1 /* -*- mode: c; c-basic-offset: 8 -*- */ 2 3 /* NCR (or Symbios) 53c700 and 53c700-66 Driver 4 * 5 * Copyright (C) 2001 by James.Bottomley@HansenPartnership.com 6 **----------------------------------------------------------------------------- 7 ** 8 ** This program is free software; you can redistribute it and/or modify 9 ** it under the terms of the GNU General Public License as published by 10 ** the Free Software Foundation; either version 2 of the License, or 11 ** (at your option) any later version. 12 ** 13 ** This program is distributed in the hope that it will be useful, 14 ** but WITHOUT ANY WARRANTY; without even the implied warranty of 15 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 ** GNU General Public License for more details. 17 ** 18 ** You should have received a copy of the GNU General Public License 19 ** along with this program; if not, write to the Free Software 20 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 ** 22 **----------------------------------------------------------------------------- 23 */ 24 25 /* Notes: 26 * 27 * This driver is designed exclusively for these chips (virtually the 28 * earliest of the scripts engine chips). They need their own drivers 29 * because they are missing so many of the scripts and snazzy register 30 * features of their elder brothers (the 710, 720 and 770). 31 * 32 * The 700 is the lowliest of the line, it can only do async SCSI. 33 * The 700-66 can at least do synchronous SCSI up to 10MHz. 34 * 35 * The 700 chip has no host bus interface logic of its own. However, 36 * it is usually mapped to a location with well defined register 37 * offsets. Therefore, if you can determine the base address and the 38 * irq your board incorporating this chip uses, you can probably use 39 * this driver to run it (although you'll probably have to write a 40 * minimal wrapper for the purpose---see the NCR_D700 driver for 41 * details about how to do this). 42 * 43 * 44 * TODO List: 45 * 46 * 1. Better statistics in the proc fs 47 * 48 * 2. Implement message queue (queues SCSI messages like commands) and make 49 * the abort and device reset functions use them. 50 * */ 51 52 /* CHANGELOG 53 * 54 * Version 2.8 55 * 56 * Fixed bad bug affecting tag starvation processing (previously the 57 * driver would hang the system if too many tags starved. Also fixed 58 * bad bug having to do with 10 byte command processing and REQUEST 59 * SENSE (the command would loop forever getting a transfer length 60 * mismatch in the CMD phase). 61 * 62 * Version 2.7 63 * 64 * Fixed scripts problem which caused certain devices (notably CDRWs) 65 * to hang on initial INQUIRY. Updated NCR_700_readl/writel to use 66 * __raw_readl/writel for parisc compatibility (Thomas 67 * Bogendoerfer). Added missing SCp->request_bufflen initialisation 68 * for sense requests (Ryan Bradetich). 69 * 70 * Version 2.6 71 * 72 * Following test of the 64 bit parisc kernel by Richard Hirst, 73 * several problems have now been corrected. Also adds support for 74 * consistent memory allocation. 75 * 76 * Version 2.5 77 * 78 * More Compatibility changes for 710 (now actually works). Enhanced 79 * support for odd clock speeds which constrain SDTR negotiations. 80 * correct cacheline separation for scsi messages and status for 81 * incoherent architectures. Use of the pci mapping functions on 82 * buffers to begin support for 64 bit drivers. 83 * 84 * Version 2.4 85 * 86 * Added support for the 53c710 chip (in 53c700 emulation mode only---no 87 * special 53c710 instructions or registers are used). 88 * 89 * Version 2.3 90 * 91 * More endianness/cache coherency changes. 92 * 93 * Better bad device handling (handles devices lying about tag 94 * queueing support and devices which fail to provide sense data on 95 * contingent allegiance conditions) 96 * 97 * Many thanks to Richard Hirst <rhirst@linuxcare.com> for patiently 98 * debugging this driver on the parisc architecture and suggesting 99 * many improvements and bug fixes. 100 * 101 * Thanks also go to Linuxcare Inc. for providing several PARISC 102 * machines for me to debug the driver on. 103 * 104 * Version 2.2 105 * 106 * Made the driver mem or io mapped; added endian invariance; added 107 * dma cache flushing operations for architectures which need it; 108 * added support for more varied clocking speeds. 109 * 110 * Version 2.1 111 * 112 * Initial modularisation from the D700. See NCR_D700.c for the rest of 113 * the changelog. 114 * */ 115 #define NCR_700_VERSION "2.8" 116 117 #include <linux/kernel.h> 118 #include <linux/types.h> 119 #include <linux/string.h> 120 #include <linux/ioport.h> 121 #include <linux/delay.h> 122 #include <linux/spinlock.h> 123 #include <linux/completion.h> 124 #include <linux/init.h> 125 #include <linux/proc_fs.h> 126 #include <linux/blkdev.h> 127 #include <linux/module.h> 128 #include <linux/interrupt.h> 129 #include <linux/device.h> 130 #include <asm/dma.h> 131 #include <asm/system.h> 132 #include <asm/io.h> 133 #include <asm/pgtable.h> 134 #include <asm/byteorder.h> 135 136 #include <scsi/scsi.h> 137 #include <scsi/scsi_cmnd.h> 138 #include <scsi/scsi_dbg.h> 139 #include <scsi/scsi_eh.h> 140 #include <scsi/scsi_host.h> 141 #include <scsi/scsi_tcq.h> 142 #include <scsi/scsi_transport.h> 143 #include <scsi/scsi_transport_spi.h> 144 145 #include "53c700.h" 146 147 /* NOTE: For 64 bit drivers there are points in the code where we use 148 * a non dereferenceable pointer to point to a structure in dma-able 149 * memory (which is 32 bits) so that we can use all of the structure 150 * operations but take the address at the end. This macro allows us 151 * to truncate the 64 bit pointer down to 32 bits without the compiler 152 * complaining */ 153 #define to32bit(x) ((__u32)((unsigned long)(x))) 154 155 #ifdef NCR_700_DEBUG 156 #define STATIC 157 #else 158 #define STATIC static 159 #endif 160 161 MODULE_AUTHOR("James Bottomley"); 162 MODULE_DESCRIPTION("53c700 and 53c700-66 Driver"); 163 MODULE_LICENSE("GPL"); 164 165 /* This is the script */ 166 #include "53c700_d.h" 167 168 169 STATIC int NCR_700_queuecommand(struct scsi_cmnd *, void (*done)(struct scsi_cmnd *)); 170 STATIC int NCR_700_abort(struct scsi_cmnd * SCpnt); 171 STATIC int NCR_700_bus_reset(struct scsi_cmnd * SCpnt); 172 STATIC int NCR_700_host_reset(struct scsi_cmnd * SCpnt); 173 STATIC void NCR_700_chip_setup(struct Scsi_Host *host); 174 STATIC void NCR_700_chip_reset(struct Scsi_Host *host); 175 STATIC int NCR_700_slave_alloc(struct scsi_device *SDpnt); 176 STATIC int NCR_700_slave_configure(struct scsi_device *SDpnt); 177 STATIC void NCR_700_slave_destroy(struct scsi_device *SDpnt); 178 static int NCR_700_change_queue_depth(struct scsi_device *SDpnt, int depth); 179 static int NCR_700_change_queue_type(struct scsi_device *SDpnt, int depth); 180 181 STATIC struct device_attribute *NCR_700_dev_attrs[]; 182 183 STATIC struct scsi_transport_template *NCR_700_transport_template = NULL; 184 185 static char *NCR_700_phase[] = { 186 "", 187 "after selection", 188 "before command phase", 189 "after command phase", 190 "after status phase", 191 "after data in phase", 192 "after data out phase", 193 "during data phase", 194 }; 195 196 static char *NCR_700_condition[] = { 197 "", 198 "NOT MSG_OUT", 199 "UNEXPECTED PHASE", 200 "NOT MSG_IN", 201 "UNEXPECTED MSG", 202 "MSG_IN", 203 "SDTR_MSG RECEIVED", 204 "REJECT_MSG RECEIVED", 205 "DISCONNECT_MSG RECEIVED", 206 "MSG_OUT", 207 "DATA_IN", 208 209 }; 210 211 static char *NCR_700_fatal_messages[] = { 212 "unexpected message after reselection", 213 "still MSG_OUT after message injection", 214 "not MSG_IN after selection", 215 "Illegal message length received", 216 }; 217 218 static char *NCR_700_SBCL_bits[] = { 219 "IO ", 220 "CD ", 221 "MSG ", 222 "ATN ", 223 "SEL ", 224 "BSY ", 225 "ACK ", 226 "REQ ", 227 }; 228 229 static char *NCR_700_SBCL_to_phase[] = { 230 "DATA_OUT", 231 "DATA_IN", 232 "CMD_OUT", 233 "STATE", 234 "ILLEGAL PHASE", 235 "ILLEGAL PHASE", 236 "MSG OUT", 237 "MSG IN", 238 }; 239 240 /* This translates the SDTR message offset and period to a value 241 * which can be loaded into the SXFER_REG. 242 * 243 * NOTE: According to SCSI-2, the true transfer period (in ns) is 244 * actually four times this period value */ 245 static inline __u8 246 NCR_700_offset_period_to_sxfer(struct NCR_700_Host_Parameters *hostdata, 247 __u8 offset, __u8 period) 248 { 249 int XFERP; 250 251 __u8 min_xferp = (hostdata->chip710 252 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP); 253 __u8 max_offset = (hostdata->chip710 254 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET); 255 256 if(offset == 0) 257 return 0; 258 259 if(period < hostdata->min_period) { 260 printk(KERN_WARNING "53c700: Period %dns is less than this chip's minimum, setting to %d\n", period*4, NCR_700_MIN_PERIOD*4); 261 period = hostdata->min_period; 262 } 263 XFERP = (period*4 * hostdata->sync_clock)/1000 - 4; 264 if(offset > max_offset) { 265 printk(KERN_WARNING "53c700: Offset %d exceeds chip maximum, setting to %d\n", 266 offset, max_offset); 267 offset = max_offset; 268 } 269 if(XFERP < min_xferp) { 270 XFERP = min_xferp; 271 } 272 return (offset & 0x0f) | (XFERP & 0x07)<<4; 273 } 274 275 static inline __u8 276 NCR_700_get_SXFER(struct scsi_device *SDp) 277 { 278 struct NCR_700_Host_Parameters *hostdata = 279 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; 280 281 return NCR_700_offset_period_to_sxfer(hostdata, 282 spi_offset(SDp->sdev_target), 283 spi_period(SDp->sdev_target)); 284 } 285 286 struct Scsi_Host * 287 NCR_700_detect(struct scsi_host_template *tpnt, 288 struct NCR_700_Host_Parameters *hostdata, struct device *dev) 289 { 290 dma_addr_t pScript, pSlots; 291 __u8 *memory; 292 __u32 *script; 293 struct Scsi_Host *host; 294 static int banner = 0; 295 int j; 296 297 if(tpnt->sdev_attrs == NULL) 298 tpnt->sdev_attrs = NCR_700_dev_attrs; 299 300 memory = dma_alloc_noncoherent(hostdata->dev, TOTAL_MEM_SIZE, 301 &pScript, GFP_KERNEL); 302 if(memory == NULL) { 303 printk(KERN_ERR "53c700: Failed to allocate memory for driver, detatching\n"); 304 return NULL; 305 } 306 307 script = (__u32 *)memory; 308 hostdata->msgin = memory + MSGIN_OFFSET; 309 hostdata->msgout = memory + MSGOUT_OFFSET; 310 hostdata->status = memory + STATUS_OFFSET; 311 /* all of these offsets are L1_CACHE_BYTES separated. It is fatal 312 * if this isn't sufficient separation to avoid dma flushing issues */ 313 BUG_ON(!dma_is_consistent(hostdata->dev, pScript) && L1_CACHE_BYTES < dma_get_cache_alignment()); 314 hostdata->slots = (struct NCR_700_command_slot *)(memory + SLOTS_OFFSET); 315 hostdata->dev = dev; 316 317 pSlots = pScript + SLOTS_OFFSET; 318 319 /* Fill in the missing routines from the host template */ 320 tpnt->queuecommand = NCR_700_queuecommand; 321 tpnt->eh_abort_handler = NCR_700_abort; 322 tpnt->eh_bus_reset_handler = NCR_700_bus_reset; 323 tpnt->eh_host_reset_handler = NCR_700_host_reset; 324 tpnt->can_queue = NCR_700_COMMAND_SLOTS_PER_HOST; 325 tpnt->sg_tablesize = NCR_700_SG_SEGMENTS; 326 tpnt->cmd_per_lun = NCR_700_CMD_PER_LUN; 327 tpnt->use_clustering = ENABLE_CLUSTERING; 328 tpnt->slave_configure = NCR_700_slave_configure; 329 tpnt->slave_destroy = NCR_700_slave_destroy; 330 tpnt->slave_alloc = NCR_700_slave_alloc; 331 tpnt->change_queue_depth = NCR_700_change_queue_depth; 332 tpnt->change_queue_type = NCR_700_change_queue_type; 333 334 if(tpnt->name == NULL) 335 tpnt->name = "53c700"; 336 if(tpnt->proc_name == NULL) 337 tpnt->proc_name = "53c700"; 338 339 host = scsi_host_alloc(tpnt, 4); 340 if (!host) 341 return NULL; 342 memset(hostdata->slots, 0, sizeof(struct NCR_700_command_slot) 343 * NCR_700_COMMAND_SLOTS_PER_HOST); 344 for (j = 0; j < NCR_700_COMMAND_SLOTS_PER_HOST; j++) { 345 dma_addr_t offset = (dma_addr_t)((unsigned long)&hostdata->slots[j].SG[0] 346 - (unsigned long)&hostdata->slots[0].SG[0]); 347 hostdata->slots[j].pSG = (struct NCR_700_SG_List *)((unsigned long)(pSlots + offset)); 348 if(j == 0) 349 hostdata->free_list = &hostdata->slots[j]; 350 else 351 hostdata->slots[j-1].ITL_forw = &hostdata->slots[j]; 352 hostdata->slots[j].state = NCR_700_SLOT_FREE; 353 } 354 355 for (j = 0; j < ARRAY_SIZE(SCRIPT); j++) 356 script[j] = bS_to_host(SCRIPT[j]); 357 358 /* adjust all labels to be bus physical */ 359 for (j = 0; j < PATCHES; j++) 360 script[LABELPATCHES[j]] = bS_to_host(pScript + SCRIPT[LABELPATCHES[j]]); 361 /* now patch up fixed addresses. */ 362 script_patch_32(hostdata->dev, script, MessageLocation, 363 pScript + MSGOUT_OFFSET); 364 script_patch_32(hostdata->dev, script, StatusAddress, 365 pScript + STATUS_OFFSET); 366 script_patch_32(hostdata->dev, script, ReceiveMsgAddress, 367 pScript + MSGIN_OFFSET); 368 369 hostdata->script = script; 370 hostdata->pScript = pScript; 371 dma_sync_single_for_device(hostdata->dev, pScript, sizeof(SCRIPT), DMA_TO_DEVICE); 372 hostdata->state = NCR_700_HOST_FREE; 373 hostdata->cmd = NULL; 374 host->max_id = 8; 375 host->max_lun = NCR_700_MAX_LUNS; 376 BUG_ON(NCR_700_transport_template == NULL); 377 host->transportt = NCR_700_transport_template; 378 host->unique_id = (unsigned long)hostdata->base; 379 hostdata->eh_complete = NULL; 380 host->hostdata[0] = (unsigned long)hostdata; 381 /* kick the chip */ 382 NCR_700_writeb(0xff, host, CTEST9_REG); 383 if (hostdata->chip710) 384 hostdata->rev = (NCR_700_readb(host, CTEST8_REG)>>4) & 0x0f; 385 else 386 hostdata->rev = (NCR_700_readb(host, CTEST7_REG)>>4) & 0x0f; 387 hostdata->fast = (NCR_700_readb(host, CTEST9_REG) == 0); 388 if (banner == 0) { 389 printk(KERN_NOTICE "53c700: Version " NCR_700_VERSION " By James.Bottomley@HansenPartnership.com\n"); 390 banner = 1; 391 } 392 printk(KERN_NOTICE "scsi%d: %s rev %d %s\n", host->host_no, 393 hostdata->chip710 ? "53c710" : 394 (hostdata->fast ? "53c700-66" : "53c700"), 395 hostdata->rev, hostdata->differential ? 396 "(Differential)" : ""); 397 /* reset the chip */ 398 NCR_700_chip_reset(host); 399 400 if (scsi_add_host(host, dev)) { 401 dev_printk(KERN_ERR, dev, "53c700: scsi_add_host failed\n"); 402 scsi_host_put(host); 403 return NULL; 404 } 405 406 spi_signalling(host) = hostdata->differential ? SPI_SIGNAL_HVD : 407 SPI_SIGNAL_SE; 408 409 return host; 410 } 411 412 int 413 NCR_700_release(struct Scsi_Host *host) 414 { 415 struct NCR_700_Host_Parameters *hostdata = 416 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 417 418 dma_free_noncoherent(hostdata->dev, TOTAL_MEM_SIZE, 419 hostdata->script, hostdata->pScript); 420 return 1; 421 } 422 423 static inline __u8 424 NCR_700_identify(int can_disconnect, __u8 lun) 425 { 426 return IDENTIFY_BASE | 427 ((can_disconnect) ? 0x40 : 0) | 428 (lun & NCR_700_LUN_MASK); 429 } 430 431 /* 432 * Function : static int data_residual (Scsi_Host *host) 433 * 434 * Purpose : return residual data count of what's in the chip. If you 435 * really want to know what this function is doing, it's almost a 436 * direct transcription of the algorithm described in the 53c710 437 * guide, except that the DBC and DFIFO registers are only 6 bits 438 * wide on a 53c700. 439 * 440 * Inputs : host - SCSI host */ 441 static inline int 442 NCR_700_data_residual (struct Scsi_Host *host) { 443 struct NCR_700_Host_Parameters *hostdata = 444 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 445 int count, synchronous = 0; 446 unsigned int ddir; 447 448 if(hostdata->chip710) { 449 count = ((NCR_700_readb(host, DFIFO_REG) & 0x7f) - 450 (NCR_700_readl(host, DBC_REG) & 0x7f)) & 0x7f; 451 } else { 452 count = ((NCR_700_readb(host, DFIFO_REG) & 0x3f) - 453 (NCR_700_readl(host, DBC_REG) & 0x3f)) & 0x3f; 454 } 455 456 if(hostdata->fast) 457 synchronous = NCR_700_readb(host, SXFER_REG) & 0x0f; 458 459 /* get the data direction */ 460 ddir = NCR_700_readb(host, CTEST0_REG) & 0x01; 461 462 if (ddir) { 463 /* Receive */ 464 if (synchronous) 465 count += (NCR_700_readb(host, SSTAT2_REG) & 0xf0) >> 4; 466 else 467 if (NCR_700_readb(host, SSTAT1_REG) & SIDL_REG_FULL) 468 ++count; 469 } else { 470 /* Send */ 471 __u8 sstat = NCR_700_readb(host, SSTAT1_REG); 472 if (sstat & SODL_REG_FULL) 473 ++count; 474 if (synchronous && (sstat & SODR_REG_FULL)) 475 ++count; 476 } 477 #ifdef NCR_700_DEBUG 478 if(count) 479 printk("RESIDUAL IS %d (ddir %d)\n", count, ddir); 480 #endif 481 return count; 482 } 483 484 /* print out the SCSI wires and corresponding phase from the SBCL register 485 * in the chip */ 486 static inline char * 487 sbcl_to_string(__u8 sbcl) 488 { 489 int i; 490 static char ret[256]; 491 492 ret[0]='\0'; 493 for(i=0; i<8; i++) { 494 if((1<<i) & sbcl) 495 strcat(ret, NCR_700_SBCL_bits[i]); 496 } 497 strcat(ret, NCR_700_SBCL_to_phase[sbcl & 0x07]); 498 return ret; 499 } 500 501 static inline __u8 502 bitmap_to_number(__u8 bitmap) 503 { 504 __u8 i; 505 506 for(i=0; i<8 && !(bitmap &(1<<i)); i++) 507 ; 508 return i; 509 } 510 511 /* Pull a slot off the free list */ 512 STATIC struct NCR_700_command_slot * 513 find_empty_slot(struct NCR_700_Host_Parameters *hostdata) 514 { 515 struct NCR_700_command_slot *slot = hostdata->free_list; 516 517 if(slot == NULL) { 518 /* sanity check */ 519 if(hostdata->command_slot_count != NCR_700_COMMAND_SLOTS_PER_HOST) 520 printk(KERN_ERR "SLOTS FULL, but count is %d, should be %d\n", hostdata->command_slot_count, NCR_700_COMMAND_SLOTS_PER_HOST); 521 return NULL; 522 } 523 524 if(slot->state != NCR_700_SLOT_FREE) 525 /* should panic! */ 526 printk(KERN_ERR "BUSY SLOT ON FREE LIST!!!\n"); 527 528 529 hostdata->free_list = slot->ITL_forw; 530 slot->ITL_forw = NULL; 531 532 533 /* NOTE: set the state to busy here, not queued, since this 534 * indicates the slot is in use and cannot be run by the IRQ 535 * finish routine. If we cannot queue the command when it 536 * is properly build, we then change to NCR_700_SLOT_QUEUED */ 537 slot->state = NCR_700_SLOT_BUSY; 538 slot->flags = 0; 539 hostdata->command_slot_count++; 540 541 return slot; 542 } 543 544 STATIC void 545 free_slot(struct NCR_700_command_slot *slot, 546 struct NCR_700_Host_Parameters *hostdata) 547 { 548 if((slot->state & NCR_700_SLOT_MASK) != NCR_700_SLOT_MAGIC) { 549 printk(KERN_ERR "53c700: SLOT %p is not MAGIC!!!\n", slot); 550 } 551 if(slot->state == NCR_700_SLOT_FREE) { 552 printk(KERN_ERR "53c700: SLOT %p is FREE!!!\n", slot); 553 } 554 555 slot->resume_offset = 0; 556 slot->cmnd = NULL; 557 slot->state = NCR_700_SLOT_FREE; 558 slot->ITL_forw = hostdata->free_list; 559 hostdata->free_list = slot; 560 hostdata->command_slot_count--; 561 } 562 563 564 /* This routine really does very little. The command is indexed on 565 the ITL and (if tagged) the ITLQ lists in _queuecommand */ 566 STATIC void 567 save_for_reselection(struct NCR_700_Host_Parameters *hostdata, 568 struct scsi_cmnd *SCp, __u32 dsp) 569 { 570 /* Its just possible that this gets executed twice */ 571 if(SCp != NULL) { 572 struct NCR_700_command_slot *slot = 573 (struct NCR_700_command_slot *)SCp->host_scribble; 574 575 slot->resume_offset = dsp; 576 } 577 hostdata->state = NCR_700_HOST_FREE; 578 hostdata->cmd = NULL; 579 } 580 581 STATIC inline void 582 NCR_700_unmap(struct NCR_700_Host_Parameters *hostdata, struct scsi_cmnd *SCp, 583 struct NCR_700_command_slot *slot) 584 { 585 if(SCp->sc_data_direction != DMA_NONE && 586 SCp->sc_data_direction != DMA_BIDIRECTIONAL) 587 scsi_dma_unmap(SCp); 588 } 589 590 STATIC inline void 591 NCR_700_scsi_done(struct NCR_700_Host_Parameters *hostdata, 592 struct scsi_cmnd *SCp, int result) 593 { 594 hostdata->state = NCR_700_HOST_FREE; 595 hostdata->cmd = NULL; 596 597 if(SCp != NULL) { 598 struct NCR_700_command_slot *slot = 599 (struct NCR_700_command_slot *)SCp->host_scribble; 600 601 dma_unmap_single(hostdata->dev, slot->pCmd, 602 MAX_COMMAND_SIZE, DMA_TO_DEVICE); 603 if (slot->flags == NCR_700_FLAG_AUTOSENSE) { 604 char *cmnd = NCR_700_get_sense_cmnd(SCp->device); 605 #ifdef NCR_700_DEBUG 606 printk(" ORIGINAL CMD %p RETURNED %d, new return is %d sense is\n", 607 SCp, SCp->cmnd[7], result); 608 scsi_print_sense("53c700", SCp); 609 610 #endif 611 dma_unmap_single(hostdata->dev, slot->dma_handle, 612 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 613 /* restore the old result if the request sense was 614 * successful */ 615 if (result == 0) 616 result = cmnd[7]; 617 /* restore the original length */ 618 SCp->cmd_len = cmnd[8]; 619 } else 620 NCR_700_unmap(hostdata, SCp, slot); 621 622 free_slot(slot, hostdata); 623 #ifdef NCR_700_DEBUG 624 if(NCR_700_get_depth(SCp->device) == 0 || 625 NCR_700_get_depth(SCp->device) > SCp->device->queue_depth) 626 printk(KERN_ERR "Invalid depth in NCR_700_scsi_done(): %d\n", 627 NCR_700_get_depth(SCp->device)); 628 #endif /* NCR_700_DEBUG */ 629 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) - 1); 630 631 SCp->host_scribble = NULL; 632 SCp->result = result; 633 SCp->scsi_done(SCp); 634 } else { 635 printk(KERN_ERR "53c700: SCSI DONE HAS NULL SCp\n"); 636 } 637 } 638 639 640 STATIC void 641 NCR_700_internal_bus_reset(struct Scsi_Host *host) 642 { 643 /* Bus reset */ 644 NCR_700_writeb(ASSERT_RST, host, SCNTL1_REG); 645 udelay(50); 646 NCR_700_writeb(0, host, SCNTL1_REG); 647 648 } 649 650 STATIC void 651 NCR_700_chip_setup(struct Scsi_Host *host) 652 { 653 struct NCR_700_Host_Parameters *hostdata = 654 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 655 __u8 min_period; 656 __u8 min_xferp = (hostdata->chip710 ? NCR_710_MIN_XFERP : NCR_700_MIN_XFERP); 657 658 if(hostdata->chip710) { 659 __u8 burst_disable = 0; 660 __u8 burst_length = 0; 661 662 switch (hostdata->burst_length) { 663 case 1: 664 burst_length = BURST_LENGTH_1; 665 break; 666 case 2: 667 burst_length = BURST_LENGTH_2; 668 break; 669 case 4: 670 burst_length = BURST_LENGTH_4; 671 break; 672 case 8: 673 burst_length = BURST_LENGTH_8; 674 break; 675 default: 676 burst_disable = BURST_DISABLE; 677 break; 678 } 679 hostdata->dcntl_extra |= COMPAT_700_MODE; 680 681 NCR_700_writeb(hostdata->dcntl_extra, host, DCNTL_REG); 682 NCR_700_writeb(burst_length | hostdata->dmode_extra, 683 host, DMODE_710_REG); 684 NCR_700_writeb(burst_disable | hostdata->ctest7_extra | 685 (hostdata->differential ? DIFF : 0), 686 host, CTEST7_REG); 687 NCR_700_writeb(BTB_TIMER_DISABLE, host, CTEST0_REG); 688 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY | PARITY 689 | AUTO_ATN, host, SCNTL0_REG); 690 } else { 691 NCR_700_writeb(BURST_LENGTH_8 | hostdata->dmode_extra, 692 host, DMODE_700_REG); 693 NCR_700_writeb(hostdata->differential ? 694 DIFF : 0, host, CTEST7_REG); 695 if(hostdata->fast) { 696 /* this is for 700-66, does nothing on 700 */ 697 NCR_700_writeb(LAST_DIS_ENBL | ENABLE_ACTIVE_NEGATION 698 | GENERATE_RECEIVE_PARITY, host, 699 CTEST8_REG); 700 } else { 701 NCR_700_writeb(FULL_ARBITRATION | ENABLE_PARITY 702 | PARITY | AUTO_ATN, host, SCNTL0_REG); 703 } 704 } 705 706 NCR_700_writeb(1 << host->this_id, host, SCID_REG); 707 NCR_700_writeb(0, host, SBCL_REG); 708 NCR_700_writeb(ASYNC_OPERATION, host, SXFER_REG); 709 710 NCR_700_writeb(PHASE_MM_INT | SEL_TIMEOUT_INT | GROSS_ERR_INT | UX_DISC_INT 711 | RST_INT | PAR_ERR_INT | SELECT_INT, host, SIEN_REG); 712 713 NCR_700_writeb(ABORT_INT | INT_INST_INT | ILGL_INST_INT, host, DIEN_REG); 714 NCR_700_writeb(ENABLE_SELECT, host, SCNTL1_REG); 715 if(hostdata->clock > 75) { 716 printk(KERN_ERR "53c700: Clock speed %dMHz is too high: 75Mhz is the maximum this chip can be driven at\n", hostdata->clock); 717 /* do the best we can, but the async clock will be out 718 * of spec: sync divider 2, async divider 3 */ 719 DEBUG(("53c700: sync 2 async 3\n")); 720 NCR_700_writeb(SYNC_DIV_2_0, host, SBCL_REG); 721 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG); 722 hostdata->sync_clock = hostdata->clock/2; 723 } else if(hostdata->clock > 50 && hostdata->clock <= 75) { 724 /* sync divider 1.5, async divider 3 */ 725 DEBUG(("53c700: sync 1.5 async 3\n")); 726 NCR_700_writeb(SYNC_DIV_1_5, host, SBCL_REG); 727 NCR_700_writeb(ASYNC_DIV_3_0 | hostdata->dcntl_extra, host, DCNTL_REG); 728 hostdata->sync_clock = hostdata->clock*2; 729 hostdata->sync_clock /= 3; 730 731 } else if(hostdata->clock > 37 && hostdata->clock <= 50) { 732 /* sync divider 1, async divider 2 */ 733 DEBUG(("53c700: sync 1 async 2\n")); 734 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); 735 NCR_700_writeb(ASYNC_DIV_2_0 | hostdata->dcntl_extra, host, DCNTL_REG); 736 hostdata->sync_clock = hostdata->clock; 737 } else if(hostdata->clock > 25 && hostdata->clock <=37) { 738 /* sync divider 1, async divider 1.5 */ 739 DEBUG(("53c700: sync 1 async 1.5\n")); 740 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); 741 NCR_700_writeb(ASYNC_DIV_1_5 | hostdata->dcntl_extra, host, DCNTL_REG); 742 hostdata->sync_clock = hostdata->clock; 743 } else { 744 DEBUG(("53c700: sync 1 async 1\n")); 745 NCR_700_writeb(SYNC_DIV_1_0, host, SBCL_REG); 746 NCR_700_writeb(ASYNC_DIV_1_0 | hostdata->dcntl_extra, host, DCNTL_REG); 747 /* sync divider 1, async divider 1 */ 748 hostdata->sync_clock = hostdata->clock; 749 } 750 /* Calculate the actual minimum period that can be supported 751 * by our synchronous clock speed. See the 710 manual for 752 * exact details of this calculation which is based on a 753 * setting of the SXFER register */ 754 min_period = 1000*(4+min_xferp)/(4*hostdata->sync_clock); 755 hostdata->min_period = NCR_700_MIN_PERIOD; 756 if(min_period > NCR_700_MIN_PERIOD) 757 hostdata->min_period = min_period; 758 } 759 760 STATIC void 761 NCR_700_chip_reset(struct Scsi_Host *host) 762 { 763 struct NCR_700_Host_Parameters *hostdata = 764 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 765 if(hostdata->chip710) { 766 NCR_700_writeb(SOFTWARE_RESET_710, host, ISTAT_REG); 767 udelay(100); 768 769 NCR_700_writeb(0, host, ISTAT_REG); 770 } else { 771 NCR_700_writeb(SOFTWARE_RESET, host, DCNTL_REG); 772 udelay(100); 773 774 NCR_700_writeb(0, host, DCNTL_REG); 775 } 776 777 mdelay(1000); 778 779 NCR_700_chip_setup(host); 780 } 781 782 /* The heart of the message processing engine is that the instruction 783 * immediately after the INT is the normal case (and so must be CLEAR 784 * ACK). If we want to do something else, we call that routine in 785 * scripts and set temp to be the normal case + 8 (skipping the CLEAR 786 * ACK) so that the routine returns correctly to resume its activity 787 * */ 788 STATIC __u32 789 process_extended_message(struct Scsi_Host *host, 790 struct NCR_700_Host_Parameters *hostdata, 791 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps) 792 { 793 __u32 resume_offset = dsp, temp = dsp + 8; 794 __u8 pun = 0xff, lun = 0xff; 795 796 if(SCp != NULL) { 797 pun = SCp->device->id; 798 lun = SCp->device->lun; 799 } 800 801 switch(hostdata->msgin[2]) { 802 case A_SDTR_MSG: 803 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) { 804 struct scsi_target *starget = SCp->device->sdev_target; 805 __u8 period = hostdata->msgin[3]; 806 __u8 offset = hostdata->msgin[4]; 807 808 if(offset == 0 || period == 0) { 809 offset = 0; 810 period = 0; 811 } 812 813 spi_offset(starget) = offset; 814 spi_period(starget) = period; 815 816 if(NCR_700_is_flag_set(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION)) { 817 spi_display_xfer_agreement(starget); 818 NCR_700_clear_flag(SCp->device, NCR_700_DEV_PRINT_SYNC_NEGOTIATION); 819 } 820 821 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); 822 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 823 824 NCR_700_writeb(NCR_700_get_SXFER(SCp->device), 825 host, SXFER_REG); 826 827 } else { 828 /* SDTR message out of the blue, reject it */ 829 shost_printk(KERN_WARNING, host, 830 "Unexpected SDTR msg\n"); 831 hostdata->msgout[0] = A_REJECT_MSG; 832 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 833 script_patch_16(hostdata->dev, hostdata->script, 834 MessageCount, 1); 835 /* SendMsgOut returns, so set up the return 836 * address */ 837 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 838 } 839 break; 840 841 case A_WDTR_MSG: 842 printk(KERN_INFO "scsi%d: (%d:%d), Unsolicited WDTR after CMD, Rejecting\n", 843 host->host_no, pun, lun); 844 hostdata->msgout[0] = A_REJECT_MSG; 845 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 846 script_patch_16(hostdata->dev, hostdata->script, MessageCount, 847 1); 848 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 849 850 break; 851 852 default: 853 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ", 854 host->host_no, pun, lun, 855 NCR_700_phase[(dsps & 0xf00) >> 8]); 856 spi_print_msg(hostdata->msgin); 857 printk("\n"); 858 /* just reject it */ 859 hostdata->msgout[0] = A_REJECT_MSG; 860 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 861 script_patch_16(hostdata->dev, hostdata->script, MessageCount, 862 1); 863 /* SendMsgOut returns, so set up the return 864 * address */ 865 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 866 } 867 NCR_700_writel(temp, host, TEMP_REG); 868 return resume_offset; 869 } 870 871 STATIC __u32 872 process_message(struct Scsi_Host *host, struct NCR_700_Host_Parameters *hostdata, 873 struct scsi_cmnd *SCp, __u32 dsp, __u32 dsps) 874 { 875 /* work out where to return to */ 876 __u32 temp = dsp + 8, resume_offset = dsp; 877 __u8 pun = 0xff, lun = 0xff; 878 879 if(SCp != NULL) { 880 pun = SCp->device->id; 881 lun = SCp->device->lun; 882 } 883 884 #ifdef NCR_700_DEBUG 885 printk("scsi%d (%d:%d): message %s: ", host->host_no, pun, lun, 886 NCR_700_phase[(dsps & 0xf00) >> 8]); 887 spi_print_msg(hostdata->msgin); 888 printk("\n"); 889 #endif 890 891 switch(hostdata->msgin[0]) { 892 893 case A_EXTENDED_MSG: 894 resume_offset = process_extended_message(host, hostdata, SCp, 895 dsp, dsps); 896 break; 897 898 case A_REJECT_MSG: 899 if(SCp != NULL && NCR_700_is_flag_set(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION)) { 900 /* Rejected our sync negotiation attempt */ 901 spi_period(SCp->device->sdev_target) = 902 spi_offset(SCp->device->sdev_target) = 0; 903 NCR_700_set_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); 904 NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 905 } else if(SCp != NULL && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) { 906 /* rejected our first simple tag message */ 907 scmd_printk(KERN_WARNING, SCp, 908 "Rejected first tag queue attempt, turning off tag queueing\n"); 909 /* we're done negotiating */ 910 NCR_700_set_tag_neg_state(SCp->device, NCR_700_FINISHED_TAG_NEGOTIATION); 911 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); 912 SCp->device->tagged_supported = 0; 913 scsi_deactivate_tcq(SCp->device, host->cmd_per_lun); 914 } else { 915 shost_printk(KERN_WARNING, host, 916 "(%d:%d) Unexpected REJECT Message %s\n", 917 pun, lun, 918 NCR_700_phase[(dsps & 0xf00) >> 8]); 919 /* however, just ignore it */ 920 } 921 break; 922 923 case A_PARITY_ERROR_MSG: 924 printk(KERN_ERR "scsi%d (%d:%d) Parity Error!\n", host->host_no, 925 pun, lun); 926 NCR_700_internal_bus_reset(host); 927 break; 928 case A_SIMPLE_TAG_MSG: 929 printk(KERN_INFO "scsi%d (%d:%d) SIMPLE TAG %d %s\n", host->host_no, 930 pun, lun, hostdata->msgin[1], 931 NCR_700_phase[(dsps & 0xf00) >> 8]); 932 /* just ignore it */ 933 break; 934 default: 935 printk(KERN_INFO "scsi%d (%d:%d): Unexpected message %s: ", 936 host->host_no, pun, lun, 937 NCR_700_phase[(dsps & 0xf00) >> 8]); 938 939 spi_print_msg(hostdata->msgin); 940 printk("\n"); 941 /* just reject it */ 942 hostdata->msgout[0] = A_REJECT_MSG; 943 dma_cache_sync(hostdata->dev, hostdata->msgout, 1, DMA_TO_DEVICE); 944 script_patch_16(hostdata->dev, hostdata->script, MessageCount, 945 1); 946 /* SendMsgOut returns, so set up the return 947 * address */ 948 resume_offset = hostdata->pScript + Ent_SendMessageWithATN; 949 950 break; 951 } 952 NCR_700_writel(temp, host, TEMP_REG); 953 /* set us up to receive another message */ 954 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, DMA_FROM_DEVICE); 955 return resume_offset; 956 } 957 958 STATIC __u32 959 process_script_interrupt(__u32 dsps, __u32 dsp, struct scsi_cmnd *SCp, 960 struct Scsi_Host *host, 961 struct NCR_700_Host_Parameters *hostdata) 962 { 963 __u32 resume_offset = 0; 964 __u8 pun = 0xff, lun=0xff; 965 966 if(SCp != NULL) { 967 pun = SCp->device->id; 968 lun = SCp->device->lun; 969 } 970 971 if(dsps == A_GOOD_STATUS_AFTER_STATUS) { 972 DEBUG((" COMMAND COMPLETE, status=%02x\n", 973 hostdata->status[0])); 974 /* OK, if TCQ still under negotiation, we now know it works */ 975 if (NCR_700_get_tag_neg_state(SCp->device) == NCR_700_DURING_TAG_NEGOTIATION) 976 NCR_700_set_tag_neg_state(SCp->device, 977 NCR_700_FINISHED_TAG_NEGOTIATION); 978 979 /* check for contingent allegiance contitions */ 980 if(status_byte(hostdata->status[0]) == CHECK_CONDITION || 981 status_byte(hostdata->status[0]) == COMMAND_TERMINATED) { 982 struct NCR_700_command_slot *slot = 983 (struct NCR_700_command_slot *)SCp->host_scribble; 984 if(slot->flags == NCR_700_FLAG_AUTOSENSE) { 985 /* OOPS: bad device, returning another 986 * contingent allegiance condition */ 987 scmd_printk(KERN_ERR, SCp, 988 "broken device is looping in contingent allegiance: ignoring\n"); 989 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]); 990 } else { 991 char *cmnd = 992 NCR_700_get_sense_cmnd(SCp->device); 993 #ifdef NCR_DEBUG 994 scsi_print_command(SCp); 995 printk(" cmd %p has status %d, requesting sense\n", 996 SCp, hostdata->status[0]); 997 #endif 998 /* we can destroy the command here 999 * because the contingent allegiance 1000 * condition will cause a retry which 1001 * will re-copy the command from the 1002 * saved data_cmnd. We also unmap any 1003 * data associated with the command 1004 * here */ 1005 NCR_700_unmap(hostdata, SCp, slot); 1006 dma_unmap_single(hostdata->dev, slot->pCmd, 1007 MAX_COMMAND_SIZE, 1008 DMA_TO_DEVICE); 1009 1010 cmnd[0] = REQUEST_SENSE; 1011 cmnd[1] = (SCp->device->lun & 0x7) << 5; 1012 cmnd[2] = 0; 1013 cmnd[3] = 0; 1014 cmnd[4] = SCSI_SENSE_BUFFERSIZE; 1015 cmnd[5] = 0; 1016 /* Here's a quiet hack: the 1017 * REQUEST_SENSE command is six bytes, 1018 * so store a flag indicating that 1019 * this was an internal sense request 1020 * and the original status at the end 1021 * of the command */ 1022 cmnd[6] = NCR_700_INTERNAL_SENSE_MAGIC; 1023 cmnd[7] = hostdata->status[0]; 1024 cmnd[8] = SCp->cmd_len; 1025 SCp->cmd_len = 6; /* command length for 1026 * REQUEST_SENSE */ 1027 slot->pCmd = dma_map_single(hostdata->dev, cmnd, MAX_COMMAND_SIZE, DMA_TO_DEVICE); 1028 slot->dma_handle = dma_map_single(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 1029 slot->SG[0].ins = bS_to_host(SCRIPT_MOVE_DATA_IN | SCSI_SENSE_BUFFERSIZE); 1030 slot->SG[0].pAddr = bS_to_host(slot->dma_handle); 1031 slot->SG[1].ins = bS_to_host(SCRIPT_RETURN); 1032 slot->SG[1].pAddr = 0; 1033 slot->resume_offset = hostdata->pScript; 1034 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG[0])*2, DMA_TO_DEVICE); 1035 dma_cache_sync(hostdata->dev, SCp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 1036 1037 /* queue the command for reissue */ 1038 slot->state = NCR_700_SLOT_QUEUED; 1039 slot->flags = NCR_700_FLAG_AUTOSENSE; 1040 hostdata->state = NCR_700_HOST_FREE; 1041 hostdata->cmd = NULL; 1042 } 1043 } else { 1044 // Currently rely on the mid layer evaluation 1045 // of the tag queuing capability 1046 // 1047 //if(status_byte(hostdata->status[0]) == GOOD && 1048 // SCp->cmnd[0] == INQUIRY && SCp->use_sg == 0) { 1049 // /* Piggy back the tag queueing support 1050 // * on this command */ 1051 // dma_sync_single_for_cpu(hostdata->dev, 1052 // slot->dma_handle, 1053 // SCp->request_bufflen, 1054 // DMA_FROM_DEVICE); 1055 // if(((char *)SCp->request_buffer)[7] & 0x02) { 1056 // scmd_printk(KERN_INFO, SCp, 1057 // "Enabling Tag Command Queuing\n"); 1058 // hostdata->tag_negotiated |= (1<<scmd_id(SCp)); 1059 // NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING); 1060 // } else { 1061 // NCR_700_clear_flag(SCp->device, NCR_700_DEV_BEGIN_TAG_QUEUEING); 1062 // hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); 1063 // } 1064 //} 1065 NCR_700_scsi_done(hostdata, SCp, hostdata->status[0]); 1066 } 1067 } else if((dsps & 0xfffff0f0) == A_UNEXPECTED_PHASE) { 1068 __u8 i = (dsps & 0xf00) >> 8; 1069 1070 scmd_printk(KERN_ERR, SCp, "UNEXPECTED PHASE %s (%s)\n", 1071 NCR_700_phase[i], 1072 sbcl_to_string(NCR_700_readb(host, SBCL_REG))); 1073 scmd_printk(KERN_ERR, SCp, " len = %d, cmd =", 1074 SCp->cmd_len); 1075 scsi_print_command(SCp); 1076 1077 NCR_700_internal_bus_reset(host); 1078 } else if((dsps & 0xfffff000) == A_FATAL) { 1079 int i = (dsps & 0xfff); 1080 1081 printk(KERN_ERR "scsi%d: (%d:%d) FATAL ERROR: %s\n", 1082 host->host_no, pun, lun, NCR_700_fatal_messages[i]); 1083 if(dsps == A_FATAL_ILLEGAL_MSG_LENGTH) { 1084 printk(KERN_ERR " msg begins %02x %02x\n", 1085 hostdata->msgin[0], hostdata->msgin[1]); 1086 } 1087 NCR_700_internal_bus_reset(host); 1088 } else if((dsps & 0xfffff0f0) == A_DISCONNECT) { 1089 #ifdef NCR_700_DEBUG 1090 __u8 i = (dsps & 0xf00) >> 8; 1091 1092 printk("scsi%d: (%d:%d), DISCONNECTED (%d) %s\n", 1093 host->host_no, pun, lun, 1094 i, NCR_700_phase[i]); 1095 #endif 1096 save_for_reselection(hostdata, SCp, dsp); 1097 1098 } else if(dsps == A_RESELECTION_IDENTIFIED) { 1099 __u8 lun; 1100 struct NCR_700_command_slot *slot; 1101 __u8 reselection_id = hostdata->reselection_id; 1102 struct scsi_device *SDp; 1103 1104 lun = hostdata->msgin[0] & 0x1f; 1105 1106 hostdata->reselection_id = 0xff; 1107 DEBUG(("scsi%d: (%d:%d) RESELECTED!\n", 1108 host->host_no, reselection_id, lun)); 1109 /* clear the reselection indicator */ 1110 SDp = __scsi_device_lookup(host, 0, reselection_id, lun); 1111 if(unlikely(SDp == NULL)) { 1112 printk(KERN_ERR "scsi%d: (%d:%d) HAS NO device\n", 1113 host->host_no, reselection_id, lun); 1114 BUG(); 1115 } 1116 if(hostdata->msgin[1] == A_SIMPLE_TAG_MSG) { 1117 struct scsi_cmnd *SCp = scsi_find_tag(SDp, hostdata->msgin[2]); 1118 if(unlikely(SCp == NULL)) { 1119 printk(KERN_ERR "scsi%d: (%d:%d) no saved request for tag %d\n", 1120 host->host_no, reselection_id, lun, hostdata->msgin[2]); 1121 BUG(); 1122 } 1123 1124 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1125 DDEBUG(KERN_DEBUG, SDp, 1126 "reselection is tag %d, slot %p(%d)\n", 1127 hostdata->msgin[2], slot, slot->tag); 1128 } else { 1129 struct scsi_cmnd *SCp = scsi_find_tag(SDp, SCSI_NO_TAG); 1130 if(unlikely(SCp == NULL)) { 1131 sdev_printk(KERN_ERR, SDp, 1132 "no saved request for untagged cmd\n"); 1133 BUG(); 1134 } 1135 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1136 } 1137 1138 if(slot == NULL) { 1139 printk(KERN_ERR "scsi%d: (%d:%d) RESELECTED but no saved command (MSG = %02x %02x %02x)!!\n", 1140 host->host_no, reselection_id, lun, 1141 hostdata->msgin[0], hostdata->msgin[1], 1142 hostdata->msgin[2]); 1143 } else { 1144 if(hostdata->state != NCR_700_HOST_BUSY) 1145 printk(KERN_ERR "scsi%d: FATAL, host not busy during valid reselection!\n", 1146 host->host_no); 1147 resume_offset = slot->resume_offset; 1148 hostdata->cmd = slot->cmnd; 1149 1150 /* re-patch for this command */ 1151 script_patch_32_abs(hostdata->dev, hostdata->script, 1152 CommandAddress, slot->pCmd); 1153 script_patch_16(hostdata->dev, hostdata->script, 1154 CommandCount, slot->cmnd->cmd_len); 1155 script_patch_32_abs(hostdata->dev, hostdata->script, 1156 SGScriptStartAddress, 1157 to32bit(&slot->pSG[0].ins)); 1158 1159 /* Note: setting SXFER only works if we're 1160 * still in the MESSAGE phase, so it is vital 1161 * that ACK is still asserted when we process 1162 * the reselection message. The resume offset 1163 * should therefore always clear ACK */ 1164 NCR_700_writeb(NCR_700_get_SXFER(hostdata->cmd->device), 1165 host, SXFER_REG); 1166 dma_cache_sync(hostdata->dev, hostdata->msgin, 1167 MSG_ARRAY_SIZE, DMA_FROM_DEVICE); 1168 dma_cache_sync(hostdata->dev, hostdata->msgout, 1169 MSG_ARRAY_SIZE, DMA_TO_DEVICE); 1170 /* I'm just being paranoid here, the command should 1171 * already have been flushed from the cache */ 1172 dma_cache_sync(hostdata->dev, slot->cmnd->cmnd, 1173 slot->cmnd->cmd_len, DMA_TO_DEVICE); 1174 1175 1176 1177 } 1178 } else if(dsps == A_RESELECTED_DURING_SELECTION) { 1179 1180 /* This section is full of debugging code because I've 1181 * never managed to reach it. I think what happens is 1182 * that, because the 700 runs with selection 1183 * interrupts enabled the whole time that we take a 1184 * selection interrupt before we manage to get to the 1185 * reselected script interrupt */ 1186 1187 __u8 reselection_id = NCR_700_readb(host, SFBR_REG); 1188 struct NCR_700_command_slot *slot; 1189 1190 /* Take out our own ID */ 1191 reselection_id &= ~(1<<host->this_id); 1192 1193 /* I've never seen this happen, so keep this as a printk rather 1194 * than a debug */ 1195 printk(KERN_INFO "scsi%d: (%d:%d) RESELECTION DURING SELECTION, dsp=%08x[%04x] state=%d, count=%d\n", 1196 host->host_no, reselection_id, lun, dsp, dsp - hostdata->pScript, hostdata->state, hostdata->command_slot_count); 1197 1198 { 1199 /* FIXME: DEBUGGING CODE */ 1200 __u32 SG = (__u32)bS_to_cpu(hostdata->script[A_SGScriptStartAddress_used[0]]); 1201 int i; 1202 1203 for(i=0; i< NCR_700_COMMAND_SLOTS_PER_HOST; i++) { 1204 if(SG >= to32bit(&hostdata->slots[i].pSG[0]) 1205 && SG <= to32bit(&hostdata->slots[i].pSG[NCR_700_SG_SEGMENTS])) 1206 break; 1207 } 1208 printk(KERN_INFO "IDENTIFIED SG segment as being %08x in slot %p, cmd %p, slot->resume_offset=%08x\n", SG, &hostdata->slots[i], hostdata->slots[i].cmnd, hostdata->slots[i].resume_offset); 1209 SCp = hostdata->slots[i].cmnd; 1210 } 1211 1212 if(SCp != NULL) { 1213 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1214 /* change slot from busy to queued to redo command */ 1215 slot->state = NCR_700_SLOT_QUEUED; 1216 } 1217 hostdata->cmd = NULL; 1218 1219 if(reselection_id == 0) { 1220 if(hostdata->reselection_id == 0xff) { 1221 printk(KERN_ERR "scsi%d: Invalid reselection during selection!!\n", host->host_no); 1222 return 0; 1223 } else { 1224 printk(KERN_ERR "scsi%d: script reselected and we took a selection interrupt\n", 1225 host->host_no); 1226 reselection_id = hostdata->reselection_id; 1227 } 1228 } else { 1229 1230 /* convert to real ID */ 1231 reselection_id = bitmap_to_number(reselection_id); 1232 } 1233 hostdata->reselection_id = reselection_id; 1234 /* just in case we have a stale simple tag message, clear it */ 1235 hostdata->msgin[1] = 0; 1236 dma_cache_sync(hostdata->dev, hostdata->msgin, 1237 MSG_ARRAY_SIZE, DMA_BIDIRECTIONAL); 1238 if(hostdata->tag_negotiated & (1<<reselection_id)) { 1239 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag; 1240 } else { 1241 resume_offset = hostdata->pScript + Ent_GetReselectionData; 1242 } 1243 } else if(dsps == A_COMPLETED_SELECTION_AS_TARGET) { 1244 /* we've just disconnected from the bus, do nothing since 1245 * a return here will re-run the queued command slot 1246 * that may have been interrupted by the initial selection */ 1247 DEBUG((" SELECTION COMPLETED\n")); 1248 } else if((dsps & 0xfffff0f0) == A_MSG_IN) { 1249 resume_offset = process_message(host, hostdata, SCp, 1250 dsp, dsps); 1251 } else if((dsps & 0xfffff000) == 0) { 1252 __u8 i = (dsps & 0xf0) >> 4, j = (dsps & 0xf00) >> 8; 1253 printk(KERN_ERR "scsi%d: (%d:%d), unhandled script condition %s %s at %04x\n", 1254 host->host_no, pun, lun, NCR_700_condition[i], 1255 NCR_700_phase[j], dsp - hostdata->pScript); 1256 if(SCp != NULL) { 1257 struct scatterlist *sg; 1258 1259 scsi_print_command(SCp); 1260 scsi_for_each_sg(SCp, sg, scsi_sg_count(SCp) + 1, i) { 1261 printk(KERN_INFO " SG[%d].length = %d, move_insn=%08x, addr %08x\n", i, sg->length, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].ins, ((struct NCR_700_command_slot *)SCp->host_scribble)->SG[i].pAddr); 1262 } 1263 } 1264 NCR_700_internal_bus_reset(host); 1265 } else if((dsps & 0xfffff000) == A_DEBUG_INTERRUPT) { 1266 printk(KERN_NOTICE "scsi%d (%d:%d) DEBUG INTERRUPT %d AT %08x[%04x], continuing\n", 1267 host->host_no, pun, lun, dsps & 0xfff, dsp, dsp - hostdata->pScript); 1268 resume_offset = dsp; 1269 } else { 1270 printk(KERN_ERR "scsi%d: (%d:%d), unidentified script interrupt 0x%x at %04x\n", 1271 host->host_no, pun, lun, dsps, dsp - hostdata->pScript); 1272 NCR_700_internal_bus_reset(host); 1273 } 1274 return resume_offset; 1275 } 1276 1277 /* We run the 53c700 with selection interrupts always enabled. This 1278 * means that the chip may be selected as soon as the bus frees. On a 1279 * busy bus, this can be before the scripts engine finishes its 1280 * processing. Therefore, part of the selection processing has to be 1281 * to find out what the scripts engine is doing and complete the 1282 * function if necessary (i.e. process the pending disconnect or save 1283 * the interrupted initial selection */ 1284 STATIC inline __u32 1285 process_selection(struct Scsi_Host *host, __u32 dsp) 1286 { 1287 __u8 id = 0; /* Squash compiler warning */ 1288 int count = 0; 1289 __u32 resume_offset = 0; 1290 struct NCR_700_Host_Parameters *hostdata = 1291 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1292 struct scsi_cmnd *SCp = hostdata->cmd; 1293 __u8 sbcl; 1294 1295 for(count = 0; count < 5; count++) { 1296 id = NCR_700_readb(host, hostdata->chip710 ? 1297 CTEST9_REG : SFBR_REG); 1298 1299 /* Take out our own ID */ 1300 id &= ~(1<<host->this_id); 1301 if(id != 0) 1302 break; 1303 udelay(5); 1304 } 1305 sbcl = NCR_700_readb(host, SBCL_REG); 1306 if((sbcl & SBCL_IO) == 0) { 1307 /* mark as having been selected rather than reselected */ 1308 id = 0xff; 1309 } else { 1310 /* convert to real ID */ 1311 hostdata->reselection_id = id = bitmap_to_number(id); 1312 DEBUG(("scsi%d: Reselected by %d\n", 1313 host->host_no, id)); 1314 } 1315 if(hostdata->state == NCR_700_HOST_BUSY && SCp != NULL) { 1316 struct NCR_700_command_slot *slot = 1317 (struct NCR_700_command_slot *)SCp->host_scribble; 1318 DEBUG((" ID %d WARNING: RESELECTION OF BUSY HOST, saving cmd %p, slot %p, addr %x [%04x], resume %x!\n", id, hostdata->cmd, slot, dsp, dsp - hostdata->pScript, resume_offset)); 1319 1320 switch(dsp - hostdata->pScript) { 1321 case Ent_Disconnect1: 1322 case Ent_Disconnect2: 1323 save_for_reselection(hostdata, SCp, Ent_Disconnect2 + hostdata->pScript); 1324 break; 1325 case Ent_Disconnect3: 1326 case Ent_Disconnect4: 1327 save_for_reselection(hostdata, SCp, Ent_Disconnect4 + hostdata->pScript); 1328 break; 1329 case Ent_Disconnect5: 1330 case Ent_Disconnect6: 1331 save_for_reselection(hostdata, SCp, Ent_Disconnect6 + hostdata->pScript); 1332 break; 1333 case Ent_Disconnect7: 1334 case Ent_Disconnect8: 1335 save_for_reselection(hostdata, SCp, Ent_Disconnect8 + hostdata->pScript); 1336 break; 1337 case Ent_Finish1: 1338 case Ent_Finish2: 1339 process_script_interrupt(A_GOOD_STATUS_AFTER_STATUS, dsp, SCp, host, hostdata); 1340 break; 1341 1342 default: 1343 slot->state = NCR_700_SLOT_QUEUED; 1344 break; 1345 } 1346 } 1347 hostdata->state = NCR_700_HOST_BUSY; 1348 hostdata->cmd = NULL; 1349 /* clear any stale simple tag message */ 1350 hostdata->msgin[1] = 0; 1351 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, 1352 DMA_BIDIRECTIONAL); 1353 1354 if(id == 0xff) { 1355 /* Selected as target, Ignore */ 1356 resume_offset = hostdata->pScript + Ent_SelectedAsTarget; 1357 } else if(hostdata->tag_negotiated & (1<<id)) { 1358 resume_offset = hostdata->pScript + Ent_GetReselectionWithTag; 1359 } else { 1360 resume_offset = hostdata->pScript + Ent_GetReselectionData; 1361 } 1362 return resume_offset; 1363 } 1364 1365 static inline void 1366 NCR_700_clear_fifo(struct Scsi_Host *host) { 1367 const struct NCR_700_Host_Parameters *hostdata 1368 = (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1369 if(hostdata->chip710) { 1370 NCR_700_writeb(CLR_FIFO_710, host, CTEST8_REG); 1371 } else { 1372 NCR_700_writeb(CLR_FIFO, host, DFIFO_REG); 1373 } 1374 } 1375 1376 static inline void 1377 NCR_700_flush_fifo(struct Scsi_Host *host) { 1378 const struct NCR_700_Host_Parameters *hostdata 1379 = (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1380 if(hostdata->chip710) { 1381 NCR_700_writeb(FLUSH_DMA_FIFO_710, host, CTEST8_REG); 1382 udelay(10); 1383 NCR_700_writeb(0, host, CTEST8_REG); 1384 } else { 1385 NCR_700_writeb(FLUSH_DMA_FIFO, host, DFIFO_REG); 1386 udelay(10); 1387 NCR_700_writeb(0, host, DFIFO_REG); 1388 } 1389 } 1390 1391 1392 /* The queue lock with interrupts disabled must be held on entry to 1393 * this function */ 1394 STATIC int 1395 NCR_700_start_command(struct scsi_cmnd *SCp) 1396 { 1397 struct NCR_700_command_slot *slot = 1398 (struct NCR_700_command_slot *)SCp->host_scribble; 1399 struct NCR_700_Host_Parameters *hostdata = 1400 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; 1401 __u16 count = 1; /* for IDENTIFY message */ 1402 1403 if(hostdata->state != NCR_700_HOST_FREE) { 1404 /* keep this inside the lock to close the race window where 1405 * the running command finishes on another CPU while we don't 1406 * change the state to queued on this one */ 1407 slot->state = NCR_700_SLOT_QUEUED; 1408 1409 DEBUG(("scsi%d: host busy, queueing command %p, slot %p\n", 1410 SCp->device->host->host_no, slot->cmnd, slot)); 1411 return 0; 1412 } 1413 hostdata->state = NCR_700_HOST_BUSY; 1414 hostdata->cmd = SCp; 1415 slot->state = NCR_700_SLOT_BUSY; 1416 /* keep interrupts disabled until we have the command correctly 1417 * set up so we cannot take a selection interrupt */ 1418 1419 hostdata->msgout[0] = NCR_700_identify((SCp->cmnd[0] != REQUEST_SENSE && 1420 slot->flags != NCR_700_FLAG_AUTOSENSE), 1421 SCp->device->lun); 1422 /* for INQUIRY or REQUEST_SENSE commands, we cannot be sure 1423 * if the negotiated transfer parameters still hold, so 1424 * always renegotiate them */ 1425 if(SCp->cmnd[0] == INQUIRY || SCp->cmnd[0] == REQUEST_SENSE || 1426 slot->flags == NCR_700_FLAG_AUTOSENSE) { 1427 NCR_700_clear_flag(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC); 1428 } 1429 1430 /* REQUEST_SENSE is asking for contingent I_T_L(_Q) status. 1431 * If a contingent allegiance condition exists, the device 1432 * will refuse all tags, so send the request sense as untagged 1433 * */ 1434 if((hostdata->tag_negotiated & (1<<scmd_id(SCp))) 1435 && (slot->tag != SCSI_NO_TAG && SCp->cmnd[0] != REQUEST_SENSE && 1436 slot->flags != NCR_700_FLAG_AUTOSENSE)) { 1437 count += scsi_populate_tag_msg(SCp, &hostdata->msgout[count]); 1438 } 1439 1440 if(hostdata->fast && 1441 NCR_700_is_flag_clear(SCp->device, NCR_700_DEV_NEGOTIATED_SYNC)) { 1442 count += spi_populate_sync_msg(&hostdata->msgout[count], 1443 spi_period(SCp->device->sdev_target), 1444 spi_offset(SCp->device->sdev_target)); 1445 NCR_700_set_flag(SCp->device, NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 1446 } 1447 1448 script_patch_16(hostdata->dev, hostdata->script, MessageCount, count); 1449 1450 1451 script_patch_ID(hostdata->dev, hostdata->script, 1452 Device_ID, 1<<scmd_id(SCp)); 1453 1454 script_patch_32_abs(hostdata->dev, hostdata->script, CommandAddress, 1455 slot->pCmd); 1456 script_patch_16(hostdata->dev, hostdata->script, CommandCount, 1457 SCp->cmd_len); 1458 /* finally plumb the beginning of the SG list into the script 1459 * */ 1460 script_patch_32_abs(hostdata->dev, hostdata->script, 1461 SGScriptStartAddress, to32bit(&slot->pSG[0].ins)); 1462 NCR_700_clear_fifo(SCp->device->host); 1463 1464 if(slot->resume_offset == 0) 1465 slot->resume_offset = hostdata->pScript; 1466 /* now perform all the writebacks and invalidates */ 1467 dma_cache_sync(hostdata->dev, hostdata->msgout, count, DMA_TO_DEVICE); 1468 dma_cache_sync(hostdata->dev, hostdata->msgin, MSG_ARRAY_SIZE, 1469 DMA_FROM_DEVICE); 1470 dma_cache_sync(hostdata->dev, SCp->cmnd, SCp->cmd_len, DMA_TO_DEVICE); 1471 dma_cache_sync(hostdata->dev, hostdata->status, 1, DMA_FROM_DEVICE); 1472 1473 /* set the synchronous period/offset */ 1474 NCR_700_writeb(NCR_700_get_SXFER(SCp->device), 1475 SCp->device->host, SXFER_REG); 1476 NCR_700_writel(slot->temp, SCp->device->host, TEMP_REG); 1477 NCR_700_writel(slot->resume_offset, SCp->device->host, DSP_REG); 1478 1479 return 1; 1480 } 1481 1482 irqreturn_t 1483 NCR_700_intr(int irq, void *dev_id) 1484 { 1485 struct Scsi_Host *host = (struct Scsi_Host *)dev_id; 1486 struct NCR_700_Host_Parameters *hostdata = 1487 (struct NCR_700_Host_Parameters *)host->hostdata[0]; 1488 __u8 istat; 1489 __u32 resume_offset = 0; 1490 __u8 pun = 0xff, lun = 0xff; 1491 unsigned long flags; 1492 int handled = 0; 1493 1494 /* Use the host lock to serialise acess to the 53c700 1495 * hardware. Note: In future, we may need to take the queue 1496 * lock to enter the done routines. When that happens, we 1497 * need to ensure that for this driver, the host lock and the 1498 * queue lock point to the same thing. */ 1499 spin_lock_irqsave(host->host_lock, flags); 1500 if((istat = NCR_700_readb(host, ISTAT_REG)) 1501 & (SCSI_INT_PENDING | DMA_INT_PENDING)) { 1502 __u32 dsps; 1503 __u8 sstat0 = 0, dstat = 0; 1504 __u32 dsp; 1505 struct scsi_cmnd *SCp = hostdata->cmd; 1506 enum NCR_700_Host_State state; 1507 1508 handled = 1; 1509 state = hostdata->state; 1510 SCp = hostdata->cmd; 1511 1512 if(istat & SCSI_INT_PENDING) { 1513 udelay(10); 1514 1515 sstat0 = NCR_700_readb(host, SSTAT0_REG); 1516 } 1517 1518 if(istat & DMA_INT_PENDING) { 1519 udelay(10); 1520 1521 dstat = NCR_700_readb(host, DSTAT_REG); 1522 } 1523 1524 dsps = NCR_700_readl(host, DSPS_REG); 1525 dsp = NCR_700_readl(host, DSP_REG); 1526 1527 DEBUG(("scsi%d: istat %02x sstat0 %02x dstat %02x dsp %04x[%08x] dsps 0x%x\n", 1528 host->host_no, istat, sstat0, dstat, 1529 (dsp - (__u32)(hostdata->pScript))/4, 1530 dsp, dsps)); 1531 1532 if(SCp != NULL) { 1533 pun = SCp->device->id; 1534 lun = SCp->device->lun; 1535 } 1536 1537 if(sstat0 & SCSI_RESET_DETECTED) { 1538 struct scsi_device *SDp; 1539 int i; 1540 1541 hostdata->state = NCR_700_HOST_BUSY; 1542 1543 printk(KERN_ERR "scsi%d: Bus Reset detected, executing command %p, slot %p, dsp %08x[%04x]\n", 1544 host->host_no, SCp, SCp == NULL ? NULL : SCp->host_scribble, dsp, dsp - hostdata->pScript); 1545 1546 scsi_report_bus_reset(host, 0); 1547 1548 /* clear all the negotiated parameters */ 1549 __shost_for_each_device(SDp, host) 1550 NCR_700_clear_flag(SDp, ~0); 1551 1552 /* clear all the slots and their pending commands */ 1553 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) { 1554 struct scsi_cmnd *SCp; 1555 struct NCR_700_command_slot *slot = 1556 &hostdata->slots[i]; 1557 1558 if(slot->state == NCR_700_SLOT_FREE) 1559 continue; 1560 1561 SCp = slot->cmnd; 1562 printk(KERN_ERR " failing command because of reset, slot %p, cmnd %p\n", 1563 slot, SCp); 1564 free_slot(slot, hostdata); 1565 SCp->host_scribble = NULL; 1566 NCR_700_set_depth(SCp->device, 0); 1567 /* NOTE: deadlock potential here: we 1568 * rely on mid-layer guarantees that 1569 * scsi_done won't try to issue the 1570 * command again otherwise we'll 1571 * deadlock on the 1572 * hostdata->state_lock */ 1573 SCp->result = DID_RESET << 16; 1574 SCp->scsi_done(SCp); 1575 } 1576 mdelay(25); 1577 NCR_700_chip_setup(host); 1578 1579 hostdata->state = NCR_700_HOST_FREE; 1580 hostdata->cmd = NULL; 1581 /* signal back if this was an eh induced reset */ 1582 if(hostdata->eh_complete != NULL) 1583 complete(hostdata->eh_complete); 1584 goto out_unlock; 1585 } else if(sstat0 & SELECTION_TIMEOUT) { 1586 DEBUG(("scsi%d: (%d:%d) selection timeout\n", 1587 host->host_no, pun, lun)); 1588 NCR_700_scsi_done(hostdata, SCp, DID_NO_CONNECT<<16); 1589 } else if(sstat0 & PHASE_MISMATCH) { 1590 struct NCR_700_command_slot *slot = (SCp == NULL) ? NULL : 1591 (struct NCR_700_command_slot *)SCp->host_scribble; 1592 1593 if(dsp == Ent_SendMessage + 8 + hostdata->pScript) { 1594 /* It wants to reply to some part of 1595 * our message */ 1596 #ifdef NCR_700_DEBUG 1597 __u32 temp = NCR_700_readl(host, TEMP_REG); 1598 int count = (hostdata->script[Ent_SendMessage/4] & 0xffffff) - ((NCR_700_readl(host, DBC_REG) & 0xffffff) + NCR_700_data_residual(host)); 1599 printk("scsi%d (%d:%d) PHASE MISMATCH IN SEND MESSAGE %d remain, return %p[%04x], phase %s\n", host->host_no, pun, lun, count, (void *)temp, temp - hostdata->pScript, sbcl_to_string(NCR_700_readb(host, SBCL_REG))); 1600 #endif 1601 resume_offset = hostdata->pScript + Ent_SendMessagePhaseMismatch; 1602 } else if(dsp >= to32bit(&slot->pSG[0].ins) && 1603 dsp <= to32bit(&slot->pSG[NCR_700_SG_SEGMENTS].ins)) { 1604 int data_transfer = NCR_700_readl(host, DBC_REG) & 0xffffff; 1605 int SGcount = (dsp - to32bit(&slot->pSG[0].ins))/sizeof(struct NCR_700_SG_List); 1606 int residual = NCR_700_data_residual(host); 1607 int i; 1608 #ifdef NCR_700_DEBUG 1609 __u32 naddr = NCR_700_readl(host, DNAD_REG); 1610 1611 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x\n", 1612 host->host_no, pun, lun, 1613 SGcount, data_transfer); 1614 scsi_print_command(SCp); 1615 if(residual) { 1616 printk("scsi%d: (%d:%d) Expected phase mismatch in slot->SG[%d], transferred 0x%x, residual %d\n", 1617 host->host_no, pun, lun, 1618 SGcount, data_transfer, residual); 1619 } 1620 #endif 1621 data_transfer += residual; 1622 1623 if(data_transfer != 0) { 1624 int count; 1625 __u32 pAddr; 1626 1627 SGcount--; 1628 1629 count = (bS_to_cpu(slot->SG[SGcount].ins) & 0x00ffffff); 1630 DEBUG(("DATA TRANSFER MISMATCH, count = %d, transferred %d\n", count, count-data_transfer)); 1631 slot->SG[SGcount].ins &= bS_to_host(0xff000000); 1632 slot->SG[SGcount].ins |= bS_to_host(data_transfer); 1633 pAddr = bS_to_cpu(slot->SG[SGcount].pAddr); 1634 pAddr += (count - data_transfer); 1635 #ifdef NCR_700_DEBUG 1636 if(pAddr != naddr) { 1637 printk("scsi%d (%d:%d) transfer mismatch pAddr=%lx, naddr=%lx, data_transfer=%d, residual=%d\n", host->host_no, pun, lun, (unsigned long)pAddr, (unsigned long)naddr, data_transfer, residual); 1638 } 1639 #endif 1640 slot->SG[SGcount].pAddr = bS_to_host(pAddr); 1641 } 1642 /* set the executed moves to nops */ 1643 for(i=0; i<SGcount; i++) { 1644 slot->SG[i].ins = bS_to_host(SCRIPT_NOP); 1645 slot->SG[i].pAddr = 0; 1646 } 1647 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE); 1648 /* and pretend we disconnected after 1649 * the command phase */ 1650 resume_offset = hostdata->pScript + Ent_MsgInDuringData; 1651 /* make sure all the data is flushed */ 1652 NCR_700_flush_fifo(host); 1653 } else { 1654 __u8 sbcl = NCR_700_readb(host, SBCL_REG); 1655 printk(KERN_ERR "scsi%d: (%d:%d) phase mismatch at %04x, phase %s\n", 1656 host->host_no, pun, lun, dsp - hostdata->pScript, sbcl_to_string(sbcl)); 1657 NCR_700_internal_bus_reset(host); 1658 } 1659 1660 } else if(sstat0 & SCSI_GROSS_ERROR) { 1661 printk(KERN_ERR "scsi%d: (%d:%d) GROSS ERROR\n", 1662 host->host_no, pun, lun); 1663 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1664 } else if(sstat0 & PARITY_ERROR) { 1665 printk(KERN_ERR "scsi%d: (%d:%d) PARITY ERROR\n", 1666 host->host_no, pun, lun); 1667 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1668 } else if(dstat & SCRIPT_INT_RECEIVED) { 1669 DEBUG(("scsi%d: (%d:%d) ====>SCRIPT INTERRUPT<====\n", 1670 host->host_no, pun, lun)); 1671 resume_offset = process_script_interrupt(dsps, dsp, SCp, host, hostdata); 1672 } else if(dstat & (ILGL_INST_DETECTED)) { 1673 printk(KERN_ERR "scsi%d: (%d:%d) Illegal Instruction detected at 0x%08x[0x%x]!!!\n" 1674 " Please email James.Bottomley@HansenPartnership.com with the details\n", 1675 host->host_no, pun, lun, 1676 dsp, dsp - hostdata->pScript); 1677 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1678 } else if(dstat & (WATCH_DOG_INTERRUPT|ABORTED)) { 1679 printk(KERN_ERR "scsi%d: (%d:%d) serious DMA problem, dstat=%02x\n", 1680 host->host_no, pun, lun, dstat); 1681 NCR_700_scsi_done(hostdata, SCp, DID_ERROR<<16); 1682 } 1683 1684 1685 /* NOTE: selection interrupt processing MUST occur 1686 * after script interrupt processing to correctly cope 1687 * with the case where we process a disconnect and 1688 * then get reselected before we process the 1689 * disconnection */ 1690 if(sstat0 & SELECTED) { 1691 /* FIXME: It currently takes at least FOUR 1692 * interrupts to complete a command that 1693 * disconnects: one for the disconnect, one 1694 * for the reselection, one to get the 1695 * reselection data and one to complete the 1696 * command. If we guess the reselected 1697 * command here and prepare it, we only need 1698 * to get a reselection data interrupt if we 1699 * guessed wrongly. Since the interrupt 1700 * overhead is much greater than the command 1701 * setup, this would be an efficient 1702 * optimisation particularly as we probably 1703 * only have one outstanding command on a 1704 * target most of the time */ 1705 1706 resume_offset = process_selection(host, dsp); 1707 1708 } 1709 1710 } 1711 1712 if(resume_offset) { 1713 if(hostdata->state != NCR_700_HOST_BUSY) { 1714 printk(KERN_ERR "scsi%d: Driver error: resume at 0x%08x [0x%04x] with non busy host!\n", 1715 host->host_no, resume_offset, resume_offset - hostdata->pScript); 1716 hostdata->state = NCR_700_HOST_BUSY; 1717 } 1718 1719 DEBUG(("Attempting to resume at %x\n", resume_offset)); 1720 NCR_700_clear_fifo(host); 1721 NCR_700_writel(resume_offset, host, DSP_REG); 1722 } 1723 /* There is probably a technical no-no about this: If we're a 1724 * shared interrupt and we got this interrupt because the 1725 * other device needs servicing not us, we're still going to 1726 * check our queued commands here---of course, there shouldn't 1727 * be any outstanding.... */ 1728 if(hostdata->state == NCR_700_HOST_FREE) { 1729 int i; 1730 1731 for(i = 0; i < NCR_700_COMMAND_SLOTS_PER_HOST; i++) { 1732 /* fairness: always run the queue from the last 1733 * position we left off */ 1734 int j = (i + hostdata->saved_slot_position) 1735 % NCR_700_COMMAND_SLOTS_PER_HOST; 1736 1737 if(hostdata->slots[j].state != NCR_700_SLOT_QUEUED) 1738 continue; 1739 if(NCR_700_start_command(hostdata->slots[j].cmnd)) { 1740 DEBUG(("scsi%d: Issuing saved command slot %p, cmd %p\t\n", 1741 host->host_no, &hostdata->slots[j], 1742 hostdata->slots[j].cmnd)); 1743 hostdata->saved_slot_position = j + 1; 1744 } 1745 1746 break; 1747 } 1748 } 1749 out_unlock: 1750 spin_unlock_irqrestore(host->host_lock, flags); 1751 return IRQ_RETVAL(handled); 1752 } 1753 1754 STATIC int 1755 NCR_700_queuecommand(struct scsi_cmnd *SCp, void (*done)(struct scsi_cmnd *)) 1756 { 1757 struct NCR_700_Host_Parameters *hostdata = 1758 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; 1759 __u32 move_ins; 1760 enum dma_data_direction direction; 1761 struct NCR_700_command_slot *slot; 1762 1763 if(hostdata->command_slot_count >= NCR_700_COMMAND_SLOTS_PER_HOST) { 1764 /* We're over our allocation, this should never happen 1765 * since we report the max allocation to the mid layer */ 1766 printk(KERN_WARNING "scsi%d: Command depth has gone over queue depth\n", SCp->device->host->host_no); 1767 return 1; 1768 } 1769 /* check for untagged commands. We cannot have any outstanding 1770 * commands if we accept them. Commands could be untagged because: 1771 * 1772 * - The tag negotiated bitmap is clear 1773 * - The blk layer sent and untagged command 1774 */ 1775 if(NCR_700_get_depth(SCp->device) != 0 1776 && (!(hostdata->tag_negotiated & (1<<scmd_id(SCp))) 1777 || !blk_rq_tagged(SCp->request))) { 1778 CDEBUG(KERN_ERR, SCp, "has non zero depth %d\n", 1779 NCR_700_get_depth(SCp->device)); 1780 return SCSI_MLQUEUE_DEVICE_BUSY; 1781 } 1782 if(NCR_700_get_depth(SCp->device) >= SCp->device->queue_depth) { 1783 CDEBUG(KERN_ERR, SCp, "has max tag depth %d\n", 1784 NCR_700_get_depth(SCp->device)); 1785 return SCSI_MLQUEUE_DEVICE_BUSY; 1786 } 1787 NCR_700_set_depth(SCp->device, NCR_700_get_depth(SCp->device) + 1); 1788 1789 /* begin the command here */ 1790 /* no need to check for NULL, test for command_slot_count above 1791 * ensures a slot is free */ 1792 slot = find_empty_slot(hostdata); 1793 1794 slot->cmnd = SCp; 1795 1796 SCp->scsi_done = done; 1797 SCp->host_scribble = (unsigned char *)slot; 1798 SCp->SCp.ptr = NULL; 1799 SCp->SCp.buffer = NULL; 1800 1801 #ifdef NCR_700_DEBUG 1802 printk("53c700: scsi%d, command ", SCp->device->host->host_no); 1803 scsi_print_command(SCp); 1804 #endif 1805 if(blk_rq_tagged(SCp->request) 1806 && (hostdata->tag_negotiated &(1<<scmd_id(SCp))) == 0 1807 && NCR_700_get_tag_neg_state(SCp->device) == NCR_700_START_TAG_NEGOTIATION) { 1808 scmd_printk(KERN_ERR, SCp, "Enabling Tag Command Queuing\n"); 1809 hostdata->tag_negotiated |= (1<<scmd_id(SCp)); 1810 NCR_700_set_tag_neg_state(SCp->device, NCR_700_DURING_TAG_NEGOTIATION); 1811 } 1812 1813 /* here we may have to process an untagged command. The gate 1814 * above ensures that this will be the only one outstanding, 1815 * so clear the tag negotiated bit. 1816 * 1817 * FIXME: This will royally screw up on multiple LUN devices 1818 * */ 1819 if(!blk_rq_tagged(SCp->request) 1820 && (hostdata->tag_negotiated &(1<<scmd_id(SCp)))) { 1821 scmd_printk(KERN_INFO, SCp, "Disabling Tag Command Queuing\n"); 1822 hostdata->tag_negotiated &= ~(1<<scmd_id(SCp)); 1823 } 1824 1825 if((hostdata->tag_negotiated &(1<<scmd_id(SCp))) 1826 && scsi_get_tag_type(SCp->device)) { 1827 slot->tag = SCp->request->tag; 1828 CDEBUG(KERN_DEBUG, SCp, "sending out tag %d, slot %p\n", 1829 slot->tag, slot); 1830 } else { 1831 slot->tag = SCSI_NO_TAG; 1832 /* must populate current_cmnd for scsi_find_tag to work */ 1833 SCp->device->current_cmnd = SCp; 1834 } 1835 /* sanity check: some of the commands generated by the mid-layer 1836 * have an eccentric idea of their sc_data_direction */ 1837 if(!scsi_sg_count(SCp) && !scsi_bufflen(SCp) && 1838 SCp->sc_data_direction != DMA_NONE) { 1839 #ifdef NCR_700_DEBUG 1840 printk("53c700: Command"); 1841 scsi_print_command(SCp); 1842 printk("Has wrong data direction %d\n", SCp->sc_data_direction); 1843 #endif 1844 SCp->sc_data_direction = DMA_NONE; 1845 } 1846 1847 switch (SCp->cmnd[0]) { 1848 case REQUEST_SENSE: 1849 /* clear the internal sense magic */ 1850 SCp->cmnd[6] = 0; 1851 /* fall through */ 1852 default: 1853 /* OK, get it from the command */ 1854 switch(SCp->sc_data_direction) { 1855 case DMA_BIDIRECTIONAL: 1856 default: 1857 printk(KERN_ERR "53c700: Unknown command for data direction "); 1858 scsi_print_command(SCp); 1859 1860 move_ins = 0; 1861 break; 1862 case DMA_NONE: 1863 move_ins = 0; 1864 break; 1865 case DMA_FROM_DEVICE: 1866 move_ins = SCRIPT_MOVE_DATA_IN; 1867 break; 1868 case DMA_TO_DEVICE: 1869 move_ins = SCRIPT_MOVE_DATA_OUT; 1870 break; 1871 } 1872 } 1873 1874 /* now build the scatter gather list */ 1875 direction = SCp->sc_data_direction; 1876 if(move_ins != 0) { 1877 int i; 1878 int sg_count; 1879 dma_addr_t vPtr = 0; 1880 struct scatterlist *sg; 1881 __u32 count = 0; 1882 1883 sg_count = scsi_dma_map(SCp); 1884 BUG_ON(sg_count < 0); 1885 1886 scsi_for_each_sg(SCp, sg, sg_count, i) { 1887 vPtr = sg_dma_address(sg); 1888 count = sg_dma_len(sg); 1889 1890 slot->SG[i].ins = bS_to_host(move_ins | count); 1891 DEBUG((" scatter block %d: move %d[%08x] from 0x%lx\n", 1892 i, count, slot->SG[i].ins, (unsigned long)vPtr)); 1893 slot->SG[i].pAddr = bS_to_host(vPtr); 1894 } 1895 slot->SG[i].ins = bS_to_host(SCRIPT_RETURN); 1896 slot->SG[i].pAddr = 0; 1897 dma_cache_sync(hostdata->dev, slot->SG, sizeof(slot->SG), DMA_TO_DEVICE); 1898 DEBUG((" SETTING %08lx to %x\n", 1899 (&slot->pSG[i].ins), 1900 slot->SG[i].ins)); 1901 } 1902 slot->resume_offset = 0; 1903 slot->pCmd = dma_map_single(hostdata->dev, SCp->cmnd, 1904 MAX_COMMAND_SIZE, DMA_TO_DEVICE); 1905 NCR_700_start_command(SCp); 1906 return 0; 1907 } 1908 1909 STATIC int 1910 NCR_700_abort(struct scsi_cmnd * SCp) 1911 { 1912 struct NCR_700_command_slot *slot; 1913 1914 scmd_printk(KERN_INFO, SCp, 1915 "New error handler wants to abort command\n\t"); 1916 scsi_print_command(SCp); 1917 1918 slot = (struct NCR_700_command_slot *)SCp->host_scribble; 1919 1920 if(slot == NULL) 1921 /* no outstanding command to abort */ 1922 return SUCCESS; 1923 if(SCp->cmnd[0] == TEST_UNIT_READY) { 1924 /* FIXME: This is because of a problem in the new 1925 * error handler. When it is in error recovery, it 1926 * will send a TUR to a device it thinks may still be 1927 * showing a problem. If the TUR isn't responded to, 1928 * it will abort it and mark the device off line. 1929 * Unfortunately, it does no other error recovery, so 1930 * this would leave us with an outstanding command 1931 * occupying a slot. Rather than allow this to 1932 * happen, we issue a bus reset to force all 1933 * outstanding commands to terminate here. */ 1934 NCR_700_internal_bus_reset(SCp->device->host); 1935 /* still drop through and return failed */ 1936 } 1937 return FAILED; 1938 1939 } 1940 1941 STATIC int 1942 NCR_700_bus_reset(struct scsi_cmnd * SCp) 1943 { 1944 DECLARE_COMPLETION_ONSTACK(complete); 1945 struct NCR_700_Host_Parameters *hostdata = 1946 (struct NCR_700_Host_Parameters *)SCp->device->host->hostdata[0]; 1947 1948 scmd_printk(KERN_INFO, SCp, 1949 "New error handler wants BUS reset, cmd %p\n\t", SCp); 1950 scsi_print_command(SCp); 1951 1952 /* In theory, eh_complete should always be null because the 1953 * eh is single threaded, but just in case we're handling a 1954 * reset via sg or something */ 1955 spin_lock_irq(SCp->device->host->host_lock); 1956 while (hostdata->eh_complete != NULL) { 1957 spin_unlock_irq(SCp->device->host->host_lock); 1958 msleep_interruptible(100); 1959 spin_lock_irq(SCp->device->host->host_lock); 1960 } 1961 1962 hostdata->eh_complete = &complete; 1963 NCR_700_internal_bus_reset(SCp->device->host); 1964 1965 spin_unlock_irq(SCp->device->host->host_lock); 1966 wait_for_completion(&complete); 1967 spin_lock_irq(SCp->device->host->host_lock); 1968 1969 hostdata->eh_complete = NULL; 1970 /* Revalidate the transport parameters of the failing device */ 1971 if(hostdata->fast) 1972 spi_schedule_dv_device(SCp->device); 1973 1974 spin_unlock_irq(SCp->device->host->host_lock); 1975 return SUCCESS; 1976 } 1977 1978 STATIC int 1979 NCR_700_host_reset(struct scsi_cmnd * SCp) 1980 { 1981 scmd_printk(KERN_INFO, SCp, "New error handler wants HOST reset\n\t"); 1982 scsi_print_command(SCp); 1983 1984 spin_lock_irq(SCp->device->host->host_lock); 1985 1986 NCR_700_internal_bus_reset(SCp->device->host); 1987 NCR_700_chip_reset(SCp->device->host); 1988 1989 spin_unlock_irq(SCp->device->host->host_lock); 1990 1991 return SUCCESS; 1992 } 1993 1994 STATIC void 1995 NCR_700_set_period(struct scsi_target *STp, int period) 1996 { 1997 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent); 1998 struct NCR_700_Host_Parameters *hostdata = 1999 (struct NCR_700_Host_Parameters *)SHp->hostdata[0]; 2000 2001 if(!hostdata->fast) 2002 return; 2003 2004 if(period < hostdata->min_period) 2005 period = hostdata->min_period; 2006 2007 spi_period(STp) = period; 2008 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC | 2009 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 2010 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION; 2011 } 2012 2013 STATIC void 2014 NCR_700_set_offset(struct scsi_target *STp, int offset) 2015 { 2016 struct Scsi_Host *SHp = dev_to_shost(STp->dev.parent); 2017 struct NCR_700_Host_Parameters *hostdata = 2018 (struct NCR_700_Host_Parameters *)SHp->hostdata[0]; 2019 int max_offset = hostdata->chip710 2020 ? NCR_710_MAX_OFFSET : NCR_700_MAX_OFFSET; 2021 2022 if(!hostdata->fast) 2023 return; 2024 2025 if(offset > max_offset) 2026 offset = max_offset; 2027 2028 /* if we're currently async, make sure the period is reasonable */ 2029 if(spi_offset(STp) == 0 && (spi_period(STp) < hostdata->min_period || 2030 spi_period(STp) > 0xff)) 2031 spi_period(STp) = hostdata->min_period; 2032 2033 spi_offset(STp) = offset; 2034 spi_flags(STp) &= ~(NCR_700_DEV_NEGOTIATED_SYNC | 2035 NCR_700_DEV_BEGIN_SYNC_NEGOTIATION); 2036 spi_flags(STp) |= NCR_700_DEV_PRINT_SYNC_NEGOTIATION; 2037 } 2038 2039 STATIC int 2040 NCR_700_slave_alloc(struct scsi_device *SDp) 2041 { 2042 SDp->hostdata = kzalloc(sizeof(struct NCR_700_Device_Parameters), 2043 GFP_KERNEL); 2044 2045 if (!SDp->hostdata) 2046 return -ENOMEM; 2047 2048 return 0; 2049 } 2050 2051 STATIC int 2052 NCR_700_slave_configure(struct scsi_device *SDp) 2053 { 2054 struct NCR_700_Host_Parameters *hostdata = 2055 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; 2056 2057 /* to do here: allocate memory; build a queue_full list */ 2058 if(SDp->tagged_supported) { 2059 scsi_set_tag_type(SDp, MSG_ORDERED_TAG); 2060 scsi_activate_tcq(SDp, NCR_700_DEFAULT_TAGS); 2061 NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION); 2062 } else { 2063 /* initialise to default depth */ 2064 scsi_adjust_queue_depth(SDp, 0, SDp->host->cmd_per_lun); 2065 } 2066 if(hostdata->fast) { 2067 /* Find the correct offset and period via domain validation */ 2068 if (!spi_initial_dv(SDp->sdev_target)) 2069 spi_dv_device(SDp); 2070 } else { 2071 spi_offset(SDp->sdev_target) = 0; 2072 spi_period(SDp->sdev_target) = 0; 2073 } 2074 return 0; 2075 } 2076 2077 STATIC void 2078 NCR_700_slave_destroy(struct scsi_device *SDp) 2079 { 2080 kfree(SDp->hostdata); 2081 SDp->hostdata = NULL; 2082 } 2083 2084 static int 2085 NCR_700_change_queue_depth(struct scsi_device *SDp, int depth) 2086 { 2087 if (depth > NCR_700_MAX_TAGS) 2088 depth = NCR_700_MAX_TAGS; 2089 2090 scsi_adjust_queue_depth(SDp, scsi_get_tag_type(SDp), depth); 2091 return depth; 2092 } 2093 2094 static int NCR_700_change_queue_type(struct scsi_device *SDp, int tag_type) 2095 { 2096 int change_tag = ((tag_type ==0 && scsi_get_tag_type(SDp) != 0) 2097 || (tag_type != 0 && scsi_get_tag_type(SDp) == 0)); 2098 struct NCR_700_Host_Parameters *hostdata = 2099 (struct NCR_700_Host_Parameters *)SDp->host->hostdata[0]; 2100 2101 scsi_set_tag_type(SDp, tag_type); 2102 2103 /* We have a global (per target) flag to track whether TCQ is 2104 * enabled, so we'll be turning it off for the entire target here. 2105 * our tag algorithm will fail if we mix tagged and untagged commands, 2106 * so quiesce the device before doing this */ 2107 if (change_tag) 2108 scsi_target_quiesce(SDp->sdev_target); 2109 2110 if (!tag_type) { 2111 /* shift back to the default unqueued number of commands 2112 * (the user can still raise this) */ 2113 scsi_deactivate_tcq(SDp, SDp->host->cmd_per_lun); 2114 hostdata->tag_negotiated &= ~(1 << sdev_id(SDp)); 2115 } else { 2116 /* Here, we cleared the negotiation flag above, so this 2117 * will force the driver to renegotiate */ 2118 scsi_activate_tcq(SDp, SDp->queue_depth); 2119 if (change_tag) 2120 NCR_700_set_tag_neg_state(SDp, NCR_700_START_TAG_NEGOTIATION); 2121 } 2122 if (change_tag) 2123 scsi_target_resume(SDp->sdev_target); 2124 2125 return tag_type; 2126 } 2127 2128 static ssize_t 2129 NCR_700_show_active_tags(struct device *dev, struct device_attribute *attr, char *buf) 2130 { 2131 struct scsi_device *SDp = to_scsi_device(dev); 2132 2133 return snprintf(buf, 20, "%d\n", NCR_700_get_depth(SDp)); 2134 } 2135 2136 static struct device_attribute NCR_700_active_tags_attr = { 2137 .attr = { 2138 .name = "active_tags", 2139 .mode = S_IRUGO, 2140 }, 2141 .show = NCR_700_show_active_tags, 2142 }; 2143 2144 STATIC struct device_attribute *NCR_700_dev_attrs[] = { 2145 &NCR_700_active_tags_attr, 2146 NULL, 2147 }; 2148 2149 EXPORT_SYMBOL(NCR_700_detect); 2150 EXPORT_SYMBOL(NCR_700_release); 2151 EXPORT_SYMBOL(NCR_700_intr); 2152 2153 static struct spi_function_template NCR_700_transport_functions = { 2154 .set_period = NCR_700_set_period, 2155 .show_period = 1, 2156 .set_offset = NCR_700_set_offset, 2157 .show_offset = 1, 2158 }; 2159 2160 static int __init NCR_700_init(void) 2161 { 2162 NCR_700_transport_template = spi_attach_transport(&NCR_700_transport_functions); 2163 if(!NCR_700_transport_template) 2164 return -ENODEV; 2165 return 0; 2166 } 2167 2168 static void __exit NCR_700_exit(void) 2169 { 2170 spi_release_transport(NCR_700_transport_template); 2171 } 2172 2173 module_init(NCR_700_init); 2174 module_exit(NCR_700_exit); 2175 2176