1 /* -*- mode: c; c-basic-offset: 8 -*- */ 2 3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver 4 * 5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com 6 **----------------------------------------------------------------------------- 7 ** 8 ** This program is free software; you can redistribute it and/or modify 9 ** it under the terms of the GNU General Public License as published by 10 ** the Free Software Foundation; either version 2 of the License, or 11 ** (at your option) any later version. 12 ** 13 ** This program is distributed in the hope that it will be useful, 14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of 15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 ** GNU General Public License for more details. 17 ** 18 ** You should have received a copy of the GNU General Public License 19 ** along with this program; if not, write to the Free Software 20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 ** 22 **----------------------------------------------------------------------------- 23 */ 24 25 /* Notes: 26 * 27 * This driver is designed exclusively for these chips (virtually the 28 * earliest of the scripts engine chips). They need their own drivers 29 * because they are missing so many of the scripts and snazzy register 30 * features of their elder brothers (the 710, 720 and 770). 31 * 32 * The 700 is the lowliest of the line, it can only do async SCSI. 33 * The 700-66 can at least do synchronous SCSI up to 10MHz. 34 * 35 * The 700 chip has no host bus interface logic of its own. However, 36 * it is usually mapped to a location with well defined register 37 * offsets. Therefore, if you can determine the base address and the 38 * irq your board incorporating this chip uses, you can probably use 39 * this driver to run it (although you'll probably have to write a 40 * minimal wrapper for the purpose---see the NCR_D700 driver for 41 * details about how to do this). 42 * 43 * 44 * TODO List: 45 * 46 * 1. Better statistics in the proc fs 47 * 48 * 2. Implement message queue (queues SCSI messages like commands) and make 49 * the abort and device reset functions use them. 50 * */ 51 52 /* CHANGELOG 53 * 54 * Version 2.8 55 * 56 * Fixed bad bug affecting tag starvation processing (previously the 57 * driver would hang the system if too many tags starved. Also fixed 58 * bad bug having to do with 10 byte command processing and REQUEST 59 * SENSE (the command would loop forever getting a transfer length 60 * mismatch in the CMD phase). 61 * 62 * Version 2.7 63 * 64 * Fixed scripts problem which caused certain devices (notably CDRWs) 65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use 66 * __raw_readl/writel for parisc compatibility (Thomas 67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation 68 * for sense requests (Ryan Bradetich). 69 * 70 * Version 2.6 71 * 72 * Following test of the 64 bit parisc kernel by Richard Hirst, 73 * several problems have now been corrected. Also adds support for 74 * consistent memory allocation. 75 * 76 * Version 2.5 77 * 78 * More Compatibility changes for 710 (now actually works). Enhanced 79 * support for odd clock speeds which constrain SDTR negotiations. 80 * correct cacheline separation for scsi messages and status for 81 * incoherent architectures. Use of the pci mapping functions on 82 * buffers to begin support for 64 bit drivers. 83 * 84 * Version 2.4 85 * 86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no 87 * special 53c710 instructions or registers are used). 88 * 89 * Version 2.3 90 * 91 * More endianness/cache coherency changes. 92 * 93 * Better bad device handling (handles devices lying about tag 94 * queueing support and devices which fail to provide sense data on 95 * contingent allegiance conditions) 96 * 97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently 98 * debugging this driver on the parisc architecture and suggesting 99 * many improvements and bug fixes. 100 * 101 * Thanks also go to Linuxcare Inc. for providing several PARISC 102 * machines for me to debug the driver on. 103 * 104 * Version 2.2 105 * 106 * Made the driver mem or io mapped; added endian invariance; added 107 * dma cache flushing operations for architectures which need it; 108 * added support for more varied clocking speeds. 109 * 110 * Version 2.1 111 * 112 * Initial modularisation from the D700. See NCR_D700.c for the rest of 113 * the changelog. 114 * */ 115 #define NCR_700_VERSION "2.8" 116 117 #include <linux/kernel.h> 118 #include <linux/types.h> 119 #include <linux/string.h> 120 #include <linux/slab.h> 121 #include <linux/ioport.h> 122 #include <linux/delay.h> 123 #include <linux/spinlock.h> 124 #include <linux/completion.h> 125 #include <linux/init.h> 126 #include <linux/proc_fs.h> 127 #include <linux/blkdev.h> 128 #include <linux/module.h> 129 #include <linux/interrupt.h> 130 #include <linux/device.h> 131 #include <asm/dma.h> 132 #include <asm/io.h> 133 #include <asm/pgtable.h> 134 #include <asm/byteorder.h> 135 136 #include <scsi/scsi.h> 137 #include <scsi/scsi_cmnd.h> 138 #include <scsi/scsi_dbg.h> 139 #include <scsi/scsi_eh.h> 140 #include <scsi/scsi_host.h> 141 #include <scsi/scsi_tcq.h> 142 #include <scsi/scsi_transport.h> 143 #include <scsi/scsi_transport_spi.h> 144 145 #include "53c700.h" 146 147 /* NOTE: For 64 bit drivers there are points in the code where we use 148 * a non dereferenceable pointer to point to a structure in dma-able 149 * memory (which is 32 bits) so that we can use all of the structure 150 * operations but take the address at the end. This macro allows us 151 * to truncate the 64 bit pointer down to 32 bits without the compiler 152 * complaining */ 153 #define to32bit(x) ((__u32)((unsigned long)(x))) 154 155 #ifdef NCR_700_DEBUG 156 #define STATIC 157 #else 158 #define STATIC static 159 #endif 160 161 MODULE_AUTHOR("James Bottomley"); 162 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver"); 163 MODULE_LICENSE("GPL"); 164 165 /* This is the script */ 166 #include "53c700_d.h" 167 168 169 STATIC int NCR_700_queuecommand(struct Scsi_Host *h, struct scsi_cmnd *); 170 STATIC int NCR_700_abort(struct scsi_cmnd * SCpnt); 171 STATIC int NCR_700_host_reset(struct scsi_cmnd * SCpnt); 172 STATIC void NCR_700_chip_setup(struct Scsi_Host *host); 173 STATIC void NCR_700_chip_reset(struct Scsi_Host *host); 174 STATIC int NCR_700_slave_alloc(struct scsi_device *SDpnt); 175 STATIC int NCR_700_slave_configure(struct scsi_device *SDpnt); 176 STATIC void NCR_700_slave_destroy(struct scsi_device *SDpnt); 177 static int NCR_700_change_queue_depth(struct scsi_device *SDpnt, int depth); 178 179 STATIC struct device_attribute *NCR_700_dev_attrs[]; 180 181 STATIC struct scsi_transport_template *NCR_700_transport_template = NULL; 182 183 static char *NCR_700_phase[] = { 184 "", 185 "after selection", 186 "before command phase", 187 "after command phase", 188 "after status phase", 189 "after data in phase", 190 "after data out phase", 191 "during data phase", 192 }; 193 194 static char *NCR_700_condition[] = { 195 "", 196 "NOT MSG_OUT", 197 "UNEXPECTED PHASE", 198 "NOT MSG_IN", 199 "UNEXPECTED MSG", 200 "MSG_IN", 201 "SDTR_MSG RECEIVED", 202 "REJECT_MSG RECEIVED", 203 "DISCONNECT_MSG RECEIVED", 204 "MSG_OUT", 205 "DATA_IN", 206 207 }; 208 209 static char *NCR_700_fatal_messages[] = { 210 "unexpected message after reselection", 211 "still MSG_OUT after message injection", 212 "not MSG_IN after selection", 213 "Illegal message length received", 214 }; 215 216 static char *NCR_700_SBCL_bits[] = { 217 "IO ", 218 "CD ", 219 "MSG ", 220 "ATN ", 221 "SEL ", 222 "BSY ", 223 "ACK ", 224 "REQ ", 225 }; 226 227 static char *NCR_700_SBCL_to_phase[] = { 228 "DATA_OUT", 229 "DATA_IN", 230 "CMD_OUT", 231 "STATE", 232 "ILLEGAL PHASE", 233 "ILLEGAL PHASE", 234 "MSG OUT", 235 "MSG IN", 236 }; 237 238 /* This translates the SDTR message offset and period to a value 239 * which can be loaded into the SXFER_REG. 240 * 241 * NOTE: According to SCSI-2, the true transfer period (in ns) is 242 * actually four times this period value */ 243 static inline __u8 244 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters *hostdata, 245 __u8 offset, __u8 period) 246 { 247 int XFERP; 248 249 __u8 min_xferp = (hostdata->chip710 250 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP); 251 __u8 max_offset = (hostdata->chip710 252 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET); 253 254 if(offset == 0) 255 return 0; 256 257 if(period < hostdata->min_period) { 258 printk(KERN_WARNING "53c700: Period %dns is less than this chip's minimum, setting to %d\n", period*4, NCR_700_MIN_PERIOD*4); 259 period = hostdata->min_period; 260 } 261 XFERP = (period*4 * hostdata->sync_clock)/1000 - 4; 262 if(offset > max_offset) { 263 printk(KERN_WARNING "53c700: Offset %d exceeds chip maximum, setting to %d\n", 264 offset, max_offset); 265 offset = max_offset; 266 } 267 if(XFERP < min_xferp) { 268 XFERP = min_xferp; 269 } 270 return (offset & 0x0f) | (XFERP & 0x07)<<4; 271 } 272 273 static inline __u8 274 NCR_700_get_SXFER(struct scsi_device *SDp) 275 { 276 struct NCR_700_Host_Parameters *hostdata = 277 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; 278 279 return NCR_700_offset_period_to_sxfer(hostdata, 280 spi_offset(SDp->sdev_target), 281 spi_period(SDp->sdev_target)); 282 } 283 284 struct Scsi_Host * 285 NCR_700_detect(struct scsi_host_template *tpnt, 286 struct NCR_700_Host_Parameters *hostdata, struct device *dev) 287 { 288 dma_addr_t pScript, pSlots; 289 __u8 *memory; 290 __u32 *script; 291 struct Scsi_Host *host; 292 static int banner = 0; 293 int j; 294 295 if(tpnt->sdev_attrs == NULL) 296 tpnt->sdev_attrs = NCR_700_dev_attrs; 297 298 memory = dma_alloc_attrs(hostdata->dev, TOTAL_MEM_SIZE, &pScript, 299 GFP_KERNEL, DMA_ATTR_NON_CONSISTENT); 300 if(memory == NULL) { 301 printk(KERN_ERR "53c700: Failed to allocate memory for driver, detaching\n"); 302 return NULL; 303 } 304 305 script = (__u32 *)memory; 306 hostdata->msgin = memory + MSGIN_OFFSET; 307 hostdata->msgout = memory + MSGOUT_OFFSET; 308 hostdata->status = memory + STATUS_OFFSET; 309 hostdata->slots = (struct NCR_700_command_slot *)(memory + SLOTS_OFFSET); 310 hostdata->dev = dev; 311 312 pSlots = pScript + SLOTS_OFFSET; 313 314 /* Fill in the missing routines from the host template */ 315 tpnt->queuecommand = NCR_700_queuecommand; 316 tpnt->eh_abort_handler = NCR_700_abort; 317 tpnt->eh_host_reset_handler = NCR_700_host_reset; 318 tpnt->can_queue = NCR_700_COMMAND_SLOTS_PER_HOST; 319 tpnt->sg_tablesize = NCR_700_SG_SEGMENTS; 320 tpnt->cmd_per_lun = NCR_700_CMD_PER_LUN; 321 tpnt->slave_configure = NCR_700_slave_configure; 322 tpnt->slave_destroy = NCR_700_slave_destroy; 323 tpnt->slave_alloc = NCR_700_slave_alloc; 324 tpnt->change_queue_depth = NCR_700_change_queue_depth; 325 326 if(tpnt->name == NULL) 327 tpnt->name = "53c700"; 328 if(tpnt->proc_name == NULL) 329 tpnt->proc_name = "53c700"; 330 331 host = scsi_host_alloc(tpnt, 4); 332 if (!host) 333 return NULL; 334 memset(hostdata->slots, 0, sizeof(struct NCR_700_command_slot) 335 * NCR_700_COMMAND_SLOTS_PER_HOST); 336 for (j = 0; j < NCR_700_COMMAND_SLOTS_PER_HOST; j++) { 337 dma_addr_t offset = (dma_addr_t)((unsigned long)&hostdata->slots[j].SG[0] 338 - (unsigned long)&hostdata->slots[0].SG[0]); 339 hostdata->slots[j].pSG = (struct NCR_700_SG_List *)((unsigned long)(pSlots + offset)); 340 if(j == 0) 341 hostdata->free_list = &hostdata->slots[j]; 342 else 343 hostdata->slots[j-1].ITL_forw = &hostdata->slots[j]; 344 hostdata->slots[j].state = NCR_700_SLOT_FREE; 345 } 346 347 for (j = 0; j < ARRAY_SIZE(SCRIPT); j++) 348 script[j] = bS_to_host(SCRIPT[j]); 349 350 /* adjust all labels to be bus physical */ 351 for (j = 0; j < PATCHES; j++) 352 script[LABELPATCHES[j]] = bS_to_host(pScript + SCRIPT[LABELPATCHES[j]]); 353 /* now patch up fixed addresses. */ 354 script_patch_32(hostdata->dev, script, MessageLocation, 355 pScript + MSGOUT_OFFSET); 356 script_patch_32(hostdata->dev, script, StatusAddress, 357 pScript + STATUS_OFFSET); 358 script_patch_32(hostdata->dev, script, ReceiveMsgAddress, 359 pScript + MSGIN_OFFSET); 360 361 hostdata->script = script; 362 hostdata->pScript = pScript; 363 dma_sync_single_for_device(hostdata->dev, pScript, sizeof(SCRIPT), DMA_TO_DEVICE); 364 hostdata->state = NCR_700_HOST_FREE; 365 hostdata->cmd = NULL; 366 host->max_id = 8; 367 host->max_lun = NCR_700_MAX_LUNS; 368 BUG_ON(NCR_700_transport_template == NULL); 369 host->transportt = NCR_700_transport_template; 370 host->unique_id = (unsigned long)hostdata->base; 371 hostdata->eh_complete = NULL; 372 host->hostdata[0] = (unsigned long)hostdata; 373 /* kick the chip */ 374 NCR_700_writeb(0xff, host, CTEST9_REG); 375 if (hostdata->chip710) 376 hostdata->rev = (NCR_700_readb(host, CTEST8_REG)>>4) & 0x0f; 377 else 378 hostdata->rev = (NCR_700_readb(host, CTEST7_REG)>>4) & 0x0f; 379 hostdata->fast = (NCR_700_readb(host, CTEST9_REG) == 0); 380 if (banner == 0) { 381 printk(KERN_NOTICE "53c700: Version " NCR_700_VERSION " By James.Bottomley@HansenPartnership.com\n"); 382 banner = 1; 383 } 384 printk(KERN_NOTICE "scsi%d: %s rev %d %s\n", host->host_no, 385 hostdata->chip710 ? "53c710" : 386 (hostdata->fast ? "53c700-66" : "53c700"), 387 hostdata->rev, hostdata->differential ? 388 "(Differential)" : ""); 389 /* reset the chip */ 390 NCR_700_chip_reset(host); 391 392 if (scsi_add_host(host, dev)) { 393 dev_printk(KERN_ERR, dev, "53c700: scsi_add_host failed\n"); 394 scsi_host_put(host); 395 return NULL; 396 } 397 398 spi_signalling(host) = hostdata->differential ? SPI_SIGNAL_HVD : 399 SPI_SIGNAL_SE; 400 401 return host; 402 } 403 404 int 405 NCR_700_release(struct Scsi_Host *host) 406 { 407 struct NCR_700_Host_Parameters *hostdata = 408 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 409 410 dma_free_attrs(hostdata->dev, TOTAL_MEM_SIZE, hostdata->script, 411 hostdata->pScript, DMA_ATTR_NON_CONSISTENT); 412 return 1; 413 } 414 415 static inline __u8 416 NCR_700_identify(int can_disconnect, __u8 lun) 417 { 418 return IDENTIFY_BASE | 419 ((can_disconnect) ? 0x40 : 0) | 420 (lun & NCR_700_LUN_MASK); 421 } 422 423 /* 424 * Function : static int data_residual (Scsi_Host *host) 425 * 426 * Purpose : return residual data count of what's in the chip. If you 427 * really want to know what this function is doing, it's almost a 428 * direct transcription of the algorithm described in the 53c710 429 * guide, except that the DBC and DFIFO registers are only 6 bits 430 * wide on a 53c700. 431 * 432 * Inputs : host - SCSI host */ 433 static inline int 434 NCR_700_data_residual (struct Scsi_Host *host) { 435 struct NCR_700_Host_Parameters *hostdata = 436 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 437 int count, synchronous = 0; 438 unsigned int ddir; 439 440 if(hostdata->chip710) { 441 count = ((NCR_700_readb(host, DFIFO_REG) & 0x7f) - 442 (NCR_700_readl(host, DBC_REG) & 0x7f)) & 0x7f; 443 } else { 444 count = ((NCR_700_readb(host, DFIFO_REG) & 0x3f) - 445 (NCR_700_readl(host, DBC_REG) & 0x3f)) & 0x3f; 446 } 447 448 if(hostdata->fast) 449 synchronous = NCR_700_readb(host, SXFER_REG) & 0x0f; 450 451 /* get the data direction */ 452 ddir = NCR_700_readb(host, CTEST0_REG) & 0x01; 453 454 if (ddir) { 455 /* Receive */ 456 if (synchronous) 457 count += (NCR_700_readb(host, SSTAT2_REG) & 0xf0) >> 4; 458 else 459 if (NCR_700_readb(host, SSTAT1_REG) & SIDL_REG_FULL) 460 ++count; 461 } else { 462 /* Send */ 463 __u8 sstat = NCR_700_readb(host, SSTAT1_REG); 464 if (sstat & SODL_REG_FULL) 465 ++count; 466 if (synchronous && (sstat & SODR_REG_FULL)) 467 ++count; 468 } 469 #ifdef NCR_700_DEBUG 470 if(count) 471 printk("RESIDUAL IS %d (ddir %d)\n", count, ddir); 472 #endif 473 return count; 474 } 475 476 /* print out the SCSI wires and corresponding phase from the SBCL register 477 * in the chip */ 478 static inline char * 479 sbcl_to_string(__u8 sbcl) 480 { 481 int i; 482 static char ret[256]; 483 484 ret[0]='\0'; 485 for(i=0; i<8; i++) { 486 if((1<<i) & sbcl) 487 strcat(ret, NCR_700_SBCL_bits[i]); 488 } 489 strcat(ret, NCR_700_SBCL_to_phase[sbcl & 0x07]); 490 return ret; 491 } 492 493 static inline __u8 494 bitmap_to_number(__u8 bitmap) 495 { 496 __u8 i; 497 498 for(i=0; i<8 && !(bitmap &(1<<i)); i++) 499 ; 500 return i; 501 } 502 503 /* Pull a slot off the free list */ 504 STATIC struct NCR_700_command_slot * 505 find_empty_slot(struct NCR_700_Host_Parameters *hostdata) 506 { 507 struct NCR_700_command_slot *slot = hostdata->free_list; 508 509 if(slot == NULL) { 510 /* sanity check */ 511 if(hostdata->command_slot_count != NCR_700_COMMAND_SLOTS_PER_HOST) 512 printk(KERN_ERR "SLOTS FULL, but count is %d, should be %d\n", hostdata->command_slot_count, NCR_700_COMMAND_SLOTS_PER_HOST); 513 return NULL; 514 } 515 516 if(slot->state != NCR_700_SLOT_FREE) 517 /* should panic! */ 518 printk(KERN_ERR "BUSY SLOT ON FREE LIST!!!\n"); 519 520 521 hostdata->free_list = slot->ITL_forw; 522 slot->ITL_forw = NULL; 523 524 525 /* NOTE: set the state to busy here, not queued, since this 526 * indicates the slot is in use and cannot be run by the IRQ 527 * finish routine. If we cannot queue the command when it 528 * is properly build, we then change to NCR_700_SLOT_QUEUED */ 529 slot->state = NCR_700_SLOT_BUSY; 530 slot->flags = 0; 531 hostdata->command_slot_count++; 532 533 return slot; 534 } 535 536 STATIC void 537 free_slot(struct NCR_700_command_slot *slot, 538 struct NCR_700_Host_Parameters *hostdata) 539 { 540 if((slot->state & NCR_700_SLOT_MASK) != NCR_700_SLOT_MAGIC) { 541 printk(KERN_ERR "53c700: SLOT %p is not MAGIC!!!\n", slot); 542 } 543 if(slot->state == NCR_700_SLOT_FREE) { 544 printk(KERN_ERR "53c700: SLOT %p is FREE!!!\n", slot); 545 } 546 547 slot->resume_offset = 0; 548 slot->cmnd = NULL; 549 slot->state = NCR_700_SLOT_FREE; 550 slot->ITL_forw = hostdata->free_list; 551 hostdata->free_list = slot; 552 hostdata->command_slot_count--; 553 } 554 555 556 /* This routine really does very little. The command is indexed on 557 the ITL and (if tagged) the ITLQ lists in _queuecommand */ 558 STATIC void 559 save_for_reselection(struct NCR_700_Host_Parameters *hostdata, 560 struct scsi_cmnd *SCp, __u32 dsp) 561 { 562 /* Its just possible that this gets executed twice */ 563 if(SCp != NULL) { 564 struct NCR_700_command_slot *slot = 565 (struct NCR_700_command_slot *)SCp->host_scribble; 566 567 slot->resume_offset = dsp; 568 } 569 hostdata->state = NCR_700_HOST_FREE; 570 hostdata->cmd = NULL; 571 } 572 573 STATIC inline void 574 NCR_700_unmap(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, 575 struct NCR_700_command_slot *slot) 576 { 577 if(SCp->sc_data_direction != DMA_NONE && 578 SCp->sc_data_direction != DMA_BIDIRECTIONAL) 579 scsi_dma_unmap(SCp); 580 } 581 582 STATIC inline void 583 NCR_700_scsi_done(struct NCR_700_Host_Parameters *hostdata, 584 struct scsi_cmnd *SCp, int result) 585 { 586 hostdata->state = NCR_700_HOST_FREE; 587 hostdata->cmd = NULL; 588 589 if(SCp != NULL) { 590 struct NCR_700_command_slot *slot = 591 (struct NCR_700_command_slot *)SCp->host_scribble; 592 593 dma_unmap_single(hostdata->dev, slot->pCmd, 594 MAX_COMMAND_SIZE, DMA_TO_DEVICE); 595 if (slot->flags == NCR_700_FLAG_AUTOSENSE) { 596 char *cmnd = NCR_700_get_sense_cmnd(SCp->device); 597 598 dma_unmap_single(hostdata->dev, slot->dma_handle, 599 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 600 /* restore the old result if the request sense was 601 * successful */ 602 if (result == 0) 603 result = cmnd[7]; 604 /* restore the original length */ 605 SCp->cmd_len = cmnd[8]; 606 } else 607 NCR_700_unmap(hostdata, SCp, slot); 608 609 free_slot(slot, hostdata); 610 #ifdef NCR_700_DEBUG 611 if(NCR_700_get_depth(SCp->device) == 0 || 612 NCR_700_get_depth(SCp->device) > SCp->device->queue_depth) 613 printk(KERN_ERR "Invalid depth in NCR_700_scsi_done(): %d\n", 614 NCR_700_get_depth(SCp->device)); 615 #endif /* NCR_700_DEBUG */ 616 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) - 1); 617 618 SCp->host_scribble = NULL; 619 SCp->result = result; 620 SCp->scsi_done(SCp); 621 } else { 622 printk(KERN_ERR "53c700: SCSI DONE HAS NULL SCp\n"); 623 } 624 } 625 626 627 STATIC void 628 NCR_700_internal_bus_reset(struct Scsi_Host *host) 629 { 630 /* Bus reset */ 631 NCR_700_writeb(ASSERT_RST, host, SCNTL1_REG); 632 udelay(50); 633 NCR_700_writeb(0, host, SCNTL1_REG); 634 635 } 636 637 STATIC void 638 NCR_700_chip_setup(struct Scsi_Host *host) 639 { 640 struct NCR_700_Host_Parameters *hostdata = 641 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 642 __u8 min_period; 643 __u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP); 644 645 if(hostdata->chip710) { 646 __u8 burst_disable = 0; 647 __u8 burst_length = 0; 648 649 switch (hostdata->burst_length) { 650 case 1: 651 burst_length = BURST_LENGTH_1; 652 break; 653 case 2: 654 burst_length = BURST_LENGTH_2; 655 break; 656 case 4: 657 burst_length = BURST_LENGTH_4; 658 break; 659 case 8: 660 burst_length = BURST_LENGTH_8; 661 break; 662 default: 663 burst_disable = BURST_DISABLE; 664 break; 665 } 666 hostdata->dcntl_extra |= COMPAT_700_MODE; 667 668 NCR_700_writeb(hostdata->dcntl_extra, host, DCNTL_REG); 669 NCR_700_writeb(burst_length | hostdata->dmode_extra, 670 host, DMODE_710_REG); 671 NCR_700_writeb(burst_disable | hostdata->ctest7_extra | 672 (hostdata->differential ? DIFF : 0), 673 host, CTEST7_REG); 674 NCR_700_writeb(BTB_TIMER_DISABLE, host, CTEST0_REG); 675 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY 676 | AUTO_ATN, host, SCNTL0_REG); 677 } else { 678 NCR_700_writeb(BURST_LENGTH_8 | hostdata->dmode_extra, 679 host, DMODE_700_REG); 680 NCR_700_writeb(hostdata->differential ? 681 DIFF : 0, host, CTEST7_REG); 682 if(hostdata->fast) { 683 /* this is for 700-66, does nothing on 700 */ 684 NCR_700_writeb(LAST_DIS_ENBL | ENABLE_ACTIVE_NEGATION 685 | GENERATE_RECEIVE_PARITY, host, 686 CTEST8_REG); 687 } else { 688 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY 689 | PARITY | AUTO_ATN, host, SCNTL0_REG); 690 } 691 } 692 693 NCR_700_writeb(1 << host->this_id, host, SCID_REG); 694 NCR_700_writeb(0, host, SBCL_REG); 695 NCR_700_writeb(ASYNC_OPERATION, host, SXFER_REG); 696 697 NCR_700_writeb(PHASE_MM_INT | SEL_TIMEOUT_INT | GROSS_ERR_INT | UX_DISC_INT 698 | RST_INT | PAR_ERR_INT | SELECT_INT, host, SIEN_REG); 699 700 NCR_700_writeb(ABORT_INT | INT_INST_INT | ILGL_INST_INT, host, DIEN_REG); 701 NCR_700_writeb(ENABLE_SELECT, host, SCNTL1_REG); 702 if(hostdata->clock > 75) { 703 printk(KERN_ERR "53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata->clock); 704 /* do the best we can, but the async clock will be out 705 * of spec: sync divider 2, async divider 3 */ 706 DEBUG(("53c700: sync 2 async 3\n")); 707 NCR_700_writeb(SYNC_DIV_2_0, host, SBCL_REG); 708 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG); 709 hostdata->sync_clock = hostdata->clock/2; 710 } else if(hostdata->clock > 50 && hostdata->clock <= 75) { 711 /* sync divider 1.5, async divider 3 */ 712 DEBUG(("53c700: sync 1.5 async 3\n")); 713 NCR_700_writeb(SYNC_DIV_1_5, host, SBCL_REG); 714 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG); 715 hostdata->sync_clock = hostdata->clock*2; 716 hostdata->sync_clock /= 3; 717 718 } else if(hostdata->clock > 37 && hostdata->clock <= 50) { 719 /* sync divider 1, async divider 2 */ 720 DEBUG(("53c700: sync 1 async 2\n")); 721 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); 722 NCR_700_writeb(ASYNC_DIV_2_0 | hostdata->dcntl_extra, host, DCNTL_REG); 723 hostdata->sync_clock = hostdata->clock; 724 } else if(hostdata->clock > 25 && hostdata->clock <=37) { 725 /* sync divider 1, async divider 1.5 */ 726 DEBUG(("53c700: sync 1 async 1.5\n")); 727 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); 728 NCR_700_writeb(ASYNC_DIV_1_5 | hostdata->dcntl_extra, host, DCNTL_REG); 729 hostdata->sync_clock = hostdata->clock; 730 } else { 731 DEBUG(("53c700: sync 1 async 1\n")); 732 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); 733 NCR_700_writeb(ASYNC_DIV_1_0 | hostdata->dcntl_extra, host, DCNTL_REG); 734 /* sync divider 1, async divider 1 */ 735 hostdata->sync_clock = hostdata->clock; 736 } 737 /* Calculate the actual minimum period that can be supported 738 * by our synchronous clock speed. See the 710 manual for 739 * exact details of this calculation which is based on a 740 * setting of the SXFER register */ 741 min_period = 1000*(4+min_xferp)/(4*hostdata->sync_clock); 742 hostdata->min_period = NCR_700_MIN_PERIOD; 743 if(min_period > NCR_700_MIN_PERIOD) 744 hostdata->min_period = min_period; 745 } 746 747 STATIC void 748 NCR_700_chip_reset(struct Scsi_Host *host) 749 { 750 struct NCR_700_Host_Parameters *hostdata = 751 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 752 if(hostdata->chip710) { 753 NCR_700_writeb(SOFTWARE_RESET_710, host, ISTAT_REG); 754 udelay(100); 755 756 NCR_700_writeb(0, host, ISTAT_REG); 757 } else { 758 NCR_700_writeb(SOFTWARE_RESET, host, DCNTL_REG); 759 udelay(100); 760 761 NCR_700_writeb(0, host, DCNTL_REG); 762 } 763 764 mdelay(1000); 765 766 NCR_700_chip_setup(host); 767 } 768 769 /* The heart of the message processing engine is that the instruction 770 * immediately after the INT is the normal case (and so must be CLEAR 771 * ACK). If we want to do something else, we call that routine in 772 * scripts and set temp to be the normal case + 8 (skipping the CLEAR 773 * ACK) so that the routine returns correctly to resume its activity 774 * */ 775 STATIC __u32 776 process_extended_message(struct Scsi_Host *host, 777 struct NCR_700_Host_Parameters *hostdata, 778 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps) 779 { 780 __u32 resume_offset = dsp, temp = dsp + 8; 781 __u8 pun = 0xff, lun = 0xff; 782 783 if(SCp != NULL) { 784 pun = SCp->device->id; 785 lun = SCp->device->lun; 786 } 787 788 switch(hostdata->msgin[2]) { 789 case A_SDTR_MSG: 790 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) { 791 struct scsi_target *starget = SCp->device->sdev_target; 792 __u8 period = hostdata->msgin[3]; 793 __u8 offset = hostdata->msgin[4]; 794 795 if(offset == 0 || period == 0) { 796 offset = 0; 797 period = 0; 798 } 799 800 spi_offset(starget) = offset; 801 spi_period(starget) = period; 802 803 if(NCR_700_is_flag_set(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION)) { 804 spi_display_xfer_agreement(starget); 805 NCR_700_clear_flag(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION); 806 } 807 808 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); 809 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 810 811 NCR_700_writeb(NCR_700_get_SXFER(SCp->device), 812 host, SXFER_REG); 813 814 } else { 815 /* SDTR message out of the blue, reject it */ 816 shost_printk(KERN_WARNING, host, 817 "Unexpected SDTR msg\n"); 818 hostdata->msgout[0] = A_REJECT_MSG; 819 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 820 script_patch_16(hostdata->dev, hostdata->script, 821 MessageCount, 1); 822 /* SendMsgOut returns, so set up the return 823 * address */ 824 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 825 } 826 break; 827 828 case A_WDTR_MSG: 829 printk(KERN_INFO "scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n", 830 host->host_no, pun, lun); 831 hostdata->msgout[0] = A_REJECT_MSG; 832 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 833 script_patch_16(hostdata->dev, hostdata->script, MessageCount, 834 1); 835 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 836 837 break; 838 839 default: 840 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ", 841 host->host_no, pun, lun, 842 NCR_700_phase[(dsps & 0xf00) >> 8]); 843 spi_print_msg(hostdata->msgin); 844 printk("\n"); 845 /* just reject it */ 846 hostdata->msgout[0] = A_REJECT_MSG; 847 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 848 script_patch_16(hostdata->dev, hostdata->script, MessageCount, 849 1); 850 /* SendMsgOut returns, so set up the return 851 * address */ 852 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 853 } 854 NCR_700_writel(temp, host, TEMP_REG); 855 return resume_offset; 856 } 857 858 STATIC __u32 859 process_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata, 860 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps) 861 { 862 /* work out where to return to */ 863 __u32 temp = dsp + 8, resume_offset = dsp; 864 __u8 pun = 0xff, lun = 0xff; 865 866 if(SCp != NULL) { 867 pun = SCp->device->id; 868 lun = SCp->device->lun; 869 } 870 871 #ifdef NCR_700_DEBUG 872 printk("scsi%d (%d:%d): message %s: ", host->host_no, pun, lun, 873 NCR_700_phase[(dsps & 0xf00) >> 8]); 874 spi_print_msg(hostdata->msgin); 875 printk("\n"); 876 #endif 877 878 switch(hostdata->msgin[0]) { 879 880 case A_EXTENDED_MSG: 881 resume_offset = process_extended_message(host, hostdata, SCp, 882 dsp, dsps); 883 break; 884 885 case A_REJECT_MSG: 886 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) { 887 /* Rejected our sync negotiation attempt */ 888 spi_period(SCp->device->sdev_target) = 889 spi_offset(SCp->device->sdev_target) = 0; 890 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); 891 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 892 } else if(SCp != NULL && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) { 893 /* rejected our first simple tag message */ 894 scmd_printk(KERN_WARNING, SCp, 895 "Rejected first tag queue attempt, turning off tag queueing\n"); 896 /* we're done negotiating */ 897 NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION); 898 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); 899 900 SCp->device->tagged_supported = 0; 901 SCp->device->simple_tags = 0; 902 scsi_change_queue_depth(SCp->device, host->cmd_per_lun); 903 } else { 904 shost_printk(KERN_WARNING, host, 905 "(%d:%d) Unexpected REJECT Message %s\n", 906 pun, lun, 907 NCR_700_phase[(dsps & 0xf00) >> 8]); 908 /* however, just ignore it */ 909 } 910 break; 911 912 case A_PARITY_ERROR_MSG: 913 printk(KERN_ERR "scsi%d (%d:%d) Parity Error!\n", host->host_no, 914 pun, lun); 915 NCR_700_internal_bus_reset(host); 916 break; 917 case A_SIMPLE_TAG_MSG: 918 printk(KERN_INFO "scsi%d (%d:%d) SIMPLE TAG %d %s\n", host->host_no, 919 pun, lun, hostdata->msgin[1], 920 NCR_700_phase[(dsps & 0xf00) >> 8]); 921 /* just ignore it */ 922 break; 923 default: 924 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ", 925 host->host_no, pun, lun, 926 NCR_700_phase[(dsps & 0xf00) >> 8]); 927 928 spi_print_msg(hostdata->msgin); 929 printk("\n"); 930 /* just reject it */ 931 hostdata->msgout[0] = A_REJECT_MSG; 932 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 933 script_patch_16(hostdata->dev, hostdata->script, MessageCount, 934 1); 935 /* SendMsgOut returns, so set up the return 936 * address */ 937 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 938 939 break; 940 } 941 NCR_700_writel(temp, host, TEMP_REG); 942 /* set us up to receive another message */ 943 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE); 944 return resume_offset; 945 } 946 947 STATIC __u32 948 process_script_interrupt(__u32 dsps, __u32 dsp, struct scsi_cmnd *SCp, 949 struct Scsi_Host *host, 950 struct NCR_700_Host_Parameters *hostdata) 951 { 952 __u32 resume_offset = 0; 953 __u8 pun = 0xff, lun=0xff; 954 955 if(SCp != NULL) { 956 pun = SCp->device->id; 957 lun = SCp->device->lun; 958 } 959 960 if(dsps == A_GOOD_STATUS_AFTER_STATUS) { 961 DEBUG((" COMMAND COMPLETE, status=%02x\n", 962 hostdata->status[0])); 963 /* OK, if TCQ still under negotiation, we now know it works */ 964 if (NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) 965 NCR_700_set_tag_neg_state(SCp->device, 966 NCR_700_FINISHED_TAG_NEGOTIATION); 967 968 /* check for contingent allegiance contitions */ 969 if(status_byte(hostdata->status[0]) == CHECK_CONDITION || 970 status_byte(hostdata->status[0]) == COMMAND_TERMINATED) { 971 struct NCR_700_command_slot *slot = 972 (struct NCR_700_command_slot *)SCp->host_scribble; 973 if(slot->flags == NCR_700_FLAG_AUTOSENSE) { 974 /* OOPS: bad device, returning another 975 * contingent allegiance condition */ 976 scmd_printk(KERN_ERR, SCp, 977 "broken device is looping in contingent allegiance: ignoring\n"); 978 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]); 979 } else { 980 char *cmnd = 981 NCR_700_get_sense_cmnd(SCp->device); 982 #ifdef NCR_DEBUG 983 scsi_print_command(SCp); 984 printk(" cmd %p has status %d, requesting sense\n", 985 SCp, hostdata->status[0]); 986 #endif 987 /* we can destroy the command here 988 * because the contingent allegiance 989 * condition will cause a retry which 990 * will re-copy the command from the 991 * saved data_cmnd. We also unmap any 992 * data associated with the command 993 * here */ 994 NCR_700_unmap(hostdata, SCp, slot); 995 dma_unmap_single(hostdata->dev, slot->pCmd, 996 MAX_COMMAND_SIZE, 997 DMA_TO_DEVICE); 998 999 cmnd[0] = REQUEST_SENSE; 1000 cmnd[1] = (lun & 0x7) << 5; 1001 cmnd[2] = 0; 1002 cmnd[3] = 0; 1003 cmnd[4] = SCSI_SENSE_BUFFERSIZE; 1004 cmnd[5] = 0; 1005 /* Here's a quiet hack: the 1006 * REQUEST_SENSE command is six bytes, 1007 * so store a flag indicating that 1008 * this was an internal sense request 1009 * and the original status at the end 1010 * of the command */ 1011 cmnd[6] = NCR_700_INTERNAL_SENSE_MAGIC; 1012 cmnd[7] = hostdata->status[0]; 1013 cmnd[8] = SCp->cmd_len; 1014 SCp->cmd_len = 6; /* command length for 1015 * REQUEST_SENSE */ 1016 slot->pCmd = dma_map_single(hostdata->dev, cmnd, MAX_COMMAND_SIZE, DMA_TO_DEVICE); 1017 slot->dma_handle = dma_map_single(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 1018 slot->SG[0].ins = bS_to_host(SCRIPT_MOVE_DATA_IN | SCSI_SENSE_BUFFERSIZE); 1019 slot->SG[0].pAddr = bS_to_host(slot->dma_handle); 1020 slot->SG[1].ins = bS_to_host(SCRIPT_RETURN); 1021 slot->SG[1].pAddr = 0; 1022 slot->resume_offset = hostdata->pScript; 1023 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG[0])*2, DMA_TO_DEVICE); 1024 dma_cache_sync(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 1025 1026 /* queue the command for reissue */ 1027 slot->state = NCR_700_SLOT_QUEUED; 1028 slot->flags = NCR_700_FLAG_AUTOSENSE; 1029 hostdata->state = NCR_700_HOST_FREE; 1030 hostdata->cmd = NULL; 1031 } 1032 } else { 1033 // Currently rely on the mid layer evaluation 1034 // of the tag queuing capability 1035 // 1036 //if(status_byte(hostdata->status[0]) == GOOD && 1037 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) { 1038 // /* Piggy back the tag queueing support 1039 // * on this command */ 1040 // dma_sync_single_for_cpu(hostdata->dev, 1041 // slot->dma_handle, 1042 // SCp->request_bufflen, 1043 // DMA_FROM_DEVICE); 1044 // if(((char *)SCp->request_buffer)[7] & 0x02) { 1045 // scmd_printk(KERN_INFO, SCp, 1046 // "Enabling Tag Command Queuing\n"); 1047 // hostdata->tag_negotiated |= (1<<scmd_id(SCp)); 1048 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING); 1049 // } else { 1050 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING); 1051 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); 1052 // } 1053 //} 1054 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]); 1055 } 1056 } else if((dsps & 0xfffff0f0) == A_UNEXPECTED_PHASE) { 1057 __u8 i = (dsps & 0xf00) >> 8; 1058 1059 scmd_printk(KERN_ERR, SCp, "UNEXPECTED PHASE %s (%s)\n", 1060 NCR_700_phase[i], 1061 sbcl_to_string(NCR_700_readb(host, SBCL_REG))); 1062 scmd_printk(KERN_ERR, SCp, " len = %d, cmd =", 1063 SCp->cmd_len); 1064 scsi_print_command(SCp); 1065 1066 NCR_700_internal_bus_reset(host); 1067 } else if((dsps & 0xfffff000) == A_FATAL) { 1068 int i = (dsps & 0xfff); 1069 1070 printk(KERN_ERR "scsi%d: (%d:%d) FATAL ERROR: %s\n", 1071 host->host_no, pun, lun, NCR_700_fatal_messages[i]); 1072 if(dsps == A_FATAL_ILLEGAL_MSG_LENGTH) { 1073 printk(KERN_ERR " msg begins %02x %02x\n", 1074 hostdata->msgin[0], hostdata->msgin[1]); 1075 } 1076 NCR_700_internal_bus_reset(host); 1077 } else if((dsps & 0xfffff0f0) == A_DISCONNECT) { 1078 #ifdef NCR_700_DEBUG 1079 __u8 i = (dsps & 0xf00) >> 8; 1080 1081 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n", 1082 host->host_no, pun, lun, 1083 i, NCR_700_phase[i]); 1084 #endif 1085 save_for_reselection(hostdata, SCp, dsp); 1086 1087 } else if(dsps == A_RESELECTION_IDENTIFIED) { 1088 __u8 lun; 1089 struct NCR_700_command_slot *slot; 1090 __u8 reselection_id = hostdata->reselection_id; 1091 struct scsi_device *SDp; 1092 1093 lun = hostdata->msgin[0] & 0x1f; 1094 1095 hostdata->reselection_id = 0xff; 1096 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n", 1097 host->host_no, reselection_id, lun)); 1098 /* clear the reselection indicator */ 1099 SDp = __scsi_device_lookup(host, 0, reselection_id, lun); 1100 if(unlikely(SDp == NULL)) { 1101 printk(KERN_ERR "scsi%d: (%d:%d) HAS NO device\n", 1102 host->host_no, reselection_id, lun); 1103 BUG(); 1104 } 1105 if(hostdata->msgin[1] == A_SIMPLE_TAG_MSG) { 1106 struct scsi_cmnd *SCp; 1107 1108 SCp = scsi_host_find_tag(SDp->host, hostdata->msgin[2]); 1109 if(unlikely(SCp == NULL)) { 1110 printk(KERN_ERR "scsi%d: (%d:%d) no saved request for tag %d\n", 1111 host->host_no, reselection_id, lun, hostdata->msgin[2]); 1112 BUG(); 1113 } 1114 1115 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1116 DDEBUG(KERN_DEBUG, SDp, 1117 "reselection is tag %d, slot %p(%d)\n", 1118 hostdata->msgin[2], slot, slot->tag); 1119 } else { 1120 struct NCR_700_Device_Parameters *p = SDp->hostdata; 1121 struct scsi_cmnd *SCp = p->current_cmnd; 1122 1123 if(unlikely(SCp == NULL)) { 1124 sdev_printk(KERN_ERR, SDp, 1125 "no saved request for untagged cmd\n"); 1126 BUG(); 1127 } 1128 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1129 } 1130 1131 if(slot == NULL) { 1132 printk(KERN_ERR "scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n", 1133 host->host_no, reselection_id, lun, 1134 hostdata->msgin[0], hostdata->msgin[1], 1135 hostdata->msgin[2]); 1136 } else { 1137 if(hostdata->state != NCR_700_HOST_BUSY) 1138 printk(KERN_ERR "scsi%d: FATAL, host not busy during valid reselection!\n", 1139 host->host_no); 1140 resume_offset = slot->resume_offset; 1141 hostdata->cmd = slot->cmnd; 1142 1143 /* re-patch for this command */ 1144 script_patch_32_abs(hostdata->dev, hostdata->script, 1145 CommandAddress, slot->pCmd); 1146 script_patch_16(hostdata->dev, hostdata->script, 1147 CommandCount, slot->cmnd->cmd_len); 1148 script_patch_32_abs(hostdata->dev, hostdata->script, 1149 SGScriptStartAddress, 1150 to32bit(&slot->pSG[0].ins)); 1151 1152 /* Note: setting SXFER only works if we're 1153 * still in the MESSAGE phase, so it is vital 1154 * that ACK is still asserted when we process 1155 * the reselection message. The resume offset 1156 * should therefore always clear ACK */ 1157 NCR_700_writeb(NCR_700_get_SXFER(hostdata->cmd->device), 1158 host, SXFER_REG); 1159 dma_cache_sync(hostdata->dev, hostdata->msgin, 1160 MSG_ARRAY_SIZE, DMA_FROM_DEVICE); 1161 dma_cache_sync(hostdata->dev, hostdata->msgout, 1162 MSG_ARRAY_SIZE, DMA_TO_DEVICE); 1163 /* I'm just being paranoid here, the command should 1164 * already have been flushed from the cache */ 1165 dma_cache_sync(hostdata->dev, slot->cmnd->cmnd, 1166 slot->cmnd->cmd_len, DMA_TO_DEVICE); 1167 1168 1169 1170 } 1171 } else if(dsps == A_RESELECTED_DURING_SELECTION) { 1172 1173 /* This section is full of debugging code because I've 1174 * never managed to reach it. I think what happens is 1175 * that, because the 700 runs with selection 1176 * interrupts enabled the whole time that we take a 1177 * selection interrupt before we manage to get to the 1178 * reselected script interrupt */ 1179 1180 __u8 reselection_id = NCR_700_readb(host, SFBR_REG); 1181 struct NCR_700_command_slot *slot; 1182 1183 /* Take out our own ID */ 1184 reselection_id &= ~(1<<host->this_id); 1185 1186 /* I've never seen this happen, so keep this as a printk rather 1187 * than a debug */ 1188 printk(KERN_INFO "scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n", 1189 host->host_no, reselection_id, lun, dsp, dsp - hostdata->pScript, hostdata->state, hostdata->command_slot_count); 1190 1191 { 1192 /* FIXME: DEBUGGING CODE */ 1193 __u32 SG = (__u32)bS_to_cpu(hostdata->script[A_SGScriptStartAddress_used[0]]); 1194 int i; 1195 1196 for(i=0; i< NCR_700_COMMAND_SLOTS_PER_HOST; i++) { 1197 if(SG >= to32bit(&hostdata->slots[i].pSG[0]) 1198 && SG <= to32bit(&hostdata->slots[i].pSG[NCR_700_SG_SEGMENTS])) 1199 break; 1200 } 1201 printk(KERN_INFO "IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG, &hostdata->slots[i], hostdata->slots[i].cmnd, hostdata->slots[i].resume_offset); 1202 SCp = hostdata->slots[i].cmnd; 1203 } 1204 1205 if(SCp != NULL) { 1206 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1207 /* change slot from busy to queued to redo command */ 1208 slot->state = NCR_700_SLOT_QUEUED; 1209 } 1210 hostdata->cmd = NULL; 1211 1212 if(reselection_id == 0) { 1213 if(hostdata->reselection_id == 0xff) { 1214 printk(KERN_ERR "scsi%d: Invalid reselection during selection!!\n", host->host_no); 1215 return 0; 1216 } else { 1217 printk(KERN_ERR "scsi%d: script reselected and we took a selection interrupt\n", 1218 host->host_no); 1219 reselection_id = hostdata->reselection_id; 1220 } 1221 } else { 1222 1223 /* convert to real ID */ 1224 reselection_id = bitmap_to_number(reselection_id); 1225 } 1226 hostdata->reselection_id = reselection_id; 1227 /* just in case we have a stale simple tag message, clear it */ 1228 hostdata->msgin[1] = 0; 1229 dma_cache_sync(hostdata->dev, hostdata->msgin, 1230 MSG_ARRAY_SIZE, DMA_BIDIRECTIONAL); 1231 if(hostdata->tag_negotiated & (1<<reselection_id)) { 1232 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag; 1233 } else { 1234 resume_offset = hostdata->pScript + Ent_GetReselectionData; 1235 } 1236 } else if(dsps == A_COMPLETED_SELECTION_AS_TARGET) { 1237 /* we've just disconnected from the bus, do nothing since 1238 * a return here will re-run the queued command slot 1239 * that may have been interrupted by the initial selection */ 1240 DEBUG((" SELECTION COMPLETED\n")); 1241 } else if((dsps & 0xfffff0f0) == A_MSG_IN) { 1242 resume_offset = process_message(host, hostdata, SCp, 1243 dsp, dsps); 1244 } else if((dsps & 0xfffff000) == 0) { 1245 __u8 i = (dsps & 0xf0) >> 4, j = (dsps & 0xf00) >> 8; 1246 printk(KERN_ERR "scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n", 1247 host->host_no, pun, lun, NCR_700_condition[i], 1248 NCR_700_phase[j], dsp - hostdata->pScript); 1249 if(SCp != NULL) { 1250 struct scatterlist *sg; 1251 1252 scsi_print_command(SCp); 1253 scsi_for_each_sg(SCp, sg, scsi_sg_count(SCp) + 1, i) { 1254 printk(KERN_INFO " SG[%d].length = %d, move_insn=%08x, addr %08x\n", i, sg->length, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].ins, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].pAddr); 1255 } 1256 } 1257 NCR_700_internal_bus_reset(host); 1258 } else if((dsps & 0xfffff000) == A_DEBUG_INTERRUPT) { 1259 printk(KERN_NOTICE "scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n", 1260 host->host_no, pun, lun, dsps & 0xfff, dsp, dsp - hostdata->pScript); 1261 resume_offset = dsp; 1262 } else { 1263 printk(KERN_ERR "scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n", 1264 host->host_no, pun, lun, dsps, dsp - hostdata->pScript); 1265 NCR_700_internal_bus_reset(host); 1266 } 1267 return resume_offset; 1268 } 1269 1270 /* We run the 53c700 with selection interrupts always enabled. This 1271 * means that the chip may be selected as soon as the bus frees. On a 1272 * busy bus, this can be before the scripts engine finishes its 1273 * processing. Therefore, part of the selection processing has to be 1274 * to find out what the scripts engine is doing and complete the 1275 * function if necessary (i.e. process the pending disconnect or save 1276 * the interrupted initial selection */ 1277 STATIC inline __u32 1278 process_selection(struct Scsi_Host *host, __u32 dsp) 1279 { 1280 __u8 id = 0; /* Squash compiler warning */ 1281 int count = 0; 1282 __u32 resume_offset = 0; 1283 struct NCR_700_Host_Parameters *hostdata = 1284 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1285 struct scsi_cmnd *SCp = hostdata->cmd; 1286 __u8 sbcl; 1287 1288 for(count = 0; count < 5; count++) { 1289 id = NCR_700_readb(host, hostdata->chip710 ? 1290 CTEST9_REG : SFBR_REG); 1291 1292 /* Take out our own ID */ 1293 id &= ~(1<<host->this_id); 1294 if(id != 0) 1295 break; 1296 udelay(5); 1297 } 1298 sbcl = NCR_700_readb(host, SBCL_REG); 1299 if((sbcl & SBCL_IO) == 0) { 1300 /* mark as having been selected rather than reselected */ 1301 id = 0xff; 1302 } else { 1303 /* convert to real ID */ 1304 hostdata->reselection_id = id = bitmap_to_number(id); 1305 DEBUG(("scsi%d: Reselected by %d\n", 1306 host->host_no, id)); 1307 } 1308 if(hostdata->state == NCR_700_HOST_BUSY && SCp != NULL) { 1309 struct NCR_700_command_slot *slot = 1310 (struct NCR_700_command_slot *)SCp->host_scribble; 1311 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id, hostdata->cmd, slot, dsp, dsp - hostdata->pScript, resume_offset)); 1312 1313 switch(dsp - hostdata->pScript) { 1314 case Ent_Disconnect1: 1315 case Ent_Disconnect2: 1316 save_for_reselection(hostdata, SCp, Ent_Disconnect2 + hostdata->pScript); 1317 break; 1318 case Ent_Disconnect3: 1319 case Ent_Disconnect4: 1320 save_for_reselection(hostdata, SCp, Ent_Disconnect4 + hostdata->pScript); 1321 break; 1322 case Ent_Disconnect5: 1323 case Ent_Disconnect6: 1324 save_for_reselection(hostdata, SCp, Ent_Disconnect6 + hostdata->pScript); 1325 break; 1326 case Ent_Disconnect7: 1327 case Ent_Disconnect8: 1328 save_for_reselection(hostdata, SCp, Ent_Disconnect8 + hostdata->pScript); 1329 break; 1330 case Ent_Finish1: 1331 case Ent_Finish2: 1332 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS, dsp, SCp, host, hostdata); 1333 break; 1334 1335 default: 1336 slot->state = NCR_700_SLOT_QUEUED; 1337 break; 1338 } 1339 } 1340 hostdata->state = NCR_700_HOST_BUSY; 1341 hostdata->cmd = NULL; 1342 /* clear any stale simple tag message */ 1343 hostdata->msgin[1] = 0; 1344 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, 1345 DMA_BIDIRECTIONAL); 1346 1347 if(id == 0xff) { 1348 /* Selected as target, Ignore */ 1349 resume_offset = hostdata->pScript + Ent_SelectedAsTarget; 1350 } else if(hostdata->tag_negotiated & (1<<id)) { 1351 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag; 1352 } else { 1353 resume_offset = hostdata->pScript + Ent_GetReselectionData; 1354 } 1355 return resume_offset; 1356 } 1357 1358 static inline void 1359 NCR_700_clear_fifo(struct Scsi_Host *host) { 1360 const struct NCR_700_Host_Parameters *hostdata 1361 = (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1362 if(hostdata->chip710) { 1363 NCR_700_writeb(CLR_FIFO_710, host, CTEST8_REG); 1364 } else { 1365 NCR_700_writeb(CLR_FIFO, host, DFIFO_REG); 1366 } 1367 } 1368 1369 static inline void 1370 NCR_700_flush_fifo(struct Scsi_Host *host) { 1371 const struct NCR_700_Host_Parameters *hostdata 1372 = (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1373 if(hostdata->chip710) { 1374 NCR_700_writeb(FLUSH_DMA_FIFO_710, host, CTEST8_REG); 1375 udelay(10); 1376 NCR_700_writeb(0, host, CTEST8_REG); 1377 } else { 1378 NCR_700_writeb(FLUSH_DMA_FIFO, host, DFIFO_REG); 1379 udelay(10); 1380 NCR_700_writeb(0, host, DFIFO_REG); 1381 } 1382 } 1383 1384 1385 /* The queue lock with interrupts disabled must be held on entry to 1386 * this function */ 1387 STATIC int 1388 NCR_700_start_command(struct scsi_cmnd *SCp) 1389 { 1390 struct NCR_700_command_slot *slot = 1391 (struct NCR_700_command_slot *)SCp->host_scribble; 1392 struct NCR_700_Host_Parameters *hostdata = 1393 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; 1394 __u16 count = 1; /* for IDENTIFY message */ 1395 u8 lun = SCp->device->lun; 1396 1397 if(hostdata->state != NCR_700_HOST_FREE) { 1398 /* keep this inside the lock to close the race window where 1399 * the running command finishes on another CPU while we don't 1400 * change the state to queued on this one */ 1401 slot->state = NCR_700_SLOT_QUEUED; 1402 1403 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n", 1404 SCp->device->host->host_no, slot->cmnd, slot)); 1405 return 0; 1406 } 1407 hostdata->state = NCR_700_HOST_BUSY; 1408 hostdata->cmd = SCp; 1409 slot->state = NCR_700_SLOT_BUSY; 1410 /* keep interrupts disabled until we have the command correctly 1411 * set up so we cannot take a selection interrupt */ 1412 1413 hostdata->msgout[0] = NCR_700_identify((SCp->cmnd[0] != REQUEST_SENSE && 1414 slot->flags != NCR_700_FLAG_AUTOSENSE), 1415 lun); 1416 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure 1417 * if the negotiated transfer parameters still hold, so 1418 * always renegotiate them */ 1419 if(SCp->cmnd[0] == INQUIRY || SCp->cmnd[0] == REQUEST_SENSE || 1420 slot->flags == NCR_700_FLAG_AUTOSENSE) { 1421 NCR_700_clear_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); 1422 } 1423 1424 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status. 1425 * If a contingent allegiance condition exists, the device 1426 * will refuse all tags, so send the request sense as untagged 1427 * */ 1428 if((hostdata->tag_negotiated & (1<<scmd_id(SCp))) 1429 && (slot->tag != SCSI_NO_TAG && SCp->cmnd[0] != REQUEST_SENSE && 1430 slot->flags != NCR_700_FLAG_AUTOSENSE)) { 1431 count += spi_populate_tag_msg(&hostdata->msgout[count], SCp); 1432 } 1433 1434 if(hostdata->fast && 1435 NCR_700_is_flag_clear(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC)) { 1436 count += spi_populate_sync_msg(&hostdata->msgout[count], 1437 spi_period(SCp->device->sdev_target), 1438 spi_offset(SCp->device->sdev_target)); 1439 NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 1440 } 1441 1442 script_patch_16(hostdata->dev, hostdata->script, MessageCount, count); 1443 1444 1445 script_patch_ID(hostdata->dev, hostdata->script, 1446 Device_ID, 1<<scmd_id(SCp)); 1447 1448 script_patch_32_abs(hostdata->dev, hostdata->script, CommandAddress, 1449 slot->pCmd); 1450 script_patch_16(hostdata->dev, hostdata->script, CommandCount, 1451 SCp->cmd_len); 1452 /* finally plumb the beginning of the SG list into the script 1453 * */ 1454 script_patch_32_abs(hostdata->dev, hostdata->script, 1455 SGScriptStartAddress, to32bit(&slot->pSG[0].ins)); 1456 NCR_700_clear_fifo(SCp->device->host); 1457 1458 if(slot->resume_offset == 0) 1459 slot->resume_offset = hostdata->pScript; 1460 /* now perform all the writebacks and invalidates */ 1461 dma_cache_sync(hostdata->dev, hostdata->msgout, count, DMA_TO_DEVICE); 1462 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, 1463 DMA_FROM_DEVICE); 1464 dma_cache_sync(hostdata->dev, SCp->cmnd, SCp->cmd_len, DMA_TO_DEVICE); 1465 dma_cache_sync(hostdata->dev, hostdata->status, 1, DMA_FROM_DEVICE); 1466 1467 /* set the synchronous period/offset */ 1468 NCR_700_writeb(NCR_700_get_SXFER(SCp->device), 1469 SCp->device->host, SXFER_REG); 1470 NCR_700_writel(slot->temp, SCp->device->host, TEMP_REG); 1471 NCR_700_writel(slot->resume_offset, SCp->device->host, DSP_REG); 1472 1473 return 1; 1474 } 1475 1476 irqreturn_t 1477 NCR_700_intr(int irq, void *dev_id) 1478 { 1479 struct Scsi_Host *host = (struct Scsi_Host *)dev_id; 1480 struct NCR_700_Host_Parameters *hostdata = 1481 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1482 __u8 istat; 1483 __u32 resume_offset = 0; 1484 __u8 pun = 0xff, lun = 0xff; 1485 unsigned long flags; 1486 int handled = 0; 1487 1488 /* Use the host lock to serialise access to the 53c700 1489 * hardware. Note: In future, we may need to take the queue 1490 * lock to enter the done routines. When that happens, we 1491 * need to ensure that for this driver, the host lock and the 1492 * queue lock point to the same thing. */ 1493 spin_lock_irqsave(host->host_lock, flags); 1494 if((istat = NCR_700_readb(host, ISTAT_REG)) 1495 & (SCSI_INT_PENDING | DMA_INT_PENDING)) { 1496 __u32 dsps; 1497 __u8 sstat0 = 0, dstat = 0; 1498 __u32 dsp; 1499 struct scsi_cmnd *SCp = hostdata->cmd; 1500 enum NCR_700_Host_State state; 1501 1502 handled = 1; 1503 state = hostdata->state; 1504 SCp = hostdata->cmd; 1505 1506 if(istat & SCSI_INT_PENDING) { 1507 udelay(10); 1508 1509 sstat0 = NCR_700_readb(host, SSTAT0_REG); 1510 } 1511 1512 if(istat & DMA_INT_PENDING) { 1513 udelay(10); 1514 1515 dstat = NCR_700_readb(host, DSTAT_REG); 1516 } 1517 1518 dsps = NCR_700_readl(host, DSPS_REG); 1519 dsp = NCR_700_readl(host, DSP_REG); 1520 1521 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n", 1522 host->host_no, istat, sstat0, dstat, 1523 (dsp - (__u32)(hostdata->pScript))/4, 1524 dsp, dsps)); 1525 1526 if(SCp != NULL) { 1527 pun = SCp->device->id; 1528 lun = SCp->device->lun; 1529 } 1530 1531 if(sstat0 & SCSI_RESET_DETECTED) { 1532 struct scsi_device *SDp; 1533 int i; 1534 1535 hostdata->state = NCR_700_HOST_BUSY; 1536 1537 printk(KERN_ERR "scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n", 1538 host->host_no, SCp, SCp == NULL ? NULL : SCp->host_scribble, dsp, dsp - hostdata->pScript); 1539 1540 scsi_report_bus_reset(host, 0); 1541 1542 /* clear all the negotiated parameters */ 1543 __shost_for_each_device(SDp, host) 1544 NCR_700_clear_flag(SDp, ~0); 1545 1546 /* clear all the slots and their pending commands */ 1547 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) { 1548 struct scsi_cmnd *SCp; 1549 struct NCR_700_command_slot *slot = 1550 &hostdata->slots[i]; 1551 1552 if(slot->state == NCR_700_SLOT_FREE) 1553 continue; 1554 1555 SCp = slot->cmnd; 1556 printk(KERN_ERR " failing command because of reset, slot %p, cmnd %p\n", 1557 slot, SCp); 1558 free_slot(slot, hostdata); 1559 SCp->host_scribble = NULL; 1560 NCR_700_set_depth(SCp->device, 0); 1561 /* NOTE: deadlock potential here: we 1562 * rely on mid-layer guarantees that 1563 * scsi_done won't try to issue the 1564 * command again otherwise we'll 1565 * deadlock on the 1566 * hostdata->state_lock */ 1567 SCp->result = DID_RESET << 16; 1568 SCp->scsi_done(SCp); 1569 } 1570 mdelay(25); 1571 NCR_700_chip_setup(host); 1572 1573 hostdata->state = NCR_700_HOST_FREE; 1574 hostdata->cmd = NULL; 1575 /* signal back if this was an eh induced reset */ 1576 if(hostdata->eh_complete != NULL) 1577 complete(hostdata->eh_complete); 1578 goto out_unlock; 1579 } else if(sstat0 & SELECTION_TIMEOUT) { 1580 DEBUG(("scsi%d: (%d:%d) selection timeout\n", 1581 host->host_no, pun, lun)); 1582 NCR_700_scsi_done(hostdata, SCp, DID_NO_CONNECT<<16); 1583 } else if(sstat0 & PHASE_MISMATCH) { 1584 struct NCR_700_command_slot *slot = (SCp == NULL) ? NULL : 1585 (struct NCR_700_command_slot *)SCp->host_scribble; 1586 1587 if(dsp == Ent_SendMessage + 8 + hostdata->pScript) { 1588 /* It wants to reply to some part of 1589 * our message */ 1590 #ifdef NCR_700_DEBUG 1591 __u32 temp = NCR_700_readl(host, TEMP_REG); 1592 int count = (hostdata->script[Ent_SendMessage/4] & 0xffffff) - ((NCR_700_readl(host, DBC_REG) & 0xffffff) + NCR_700_data_residual(host)); 1593 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host->host_no, pun, lun, count, (void *)temp, temp - hostdata->pScript, sbcl_to_string(NCR_700_readb(host, SBCL_REG))); 1594 #endif 1595 resume_offset = hostdata->pScript + Ent_SendMessagePhaseMismatch; 1596 } else if(dsp >= to32bit(&slot->pSG[0].ins) && 1597 dsp <= to32bit(&slot->pSG[NCR_700_SG_SEGMENTS].ins)) { 1598 int data_transfer = NCR_700_readl(host, DBC_REG) & 0xffffff; 1599 int SGcount = (dsp - to32bit(&slot->pSG[0].ins))/sizeof(struct NCR_700_SG_List); 1600 int residual = NCR_700_data_residual(host); 1601 int i; 1602 #ifdef NCR_700_DEBUG 1603 __u32 naddr = NCR_700_readl(host, DNAD_REG); 1604 1605 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n", 1606 host->host_no, pun, lun, 1607 SGcount, data_transfer); 1608 scsi_print_command(SCp); 1609 if(residual) { 1610 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n", 1611 host->host_no, pun, lun, 1612 SGcount, data_transfer, residual); 1613 } 1614 #endif 1615 data_transfer += residual; 1616 1617 if(data_transfer != 0) { 1618 int count; 1619 __u32 pAddr; 1620 1621 SGcount--; 1622 1623 count = (bS_to_cpu(slot->SG[SGcount].ins) & 0x00ffffff); 1624 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count, count-data_transfer)); 1625 slot->SG[SGcount].ins &= bS_to_host(0xff000000); 1626 slot->SG[SGcount].ins |= bS_to_host(data_transfer); 1627 pAddr = bS_to_cpu(slot->SG[SGcount].pAddr); 1628 pAddr += (count - data_transfer); 1629 #ifdef NCR_700_DEBUG 1630 if(pAddr != naddr) { 1631 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host->host_no, pun, lun, (unsigned long)pAddr, (unsigned long)naddr, data_transfer, residual); 1632 } 1633 #endif 1634 slot->SG[SGcount].pAddr = bS_to_host(pAddr); 1635 } 1636 /* set the executed moves to nops */ 1637 for(i=0; i<SGcount; i++) { 1638 slot->SG[i].ins = bS_to_host(SCRIPT_NOP); 1639 slot->SG[i].pAddr = 0; 1640 } 1641 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE); 1642 /* and pretend we disconnected after 1643 * the command phase */ 1644 resume_offset = hostdata->pScript + Ent_MsgInDuringData; 1645 /* make sure all the data is flushed */ 1646 NCR_700_flush_fifo(host); 1647 } else { 1648 __u8 sbcl = NCR_700_readb(host, SBCL_REG); 1649 printk(KERN_ERR "scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n", 1650 host->host_no, pun, lun, dsp - hostdata->pScript, sbcl_to_string(sbcl)); 1651 NCR_700_internal_bus_reset(host); 1652 } 1653 1654 } else if(sstat0 & SCSI_GROSS_ERROR) { 1655 printk(KERN_ERR "scsi%d: (%d:%d) GROSS ERROR\n", 1656 host->host_no, pun, lun); 1657 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1658 } else if(sstat0 & PARITY_ERROR) { 1659 printk(KERN_ERR "scsi%d: (%d:%d) PARITY ERROR\n", 1660 host->host_no, pun, lun); 1661 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1662 } else if(dstat & SCRIPT_INT_RECEIVED) { 1663 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n", 1664 host->host_no, pun, lun)); 1665 resume_offset = process_script_interrupt(dsps, dsp, SCp, host, hostdata); 1666 } else if(dstat & (ILGL_INST_DETECTED)) { 1667 printk(KERN_ERR "scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n" 1668 " Please email James.Bottomley@HansenPartnership.com with the details\n", 1669 host->host_no, pun, lun, 1670 dsp, dsp - hostdata->pScript); 1671 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1672 } else if(dstat & (WATCH_DOG_INTERRUPT|ABORTED)) { 1673 printk(KERN_ERR "scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n", 1674 host->host_no, pun, lun, dstat); 1675 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1676 } 1677 1678 1679 /* NOTE: selection interrupt processing MUST occur 1680 * after script interrupt processing to correctly cope 1681 * with the case where we process a disconnect and 1682 * then get reselected before we process the 1683 * disconnection */ 1684 if(sstat0 & SELECTED) { 1685 /* FIXME: It currently takes at least FOUR 1686 * interrupts to complete a command that 1687 * disconnects: one for the disconnect, one 1688 * for the reselection, one to get the 1689 * reselection data and one to complete the 1690 * command. If we guess the reselected 1691 * command here and prepare it, we only need 1692 * to get a reselection data interrupt if we 1693 * guessed wrongly. Since the interrupt 1694 * overhead is much greater than the command 1695 * setup, this would be an efficient 1696 * optimisation particularly as we probably 1697 * only have one outstanding command on a 1698 * target most of the time */ 1699 1700 resume_offset = process_selection(host, dsp); 1701 1702 } 1703 1704 } 1705 1706 if(resume_offset) { 1707 if(hostdata->state != NCR_700_HOST_BUSY) { 1708 printk(KERN_ERR "scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n", 1709 host->host_no, resume_offset, resume_offset - hostdata->pScript); 1710 hostdata->state = NCR_700_HOST_BUSY; 1711 } 1712 1713 DEBUG(("Attempting to resume at %x\n", resume_offset)); 1714 NCR_700_clear_fifo(host); 1715 NCR_700_writel(resume_offset, host, DSP_REG); 1716 } 1717 /* There is probably a technical no-no about this: If we're a 1718 * shared interrupt and we got this interrupt because the 1719 * other device needs servicing not us, we're still going to 1720 * check our queued commands here---of course, there shouldn't 1721 * be any outstanding.... */ 1722 if(hostdata->state == NCR_700_HOST_FREE) { 1723 int i; 1724 1725 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) { 1726 /* fairness: always run the queue from the last 1727 * position we left off */ 1728 int j = (i + hostdata->saved_slot_position) 1729 % NCR_700_COMMAND_SLOTS_PER_HOST; 1730 1731 if(hostdata->slots[j].state != NCR_700_SLOT_QUEUED) 1732 continue; 1733 if(NCR_700_start_command(hostdata->slots[j].cmnd)) { 1734 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n", 1735 host->host_no, &hostdata->slots[j], 1736 hostdata->slots[j].cmnd)); 1737 hostdata->saved_slot_position = j + 1; 1738 } 1739 1740 break; 1741 } 1742 } 1743 out_unlock: 1744 spin_unlock_irqrestore(host->host_lock, flags); 1745 return IRQ_RETVAL(handled); 1746 } 1747 1748 static int 1749 NCR_700_queuecommand_lck(struct scsi_cmnd *SCp, void (*done)(struct scsi_cmnd *)) 1750 { 1751 struct NCR_700_Host_Parameters *hostdata = 1752 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; 1753 __u32 move_ins; 1754 enum dma_data_direction direction; 1755 struct NCR_700_command_slot *slot; 1756 1757 if(hostdata->command_slot_count >= NCR_700_COMMAND_SLOTS_PER_HOST) { 1758 /* We're over our allocation, this should never happen 1759 * since we report the max allocation to the mid layer */ 1760 printk(KERN_WARNING "scsi%d: Command depth has gone over queue depth\n", SCp->device->host->host_no); 1761 return 1; 1762 } 1763 /* check for untagged commands. We cannot have any outstanding 1764 * commands if we accept them. Commands could be untagged because: 1765 * 1766 * - The tag negotiated bitmap is clear 1767 * - The blk layer sent and untagged command 1768 */ 1769 if(NCR_700_get_depth(SCp->device) != 0 1770 && (!(hostdata->tag_negotiated & (1<<scmd_id(SCp))) 1771 || !(SCp->flags & SCMD_TAGGED))) { 1772 CDEBUG(KERN_ERR, SCp, "has non zero depth %d\n", 1773 NCR_700_get_depth(SCp->device)); 1774 return SCSI_MLQUEUE_DEVICE_BUSY; 1775 } 1776 if(NCR_700_get_depth(SCp->device) >= SCp->device->queue_depth) { 1777 CDEBUG(KERN_ERR, SCp, "has max tag depth %d\n", 1778 NCR_700_get_depth(SCp->device)); 1779 return SCSI_MLQUEUE_DEVICE_BUSY; 1780 } 1781 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) + 1); 1782 1783 /* begin the command here */ 1784 /* no need to check for NULL, test for command_slot_count above 1785 * ensures a slot is free */ 1786 slot = find_empty_slot(hostdata); 1787 1788 slot->cmnd = SCp; 1789 1790 SCp->scsi_done = done; 1791 SCp->host_scribble = (unsigned char *)slot; 1792 SCp->SCp.ptr = NULL; 1793 SCp->SCp.buffer = NULL; 1794 1795 #ifdef NCR_700_DEBUG 1796 printk("53c700: scsi%d, command ", SCp->device->host->host_no); 1797 scsi_print_command(SCp); 1798 #endif 1799 if ((SCp->flags & SCMD_TAGGED) 1800 && (hostdata->tag_negotiated &(1<<scmd_id(SCp))) == 0 1801 && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_START_TAG_NEGOTIATION) { 1802 scmd_printk(KERN_ERR, SCp, "Enabling Tag Command Queuing\n"); 1803 hostdata->tag_negotiated |= (1<<scmd_id(SCp)); 1804 NCR_700_set_tag_neg_state(SCp->device, NCR_700_DURING_TAG_NEGOTIATION); 1805 } 1806 1807 /* here we may have to process an untagged command. The gate 1808 * above ensures that this will be the only one outstanding, 1809 * so clear the tag negotiated bit. 1810 * 1811 * FIXME: This will royally screw up on multiple LUN devices 1812 * */ 1813 if (!(SCp->flags & SCMD_TAGGED) 1814 && (hostdata->tag_negotiated &(1<<scmd_id(SCp)))) { 1815 scmd_printk(KERN_INFO, SCp, "Disabling Tag Command Queuing\n"); 1816 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); 1817 } 1818 1819 if ((hostdata->tag_negotiated & (1<<scmd_id(SCp))) && 1820 SCp->device->simple_tags) { 1821 slot->tag = SCp->request->tag; 1822 CDEBUG(KERN_DEBUG, SCp, "sending out tag %d, slot %p\n", 1823 slot->tag, slot); 1824 } else { 1825 struct NCR_700_Device_Parameters *p = SCp->device->hostdata; 1826 1827 slot->tag = SCSI_NO_TAG; 1828 /* save current command for reselection */ 1829 p->current_cmnd = SCp; 1830 } 1831 /* sanity check: some of the commands generated by the mid-layer 1832 * have an eccentric idea of their sc_data_direction */ 1833 if(!scsi_sg_count(SCp) && !scsi_bufflen(SCp) && 1834 SCp->sc_data_direction != DMA_NONE) { 1835 #ifdef NCR_700_DEBUG 1836 printk("53c700: Command"); 1837 scsi_print_command(SCp); 1838 printk("Has wrong data direction %d\n", SCp->sc_data_direction); 1839 #endif 1840 SCp->sc_data_direction = DMA_NONE; 1841 } 1842 1843 switch (SCp->cmnd[0]) { 1844 case REQUEST_SENSE: 1845 /* clear the internal sense magic */ 1846 SCp->cmnd[6] = 0; 1847 /* fall through */ 1848 default: 1849 /* OK, get it from the command */ 1850 switch(SCp->sc_data_direction) { 1851 case DMA_BIDIRECTIONAL: 1852 default: 1853 printk(KERN_ERR "53c700: Unknown command for data direction "); 1854 scsi_print_command(SCp); 1855 1856 move_ins = 0; 1857 break; 1858 case DMA_NONE: 1859 move_ins = 0; 1860 break; 1861 case DMA_FROM_DEVICE: 1862 move_ins = SCRIPT_MOVE_DATA_IN; 1863 break; 1864 case DMA_TO_DEVICE: 1865 move_ins = SCRIPT_MOVE_DATA_OUT; 1866 break; 1867 } 1868 } 1869 1870 /* now build the scatter gather list */ 1871 direction = SCp->sc_data_direction; 1872 if(move_ins != 0) { 1873 int i; 1874 int sg_count; 1875 dma_addr_t vPtr = 0; 1876 struct scatterlist *sg; 1877 __u32 count = 0; 1878 1879 sg_count = scsi_dma_map(SCp); 1880 BUG_ON(sg_count < 0); 1881 1882 scsi_for_each_sg(SCp, sg, sg_count, i) { 1883 vPtr = sg_dma_address(sg); 1884 count = sg_dma_len(sg); 1885 1886 slot->SG[i].ins = bS_to_host(move_ins | count); 1887 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n", 1888 i, count, slot->SG[i].ins, (unsigned long)vPtr)); 1889 slot->SG[i].pAddr = bS_to_host(vPtr); 1890 } 1891 slot->SG[i].ins = bS_to_host(SCRIPT_RETURN); 1892 slot->SG[i].pAddr = 0; 1893 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE); 1894 DEBUG((" SETTING %p to %x\n", 1895 (&slot->pSG[i].ins), 1896 slot->SG[i].ins)); 1897 } 1898 slot->resume_offset = 0; 1899 slot->pCmd = dma_map_single(hostdata->dev, SCp->cmnd, 1900 MAX_COMMAND_SIZE, DMA_TO_DEVICE); 1901 NCR_700_start_command(SCp); 1902 return 0; 1903 } 1904 1905 STATIC DEF_SCSI_QCMD(NCR_700_queuecommand) 1906 1907 STATIC int 1908 NCR_700_abort(struct scsi_cmnd * SCp) 1909 { 1910 struct NCR_700_command_slot *slot; 1911 1912 scmd_printk(KERN_INFO, SCp, "abort command\n"); 1913 1914 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1915 1916 if(slot == NULL) 1917 /* no outstanding command to abort */ 1918 return SUCCESS; 1919 if(SCp->cmnd[0] == TEST_UNIT_READY) { 1920 /* FIXME: This is because of a problem in the new 1921 * error handler. When it is in error recovery, it 1922 * will send a TUR to a device it thinks may still be 1923 * showing a problem. If the TUR isn't responded to, 1924 * it will abort it and mark the device off line. 1925 * Unfortunately, it does no other error recovery, so 1926 * this would leave us with an outstanding command 1927 * occupying a slot. Rather than allow this to 1928 * happen, we issue a bus reset to force all 1929 * outstanding commands to terminate here. */ 1930 NCR_700_internal_bus_reset(SCp->device->host); 1931 /* still drop through and return failed */ 1932 } 1933 return FAILED; 1934 1935 } 1936 1937 STATIC int 1938 NCR_700_host_reset(struct scsi_cmnd * SCp) 1939 { 1940 DECLARE_COMPLETION_ONSTACK(complete); 1941 struct NCR_700_Host_Parameters *hostdata = 1942 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; 1943 1944 scmd_printk(KERN_INFO, SCp, 1945 "New error handler wants HOST reset, cmd %p\n\t", SCp); 1946 scsi_print_command(SCp); 1947 1948 /* In theory, eh_complete should always be null because the 1949 * eh is single threaded, but just in case we're handling a 1950 * reset via sg or something */ 1951 spin_lock_irq(SCp->device->host->host_lock); 1952 while (hostdata->eh_complete != NULL) { 1953 spin_unlock_irq(SCp->device->host->host_lock); 1954 msleep_interruptible(100); 1955 spin_lock_irq(SCp->device->host->host_lock); 1956 } 1957 1958 hostdata->eh_complete = &complete; 1959 NCR_700_internal_bus_reset(SCp->device->host); 1960 NCR_700_chip_reset(SCp->device->host); 1961 1962 spin_unlock_irq(SCp->device->host->host_lock); 1963 wait_for_completion(&complete); 1964 spin_lock_irq(SCp->device->host->host_lock); 1965 1966 hostdata->eh_complete = NULL; 1967 /* Revalidate the transport parameters of the failing device */ 1968 if(hostdata->fast) 1969 spi_schedule_dv_device(SCp->device); 1970 1971 spin_unlock_irq(SCp->device->host->host_lock); 1972 return SUCCESS; 1973 } 1974 1975 STATIC void 1976 NCR_700_set_period(struct scsi_target *STp, int period) 1977 { 1978 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent); 1979 struct NCR_700_Host_Parameters *hostdata = 1980 (struct NCR_700_Host_Parameters *)SHp->hostdata[0]; 1981 1982 if(!hostdata->fast) 1983 return; 1984 1985 if(period < hostdata->min_period) 1986 period = hostdata->min_period; 1987 1988 spi_period(STp) = period; 1989 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC | 1990 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 1991 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION; 1992 } 1993 1994 STATIC void 1995 NCR_700_set_offset(struct scsi_target *STp, int offset) 1996 { 1997 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent); 1998 struct NCR_700_Host_Parameters *hostdata = 1999 (struct NCR_700_Host_Parameters *)SHp->hostdata[0]; 2000 int max_offset = hostdata->chip710 2001 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET; 2002 2003 if(!hostdata->fast) 2004 return; 2005 2006 if(offset > max_offset) 2007 offset = max_offset; 2008 2009 /* if we're currently async, make sure the period is reasonable */ 2010 if(spi_offset(STp) == 0 && (spi_period(STp) < hostdata->min_period || 2011 spi_period(STp) > 0xff)) 2012 spi_period(STp) = hostdata->min_period; 2013 2014 spi_offset(STp) = offset; 2015 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC | 2016 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 2017 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION; 2018 } 2019 2020 STATIC int 2021 NCR_700_slave_alloc(struct scsi_device *SDp) 2022 { 2023 SDp->hostdata = kzalloc(sizeof(struct NCR_700_Device_Parameters), 2024 GFP_KERNEL); 2025 2026 if (!SDp->hostdata) 2027 return -ENOMEM; 2028 2029 return 0; 2030 } 2031 2032 STATIC int 2033 NCR_700_slave_configure(struct scsi_device *SDp) 2034 { 2035 struct NCR_700_Host_Parameters *hostdata = 2036 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; 2037 2038 /* to do here: allocate memory; build a queue_full list */ 2039 if(SDp->tagged_supported) { 2040 scsi_change_queue_depth(SDp, NCR_700_DEFAULT_TAGS); 2041 NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION); 2042 } 2043 2044 if(hostdata->fast) { 2045 /* Find the correct offset and period via domain validation */ 2046 if (!spi_initial_dv(SDp->sdev_target)) 2047 spi_dv_device(SDp); 2048 } else { 2049 spi_offset(SDp->sdev_target) = 0; 2050 spi_period(SDp->sdev_target) = 0; 2051 } 2052 return 0; 2053 } 2054 2055 STATIC void 2056 NCR_700_slave_destroy(struct scsi_device *SDp) 2057 { 2058 kfree(SDp->hostdata); 2059 SDp->hostdata = NULL; 2060 } 2061 2062 static int 2063 NCR_700_change_queue_depth(struct scsi_device *SDp, int depth) 2064 { 2065 if (depth > NCR_700_MAX_TAGS) 2066 depth = NCR_700_MAX_TAGS; 2067 return scsi_change_queue_depth(SDp, depth); 2068 } 2069 2070 static ssize_t 2071 NCR_700_show_active_tags(struct device *dev, struct device_attribute *attr, char *buf) 2072 { 2073 struct scsi_device *SDp = to_scsi_device(dev); 2074 2075 return snprintf(buf, 20, "%d\n", NCR_700_get_depth(SDp)); 2076 } 2077 2078 static struct device_attribute NCR_700_active_tags_attr = { 2079 .attr = { 2080 .name = "active_tags", 2081 .mode = S_IRUGO, 2082 }, 2083 .show = NCR_700_show_active_tags, 2084 }; 2085 2086 STATIC struct device_attribute *NCR_700_dev_attrs[] = { 2087 &NCR_700_active_tags_attr, 2088 NULL, 2089 }; 2090 2091 EXPORT_SYMBOL(NCR_700_detect); 2092 EXPORT_SYMBOL(NCR_700_release); 2093 EXPORT_SYMBOL(NCR_700_intr); 2094 2095 static struct spi_function_template NCR_700_transport_functions = { 2096 .set_period = NCR_700_set_period, 2097 .show_period = 1, 2098 .set_offset = NCR_700_set_offset, 2099 .show_offset = 1, 2100 }; 2101 2102 static int __init NCR_700_init(void) 2103 { 2104 NCR_700_transport_template = spi_attach_transport(&NCR_700_transport_functions); 2105 if(!NCR_700_transport_template) 2106 return -ENODEV; 2107 return 0; 2108 } 2109 2110 static void __exit NCR_700_exit(void) 2111 { 2112 spi_release_transport(NCR_700_transport_template); 2113 } 2114 2115 module_init(NCR_700_init); 2116 module_exit(NCR_700_exit); 2117 2118