { 1055 u8 temp = 1056 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1057 if (temp > 0x9) { 1058 vpdpage83data.type1.serialnumber[i] = 1059 'A' + (temp - 0xA); 1060 } else { 1061 vpdpage83data.type1.serialnumber[i] = 1062 '0' + temp; 1063 } 1064 } 1065 1066 /* VpdCodeSetBinary */ 1067 vpdpage83data.type2.codeset = 1; 1068 /* VpdidentifiertypeEUI64 */ 1069 vpdpage83data.type2.identifiertype = 2; 1070 vpdpage83data.type2.identifierlength = 1071 sizeof(vpdpage83data.type2) - 4; 1072 1073 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1074 vpdpage83data.type2.eu64id.venid[1] = 0; 1075 vpdpage83data.type2.eu64id.venid[2] = 0; 1076 1077 vpdpage83data.type2.eu64id.Serial = 1078 get_serial_reply->uid; 1079 vpdpage83data.type2.eu64id.reserved = 0; 1080 1081 /* 1082 * VpdIdentifierTypeFCPHName 1083 * VPD 0x83 Type 3 not supported for ARC 1084 */ 1085 if (dev->sa_firmware) { 1086 build_vpd83_type3(&vpdpage83data, 1087 dev, scsicmd); 1088 } 1089 1090 /* Move the inquiry data to the response buffer. */ 1091 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1092 sizeof(vpdpage83data)); 1093 } else { 1094 /* It must be for VPD 0x80 */ 1095 char sp[13]; 1096 /* EVPD bit set */ 1097 sp[0] = INQD_PDT_DA; 1098 sp[1] = scsicmd->cmnd[2]; 1099 sp[2] = 0; 1100 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1101 le32_to_cpu(get_serial_reply->uid)); 1102 scsi_sg_copy_from_buffer(scsicmd, sp, 1103 sizeof(sp)); 1104 } 1105 } 1106 1107 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1108 1109 aac_fib_complete(fibptr); 1110 scsicmd->scsi_done(scsicmd); 1111 } 1112 1113 /** 1114 * aac_get_container_serial - get container serial, none blocking. 1115 */ 1116 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1117 { 1118 int status; 1119 struct aac_get_serial *dinfo; 1120 struct fib * cmd_fibcontext; 1121 struct aac_dev * dev; 1122 1123 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1124 1125 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1126 1127 aac_fib_init(cmd_fibcontext); 1128 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1129 1130 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1131 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1132 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1133 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1134 1135 status = aac_fib_send(ContainerCommand, 1136 cmd_fibcontext, 1137 sizeof(struct aac_get_serial_resp), 1138 FsaNormal, 1139 0, 1, 1140 (fib_callback) get_container_serial_callback, 1141 (void *) scsicmd); 1142 1143 /* 1144 * Check that the command queued to the controller 1145 */ 1146 if (status == -EINPROGRESS) 1147 return 0; 1148 1149 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1150 aac_fib_complete(cmd_fibcontext); 1151 return -1; 1152 } 1153 1154 /* Function: setinqserial 1155 * 1156 * Arguments: [1] pointer to void [1] int 1157 * 1158 * Purpose: Sets SCSI Unit Serial number. 1159 * This is a fake. We should read a proper 1160 * serial number from the container. <SuSE>But 1161 * without docs it's quite hard to do it :-) 1162 * So this will have to do in the meantime.</SuSE> 1163 */ 1164 1165 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1166 { 1167 /* 1168 * This breaks array migration. 1169 */ 1170 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1171 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1172 } 1173 1174 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1175 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1176 { 1177 u8 *sense_buf = (u8 *)sense_data; 1178 /* Sense data valid, err code 70h */ 1179 sense_buf[0] = 0x70; /* No info field */ 1180 sense_buf[1] = 0; /* Segment number, always zero */ 1181 1182 sense_buf[2] = sense_key; /* Sense key */ 1183 1184 sense_buf[12] = sense_code; /* Additional sense code */ 1185 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1186 1187 if (sense_key == ILLEGAL_REQUEST) { 1188 sense_buf[7] = 10; /* Additional sense length */ 1189 1190 sense_buf[15] = bit_pointer; 1191 /* Illegal parameter is in the parameter block */ 1192 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1193 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1194 /* Illegal parameter is in the CDB block */ 1195 sense_buf[16] = field_pointer >> 8; /* MSB */ 1196 sense_buf[17] = field_pointer; /* LSB */ 1197 } else 1198 sense_buf[7] = 6; /* Additional sense length */ 1199 } 1200 1201 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1202 { 1203 if (lba & 0xffffffff00000000LL) { 1204 int cid = scmd_id(cmd); 1205 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1206 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1207 SAM_STAT_CHECK_CONDITION; 1208 set_sense(&dev->fsa_dev[cid].sense_data, 1209 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1210 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1211 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1212 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1213 SCSI_SENSE_BUFFERSIZE)); 1214 cmd->scsi_done(cmd); 1215 return 1; 1216 } 1217 return 0; 1218 } 1219 1220 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1221 { 1222 return 0; 1223 } 1224 1225 static void io_callback(void *context, struct fib * fibptr); 1226 1227 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1228 { 1229 struct aac_dev *dev = fib->dev; 1230 u16 fibsize, command; 1231 long ret; 1232 1233 aac_fib_init(fib); 1234 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1235 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1236 !dev->sync_mode) { 1237 struct aac_raw_io2 *readcmd2; 1238 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1239 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1240 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1241 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1242 readcmd2->byteCount = cpu_to_le32(count * 1243 dev->fsa_dev[scmd_id(cmd)].block_size); 1244 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1245 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1246 ret = aac_build_sgraw2(cmd, readcmd2, 1247 dev->scsi_host_ptr->sg_tablesize); 1248 if (ret < 0) 1249 return ret; 1250 command = ContainerRawIo2; 1251 fibsize = sizeof(struct aac_raw_io2) + 1252 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1253 } else { 1254 struct aac_raw_io *readcmd; 1255 readcmd = (struct aac_raw_io *) fib_data(fib); 1256 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1257 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1258 readcmd->count = cpu_to_le32(count * 1259 dev->fsa_dev[scmd_id(cmd)].block_size); 1260 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1261 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1262 readcmd->bpTotal = 0; 1263 readcmd->bpComplete = 0; 1264 ret = aac_build_sgraw(cmd, &readcmd->sg); 1265 if (ret < 0) 1266 return ret; 1267 command = ContainerRawIo; 1268 fibsize = sizeof(struct aac_raw_io) + 1269 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1270 } 1271 1272 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1273 /* 1274 * Now send the Fib to the adapter 1275 */ 1276 return aac_fib_send(command, 1277 fib, 1278 fibsize, 1279 FsaNormal, 1280 0, 1, 1281 (fib_callback) io_callback, 1282 (void *) cmd); 1283 } 1284 1285 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1286 { 1287 u16 fibsize; 1288 struct aac_read64 *readcmd; 1289 long ret; 1290 1291 aac_fib_init(fib); 1292 readcmd = (struct aac_read64 *) fib_data(fib); 1293 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1294 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1295 readcmd->sector_count = cpu_to_le16(count); 1296 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1297 readcmd->pad = 0; 1298 readcmd->flags = 0; 1299 1300 ret = aac_build_sg64(cmd, &readcmd->sg); 1301 if (ret < 0) 1302 return ret; 1303 fibsize = sizeof(struct aac_read64) + 1304 ((le32_to_cpu(readcmd->sg.count) - 1) * 1305 sizeof (struct sgentry64)); 1306 BUG_ON (fibsize > (fib->dev->max_fib_size - 1307 sizeof(struct aac_fibhdr))); 1308 /* 1309 * Now send the Fib to the adapter 1310 */ 1311 return aac_fib_send(ContainerCommand64, 1312 fib, 1313 fibsize, 1314 FsaNormal, 1315 0, 1, 1316 (fib_callback) io_callback, 1317 (void *) cmd); 1318 } 1319 1320 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1321 { 1322 u16 fibsize; 1323 struct aac_read *readcmd; 1324 struct aac_dev *dev = fib->dev; 1325 long ret; 1326 1327 aac_fib_init(fib); 1328 readcmd = (struct aac_read *) fib_data(fib); 1329 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1330 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1331 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1332 readcmd->count = cpu_to_le32(count * 1333 dev->fsa_dev[scmd_id(cmd)].block_size); 1334 1335 ret = aac_build_sg(cmd, &readcmd->sg); 1336 if (ret < 0) 1337 return ret; 1338 fibsize = sizeof(struct aac_read) + 1339 ((le32_to_cpu(readcmd->sg.count) - 1) * 1340 sizeof (struct sgentry)); 1341 BUG_ON (fibsize > (fib->dev->max_fib_size - 1342 sizeof(struct aac_fibhdr))); 1343 /* 1344 * Now send the Fib to the adapter 1345 */ 1346 return aac_fib_send(ContainerCommand, 1347 fib, 1348 fibsize, 1349 FsaNormal, 1350 0, 1, 1351 (fib_callback) io_callback, 1352 (void *) cmd); 1353 } 1354 1355 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1356 { 1357 struct aac_dev *dev = fib->dev; 1358 u16 fibsize, command; 1359 long ret; 1360 1361 aac_fib_init(fib); 1362 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1363 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1364 !dev->sync_mode) { 1365 struct aac_raw_io2 *writecmd2; 1366 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1367 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1368 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1369 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1370 writecmd2->byteCount = cpu_to_le32(count * 1371 dev->fsa_dev[scmd_id(cmd)].block_size); 1372 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1373 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1374 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1375 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1376 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1377 ret = aac_build_sgraw2(cmd, writecmd2, 1378 dev->scsi_host_ptr->sg_tablesize); 1379 if (ret < 0) 1380 return ret; 1381 command = ContainerRawIo2; 1382 fibsize = sizeof(struct aac_raw_io2) + 1383 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1384 } else { 1385 struct aac_raw_io *writecmd; 1386 writecmd = (struct aac_raw_io *) fib_data(fib); 1387 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1388 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1389 writecmd->count = cpu_to_le32(count * 1390 dev->fsa_dev[scmd_id(cmd)].block_size); 1391 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1392 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1393 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1394 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1395 cpu_to_le16(RIO_TYPE_WRITE); 1396 writecmd->bpTotal = 0; 1397 writecmd->bpComplete = 0; 1398 ret = aac_build_sgraw(cmd, &writecmd->sg); 1399 if (ret < 0) 1400 return ret; 1401 command = ContainerRawIo; 1402 fibsize = sizeof(struct aac_raw_io) + 1403 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1404 } 1405 1406 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1407 /* 1408 * Now send the Fib to the adapter 1409 */ 1410 return aac_fib_send(command, 1411 fib, 1412 fibsize, 1413 FsaNormal, 1414 0, 1, 1415 (fib_callback) io_callback, 1416 (void *) cmd); 1417 } 1418 1419 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1420 { 1421 u16 fibsize; 1422 struct aac_write64 *writecmd; 1423 long ret; 1424 1425 aac_fib_init(fib); 1426 writecmd = (struct aac_write64 *) fib_data(fib); 1427 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1428 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1429 writecmd->sector_count = cpu_to_le16(count); 1430 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1431 writecmd->pad = 0; 1432 writecmd->flags = 0; 1433 1434 ret = aac_build_sg64(cmd, &writecmd->sg); 1435 if (ret < 0) 1436 return ret; 1437 fibsize = sizeof(struct aac_write64) + 1438 ((le32_to_cpu(writecmd->sg.count) - 1) * 1439 sizeof (struct sgentry64)); 1440 BUG_ON (fibsize > (fib->dev->max_fib_size - 1441 sizeof(struct aac_fibhdr))); 1442 /* 1443 * Now send the Fib to the adapter 1444 */ 1445 return aac_fib_send(ContainerCommand64, 1446 fib, 1447 fibsize, 1448 FsaNormal, 1449 0, 1, 1450 (fib_callback) io_callback, 1451 (void *) cmd); 1452 } 1453 1454 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1455 { 1456 u16 fibsize; 1457 struct aac_write *writecmd; 1458 struct aac_dev *dev = fib->dev; 1459 long ret; 1460 1461 aac_fib_init(fib); 1462 writecmd = (struct aac_write *) fib_data(fib); 1463 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1464 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1465 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1466 writecmd->count = cpu_to_le32(count * 1467 dev->fsa_dev[scmd_id(cmd)].block_size); 1468 writecmd->sg.count = cpu_to_le32(1); 1469 /* ->stable is not used - it did mean which type of write */ 1470 1471 ret = aac_build_sg(cmd, &writecmd->sg); 1472 if (ret < 0) 1473 return ret; 1474 fibsize = sizeof(struct aac_write) + 1475 ((le32_to_cpu(writecmd->sg.count) - 1) * 1476 sizeof (struct sgentry)); 1477 BUG_ON (fibsize > (fib->dev->max_fib_size - 1478 sizeof(struct aac_fibhdr))); 1479 /* 1480 * Now send the Fib to the adapter 1481 */ 1482 return aac_fib_send(ContainerCommand, 1483 fib, 1484 fibsize, 1485 FsaNormal, 1486 0, 1, 1487 (fib_callback) io_callback, 1488 (void *) cmd); 1489 } 1490 1491 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1492 { 1493 struct aac_srb * srbcmd; 1494 u32 flag; 1495 u32 timeout; 1496 1497 aac_fib_init(fib); 1498 switch(cmd->sc_data_direction){ 1499 case DMA_TO_DEVICE: 1500 flag = SRB_DataOut; 1501 break; 1502 case DMA_BIDIRECTIONAL: 1503 flag = SRB_DataIn | SRB_DataOut; 1504 break; 1505 case DMA_FROM_DEVICE: 1506 flag = SRB_DataIn; 1507 break; 1508 case DMA_NONE: 1509 default: /* shuts up some versions of gcc */ 1510 flag = SRB_NoDataXfer; 1511 break; 1512 } 1513 1514 srbcmd = (struct aac_srb*) fib_data(fib); 1515 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1516 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1517 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1518 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1519 srbcmd->flags = cpu_to_le32(flag); 1520 timeout = cmd->request->timeout/HZ; 1521 if (timeout == 0) 1522 timeout = 1; 1523 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1524 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1525 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1526 return srbcmd; 1527 } 1528 1529 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1530 struct scsi_cmnd *cmd) 1531 { 1532 struct aac_hba_cmd_req *hbacmd; 1533 struct aac_dev *dev; 1534 int bus, target; 1535 u64 address; 1536 1537 dev = (struct aac_dev *)cmd->device->host->hostdata; 1538 1539 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1540 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1541 /* iu_type is a parameter of aac_hba_send */ 1542 switch (cmd->sc_data_direction) { 1543 case DMA_TO_DEVICE: 1544 hbacmd->byte1 = 2; 1545 break; 1546 case DMA_FROM_DEVICE: 1547 case DMA_BIDIRECTIONAL: 1548 hbacmd->byte1 = 1; 1549 break; 1550 case DMA_NONE: 1551 default: 1552 break; 1553 } 1554 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1555 1556 bus = aac_logical_to_phys(scmd_channel(cmd)); 1557 target = scmd_id(cmd); 1558 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1559 1560 /* we fill in reply_qid later in aac_src_deliver_message */ 1561 /* we fill in iu_type, request_id later in aac_hba_send */ 1562 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1563 1564 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1565 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1566 1567 address = (u64)fib->hw_error_pa; 1568 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1569 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1570 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1571 1572 return hbacmd; 1573 } 1574 1575 static void aac_srb_callback(void *context, struct fib * fibptr); 1576 1577 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1578 { 1579 u16 fibsize; 1580 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1581 long ret; 1582 1583 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1584 if (ret < 0) 1585 return ret; 1586 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1587 1588 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1589 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1590 /* 1591 * Build Scatter/Gather list 1592 */ 1593 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1594 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1595 sizeof (struct sgentry64)); 1596 BUG_ON (fibsize > (fib->dev->max_fib_size - 1597 sizeof(struct aac_fibhdr))); 1598 1599 /* 1600 * Now send the Fib to the adapter 1601 */ 1602 return aac_fib_send(ScsiPortCommand64, fib, 1603 fibsize, FsaNormal, 0, 1, 1604 (fib_callback) aac_srb_callback, 1605 (void *) cmd); 1606 } 1607 1608 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1609 { 1610 u16 fibsize; 1611 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1612 long ret; 1613 1614 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1615 if (ret < 0) 1616 return ret; 1617 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1618 1619 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1620 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1621 /* 1622 * Build Scatter/Gather list 1623 */ 1624 fibsize = sizeof (struct aac_srb) + 1625 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1626 sizeof (struct sgentry)); 1627 BUG_ON (fibsize > (fib->dev->max_fib_size - 1628 sizeof(struct aac_fibhdr))); 1629 1630 /* 1631 * Now send the Fib to the adapter 1632 */ 1633 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1634 (fib_callback) aac_srb_callback, (void *) cmd); 1635 } 1636 1637 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1638 { 1639 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1640 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1641 return FAILED; 1642 return aac_scsi_32(fib, cmd); 1643 } 1644 1645 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1646 { 1647 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1648 struct aac_dev *dev; 1649 long ret; 1650 1651 dev = (struct aac_dev *)cmd->device->host->hostdata; 1652 1653 ret = aac_build_sghba(cmd, hbacmd, 1654 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1655 if (ret < 0) 1656 return ret; 1657 1658 /* 1659 * Now send the HBA command to the adapter 1660 */ 1661 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1662 sizeof(struct aac_hba_sgl); 1663 1664 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1665 (fib_callback) aac_hba_callback, 1666 (void *) cmd); 1667 } 1668 1669 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1670 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1671 { 1672 struct fib *fibptr; 1673 dma_addr_t addr; 1674 int rcode; 1675 int fibsize; 1676 struct aac_srb *srb; 1677 struct aac_srb_reply *srb_reply; 1678 struct sgmap64 *sg64; 1679 u32 vbus; 1680 u32 vid; 1681 1682 if (!dev->sa_firmware) 1683 return 0; 1684 1685 /* allocate FIB */ 1686 fibptr = aac_fib_alloc(dev); 1687 if (!fibptr) 1688 return -ENOMEM; 1689 1690 aac_fib_init(fibptr); 1691 fibptr->hw_fib_va->header.XferState &= 1692 ~cpu_to_le32(FastResponseCapable); 1693 1694 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1695 sizeof(struct sgentry64); 1696 1697 /* allocate DMA buffer for response */ 1698 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1699 DMA_BIDIRECTIONAL); 1700 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1701 rcode = -ENOMEM; 1702 goto fib_error; 1703 } 1704 1705 srb = fib_data(fibptr); 1706 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1707 1708 vbus = (u32)le16_to_cpu( 1709 dev->supplement_adapter_info.virt_device_bus); 1710 vid = (u32)le16_to_cpu( 1711 dev->supplement_adapter_info.virt_device_target); 1712 1713 /* set the common request fields */ 1714 srb->channel = cpu_to_le32(vbus); 1715 srb->id = cpu_to_le32(vid); 1716 srb->lun = 0; 1717 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1718 srb->timeout = 0; 1719 srb->retry_limit = 0; 1720 srb->cdb_size = cpu_to_le32(16); 1721 srb->count = cpu_to_le32(xfer_len); 1722 1723 sg64 = (struct sgmap64 *)&srb->sg; 1724 sg64->count = cpu_to_le32(1); 1725 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1726 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1727 sg64->sg[0].count = cpu_to_le32(xfer_len); 1728 1729 /* 1730 * Copy the updated data for other dumping or other usage if needed 1731 */ 1732 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1733 1734 /* issue request to the controller */ 1735 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1736 1, 1, NULL, NULL); 1737 1738 if (rcode == -ERESTARTSYS) 1739 rcode = -ERESTART; 1740 1741 if (unlikely(rcode < 0)) 1742 goto bmic_error; 1743 1744 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1745 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1746 1747 bmic_error: 1748 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1749 fib_error: 1750 aac_fib_complete(fibptr); 1751 aac_fib_free(fibptr); 1752 return rcode; 1753 } 1754 1755 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1756 { 1757 1758 struct aac_ciss_identify_pd *identify_resp; 1759 1760 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1761 return; 1762 1763 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1764 if (identify_resp == NULL) { 1765 dev->hba_map[bus][target].qd_limit = 32; 1766 return; 1767 } 1768 1769 if (identify_resp->current_queue_depth_limit <= 0 || 1770 identify_resp->current_queue_depth_limit > 255) 1771 dev->hba_map[bus][target].qd_limit = 32; 1772 else 1773 dev->hba_map[bus][target].qd_limit = 1774 identify_resp->current_queue_depth_limit; 1775 } 1776 1777 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1778 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1779 { 1780 int rcode = -ENOMEM; 1781 int datasize; 1782 struct aac_srb_unit srbu; 1783 struct aac_srb *srbcmd; 1784 struct aac_ciss_identify_pd *identify_reply; 1785 1786 datasize = sizeof(struct aac_ciss_identify_pd); 1787 identify_reply = kmalloc(datasize, GFP_KERNEL); 1788 if (!identify_reply) 1789 goto out; 1790 1791 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1792 1793 srbcmd = &srbu.srb; 1794 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1795 srbcmd->cdb[0] = 0x26; 1796 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1797 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1798 1799 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1800 if (unlikely(rcode < 0)) 1801 goto mem_free_all; 1802 1803 *identify_resp = identify_reply; 1804 1805 out: 1806 return rcode; 1807 mem_free_all: 1808 kfree(identify_reply); 1809 goto out; 1810 } 1811 1812 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1813 { 1814 kfree(dev->safw_phys_luns); 1815 dev->safw_phys_luns = NULL; 1816 } 1817 1818 /** 1819 * aac_get_safw_ciss_luns() Process topology change 1820 * @dev: aac_dev structure 1821 * 1822 * Execute a CISS REPORT PHYS LUNS and process the results into 1823 * the current hba_map. 1824 */ 1825 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1826 { 1827 int rcode = -ENOMEM; 1828 int datasize; 1829 struct aac_srb *srbcmd; 1830 struct aac_srb_unit srbu; 1831 struct aac_ciss_phys_luns_resp *phys_luns; 1832 1833 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1834 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1835 phys_luns = kmalloc(datasize, GFP_KERNEL); 1836 if (phys_luns == NULL) 1837 goto out; 1838 1839 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1840 1841 srbcmd = &srbu.srb; 1842 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1843 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1844 srbcmd->cdb[1] = 2; /* extended reporting */ 1845 srbcmd->cdb[8] = (u8)(datasize >> 8); 1846 srbcmd->cdb[9] = (u8)(datasize); 1847 1848 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1849 if (unlikely(rcode < 0)) 1850 goto mem_free_all; 1851 1852 if (phys_luns->resp_flag != 2) { 1853 rcode = -ENOMSG; 1854 goto mem_free_all; 1855 } 1856 1857 dev->safw_phys_luns = phys_luns; 1858 1859 out: 1860 return rcode; 1861 mem_free_all: 1862 kfree(phys_luns); 1863 goto out; 1864 } 1865 1866 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1867 { 1868 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1869 } 1870 1871 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1872 { 1873 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1874 } 1875 1876 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1877 { 1878 return dev->safw_phys_luns->lun[lun].level2[0]; 1879 } 1880 1881 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1882 { 1883 return dev->safw_phys_luns->lun[lun].bus >> 6; 1884 } 1885 1886 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1887 { 1888 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1889 } 1890 1891 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1892 { 1893 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1894 } 1895 1896 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1897 { 1898 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1899 } 1900 1901 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1902 int bus, int target) 1903 { 1904 kfree(dev->hba_map[bus][target].safw_identify_resp); 1905 dev->hba_map[bus][target].safw_identify_resp = NULL; 1906 } 1907 1908 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1909 int lun_count) 1910 { 1911 int luns; 1912 int i; 1913 u32 bus; 1914 u32 target; 1915 1916 luns = aac_get_safw_phys_lun_count(dev); 1917 1918 if (luns < lun_count) 1919 lun_count = luns; 1920 else if (lun_count < 0) 1921 lun_count = luns; 1922 1923 for (i = 0; i < lun_count; i++) { 1924 bus = aac_get_safw_phys_bus(dev, i); 1925 target = aac_get_safw_phys_target(dev, i); 1926 1927 aac_free_safw_identify_resp(dev, bus, target); 1928 } 1929 } 1930 1931 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1932 { 1933 int i; 1934 int rcode = 0; 1935 u32 lun_count; 1936 u32 bus; 1937 u32 target; 1938 struct aac_ciss_identify_pd *identify_resp = NULL; 1939 1940 lun_count = aac_get_safw_phys_lun_count(dev); 1941 1942 for (i = 0; i < lun_count; ++i) { 1943 1944 bus = aac_get_safw_phys_bus(dev, i); 1945 target = aac_get_safw_phys_target(dev, i); 1946 1947 rcode = aac_issue_safw_bmic_identify(dev, 1948 &identify_resp, bus, target); 1949 1950 if (unlikely(rcode < 0)) 1951 goto free_identify_resp; 1952 1953 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1954 } 1955 1956 out: 1957 return rcode; 1958 free_identify_resp: 1959 aac_free_safw_all_identify_resp(dev, i); 1960 goto out; 1961 } 1962 1963 /** 1964 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1965 * @dev: aac_dev structure 1966 * @phys_luns: FW information from report phys luns 1967 * @rescan: Indicates scan type 1968 * 1969 * Update our hba map with the information gathered from the FW 1970 */ 1971 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1972 { 1973 /* ok and extended reporting */ 1974 u32 lun_count, nexus; 1975 u32 i, bus, target; 1976 u8 expose_flag, attribs; 1977 1978 lun_count = aac_get_safw_phys_lun_count(dev); 1979 1980 dev->scan_counter++; 1981 1982 for (i = 0; i < lun_count; ++i) { 1983 1984 bus = aac_get_safw_phys_bus(dev, i); 1985 target = aac_get_safw_phys_target(dev, i); 1986 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1987 attribs = aac_get_safw_phys_attribs(dev, i); 1988 nexus = aac_get_safw_phys_nexus(dev, i); 1989 1990 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1991 continue; 1992 1993 if (expose_flag != 0) { 1994 dev->hba_map[bus][target].devtype = 1995 AAC_DEVTYPE_RAID_MEMBER; 1996 continue; 1997 } 1998 1999 if (nexus != 0 && (attribs & 8)) { 2000 dev->hba_map[bus][target].devtype = 2001 AAC_DEVTYPE_NATIVE_RAW; 2002 dev->hba_map[bus][target].rmw_nexus = 2003 nexus; 2004 } else 2005 dev->hba_map[bus][target].devtype = 2006 AAC_DEVTYPE_ARC_RAW; 2007 2008 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 2009 2010 aac_set_safw_target_qd(dev, bus, target); 2011 } 2012 } 2013 2014 static int aac_setup_safw_targets(struct aac_dev *dev) 2015 { 2016 int rcode = 0; 2017 2018 rcode = aac_get_containers(dev); 2019 if (unlikely(rcode < 0)) 2020 goto out; 2021 2022 rcode = aac_get_safw_ciss_luns(dev); 2023 if (unlikely(rcode < 0)) 2024 goto out; 2025 2026 rcode = aac_get_safw_attr_all_targets(dev); 2027 if (unlikely(rcode < 0)) 2028 goto free_ciss_luns; 2029 2030 aac_set_safw_attr_all_targets(dev); 2031 2032 aac_free_safw_all_identify_resp(dev, -1); 2033 free_ciss_luns: 2034 aac_free_safw_ciss_luns(dev); 2035 out: 2036 return rcode; 2037 } 2038 2039 int aac_setup_safw_adapter(struct aac_dev *dev) 2040 { 2041 return aac_setup_safw_targets(dev); 2042 } 2043 2044 int aac_get_adapter_info(struct aac_dev* dev) 2045 { 2046 struct fib* fibptr; 2047 int rcode; 2048 u32 tmp, bus, target; 2049 struct aac_adapter_info *info; 2050 struct aac_bus_info *command; 2051 struct aac_bus_info_response *bus_info; 2052 2053 if (!(fibptr = aac_fib_alloc(dev))) 2054 return -ENOMEM; 2055 2056 aac_fib_init(fibptr); 2057 info = (struct aac_adapter_info *) fib_data(fibptr); 2058 memset(info,0,sizeof(*info)); 2059 2060 rcode = aac_fib_send(RequestAdapterInfo, 2061 fibptr, 2062 sizeof(*info), 2063 FsaNormal, 2064 -1, 1, /* First `interrupt' command uses special wait */ 2065 NULL, 2066 NULL); 2067 2068 if (rcode < 0) { 2069 /* FIB should be freed only after 2070 * getting the response from the F/W */ 2071 if (rcode != -ERESTARTSYS) { 2072 aac_fib_complete(fibptr); 2073 aac_fib_free(fibptr); 2074 } 2075 return rcode; 2076 } 2077 memcpy(&dev->adapter_info, info, sizeof(*info)); 2078 2079 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2080 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2081 struct aac_supplement_adapter_info * sinfo; 2082 2083 aac_fib_init(fibptr); 2084 2085 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2086 2087 memset(sinfo,0,sizeof(*sinfo)); 2088 2089 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2090 fibptr, 2091 sizeof(*sinfo), 2092 FsaNormal, 2093 1, 1, 2094 NULL, 2095 NULL); 2096 2097 if (rcode >= 0) 2098 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2099 if (rcode == -ERESTARTSYS) { 2100 fibptr = aac_fib_alloc(dev); 2101 if (!fibptr) 2102 return -ENOMEM; 2103 } 2104 2105 } 2106 2107 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2108 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2109 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2110 dev->hba_map[bus][target].devtype = 0; 2111 dev->hba_map[bus][target].qd_limit = 0; 2112 } 2113 } 2114 2115 /* 2116 * GetBusInfo 2117 */ 2118 2119 aac_fib_init(fibptr); 2120 2121 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2122 2123 memset(bus_info, 0, sizeof(*bus_info)); 2124 2125 command = (struct aac_bus_info *)bus_info; 2126 2127 command->Command = cpu_to_le32(VM_Ioctl); 2128 command->ObjType = cpu_to_le32(FT_DRIVE); 2129 command->MethodId = cpu_to_le32(1); 2130 command->CtlCmd = cpu_to_le32(GetBusInfo); 2131 2132 rcode = aac_fib_send(ContainerCommand, 2133 fibptr, 2134 sizeof (*bus_info), 2135 FsaNormal, 2136 1, 1, 2137 NULL, NULL); 2138 2139 /* reasoned default */ 2140 dev->maximum_num_physicals = 16; 2141 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2142 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2143 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2144 } 2145 2146 if (!dev->in_reset) { 2147 char buffer[16]; 2148 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2149 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2150 dev->name, 2151 dev->id, 2152 tmp>>24, 2153 (tmp>>16)&0xff, 2154 tmp&0xff, 2155 le32_to_cpu(dev->adapter_info.kernelbuild), 2156 (int)sizeof(dev->supplement_adapter_info.build_date), 2157 dev->supplement_adapter_info.build_date); 2158 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2159 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2160 dev->name, dev->id, 2161 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2162 le32_to_cpu(dev->adapter_info.monitorbuild)); 2163 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2164 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2165 dev->name, dev->id, 2166 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2167 le32_to_cpu(dev->adapter_info.biosbuild)); 2168 buffer[0] = '\0'; 2169 if (aac_get_serial_number( 2170 shost_to_class(dev->scsi_host_ptr), buffer)) 2171 printk(KERN_INFO "%s%d: serial %s", 2172 dev->name, dev->id, buffer); 2173 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2174 printk(KERN_INFO "%s%d: TSID %.*s\n", 2175 dev->name, dev->id, 2176 (int)sizeof(dev->supplement_adapter_info 2177 .vpd_info.tsid), 2178 dev->supplement_adapter_info.vpd_info.tsid); 2179 } 2180 if (!aac_check_reset || ((aac_check_reset == 1) && 2181 (dev->supplement_adapter_info.supported_options2 & 2182 AAC_OPTION_IGNORE_RESET))) { 2183 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2184 dev->name, dev->id); 2185 } 2186 } 2187 2188 dev->cache_protected = 0; 2189 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2190 AAC_FEATURE_JBOD) != 0); 2191 dev->nondasd_support = 0; 2192 dev->raid_scsi_mode = 0; 2193 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2194 dev->nondasd_support = 1; 2195 2196 /* 2197 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2198 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2199 * force nondasd support on. If we decide to allow the non-dasd flag 2200 * additional changes changes will have to be made to support 2201 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2202 * changed to support the new dev->raid_scsi_mode flag instead of 2203 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2204 * function aac_detect will have to be modified where it sets up the 2205 * max number of channels based on the aac->nondasd_support flag only. 2206 */ 2207 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2208 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2209 dev->nondasd_support = 1; 2210 dev->raid_scsi_mode = 1; 2211 } 2212 if (dev->raid_scsi_mode != 0) 2213 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2214 dev->name, dev->id); 2215 2216 if (nondasd != -1) 2217 dev->nondasd_support = (nondasd!=0); 2218 if (dev->nondasd_support && !dev->in_reset) 2219 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2220 2221 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2222 dev->needs_dac = 1; 2223 dev->dac_support = 0; 2224 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2225 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2226 if (!dev->in_reset) 2227 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2228 dev->name, dev->id); 2229 dev->dac_support = 1; 2230 } 2231 2232 if(dacmode != -1) { 2233 dev->dac_support = (dacmode!=0); 2234 } 2235 2236 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2237 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2238 & AAC_QUIRK_SCSI_32)) { 2239 dev->nondasd_support = 0; 2240 dev->jbod = 0; 2241 expose_physicals = 0; 2242 } 2243 2244 if (dev->dac_support) { 2245 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64))) { 2246 if (!dev->in_reset) 2247 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2248 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32))) { 2249 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2250 dev->dac_support = 0; 2251 } else { 2252 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2253 rcode = -ENOMEM; 2254 } 2255 } 2256 /* 2257 * Deal with configuring for the individualized limits of each packet 2258 * interface. 2259 */ 2260 dev->a_ops.adapter_scsi = (dev->dac_support) 2261 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2262 ? aac_scsi_32_64 2263 : aac_scsi_64) 2264 : aac_scsi_32; 2265 if (dev->raw_io_interface) { 2266 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2267 ? aac_bounds_64 2268 : aac_bounds_32; 2269 dev->a_ops.adapter_read = aac_read_raw_io; 2270 dev->a_ops.adapter_write = aac_write_raw_io; 2271 } else { 2272 dev->a_ops.adapter_bounds = aac_bounds_32; 2273 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2274 sizeof(struct aac_fibhdr) - 2275 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2276 sizeof(struct sgentry); 2277 if (dev->dac_support) { 2278 dev->a_ops.adapter_read = aac_read_block64; 2279 dev->a_ops.adapter_write = aac_write_block64; 2280 /* 2281 * 38 scatter gather elements 2282 */ 2283 dev->scsi_host_ptr->sg_tablesize = 2284 (dev->max_fib_size - 2285 sizeof(struct aac_fibhdr) - 2286 sizeof(struct aac_write64) + 2287 sizeof(struct sgentry64)) / 2288 sizeof(struct sgentry64); 2289 } else { 2290 dev->a_ops.adapter_read = aac_read_block; 2291 dev->a_ops.adapter_write = aac_write_block; 2292 } 2293 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2294 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2295 /* 2296 * Worst case size that could cause sg overflow when 2297 * we break up SG elements that are larger than 64KB. 2298 * Would be nice if we could tell the SCSI layer what 2299 * the maximum SG element size can be. Worst case is 2300 * (sg_tablesize-1) 4KB elements with one 64KB 2301 * element. 2302 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2303 */ 2304 dev->scsi_host_ptr->max_sectors = 2305 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2306 } 2307 } 2308 if (!dev->sync_mode && dev->sa_firmware && 2309 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2310 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2311 HBA_MAX_SG_SEPARATE; 2312 2313 /* FIB should be freed only after getting the response from the F/W */ 2314 if (rcode != -ERESTARTSYS) { 2315 aac_fib_complete(fibptr); 2316 aac_fib_free(fibptr); 2317 } 2318 2319 return rcode; 2320 } 2321 2322 2323 static void io_callback(void *context, struct fib * fibptr) 2324 { 2325 struct aac_dev *dev; 2326 struct aac_read_reply *readreply; 2327 struct scsi_cmnd *scsicmd; 2328 u32 cid; 2329 2330 scsicmd = (struct scsi_cmnd *) context; 2331 2332 if (!aac_valid_context(scsicmd, fibptr)) 2333 return; 2334 2335 dev = fibptr->dev; 2336 cid = scmd_id(scsicmd); 2337 2338 if (nblank(dprintk(x))) { 2339 u64 lba; 2340 switch (scsicmd->cmnd[0]) { 2341 case WRITE_6: 2342 case READ_6: 2343 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2344 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2345 break; 2346 case WRITE_16: 2347 case READ_16: 2348 lba = ((u64)scsicmd->cmnd[2] << 56) | 2349 ((u64)scsicmd->cmnd[3] << 48) | 2350 ((u64)scsicmd->cmnd[4] << 40) | 2351 ((u64)scsicmd->cmnd[5] << 32) | 2352 ((u64)scsicmd->cmnd[6] << 24) | 2353 (scsicmd->cmnd[7] << 16) | 2354 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2355 break; 2356 case WRITE_12: 2357 case READ_12: 2358 lba = ((u64)scsicmd->cmnd[2] << 24) | 2359 (scsicmd->cmnd[3] << 16) | 2360 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2361 break; 2362 default: 2363 lba = ((u64)scsicmd->cmnd[2] << 24) | 2364 (scsicmd->cmnd[3] << 16) | 2365 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2366 break; 2367 } 2368 printk(KERN_DEBUG 2369 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2370 smp_processor_id(), (unsigned long long)lba, jiffies); 2371 } 2372 2373 BUG_ON(fibptr == NULL); 2374 2375 scsi_dma_unmap(scsicmd); 2376 2377 readreply = (struct aac_read_reply *)fib_data(fibptr); 2378 switch (le32_to_cpu(readreply->status)) { 2379 case ST_OK: 2380 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2381 SAM_STAT_GOOD; 2382 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2383 break; 2384 case ST_NOT_READY: 2385 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2386 SAM_STAT_CHECK_CONDITION; 2387 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2388 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2389 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2390 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2391 SCSI_SENSE_BUFFERSIZE)); 2392 break; 2393 case ST_MEDERR: 2394 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2395 SAM_STAT_CHECK_CONDITION; 2396 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2397 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2398 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2399 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2400 SCSI_SENSE_BUFFERSIZE)); 2401 break; 2402 default: 2403 #ifdef AAC_DETAILED_STATUS_INFO 2404 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2405 le32_to_cpu(readreply->status)); 2406 #endif 2407 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2408 SAM_STAT_CHECK_CONDITION; 2409 set_sense(&dev->fsa_dev[cid].sense_data, 2410 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2411 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2412 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2413 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2414 SCSI_SENSE_BUFFERSIZE)); 2415 break; 2416 } 2417 aac_fib_complete(fibptr); 2418 2419 scsicmd->scsi_done(scsicmd); 2420 } 2421 2422 static int aac_read(struct scsi_cmnd * scsicmd) 2423 { 2424 u64 lba; 2425 u32 count; 2426 int status; 2427 struct aac_dev *dev; 2428 struct fib * cmd_fibcontext; 2429 int cid; 2430 2431 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2432 /* 2433 * Get block address and transfer length 2434 */ 2435 switch (scsicmd->cmnd[0]) { 2436 case READ_6: 2437 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2438 2439 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2440 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2441 count = scsicmd->cmnd[4]; 2442 2443 if (count == 0) 2444 count = 256; 2445 break; 2446 case READ_16: 2447 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2448 2449 lba = ((u64)scsicmd->cmnd[2] << 56) | 2450 ((u64)scsicmd->cmnd[3] << 48) | 2451 ((u64)scsicmd->cmnd[4] << 40) | 2452 ((u64)scsicmd->cmnd[5] << 32) | 2453 ((u64)scsicmd->cmnd[6] << 24) | 2454 (scsicmd->cmnd[7] << 16) | 2455 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2456 count = (scsicmd->cmnd[10] << 24) | 2457 (scsicmd->cmnd[11] << 16) | 2458 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2459 break; 2460 case READ_12: 2461 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2462 2463 lba = ((u64)scsicmd->cmnd[2] << 24) | 2464 (scsicmd->cmnd[3] << 16) | 2465 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2466 count = (scsicmd->cmnd[6] << 24) | 2467 (scsicmd->cmnd[7] << 16) | 2468 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2469 break; 2470 default: 2471 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2472 2473 lba = ((u64)scsicmd->cmnd[2] << 24) | 2474 (scsicmd->cmnd[3] << 16) | 2475 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2476 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2477 break; 2478 } 2479 2480 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2481 cid = scmd_id(scsicmd); 2482 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2483 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2484 SAM_STAT_CHECK_CONDITION; 2485 set_sense(&dev->fsa_dev[cid].sense_data, 2486 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2487 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2488 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2489 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2490 SCSI_SENSE_BUFFERSIZE)); 2491 scsicmd->scsi_done(scsicmd); 2492 return 1; 2493 } 2494 2495 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2496 smp_processor_id(), (unsigned long long)lba, jiffies)); 2497 if (aac_adapter_bounds(dev,scsicmd,lba)) 2498 return 0; 2499 /* 2500 * Alocate and initialize a Fib 2501 */ 2502 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2503 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2504 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2505 2506 /* 2507 * Check that the command queued to the controller 2508 */ 2509 if (status == -EINPROGRESS) 2510 return 0; 2511 2512 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2513 /* 2514 * For some reason, the Fib didn't queue, return QUEUE_FULL 2515 */ 2516 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2517 scsicmd->scsi_done(scsicmd); 2518 aac_fib_complete(cmd_fibcontext); 2519 aac_fib_free(cmd_fibcontext); 2520 return 0; 2521 } 2522 2523 static int aac_write(struct scsi_cmnd * scsicmd) 2524 { 2525 u64 lba; 2526 u32 count; 2527 int fua; 2528 int status; 2529 struct aac_dev *dev; 2530 struct fib * cmd_fibcontext; 2531 int cid; 2532 2533 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2534 /* 2535 * Get block address and transfer length 2536 */ 2537 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2538 { 2539 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2540 count = scsicmd->cmnd[4]; 2541 if (count == 0) 2542 count = 256; 2543 fua = 0; 2544 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2545 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2546 2547 lba = ((u64)scsicmd->cmnd[2] << 56) | 2548 ((u64)scsicmd->cmnd[3] << 48) | 2549 ((u64)scsicmd->cmnd[4] << 40) | 2550 ((u64)scsicmd->cmnd[5] << 32) | 2551 ((u64)scsicmd->cmnd[6] << 24) | 2552 (scsicmd->cmnd[7] << 16) | 2553 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2554 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2555 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2556 fua = scsicmd->cmnd[1] & 0x8; 2557 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2558 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2559 2560 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2561 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2562 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2563 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2564 fua = scsicmd->cmnd[1] & 0x8; 2565 } else { 2566 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2567 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2568 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2569 fua = scsicmd->cmnd[1] & 0x8; 2570 } 2571 2572 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2573 cid = scmd_id(scsicmd); 2574 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2575 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2576 SAM_STAT_CHECK_CONDITION; 2577 set_sense(&dev->fsa_dev[cid].sense_data, 2578 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2579 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2580 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2581 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2582 SCSI_SENSE_BUFFERSIZE)); 2583 scsicmd->scsi_done(scsicmd); 2584 return 1; 2585 } 2586 2587 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2588 smp_processor_id(), (unsigned long long)lba, jiffies)); 2589 if (aac_adapter_bounds(dev,scsicmd,lba)) 2590 return 0; 2591 /* 2592 * Allocate and initialize a Fib then setup a BlockWrite command 2593 */ 2594 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2595 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2596 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2597 2598 /* 2599 * Check that the command queued to the controller 2600 */ 2601 if (status == -EINPROGRESS) 2602 return 0; 2603 2604 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2605 /* 2606 * For some reason, the Fib didn't queue, return QUEUE_FULL 2607 */ 2608 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2609 scsicmd->scsi_done(scsicmd); 2610 2611 aac_fib_complete(cmd_fibcontext); 2612 aac_fib_free(cmd_fibcontext); 2613 return 0; 2614 } 2615 2616 static void synchronize_callback(void *context, struct fib *fibptr) 2617 { 2618 struct aac_synchronize_reply *synchronizereply; 2619 struct scsi_cmnd *cmd; 2620 2621 cmd = context; 2622 2623 if (!aac_valid_context(cmd, fibptr)) 2624 return; 2625 2626 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2627 smp_processor_id(), jiffies)); 2628 BUG_ON(fibptr == NULL); 2629 2630 2631 synchronizereply = fib_data(fibptr); 2632 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2633 cmd->result = DID_OK << 16 | 2634 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2635 else { 2636 struct scsi_device *sdev = cmd->device; 2637 struct aac_dev *dev = fibptr->dev; 2638 u32 cid = sdev_id(sdev); 2639 printk(KERN_WARNING 2640 "synchronize_callback: synchronize failed, status = %d\n", 2641 le32_to_cpu(synchronizereply->status)); 2642 cmd->result = DID_OK << 16 | 2643 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2644 set_sense(&dev->fsa_dev[cid].sense_data, 2645 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2646 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2647 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2648 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2649 SCSI_SENSE_BUFFERSIZE)); 2650 } 2651 2652 aac_fib_complete(fibptr); 2653 aac_fib_free(fibptr); 2654 cmd->scsi_done(cmd); 2655 } 2656 2657 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2658 { 2659 int status; 2660 struct fib *cmd_fibcontext; 2661 struct aac_synchronize *synchronizecmd; 2662 struct scsi_cmnd *cmd; 2663 struct scsi_device *sdev = scsicmd->device; 2664 int active = 0; 2665 struct aac_dev *aac; 2666 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | 2667 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2668 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2669 unsigned long flags; 2670 2671 /* 2672 * Wait for all outstanding queued commands to complete to this 2673 * specific target (block). 2674 */ 2675 spin_lock_irqsave(&sdev->list_lock, flags); 2676 list_for_each_entry(cmd, &sdev->cmd_list, list) 2677 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) { 2678 u64 cmnd_lba; 2679 u32 cmnd_count; 2680 2681 if (cmd->cmnd[0] == WRITE_6) { 2682 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) | 2683 (cmd->cmnd[2] << 8) | 2684 cmd->cmnd[3]; 2685 cmnd_count = cmd->cmnd[4]; 2686 if (cmnd_count == 0) 2687 cmnd_count = 256; 2688 } else if (cmd->cmnd[0] == WRITE_16) { 2689 cmnd_lba = ((u64)cmd->cmnd[2] << 56) | 2690 ((u64)cmd->cmnd[3] << 48) | 2691 ((u64)cmd->cmnd[4] << 40) | 2692 ((u64)cmd->cmnd[5] << 32) | 2693 ((u64)cmd->cmnd[6] << 24) | 2694 (cmd->cmnd[7] << 16) | 2695 (cmd->cmnd[8] << 8) | 2696 cmd->cmnd[9]; 2697 cmnd_count = (cmd->cmnd[10] << 24) | 2698 (cmd->cmnd[11] << 16) | 2699 (cmd->cmnd[12] << 8) | 2700 cmd->cmnd[13]; 2701 } else if (cmd->cmnd[0] == WRITE_12) { 2702 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2703 (cmd->cmnd[3] << 16) | 2704 (cmd->cmnd[4] << 8) | 2705 cmd->cmnd[5]; 2706 cmnd_count = (cmd->cmnd[6] << 24) | 2707 (cmd->cmnd[7] << 16) | 2708 (cmd->cmnd[8] << 8) | 2709 cmd->cmnd[9]; 2710 } else if (cmd->cmnd[0] == WRITE_10) { 2711 cmnd_lba = ((u64)cmd->cmnd[2] << 24) | 2712 (cmd->cmnd[3] << 16) | 2713 (cmd->cmnd[4] << 8) | 2714 cmd->cmnd[5]; 2715 cmnd_count = (cmd->cmnd[7] << 8) | 2716 cmd->cmnd[8]; 2717 } else 2718 continue; 2719 if (((cmnd_lba + cmnd_count) < lba) || 2720 (count && ((lba + count) < cmnd_lba))) 2721 continue; 2722 ++active; 2723 break; 2724 } 2725 2726 spin_unlock_irqrestore(&sdev->list_lock, flags); 2727 2728 /* 2729 * Yield the processor (requeue for later) 2730 */ 2731 if (active) 2732 return SCSI_MLQUEUE_DEVICE_BUSY; 2733 2734 aac = (struct aac_dev *)sdev->host->hostdata; 2735 if (aac->in_reset) 2736 return SCSI_MLQUEUE_HOST_BUSY; 2737 2738 /* 2739 * Allocate and initialize a Fib 2740 */ 2741 if (!(cmd_fibcontext = aac_fib_alloc(aac))) 2742 return SCSI_MLQUEUE_HOST_BUSY; 2743 2744 aac_fib_init(cmd_fibcontext); 2745 2746 synchronizecmd = fib_data(cmd_fibcontext); 2747 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2748 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2749 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2750 synchronizecmd->count = 2751 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2752 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2753 2754 /* 2755 * Now send the Fib to the adapter 2756 */ 2757 status = aac_fib_send(ContainerCommand, 2758 cmd_fibcontext, 2759 sizeof(struct aac_synchronize), 2760 FsaNormal, 2761 0, 1, 2762 (fib_callback)synchronize_callback, 2763 (void *)scsicmd); 2764 2765 /* 2766 * Check that the command queued to the controller 2767 */ 2768 if (status == -EINPROGRESS) 2769 return 0; 2770 2771 printk(KERN_WARNING 2772 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2773 aac_fib_complete(cmd_fibcontext); 2774 aac_fib_free(cmd_fibcontext); 2775 return SCSI_MLQUEUE_HOST_BUSY; 2776 } 2777 2778 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2779 { 2780 struct scsi_cmnd *scsicmd = context; 2781 2782 if (!aac_valid_context(scsicmd, fibptr)) 2783 return; 2784 2785 BUG_ON(fibptr == NULL); 2786 2787 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2788 2789 aac_fib_complete(fibptr); 2790 aac_fib_free(fibptr); 2791 scsicmd->scsi_done(scsicmd); 2792 } 2793 2794 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2795 { 2796 int status; 2797 struct fib *cmd_fibcontext; 2798 struct aac_power_management *pmcmd; 2799 struct scsi_device *sdev = scsicmd->device; 2800 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2801 2802 if (!(aac->supplement_adapter_info.supported_options2 & 2803 AAC_OPTION_POWER_MANAGEMENT)) { 2804 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2805 SAM_STAT_GOOD; 2806 scsicmd->scsi_done(scsicmd); 2807 return 0; 2808 } 2809 2810 if (aac->in_reset) 2811 return SCSI_MLQUEUE_HOST_BUSY; 2812 2813 /* 2814 * Allocate and initialize a Fib 2815 */ 2816 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2817 2818 aac_fib_init(cmd_fibcontext); 2819 2820 pmcmd = fib_data(cmd_fibcontext); 2821 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2822 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2823 /* Eject bit ignored, not relevant */ 2824 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2825 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2826 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2827 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2828 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2829 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2830 2831 /* 2832 * Now send the Fib to the adapter 2833 */ 2834 status = aac_fib_send(ContainerCommand, 2835 cmd_fibcontext, 2836 sizeof(struct aac_power_management), 2837 FsaNormal, 2838 0, 1, 2839 (fib_callback)aac_start_stop_callback, 2840 (void *)scsicmd); 2841 2842 /* 2843 * Check that the command queued to the controller 2844 */ 2845 if (status == -EINPROGRESS) 2846 return 0; 2847 2848 aac_fib_complete(cmd_fibcontext); 2849 aac_fib_free(cmd_fibcontext); 2850 return SCSI_MLQUEUE_HOST_BUSY; 2851 } 2852 2853 /** 2854 * aac_scsi_cmd() - Process SCSI command 2855 * @scsicmd: SCSI command block 2856 * 2857 * Emulate a SCSI command and queue the required request for the 2858 * aacraid firmware. 2859 */ 2860 2861 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2862 { 2863 u32 cid, bus; 2864 struct Scsi_Host *host = scsicmd->device->host; 2865 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2866 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2867 2868 if (fsa_dev_ptr == NULL) 2869 return -1; 2870 /* 2871 * If the bus, id or lun is out of range, return fail 2872 * Test does not apply to ID 16, the pseudo id for the controller 2873 * itself. 2874 */ 2875 cid = scmd_id(scsicmd); 2876 if (cid != host->this_id) { 2877 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2878 if((cid >= dev->maximum_num_containers) || 2879 (scsicmd->device->lun != 0)) { 2880 scsicmd->result = DID_NO_CONNECT << 16; 2881 goto scsi_done_ret; 2882 } 2883 2884 /* 2885 * If the target container doesn't exist, it may have 2886 * been newly created 2887 */ 2888 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2889 (fsa_dev_ptr[cid].sense_data.sense_key == 2890 NOT_READY)) { 2891 switch (scsicmd->cmnd[0]) { 2892 case SERVICE_ACTION_IN_16: 2893 if (!(dev->raw_io_interface) || 2894 !(dev->raw_io_64) || 2895 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2896 break; 2897 case INQUIRY: 2898 case READ_CAPACITY: 2899 case TEST_UNIT_READY: 2900 if (dev->in_reset) 2901 return -1; 2902 return _aac_probe_container(scsicmd, 2903 aac_probe_container_callback2); 2904 default: 2905 break; 2906 } 2907 } 2908 } else { /* check for physical non-dasd devices */ 2909 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2910 2911 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2912 dev->hba_map[bus][cid].devtype 2913 == AAC_DEVTYPE_NATIVE_RAW) { 2914 if (dev->in_reset) 2915 return -1; 2916 return aac_send_hba_fib(scsicmd); 2917 } else if (dev->nondasd_support || expose_physicals || 2918 dev->jbod) { 2919 if (dev->in_reset) 2920 return -1; 2921 return aac_send_srb_fib(scsicmd); 2922 } else { 2923 scsicmd->result = DID_NO_CONNECT << 16; 2924 goto scsi_done_ret; 2925 } 2926 } 2927 } 2928 /* 2929 * else Command for the controller itself 2930 */ 2931 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2932 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2933 { 2934 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2935 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2936 set_sense(&dev->fsa_dev[cid].sense_data, 2937 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2938 ASENCODE_INVALID_COMMAND, 0, 0); 2939 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2940 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2941 SCSI_SENSE_BUFFERSIZE)); 2942 goto scsi_done_ret; 2943 } 2944 2945 switch (scsicmd->cmnd[0]) { 2946 case READ_6: 2947 case READ_10: 2948 case READ_12: 2949 case READ_16: 2950 if (dev->in_reset) 2951 return -1; 2952 return aac_read(scsicmd); 2953 2954 case WRITE_6: 2955 case WRITE_10: 2956 case WRITE_12: 2957 case WRITE_16: 2958 if (dev->in_reset) 2959 return -1; 2960 return aac_write(scsicmd); 2961 2962 case SYNCHRONIZE_CACHE: 2963 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2964 scsicmd->result = AAC_STAT_GOOD; 2965 break; 2966 } 2967 /* Issue FIB to tell Firmware to flush it's cache */ 2968 if ((aac_cache & 6) != 2) 2969 return aac_synchronize(scsicmd); 2970 case INQUIRY: 2971 { 2972 struct inquiry_data inq_data; 2973 2974 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2975 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2976 2977 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2978 char *arr = (char *)&inq_data; 2979 2980 /* EVPD bit set */ 2981 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2982 INQD_PDT_PROC : INQD_PDT_DA; 2983 if (scsicmd->cmnd[2] == 0) { 2984 /* supported vital product data pages */ 2985 arr[3] = 3; 2986 arr[4] = 0x0; 2987 arr[5] = 0x80; 2988 arr[6] = 0x83; 2989 arr[1] = scsicmd->cmnd[2]; 2990 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2991 sizeof(inq_data)); 2992 scsicmd->result = AAC_STAT_GOOD; 2993 } else if (scsicmd->cmnd[2] == 0x80) { 2994 /* unit serial number page */ 2995 arr[3] = setinqserial(dev, &arr[4], 2996 scmd_id(scsicmd)); 2997 arr[1] = scsicmd->cmnd[2]; 2998 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2999 sizeof(inq_data)); 3000 if (aac_wwn != 2) 3001 return aac_get_container_serial( 3002 scsicmd); 3003 scsicmd->result = AAC_STAT_GOOD; 3004 } else if (scsicmd->cmnd[2] == 0x83) { 3005 /* vpd page 0x83 - Device Identification Page */ 3006 char *sno = (char *)&inq_data; 3007 sno[3] = setinqserial(dev, &sno[4], 3008 scmd_id(scsicmd)); 3009 if (aac_wwn != 2) 3010 return aac_get_container_serial( 3011 scsicmd); 3012 scsicmd->result = AAC_STAT_GOOD; 3013 } else { 3014 /* vpd page not implemented */ 3015 scsicmd->result = DID_OK << 16 | 3016 COMMAND_COMPLETE << 8 | 3017 SAM_STAT_CHECK_CONDITION; 3018 set_sense(&dev->fsa_dev[cid].sense_data, 3019 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 3020 ASENCODE_NO_SENSE, 7, 2); 3021 memcpy(scsicmd->sense_buffer, 3022 &dev->fsa_dev[cid].sense_data, 3023 min_t(size_t, 3024 sizeof(dev->fsa_dev[cid].sense_data), 3025 SCSI_SENSE_BUFFERSIZE)); 3026 } 3027 break; 3028 } 3029 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 3030 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 3031 inq_data.inqd_len = 31; 3032 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 3033 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 3034 /* 3035 * Set the Vendor, Product, and Revision Level 3036 * see: <vendor>.c i.e. aac.c 3037 */ 3038 if (cid == host->this_id) { 3039 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 3040 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 3041 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 3042 sizeof(inq_data)); 3043 scsicmd->result = AAC_STAT_GOOD; 3044 break; 3045 } 3046 if (dev->in_reset) 3047 return -1; 3048 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 3049 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 3050 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 3051 return aac_get_container_name(scsicmd); 3052 } 3053 case SERVICE_ACTION_IN_16: 3054 if (!(dev->raw_io_interface) || 3055 !(dev->raw_io_64) || 3056 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 3057 break; 3058 { 3059 u64 capacity; 3060 char cp[13]; 3061 unsigned int alloc_len; 3062 3063 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 3064 capacity = fsa_dev_ptr[cid].size - 1; 3065 cp[0] = (capacity >> 56) & 0xff; 3066 cp[1] = (capacity >> 48) & 0xff; 3067 cp[2] = (capacity >> 40) & 0xff; 3068 cp[3] = (capacity >> 32) & 0xff; 3069 cp[4] = (capacity >> 24) & 0xff; 3070 cp[5] = (capacity >> 16) & 0xff; 3071 cp[6] = (capacity >> 8) & 0xff; 3072 cp[7] = (capacity >> 0) & 0xff; 3073 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3074 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3075 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3076 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3077 cp[12] = 0; 3078 3079 alloc_len = ((scsicmd->cmnd[10] << 24) 3080 + (scsicmd->cmnd[11] << 16) 3081 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3082 3083 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3084 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3085 if (alloc_len < scsi_bufflen(scsicmd)) 3086 scsi_set_resid(scsicmd, 3087 scsi_bufflen(scsicmd) - alloc_len); 3088 3089 /* Do not cache partition table for arrays */ 3090 scsicmd->device->removable = 1; 3091 3092 scsicmd->result = AAC_STAT_GOOD; 3093 break; 3094 } 3095 3096 case READ_CAPACITY: 3097 { 3098 u32 capacity; 3099 char cp[8]; 3100 3101 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3102 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3103 capacity = fsa_dev_ptr[cid].size - 1; 3104 else 3105 capacity = (u32)-1; 3106 3107 cp[0] = (capacity >> 24) & 0xff; 3108 cp[1] = (capacity >> 16) & 0xff; 3109 cp[2] = (capacity >> 8) & 0xff; 3110 cp[3] = (capacity >> 0) & 0xff; 3111 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3112 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3113 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3114 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3115 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3116 /* Do not cache partition table for arrays */ 3117 scsicmd->device->removable = 1; 3118 scsicmd->result = AAC_STAT_GOOD; 3119 break; 3120 } 3121 3122 case MODE_SENSE: 3123 { 3124 int mode_buf_length = 4; 3125 u32 capacity; 3126 aac_modep_data mpd; 3127 3128 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3129 capacity = fsa_dev_ptr[cid].size - 1; 3130 else 3131 capacity = (u32)-1; 3132 3133 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3134 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3135 3136 /* Mode data length */ 3137 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3138 /* Medium type - default */ 3139 mpd.hd.med_type = 0; 3140 /* Device-specific param, 3141 bit 8: 0/1 = write enabled/protected 3142 bit 4: 0/1 = FUA enabled */ 3143 mpd.hd.dev_par = 0; 3144 3145 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3146 mpd.hd.dev_par = 0x10; 3147 if (scsicmd->cmnd[1] & 0x8) 3148 mpd.hd.bd_length = 0; /* Block descriptor length */ 3149 else { 3150 mpd.hd.bd_length = sizeof(mpd.bd); 3151 mpd.hd.data_length += mpd.hd.bd_length; 3152 mpd.bd.block_length[0] = 3153 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3154 mpd.bd.block_length[1] = 3155 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3156 mpd.bd.block_length[2] = 3157 fsa_dev_ptr[cid].block_size & 0xff; 3158 3159 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3160 if (scsicmd->cmnd[2] == 0x1C) { 3161 /* page length */ 3162 mpd.mpc_buf[1] = 0xa; 3163 /* Mode data length */ 3164 mpd.hd.data_length = 23; 3165 } else { 3166 /* Mode data length */ 3167 mpd.hd.data_length = 15; 3168 } 3169 3170 if (capacity > 0xffffff) { 3171 mpd.bd.block_count[0] = 0xff; 3172 mpd.bd.block_count[1] = 0xff; 3173 mpd.bd.block_count[2] = 0xff; 3174 } else { 3175 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3176 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3177 mpd.bd.block_count[2] = capacity & 0xff; 3178 } 3179 } 3180 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3181 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3182 mpd.hd.data_length += 3; 3183 mpd.mpc_buf[0] = 8; 3184 mpd.mpc_buf[1] = 1; 3185 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3186 ? 0 : 0x04; /* WCE */ 3187 mode_buf_length = sizeof(mpd); 3188 } 3189 3190 if (mode_buf_length > scsicmd->cmnd[4]) 3191 mode_buf_length = scsicmd->cmnd[4]; 3192 else 3193 mode_buf_length = sizeof(mpd); 3194 scsi_sg_copy_from_buffer(scsicmd, 3195 (char *)&mpd, 3196 mode_buf_length); 3197 scsicmd->result = AAC_STAT_GOOD; 3198 break; 3199 } 3200 case MODE_SENSE_10: 3201 { 3202 u32 capacity; 3203 int mode_buf_length = 8; 3204 aac_modep10_data mpd10; 3205 3206 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3207 capacity = fsa_dev_ptr[cid].size - 1; 3208 else 3209 capacity = (u32)-1; 3210 3211 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3212 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3213 /* Mode data length (MSB) */ 3214 mpd10.hd.data_length[0] = 0; 3215 /* Mode data length (LSB) */ 3216 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3217 /* Medium type - default */ 3218 mpd10.hd.med_type = 0; 3219 /* Device-specific param, 3220 bit 8: 0/1 = write enabled/protected 3221 bit 4: 0/1 = FUA enabled */ 3222 mpd10.hd.dev_par = 0; 3223 3224 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3225 mpd10.hd.dev_par = 0x10; 3226 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3227 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3228 if (scsicmd->cmnd[1] & 0x8) { 3229 /* Block descriptor length (MSB) */ 3230 mpd10.hd.bd_length[0] = 0; 3231 /* Block descriptor length (LSB) */ 3232 mpd10.hd.bd_length[1] = 0; 3233 } else { 3234 mpd10.hd.bd_length[0] = 0; 3235 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3236 3237 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3238 3239 mpd10.bd.block_length[0] = 3240 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3241 mpd10.bd.block_length[1] = 3242 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3243 mpd10.bd.block_length[2] = 3244 fsa_dev_ptr[cid].block_size & 0xff; 3245 3246 if (capacity > 0xffffff) { 3247 mpd10.bd.block_count[0] = 0xff; 3248 mpd10.bd.block_count[1] = 0xff; 3249 mpd10.bd.block_count[2] = 0xff; 3250 } else { 3251 mpd10.bd.block_count[0] = 3252 (capacity >> 16) & 0xff; 3253 mpd10.bd.block_count[1] = 3254 (capacity >> 8) & 0xff; 3255 mpd10.bd.block_count[2] = 3256 capacity & 0xff; 3257 } 3258 } 3259 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3260 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3261 mpd10.hd.data_length[1] += 3; 3262 mpd10.mpc_buf[0] = 8; 3263 mpd10.mpc_buf[1] = 1; 3264 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3265 ? 0 : 0x04; /* WCE */ 3266 mode_buf_length = sizeof(mpd10); 3267 if (mode_buf_length > scsicmd->cmnd[8]) 3268 mode_buf_length = scsicmd->cmnd[8]; 3269 } 3270 scsi_sg_copy_from_buffer(scsicmd, 3271 (char *)&mpd10, 3272 mode_buf_length); 3273 3274 scsicmd->result = AAC_STAT_GOOD; 3275 break; 3276 } 3277 case REQUEST_SENSE: 3278 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3279 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3280 sizeof(struct sense_data)); 3281 memset(&dev->fsa_dev[cid].sense_data, 0, 3282 sizeof(struct sense_data)); 3283 scsicmd->result = AAC_STAT_GOOD; 3284 break; 3285 3286 case ALLOW_MEDIUM_REMOVAL: 3287 dprintk((KERN_DEBUG "LOCK command.\n")); 3288 if (scsicmd->cmnd[4]) 3289 fsa_dev_ptr[cid].locked = 1; 3290 else 3291 fsa_dev_ptr[cid].locked = 0; 3292 3293 scsicmd->result = AAC_STAT_GOOD; 3294 break; 3295 /* 3296 * These commands are all No-Ops 3297 */ 3298 case TEST_UNIT_READY: 3299 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3300 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3301 SAM_STAT_CHECK_CONDITION; 3302 set_sense(&dev->fsa_dev[cid].sense_data, 3303 NOT_READY, SENCODE_BECOMING_READY, 3304 ASENCODE_BECOMING_READY, 0, 0); 3305 memcpy(scsicmd->sense_buffer, 3306 &dev->fsa_dev[cid].sense_data, 3307 min_t(size_t, 3308 sizeof(dev->fsa_dev[cid].sense_data), 3309 SCSI_SENSE_BUFFERSIZE)); 3310 break; 3311 } 3312 case RESERVE: 3313 case RELEASE: 3314 case REZERO_UNIT: 3315 case REASSIGN_BLOCKS: 3316 case SEEK_10: 3317 scsicmd->result = AAC_STAT_GOOD; 3318 break; 3319 3320 case START_STOP: 3321 return aac_start_stop(scsicmd); 3322 3323 /* FALLTHRU */ 3324 default: 3325 /* 3326 * Unhandled commands 3327 */ 3328 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3329 scsicmd->cmnd[0])); 3330 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3331 SAM_STAT_CHECK_CONDITION; 3332 set_sense(&dev->fsa_dev[cid].sense_data, 3333 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3334 ASENCODE_INVALID_COMMAND, 0, 0); 3335 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3336 min_t(size_t, 3337 sizeof(dev->fsa_dev[cid].sense_data), 3338 SCSI_SENSE_BUFFERSIZE)); 3339 } 3340 3341 scsi_done_ret: 3342 3343 scsicmd->scsi_done(scsicmd); 3344 return 0; 3345 } 3346 3347 static int query_disk(struct aac_dev *dev, void __user *arg) 3348 { 3349 struct aac_query_disk qd; 3350 struct fsa_dev_info *fsa_dev_ptr; 3351 3352 fsa_dev_ptr = dev->fsa_dev; 3353 if (!fsa_dev_ptr) 3354 return -EBUSY; 3355 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3356 return -EFAULT; 3357 if (qd.cnum == -1) { 3358 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3359 return -EINVAL; 3360 qd.cnum = qd.id; 3361 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3362 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3363 return -EINVAL; 3364 qd.instance = dev->scsi_host_ptr->host_no; 3365 qd.bus = 0; 3366 qd.id = CONTAINER_TO_ID(qd.cnum); 3367 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3368 } 3369 else return -EINVAL; 3370 3371 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3372 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3373 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3374 3375 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3376 qd.unmapped = 1; 3377 else 3378 qd.unmapped = 0; 3379 3380 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3381 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3382 3383 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3384 return -EFAULT; 3385 return 0; 3386 } 3387 3388 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3389 { 3390 struct aac_delete_disk dd; 3391 struct fsa_dev_info *fsa_dev_ptr; 3392 3393 fsa_dev_ptr = dev->fsa_dev; 3394 if (!fsa_dev_ptr) 3395 return -EBUSY; 3396 3397 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3398 return -EFAULT; 3399 3400 if (dd.cnum >= dev->maximum_num_containers) 3401 return -EINVAL; 3402 /* 3403 * Mark this container as being deleted. 3404 */ 3405 fsa_dev_ptr[dd.cnum].deleted = 1; 3406 /* 3407 * Mark the container as no longer valid 3408 */ 3409 fsa_dev_ptr[dd.cnum].valid = 0; 3410 return 0; 3411 } 3412 3413 static int delete_disk(struct aac_dev *dev, void __user *arg) 3414 { 3415 struct aac_delete_disk dd; 3416 struct fsa_dev_info *fsa_dev_ptr; 3417 3418 fsa_dev_ptr = dev->fsa_dev; 3419 if (!fsa_dev_ptr) 3420 return -EBUSY; 3421 3422 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3423 return -EFAULT; 3424 3425 if (dd.cnum >= dev->maximum_num_containers) 3426 return -EINVAL; 3427 /* 3428 * If the container is locked, it can not be deleted by the API. 3429 */ 3430 if (fsa_dev_ptr[dd.cnum].locked) 3431 return -EBUSY; 3432 else { 3433 /* 3434 * Mark the container as no longer being valid. 3435 */ 3436 fsa_dev_ptr[dd.cnum].valid = 0; 3437 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3438 return 0; 3439 } 3440 } 3441 3442 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg) 3443 { 3444 switch (cmd) { 3445 case FSACTL_QUERY_DISK: 3446 return query_disk(dev, arg); 3447 case FSACTL_DELETE_DISK: 3448 return delete_disk(dev, arg); 3449 case FSACTL_FORCE_DELETE_DISK: 3450 return force_delete_disk(dev, arg); 3451 case FSACTL_GET_CONTAINERS: 3452 return aac_get_containers(dev); 3453 default: 3454 return -ENOTTY; 3455 } 3456 } 3457 3458 /** 3459 * 3460 * aac_srb_callback 3461 * @context: the context set in the fib - here it is scsi cmd 3462 * @fibptr: pointer to the fib 3463 * 3464 * Handles the completion of a scsi command to a non dasd device 3465 * 3466 */ 3467 3468 static void aac_srb_callback(void *context, struct fib * fibptr) 3469 { 3470 struct aac_dev *dev; 3471 struct aac_srb_reply *srbreply; 3472 struct scsi_cmnd *scsicmd; 3473 3474 scsicmd = (struct scsi_cmnd *) context; 3475 3476 if (!aac_valid_context(scsicmd, fibptr)) 3477 return; 3478 3479 BUG_ON(fibptr == NULL); 3480 3481 dev = fibptr->dev; 3482 3483 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3484 3485 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3486 3487 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3488 /* fast response */ 3489 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3490 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3491 } else { 3492 /* 3493 * Calculate resid for sg 3494 */ 3495 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3496 - le32_to_cpu(srbreply->data_xfer_length)); 3497 } 3498 3499 3500 scsi_dma_unmap(scsicmd); 3501 3502 /* expose physical device if expose_physicald flag is on */ 3503 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3504 && expose_physicals > 0) 3505 aac_expose_phy_device(scsicmd); 3506 3507 /* 3508 * First check the fib status 3509 */ 3510 3511 if (le32_to_cpu(srbreply->status) != ST_OK) { 3512 int len; 3513 3514 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3515 le32_to_cpu(srbreply->status)); 3516 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3517 SCSI_SENSE_BUFFERSIZE); 3518 scsicmd->result = DID_ERROR << 16 3519 | COMMAND_COMPLETE << 8 3520 | SAM_STAT_CHECK_CONDITION; 3521 memcpy(scsicmd->sense_buffer, 3522 srbreply->sense_data, len); 3523 } 3524 3525 /* 3526 * Next check the srb status 3527 */ 3528 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3529 case SRB_STATUS_ERROR_RECOVERY: 3530 case SRB_STATUS_PENDING: 3531 case SRB_STATUS_SUCCESS: 3532 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3533 break; 3534 case SRB_STATUS_DATA_OVERRUN: 3535 switch (scsicmd->cmnd[0]) { 3536 case READ_6: 3537 case WRITE_6: 3538 case READ_10: 3539 case WRITE_10: 3540 case READ_12: 3541 case WRITE_12: 3542 case READ_16: 3543 case WRITE_16: 3544 if (le32_to_cpu(srbreply->data_xfer_length) 3545 < scsicmd->underflow) 3546 pr_warn("aacraid: SCSI CMD underflow\n"); 3547 else 3548 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3549 scsicmd->result = DID_ERROR << 16 3550 | COMMAND_COMPLETE << 8; 3551 break; 3552 case INQUIRY: 3553 scsicmd->result = DID_OK << 16 3554 | COMMAND_COMPLETE << 8; 3555 break; 3556 default: 3557 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3558 break; 3559 } 3560 break; 3561 case SRB_STATUS_ABORTED: 3562 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3563 break; 3564 case SRB_STATUS_ABORT_FAILED: 3565 /* 3566 * Not sure about this one - but assuming the 3567 * hba was trying to abort for some reason 3568 */ 3569 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3570 break; 3571 case SRB_STATUS_PARITY_ERROR: 3572 scsicmd->result = DID_PARITY << 16 3573 | MSG_PARITY_ERROR << 8; 3574 break; 3575 case SRB_STATUS_NO_DEVICE: 3576 case SRB_STATUS_INVALID_PATH_ID: 3577 case SRB_STATUS_INVALID_TARGET_ID: 3578 case SRB_STATUS_INVALID_LUN: 3579 case SRB_STATUS_SELECTION_TIMEOUT: 3580 scsicmd->result = DID_NO_CONNECT << 16 3581 | COMMAND_COMPLETE << 8; 3582 break; 3583 3584 case SRB_STATUS_COMMAND_TIMEOUT: 3585 case SRB_STATUS_TIMEOUT: 3586 scsicmd->result = DID_TIME_OUT << 16 3587 | COMMAND_COMPLETE << 8; 3588 break; 3589 3590 case SRB_STATUS_BUSY: 3591 scsicmd->result = DID_BUS_BUSY << 16 3592 | COMMAND_COMPLETE << 8; 3593 break; 3594 3595 case SRB_STATUS_BUS_RESET: 3596 scsicmd->result = DID_RESET << 16 3597 | COMMAND_COMPLETE << 8; 3598 break; 3599 3600 case SRB_STATUS_MESSAGE_REJECTED: 3601 scsicmd->result = DID_ERROR << 16 3602 | MESSAGE_REJECT << 8; 3603 break; 3604 case SRB_STATUS_REQUEST_FLUSHED: 3605 case SRB_STATUS_ERROR: 3606 case SRB_STATUS_INVALID_REQUEST: 3607 case SRB_STATUS_REQUEST_SENSE_FAILED: 3608 case SRB_STATUS_NO_HBA: 3609 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3610 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3611 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3612 case SRB_STATUS_DELAYED_RETRY: 3613 case SRB_STATUS_BAD_FUNCTION: 3614 case SRB_STATUS_NOT_STARTED: 3615 case SRB_STATUS_NOT_IN_USE: 3616 case SRB_STATUS_FORCE_ABORT: 3617 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3618 default: 3619 #ifdef AAC_DETAILED_STATUS_INFO 3620 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3621 le32_to_cpu(srbreply->srb_status) & 0x3F, 3622 aac_get_status_string( 3623 le32_to_cpu(srbreply->srb_status) & 0x3F), 3624 scsicmd->cmnd[0], 3625 le32_to_cpu(srbreply->scsi_status)); 3626 #endif 3627 /* 3628 * When the CC bit is SET by the host in ATA pass thru CDB, 3629 * driver is supposed to return DID_OK 3630 * 3631 * When the CC bit is RESET by the host, driver should 3632 * return DID_ERROR 3633 */ 3634 if ((scsicmd->cmnd[0] == ATA_12) 3635 || (scsicmd->cmnd[0] == ATA_16)) { 3636 3637 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3638 scsicmd->result = DID_OK << 16 3639 | COMMAND_COMPLETE << 8; 3640 break; 3641 } else { 3642 scsicmd->result = DID_ERROR << 16 3643 | COMMAND_COMPLETE << 8; 3644 break; 3645 } 3646 } else { 3647 scsicmd->result = DID_ERROR << 16 3648 | COMMAND_COMPLETE << 8; 3649 break; 3650 } 3651 } 3652 if (le32_to_cpu(srbreply->scsi_status) 3653 == SAM_STAT_CHECK_CONDITION) { 3654 int len; 3655 3656 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3657 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3658 SCSI_SENSE_BUFFERSIZE); 3659 #ifdef AAC_DETAILED_STATUS_INFO 3660 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3661 le32_to_cpu(srbreply->status), len); 3662 #endif 3663 memcpy(scsicmd->sense_buffer, 3664 srbreply->sense_data, len); 3665 } 3666 3667 /* 3668 * OR in the scsi status (already shifted up a bit) 3669 */ 3670 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3671 3672 aac_fib_complete(fibptr); 3673 scsicmd->scsi_done(scsicmd); 3674 } 3675 3676 static void hba_resp_task_complete(struct aac_dev *dev, 3677 struct scsi_cmnd *scsicmd, 3678 struct aac_hba_resp *err) { 3679 3680 scsicmd->result = err->status; 3681 /* set residual count */ 3682 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3683 3684 switch (err->status) { 3685 case SAM_STAT_GOOD: 3686 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3687 break; 3688 case SAM_STAT_CHECK_CONDITION: 3689 { 3690 int len; 3691 3692 len = min_t(u8, err->sense_response_data_len, 3693 SCSI_SENSE_BUFFERSIZE); 3694 if (len) 3695 memcpy(scsicmd->sense_buffer, 3696 err->sense_response_buf, len); 3697 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3698 break; 3699 } 3700 case SAM_STAT_BUSY: 3701 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3702 break; 3703 case SAM_STAT_TASK_ABORTED: 3704 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3705 break; 3706 case SAM_STAT_RESERVATION_CONFLICT: 3707 case SAM_STAT_TASK_SET_FULL: 3708 default: 3709 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3710 break; 3711 } 3712 } 3713 3714 static void hba_resp_task_failure(struct aac_dev *dev, 3715 struct scsi_cmnd *scsicmd, 3716 struct aac_hba_resp *err) 3717 { 3718 switch (err->status) { 3719 case HBA_RESP_STAT_HBAMODE_DISABLED: 3720 { 3721 u32 bus, cid; 3722 3723 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3724 cid = scmd_id(scsicmd); 3725 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3726 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3727 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3728 } 3729 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3730 break; 3731 } 3732 case HBA_RESP_STAT_IO_ERROR: 3733 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3734 scsicmd->result = DID_OK << 16 | 3735 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3736 break; 3737 case HBA_RESP_STAT_IO_ABORTED: 3738 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3739 break; 3740 case HBA_RESP_STAT_INVALID_DEVICE: 3741 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3742 break; 3743 case HBA_RESP_STAT_UNDERRUN: 3744 /* UNDERRUN is OK */ 3745 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3746 break; 3747 case HBA_RESP_STAT_OVERRUN: 3748 default: 3749 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3750 break; 3751 } 3752 } 3753 3754 /** 3755 * 3756 * aac_hba_callback 3757 * @context: the context set in the fib - here it is scsi cmd 3758 * @fibptr: pointer to the fib 3759 * 3760 * Handles the completion of a native HBA scsi command 3761 * 3762 */ 3763 void aac_hba_callback(void *context, struct fib *fibptr) 3764 { 3765 struct aac_dev *dev; 3766 struct scsi_cmnd *scsicmd; 3767 3768 struct aac_hba_resp *err = 3769 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3770 3771 scsicmd = (struct scsi_cmnd *) context; 3772 3773 if (!aac_valid_context(scsicmd, fibptr)) 3774 return; 3775 3776 WARN_ON(fibptr == NULL); 3777 dev = fibptr->dev; 3778 3779 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3780 scsi_dma_unmap(scsicmd); 3781 3782 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3783 /* fast response */ 3784 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3785 goto out; 3786 } 3787 3788 switch (err->service_response) { 3789 case HBA_RESP_SVCRES_TASK_COMPLETE: 3790 hba_resp_task_complete(dev, scsicmd, err); 3791 break; 3792 case HBA_RESP_SVCRES_FAILURE: 3793 hba_resp_task_failure(dev, scsicmd, err); 3794 break; 3795 case HBA_RESP_SVCRES_TMF_REJECTED: 3796 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3797 break; 3798 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3799 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3800 break; 3801 case HBA_RESP_SVCRES_TMF_COMPLETE: 3802 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3803 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3804 break; 3805 default: 3806 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3807 break; 3808 } 3809 3810 out: 3811 aac_fib_complete(fibptr); 3812 3813 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3814 scsicmd->SCp.sent_command = 1; 3815 else 3816 scsicmd->scsi_done(scsicmd); 3817 } 3818 3819 /** 3820 * 3821 * aac_send_srb_fib 3822 * @scsicmd: the scsi command block 3823 * 3824 * This routine will form a FIB and fill in the aac_srb from the 3825 * scsicmd passed in. 3826 */ 3827 3828 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3829 { 3830 struct fib* cmd_fibcontext; 3831 struct aac_dev* dev; 3832 int status; 3833 3834 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3835 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3836 scsicmd->device->lun > 7) { 3837 scsicmd->result = DID_NO_CONNECT << 16; 3838 scsicmd->scsi_done(scsicmd); 3839 return 0; 3840 } 3841 3842 /* 3843 * Allocate and initialize a Fib then setup a BlockWrite command 3844 */ 3845 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3846 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3847 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3848 3849 /* 3850 * Check that the command queued to the controller 3851 */ 3852 if (status == -EINPROGRESS) 3853 return 0; 3854 3855 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3856 aac_fib_complete(cmd_fibcontext); 3857 aac_fib_free(cmd_fibcontext); 3858 3859 return -1; 3860 } 3861 3862 /** 3863 * 3864 * aac_send_hba_fib 3865 * @scsicmd: the scsi command block 3866 * 3867 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3868 * scsicmd passed in. 3869 */ 3870 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3871 { 3872 struct fib *cmd_fibcontext; 3873 struct aac_dev *dev; 3874 int status; 3875 3876 dev = shost_priv(scsicmd->device->host); 3877 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3878 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3879 scsicmd->result = DID_NO_CONNECT << 16; 3880 scsicmd->scsi_done(scsicmd); 3881 return 0; 3882 } 3883 3884 /* 3885 * Allocate and initialize a Fib then setup a BlockWrite command 3886 */ 3887 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3888 if (!cmd_fibcontext) 3889 return -1; 3890 3891 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3892 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3893 3894 /* 3895 * Check that the command queued to the controller 3896 */ 3897 if (status == -EINPROGRESS) 3898 return 0; 3899 3900 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3901 status); 3902 aac_fib_complete(cmd_fibcontext); 3903 aac_fib_free(cmd_fibcontext); 3904 3905 return -1; 3906 } 3907 3908 3909 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3910 { 3911 struct aac_dev *dev; 3912 unsigned long byte_count = 0; 3913 int nseg; 3914 struct scatterlist *sg; 3915 int i; 3916 3917 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3918 // Get rid of old data 3919 psg->count = 0; 3920 psg->sg[0].addr = 0; 3921 psg->sg[0].count = 0; 3922 3923 nseg = scsi_dma_map(scsicmd); 3924 if (nseg <= 0) 3925 return nseg; 3926 3927 psg->count = cpu_to_le32(nseg); 3928 3929 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3930 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3931 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3932 byte_count += sg_dma_len(sg); 3933 } 3934 /* hba wants the size to be exact */ 3935 if (byte_count > scsi_bufflen(scsicmd)) { 3936 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3937 (byte_count - scsi_bufflen(scsicmd)); 3938 psg->sg[i-1].count = cpu_to_le32(temp); 3939 byte_count = scsi_bufflen(scsicmd); 3940 } 3941 /* Check for command underflow */ 3942 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3943 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3944 byte_count, scsicmd->underflow); 3945 } 3946 3947 return byte_count; 3948 } 3949 3950 3951 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3952 { 3953 struct aac_dev *dev; 3954 unsigned long byte_count = 0; 3955 u64 addr; 3956 int nseg; 3957 struct scatterlist *sg; 3958 int i; 3959 3960 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3961 // Get rid of old data 3962 psg->count = 0; 3963 psg->sg[0].addr[0] = 0; 3964 psg->sg[0].addr[1] = 0; 3965 psg->sg[0].count = 0; 3966 3967 nseg = scsi_dma_map(scsicmd); 3968 if (nseg <= 0) 3969 return nseg; 3970 3971 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3972 int count = sg_dma_len(sg); 3973 addr = sg_dma_address(sg); 3974 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3975 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3976 psg->sg[i].count = cpu_to_le32(count); 3977 byte_count += count; 3978 } 3979 psg->count = cpu_to_le32(nseg); 3980 /* hba wants the size to be exact */ 3981 if (byte_count > scsi_bufflen(scsicmd)) { 3982 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3983 (byte_count - scsi_bufflen(scsicmd)); 3984 psg->sg[i-1].count = cpu_to_le32(temp); 3985 byte_count = scsi_bufflen(scsicmd); 3986 } 3987 /* Check for command underflow */ 3988 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3989 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3990 byte_count, scsicmd->underflow); 3991 } 3992 3993 return byte_count; 3994 } 3995 3996 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3997 { 3998 unsigned long byte_count = 0; 3999 int nseg; 4000 struct scatterlist *sg; 4001 int i; 4002 4003 // Get rid of old data 4004 psg->count = 0; 4005 psg->sg[0].next = 0; 4006 psg->sg[0].prev = 0; 4007 psg->sg[0].addr[0] = 0; 4008 psg->sg[0].addr[1] = 0; 4009 psg->sg[0].count = 0; 4010 psg->sg[0].flags = 0; 4011 4012 nseg = scsi_dma_map(scsicmd); 4013 if (nseg <= 0) 4014 return nseg; 4015 4016 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4017 int count = sg_dma_len(sg); 4018 u64 addr = sg_dma_address(sg); 4019 psg->sg[i].next = 0; 4020 psg->sg[i].prev = 0; 4021 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 4022 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 4023 psg->sg[i].count = cpu_to_le32(count); 4024 psg->sg[i].flags = 0; 4025 byte_count += count; 4026 } 4027 psg->count = cpu_to_le32(nseg); 4028 /* hba wants the size to be exact */ 4029 if (byte_count > scsi_bufflen(scsicmd)) { 4030 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 4031 (byte_count - scsi_bufflen(scsicmd)); 4032 psg->sg[i-1].count = cpu_to_le32(temp); 4033 byte_count = scsi_bufflen(scsicmd); 4034 } 4035 /* Check for command underflow */ 4036 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4037 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4038 byte_count, scsicmd->underflow); 4039 } 4040 4041 return byte_count; 4042 } 4043 4044 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 4045 struct aac_raw_io2 *rio2, int sg_max) 4046 { 4047 unsigned long byte_count = 0; 4048 int nseg; 4049 struct scatterlist *sg; 4050 int i, conformable = 0; 4051 u32 min_size = PAGE_SIZE, cur_size; 4052 4053 nseg = scsi_dma_map(scsicmd); 4054 if (nseg <= 0) 4055 return nseg; 4056 4057 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4058 int count = sg_dma_len(sg); 4059 u64 addr = sg_dma_address(sg); 4060 4061 BUG_ON(i >= sg_max); 4062 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 4063 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 4064 cur_size = cpu_to_le32(count); 4065 rio2->sge[i].length = cur_size; 4066 rio2->sge[i].flags = 0; 4067 if (i == 0) { 4068 conformable = 1; 4069 rio2->sgeFirstSize = cur_size; 4070 } else if (i == 1) { 4071 rio2->sgeNominalSize = cur_size; 4072 min_size = cur_size; 4073 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 4074 conformable = 0; 4075 if (cur_size < min_size) 4076 min_size = cur_size; 4077 } 4078 byte_count += count; 4079 } 4080 4081 /* hba wants the size to be exact */ 4082 if (byte_count > scsi_bufflen(scsicmd)) { 4083 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4084 (byte_count - scsi_bufflen(scsicmd)); 4085 rio2->sge[i-1].length = cpu_to_le32(temp); 4086 byte_count = scsi_bufflen(scsicmd); 4087 } 4088 4089 rio2->sgeCnt = cpu_to_le32(nseg); 4090 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4091 /* not conformable: evaluate required sg elements */ 4092 if (!conformable) { 4093 int j, nseg_new = nseg, err_found; 4094 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4095 err_found = 0; 4096 nseg_new = 2; 4097 for (j = 1; j < nseg - 1; ++j) { 4098 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4099 err_found = 1; 4100 break; 4101 } 4102 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4103 } 4104 if (!err_found) 4105 break; 4106 } 4107 if (i > 0 && nseg_new <= sg_max) { 4108 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4109 4110 if (ret < 0) 4111 return ret; 4112 } 4113 } else 4114 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4115 4116 /* Check for command underflow */ 4117 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4118 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4119 byte_count, scsicmd->underflow); 4120 } 4121 4122 return byte_count; 4123 } 4124 4125 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4126 { 4127 struct sge_ieee1212 *sge; 4128 int i, j, pos; 4129 u32 addr_low; 4130 4131 if (aac_convert_sgl == 0) 4132 return 0; 4133 4134 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4135 if (sge == NULL) 4136 return -ENOMEM; 4137 4138 for (i = 1, pos = 1; i < nseg-1; ++i) { 4139 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4140 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4141 sge[pos].addrLow = addr_low; 4142 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4143 if (addr_low < rio2->sge[i].addrLow) 4144 sge[pos].addrHigh++; 4145 sge[pos].length = pages * PAGE_SIZE; 4146 sge[pos].flags = 0; 4147 pos++; 4148 } 4149 } 4150 sge[pos] = rio2->sge[nseg-1]; 4151 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4152 4153 kfree(sge); 4154 rio2->sgeCnt = cpu_to_le32(nseg_new); 4155 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4156 rio2->sgeNominalSize = pages * PAGE_SIZE; 4157 return 0; 4158 } 4159 4160 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4161 struct aac_hba_cmd_req *hbacmd, 4162 int sg_max, 4163 u64 sg_address) 4164 { 4165 unsigned long byte_count = 0; 4166 int nseg; 4167 struct scatterlist *sg; 4168 int i; 4169 u32 cur_size; 4170 struct aac_hba_sgl *sge; 4171 4172 nseg = scsi_dma_map(scsicmd); 4173 if (nseg <= 0) { 4174 byte_count = nseg; 4175 goto out; 4176 } 4177 4178 if (nseg > HBA_MAX_SG_EMBEDDED) 4179 sge = &hbacmd->sge[2]; 4180 else 4181 sge = &hbacmd->sge[0]; 4182 4183 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4184 int count = sg_dma_len(sg); 4185 u64 addr = sg_dma_address(sg); 4186 4187 WARN_ON(i >= sg_max); 4188 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4189 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4190 cur_size = cpu_to_le32(count); 4191 sge->len = cur_size; 4192 sge->flags = 0; 4193 byte_count += count; 4194 sge++; 4195 } 4196 4197 sge--; 4198 /* hba wants the size to be exact */ 4199 if (byte_count > scsi_bufflen(scsicmd)) { 4200 u32 temp; 4201 4202 temp = le32_to_cpu(sge->len) - byte_count 4203 - scsi_bufflen(scsicmd); 4204 sge->len = cpu_to_le32(temp); 4205 byte_count = scsi_bufflen(scsicmd); 4206 } 4207 4208 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4209 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4210 sge->flags = cpu_to_le32(0x40000000); 4211 } else { 4212 /* not embedded */ 4213 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4214 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4215 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4216 hbacmd->sge[0].addr_lo = 4217 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4218 } 4219 4220 /* Check for command underflow */ 4221 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4222 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4223 byte_count, scsicmd->underflow); 4224 } 4225 out: 4226 return byte_count; 4227 } 4228 4229 #ifdef AAC_DETAILED_STATUS_INFO 4230 4231 struct aac_srb_status_info { 4232 u32 status; 4233 char *str; 4234 }; 4235 4236 4237 static struct aac_srb_status_info srb_status_info[] = { 4238 { SRB_STATUS_PENDING, "Pending Status"}, 4239 { SRB_STATUS_SUCCESS, "Success"}, 4240 { SRB_STATUS_ABORTED, "Aborted Command"}, 4241 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4242 { SRB_STATUS_ERROR, "Error Event"}, 4243 { SRB_STATUS_BUSY, "Device Busy"}, 4244 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4245 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4246 { SRB_STATUS_NO_DEVICE, "No Device"}, 4247 { SRB_STATUS_TIMEOUT, "Timeout"}, 4248 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4249 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4250 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4251 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4252 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4253 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4254 { SRB_STATUS_NO_HBA, "No HBA"}, 4255 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4256 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4257 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4258 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4259 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4260 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4261 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4262 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4263 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4264 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4265 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4266 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4267 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4268 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4269 { 0xff, "Unknown Error"} 4270 }; 4271 4272 char *aac_get_status_string(u32 status) 4273 { 4274 int i; 4275 4276 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4277 if (srb_status_info[i].status == status) 4278 return srb_status_info[i].str; 4279 4280 return "Bad Status Code"; 4281 } 4282 4283 #endif 4284