xref: /openbmc/linux/drivers/sbus/char/oradax.c (revision cabce92d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
4  */
5 
6 /*
7  * Oracle Data Analytics Accelerator (DAX)
8  *
9  * DAX is a coprocessor which resides on the SPARC M7 (DAX1) and M8
10  * (DAX2) processor chips, and has direct access to the CPU's L3
11  * caches as well as physical memory. It can perform several
12  * operations on data streams with various input and output formats.
13  * The driver provides a transport mechanism only and has limited
14  * knowledge of the various opcodes and data formats. A user space
15  * library provides high level services and translates these into low
16  * level commands which are then passed into the driver and
17  * subsequently the hypervisor and the coprocessor.  The library is
18  * the recommended way for applications to use the coprocessor, and
19  * the driver interface is not intended for general use.
20  *
21  * See Documentation/arch/sparc/oradax/oracle-dax.rst for more details.
22  */
23 
24 #include <linux/uaccess.h>
25 #include <linux/module.h>
26 #include <linux/delay.h>
27 #include <linux/cdev.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 
31 #include <asm/hypervisor.h>
32 #include <asm/mdesc.h>
33 #include <asm/oradax.h>
34 
35 MODULE_LICENSE("GPL");
36 MODULE_DESCRIPTION("Driver for Oracle Data Analytics Accelerator");
37 
38 #define	DAX_DBG_FLG_BASIC	0x01
39 #define	DAX_DBG_FLG_STAT	0x02
40 #define	DAX_DBG_FLG_INFO	0x04
41 #define	DAX_DBG_FLG_ALL		0xff
42 
43 #define	dax_err(fmt, ...)      pr_err("%s: " fmt "\n", __func__, ##__VA_ARGS__)
44 #define	dax_info(fmt, ...)     pr_info("%s: " fmt "\n", __func__, ##__VA_ARGS__)
45 
46 #define	dax_dbg(fmt, ...)	do {					\
47 					if (dax_debug & DAX_DBG_FLG_BASIC)\
48 						dax_info(fmt, ##__VA_ARGS__); \
49 				} while (0)
50 #define	dax_stat_dbg(fmt, ...)	do {					\
51 					if (dax_debug & DAX_DBG_FLG_STAT) \
52 						dax_info(fmt, ##__VA_ARGS__); \
53 				} while (0)
54 #define	dax_info_dbg(fmt, ...)	do { \
55 					if (dax_debug & DAX_DBG_FLG_INFO) \
56 						dax_info(fmt, ##__VA_ARGS__); \
57 				} while (0)
58 
59 #define	DAX1_MINOR		1
60 #define	DAX1_MAJOR		1
61 #define	DAX2_MINOR		0
62 #define	DAX2_MAJOR		2
63 
64 #define	DAX1_STR    "ORCL,sun4v-dax"
65 #define	DAX2_STR    "ORCL,sun4v-dax2"
66 
67 #define	DAX_CA_ELEMS		(DAX_MMAP_LEN / sizeof(struct dax_cca))
68 
69 #define	DAX_CCB_USEC		100
70 #define	DAX_CCB_RETRIES		10000
71 
72 /* stream types */
73 enum {
74 	OUT,
75 	PRI,
76 	SEC,
77 	TBL,
78 	NUM_STREAM_TYPES
79 };
80 
81 /* completion status */
82 #define	CCA_STAT_NOT_COMPLETED	0
83 #define	CCA_STAT_COMPLETED	1
84 #define	CCA_STAT_FAILED		2
85 #define	CCA_STAT_KILLED		3
86 #define	CCA_STAT_NOT_RUN	4
87 #define	CCA_STAT_PIPE_OUT	5
88 #define	CCA_STAT_PIPE_SRC	6
89 #define	CCA_STAT_PIPE_DST	7
90 
91 /* completion err */
92 #define	CCA_ERR_SUCCESS		0x0	/* no error */
93 #define	CCA_ERR_OVERFLOW	0x1	/* buffer overflow */
94 #define	CCA_ERR_DECODE		0x2	/* CCB decode error */
95 #define	CCA_ERR_PAGE_OVERFLOW	0x3	/* page overflow */
96 #define	CCA_ERR_KILLED		0x7	/* command was killed */
97 #define	CCA_ERR_TIMEOUT		0x8	/* Timeout */
98 #define	CCA_ERR_ADI		0x9	/* ADI error */
99 #define	CCA_ERR_DATA_FMT	0xA	/* data format error */
100 #define	CCA_ERR_OTHER_NO_RETRY	0xE	/* Other error, do not retry */
101 #define	CCA_ERR_OTHER_RETRY	0xF	/* Other error, retry */
102 #define	CCA_ERR_PARTIAL_SYMBOL	0x80	/* QP partial symbol warning */
103 
104 /* CCB address types */
105 #define	DAX_ADDR_TYPE_NONE	0
106 #define	DAX_ADDR_TYPE_VA_ALT	1	/* secondary context */
107 #define	DAX_ADDR_TYPE_RA	2	/* real address */
108 #define	DAX_ADDR_TYPE_VA	3	/* virtual address */
109 
110 /* dax_header_t opcode */
111 #define	DAX_OP_SYNC_NOP		0x0
112 #define	DAX_OP_EXTRACT		0x1
113 #define	DAX_OP_SCAN_VALUE	0x2
114 #define	DAX_OP_SCAN_RANGE	0x3
115 #define	DAX_OP_TRANSLATE	0x4
116 #define	DAX_OP_SELECT		0x5
117 #define	DAX_OP_INVERT		0x10	/* OR with translate, scan opcodes */
118 
119 struct dax_header {
120 	u32 ccb_version:4;	/* 31:28 CCB Version */
121 				/* 27:24 Sync Flags */
122 	u32 pipe:1;		/* Pipeline */
123 	u32 longccb:1;		/* Longccb. Set for scan with lu2, lu3, lu4. */
124 	u32 cond:1;		/* Conditional */
125 	u32 serial:1;		/* Serial */
126 	u32 opcode:8;		/* 23:16 Opcode */
127 				/* 15:0 Address Type. */
128 	u32 reserved:3;		/* 15:13 reserved */
129 	u32 table_addr_type:2;	/* 12:11 Huffman Table Address Type */
130 	u32 out_addr_type:3;	/* 10:8 Destination Address Type */
131 	u32 sec_addr_type:3;	/* 7:5 Secondary Source Address Type */
132 	u32 pri_addr_type:3;	/* 4:2 Primary Source Address Type */
133 	u32 cca_addr_type:2;	/* 1:0 Completion Address Type */
134 };
135 
136 struct dax_control {
137 	u32 pri_fmt:4;		/* 31:28 Primary Input Format */
138 	u32 pri_elem_size:5;	/* 27:23 Primary Input Element Size(less1) */
139 	u32 pri_offset:3;	/* 22:20 Primary Input Starting Offset */
140 	u32 sec_encoding:1;	/* 19    Secondary Input Encoding */
141 				/*	 (must be 0 for Select) */
142 	u32 sec_offset:3;	/* 18:16 Secondary Input Starting Offset */
143 	u32 sec_elem_size:2;	/* 15:14 Secondary Input Element Size */
144 				/*	 (must be 0 for Select) */
145 	u32 out_fmt:2;		/* 13:12 Output Format */
146 	u32 out_elem_size:2;	/* 11:10 Output Element Size */
147 	u32 misc:10;		/* 9:0 Opcode specific info */
148 };
149 
150 struct dax_data_access {
151 	u64 flow_ctrl:2;	/* 63:62 Flow Control Type */
152 	u64 pipe_target:2;	/* 61:60 Pipeline Target */
153 	u64 out_buf_size:20;	/* 59:40 Output Buffer Size */
154 				/*	 (cachelines less 1) */
155 	u64 unused1:8;		/* 39:32 Reserved, Set to 0 */
156 	u64 out_alloc:5;	/* 31:27 Output Allocation */
157 	u64 unused2:1;		/* 26	 Reserved */
158 	u64 pri_len_fmt:2;	/* 25:24 Input Length Format */
159 	u64 pri_len:24;		/* 23:0  Input Element/Byte/Bit Count */
160 				/*	 (less 1) */
161 };
162 
163 struct dax_ccb {
164 	struct dax_header hdr;	/* CCB Header */
165 	struct dax_control ctrl;/* Control Word */
166 	void *ca;		/* Completion Address */
167 	void *pri;		/* Primary Input Address */
168 	struct dax_data_access dac; /* Data Access Control */
169 	void *sec;		/* Secondary Input Address */
170 	u64 dword5;		/* depends on opcode */
171 	void *out;		/* Output Address */
172 	void *tbl;		/* Table Address or bitmap */
173 };
174 
175 struct dax_cca {
176 	u8	status;		/* user may mwait on this address */
177 	u8	err;		/* user visible error notification */
178 	u8	rsvd[2];	/* reserved */
179 	u32	n_remaining;	/* for QP partial symbol warning */
180 	u32	output_sz;	/* output in bytes */
181 	u32	rsvd2;		/* reserved */
182 	u64	run_cycles;	/* run time in OCND2 cycles */
183 	u64	run_stats;	/* nothing reported in version 1.0 */
184 	u32	n_processed;	/* number input elements */
185 	u32	rsvd3[5];	/* reserved */
186 	u64	retval;		/* command return value */
187 	u64	rsvd4[8];	/* reserved */
188 };
189 
190 /* per thread CCB context */
191 struct dax_ctx {
192 	struct dax_ccb		*ccb_buf;
193 	u64			ccb_buf_ra;	/* cached RA of ccb_buf  */
194 	struct dax_cca		*ca_buf;
195 	u64			ca_buf_ra;	/* cached RA of ca_buf   */
196 	struct page		*pages[DAX_CA_ELEMS][NUM_STREAM_TYPES];
197 						/* array of locked pages */
198 	struct task_struct	*owner;		/* thread that owns ctx  */
199 	struct task_struct	*client;	/* requesting thread     */
200 	union ccb_result	result;
201 	u32			ccb_count;
202 	u32			fail_count;
203 };
204 
205 /* driver public entry points */
206 static int dax_open(struct inode *inode, struct file *file);
207 static ssize_t dax_read(struct file *filp, char __user *buf,
208 			size_t count, loff_t *ppos);
209 static ssize_t dax_write(struct file *filp, const char __user *buf,
210 			 size_t count, loff_t *ppos);
211 static int dax_devmap(struct file *f, struct vm_area_struct *vma);
212 static int dax_close(struct inode *i, struct file *f);
213 
214 static const struct file_operations dax_fops = {
215 	.owner	=	THIS_MODULE,
216 	.open	=	dax_open,
217 	.read	=	dax_read,
218 	.write	=	dax_write,
219 	.mmap	=	dax_devmap,
220 	.release =	dax_close,
221 };
222 
223 static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf,
224 			size_t count, loff_t *ppos);
225 static int dax_ccb_info(u64 ca, struct ccb_info_result *info);
226 static int dax_ccb_kill(u64 ca, u16 *kill_res);
227 
228 static struct cdev c_dev;
229 static dev_t first;
230 static const struct class cl = {
231 	.name = DAX_NAME,
232 };
233 
234 static int max_ccb_version;
235 static int dax_debug;
236 module_param(dax_debug, int, 0644);
237 MODULE_PARM_DESC(dax_debug, "Debug flags");
238 
239 static int __init dax_attach(void)
240 {
241 	unsigned long dummy, hv_rv, major, minor, minor_requested, max_ccbs;
242 	struct mdesc_handle *hp = mdesc_grab();
243 	char *prop, *dax_name;
244 	bool found = false;
245 	int len, ret = 0;
246 	u64 pn;
247 
248 	if (hp == NULL) {
249 		dax_err("Unable to grab mdesc");
250 		return -ENODEV;
251 	}
252 
253 	mdesc_for_each_node_by_name(hp, pn, "virtual-device") {
254 		prop = (char *)mdesc_get_property(hp, pn, "name", &len);
255 		if (prop == NULL)
256 			continue;
257 		if (strncmp(prop, "dax", strlen("dax")))
258 			continue;
259 		dax_dbg("Found node 0x%llx = %s", pn, prop);
260 
261 		prop = (char *)mdesc_get_property(hp, pn, "compatible", &len);
262 		if (prop == NULL)
263 			continue;
264 		dax_dbg("Found node 0x%llx = %s", pn, prop);
265 		found = true;
266 		break;
267 	}
268 
269 	if (!found) {
270 		dax_err("No DAX device found");
271 		ret = -ENODEV;
272 		goto done;
273 	}
274 
275 	if (strncmp(prop, DAX2_STR, strlen(DAX2_STR)) == 0) {
276 		dax_name = DAX_NAME "2";
277 		major = DAX2_MAJOR;
278 		minor_requested = DAX2_MINOR;
279 		max_ccb_version = 1;
280 		dax_dbg("MD indicates DAX2 coprocessor");
281 	} else if (strncmp(prop, DAX1_STR, strlen(DAX1_STR)) == 0) {
282 		dax_name = DAX_NAME "1";
283 		major = DAX1_MAJOR;
284 		minor_requested = DAX1_MINOR;
285 		max_ccb_version = 0;
286 		dax_dbg("MD indicates DAX1 coprocessor");
287 	} else {
288 		dax_err("Unknown dax type: %s", prop);
289 		ret = -ENODEV;
290 		goto done;
291 	}
292 
293 	minor = minor_requested;
294 	dax_dbg("Registering DAX HV api with major %ld minor %ld", major,
295 		minor);
296 	if (sun4v_hvapi_register(HV_GRP_DAX, major, &minor)) {
297 		dax_err("hvapi_register failed");
298 		ret = -ENODEV;
299 		goto done;
300 	} else {
301 		dax_dbg("Max minor supported by HV = %ld (major %ld)", minor,
302 			major);
303 		minor = min(minor, minor_requested);
304 		dax_dbg("registered DAX major %ld minor %ld", major, minor);
305 	}
306 
307 	/* submit a zero length ccb array to query coprocessor queue size */
308 	hv_rv = sun4v_ccb_submit(0, 0, HV_CCB_QUERY_CMD, 0, &max_ccbs, &dummy);
309 	if (hv_rv != 0) {
310 		dax_err("get_hwqueue_size failed with status=%ld and max_ccbs=%ld",
311 			hv_rv, max_ccbs);
312 		ret = -ENODEV;
313 		goto done;
314 	}
315 
316 	if (max_ccbs != DAX_MAX_CCBS) {
317 		dax_err("HV reports unsupported max_ccbs=%ld", max_ccbs);
318 		ret = -ENODEV;
319 		goto done;
320 	}
321 
322 	if (alloc_chrdev_region(&first, 0, 1, DAX_NAME) < 0) {
323 		dax_err("alloc_chrdev_region failed");
324 		ret = -ENXIO;
325 		goto done;
326 	}
327 
328 	ret = class_register(&cl);
329 	if (ret)
330 		goto class_error;
331 
332 	if (device_create(&cl, NULL, first, NULL, dax_name) == NULL) {
333 		dax_err("device_create failed");
334 		ret = -ENXIO;
335 		goto device_error;
336 	}
337 
338 	cdev_init(&c_dev, &dax_fops);
339 	if (cdev_add(&c_dev, first, 1) == -1) {
340 		dax_err("cdev_add failed");
341 		ret = -ENXIO;
342 		goto cdev_error;
343 	}
344 
345 	pr_info("Attached DAX module\n");
346 	goto done;
347 
348 cdev_error:
349 	device_destroy(&cl, first);
350 device_error:
351 	class_unregister(&cl);
352 class_error:
353 	unregister_chrdev_region(first, 1);
354 done:
355 	mdesc_release(hp);
356 	return ret;
357 }
358 module_init(dax_attach);
359 
360 static void __exit dax_detach(void)
361 {
362 	pr_info("Cleaning up DAX module\n");
363 	cdev_del(&c_dev);
364 	device_destroy(&cl, first);
365 	class_unregister(&cl);
366 	unregister_chrdev_region(first, 1);
367 }
368 module_exit(dax_detach);
369 
370 /* map completion area */
371 static int dax_devmap(struct file *f, struct vm_area_struct *vma)
372 {
373 	struct dax_ctx *ctx = (struct dax_ctx *)f->private_data;
374 	size_t len = vma->vm_end - vma->vm_start;
375 
376 	dax_dbg("len=0x%lx, flags=0x%lx", len, vma->vm_flags);
377 
378 	if (ctx->owner != current) {
379 		dax_dbg("devmap called from wrong thread");
380 		return -EINVAL;
381 	}
382 
383 	if (len != DAX_MMAP_LEN) {
384 		dax_dbg("len(%lu) != DAX_MMAP_LEN(%d)", len, DAX_MMAP_LEN);
385 		return -EINVAL;
386 	}
387 
388 	/* completion area is mapped read-only for user */
389 	if (vma->vm_flags & VM_WRITE)
390 		return -EPERM;
391 	vm_flags_clear(vma, VM_MAYWRITE);
392 
393 	if (remap_pfn_range(vma, vma->vm_start, ctx->ca_buf_ra >> PAGE_SHIFT,
394 			    len, vma->vm_page_prot))
395 		return -EAGAIN;
396 
397 	dax_dbg("mmapped completion area at uva 0x%lx", vma->vm_start);
398 	return 0;
399 }
400 
401 /* Unlock user pages. Called during dequeue or device close */
402 static void dax_unlock_pages(struct dax_ctx *ctx, int ccb_index, int nelem)
403 {
404 	int i, j;
405 
406 	for (i = ccb_index; i < ccb_index + nelem; i++) {
407 		for (j = 0; j < NUM_STREAM_TYPES; j++) {
408 			struct page *p = ctx->pages[i][j];
409 
410 			if (p) {
411 				dax_dbg("freeing page %p", p);
412 				unpin_user_pages_dirty_lock(&p, 1, j == OUT);
413 				ctx->pages[i][j] = NULL;
414 			}
415 		}
416 	}
417 }
418 
419 static int dax_lock_page(void *va, struct page **p)
420 {
421 	int ret;
422 
423 	dax_dbg("uva %p", va);
424 
425 	ret = pin_user_pages_fast((unsigned long)va, 1, FOLL_WRITE, p);
426 	if (ret == 1) {
427 		dax_dbg("locked page %p, for VA %p", *p, va);
428 		return 0;
429 	}
430 
431 	dax_dbg("pin_user_pages failed, va=%p, ret=%d", va, ret);
432 	return -1;
433 }
434 
435 static int dax_lock_pages(struct dax_ctx *ctx, int idx,
436 			  int nelem, u64 *err_va)
437 {
438 	int i;
439 
440 	for (i = 0; i < nelem; i++) {
441 		struct dax_ccb *ccbp = &ctx->ccb_buf[i];
442 
443 		/*
444 		 * For each address in the CCB whose type is virtual,
445 		 * lock the page and change the type to virtual alternate
446 		 * context. On error, return the offending address in
447 		 * err_va.
448 		 */
449 		if (ccbp->hdr.out_addr_type == DAX_ADDR_TYPE_VA) {
450 			dax_dbg("output");
451 			if (dax_lock_page(ccbp->out,
452 					  &ctx->pages[i + idx][OUT]) != 0) {
453 				*err_va = (u64)ccbp->out;
454 				goto error;
455 			}
456 			ccbp->hdr.out_addr_type = DAX_ADDR_TYPE_VA_ALT;
457 		}
458 
459 		if (ccbp->hdr.pri_addr_type == DAX_ADDR_TYPE_VA) {
460 			dax_dbg("input");
461 			if (dax_lock_page(ccbp->pri,
462 					  &ctx->pages[i + idx][PRI]) != 0) {
463 				*err_va = (u64)ccbp->pri;
464 				goto error;
465 			}
466 			ccbp->hdr.pri_addr_type = DAX_ADDR_TYPE_VA_ALT;
467 		}
468 
469 		if (ccbp->hdr.sec_addr_type == DAX_ADDR_TYPE_VA) {
470 			dax_dbg("sec input");
471 			if (dax_lock_page(ccbp->sec,
472 					  &ctx->pages[i + idx][SEC]) != 0) {
473 				*err_va = (u64)ccbp->sec;
474 				goto error;
475 			}
476 			ccbp->hdr.sec_addr_type = DAX_ADDR_TYPE_VA_ALT;
477 		}
478 
479 		if (ccbp->hdr.table_addr_type == DAX_ADDR_TYPE_VA) {
480 			dax_dbg("tbl");
481 			if (dax_lock_page(ccbp->tbl,
482 					  &ctx->pages[i + idx][TBL]) != 0) {
483 				*err_va = (u64)ccbp->tbl;
484 				goto error;
485 			}
486 			ccbp->hdr.table_addr_type = DAX_ADDR_TYPE_VA_ALT;
487 		}
488 
489 		/* skip over 2nd 64 bytes of long CCB */
490 		if (ccbp->hdr.longccb)
491 			i++;
492 	}
493 	return DAX_SUBMIT_OK;
494 
495 error:
496 	dax_unlock_pages(ctx, idx, nelem);
497 	return DAX_SUBMIT_ERR_NOACCESS;
498 }
499 
500 static void dax_ccb_wait(struct dax_ctx *ctx, int idx)
501 {
502 	int ret, nretries;
503 	u16 kill_res;
504 
505 	dax_dbg("idx=%d", idx);
506 
507 	for (nretries = 0; nretries < DAX_CCB_RETRIES; nretries++) {
508 		if (ctx->ca_buf[idx].status == CCA_STAT_NOT_COMPLETED)
509 			udelay(DAX_CCB_USEC);
510 		else
511 			return;
512 	}
513 	dax_dbg("ctx (%p): CCB[%d] timed out, wait usec=%d, retries=%d. Killing ccb",
514 		(void *)ctx, idx, DAX_CCB_USEC, DAX_CCB_RETRIES);
515 
516 	ret = dax_ccb_kill(ctx->ca_buf_ra + idx * sizeof(struct dax_cca),
517 			   &kill_res);
518 	dax_dbg("Kill CCB[%d] %s", idx, ret ? "failed" : "succeeded");
519 }
520 
521 static int dax_close(struct inode *ino, struct file *f)
522 {
523 	struct dax_ctx *ctx = (struct dax_ctx *)f->private_data;
524 	int i;
525 
526 	f->private_data = NULL;
527 
528 	for (i = 0; i < DAX_CA_ELEMS; i++) {
529 		if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) {
530 			dax_dbg("CCB[%d] not completed", i);
531 			dax_ccb_wait(ctx, i);
532 		}
533 		dax_unlock_pages(ctx, i, 1);
534 	}
535 
536 	kfree(ctx->ccb_buf);
537 	kfree(ctx->ca_buf);
538 	dax_stat_dbg("CCBs: %d good, %d bad", ctx->ccb_count, ctx->fail_count);
539 	kfree(ctx);
540 
541 	return 0;
542 }
543 
544 static ssize_t dax_read(struct file *f, char __user *buf,
545 			size_t count, loff_t *ppos)
546 {
547 	struct dax_ctx *ctx = f->private_data;
548 
549 	if (ctx->client != current)
550 		return -EUSERS;
551 
552 	ctx->client = NULL;
553 
554 	if (count != sizeof(union ccb_result))
555 		return -EINVAL;
556 	if (copy_to_user(buf, &ctx->result, sizeof(union ccb_result)))
557 		return -EFAULT;
558 	return count;
559 }
560 
561 static ssize_t dax_write(struct file *f, const char __user *buf,
562 			 size_t count, loff_t *ppos)
563 {
564 	struct dax_ctx *ctx = f->private_data;
565 	struct dax_command hdr;
566 	unsigned long ca;
567 	int i, idx, ret;
568 
569 	if (ctx->client != NULL)
570 		return -EINVAL;
571 
572 	if (count == 0 || count > DAX_MAX_CCBS * sizeof(struct dax_ccb))
573 		return -EINVAL;
574 
575 	if (count % sizeof(struct dax_ccb) == 0)
576 		return dax_ccb_exec(ctx, buf, count, ppos); /* CCB EXEC */
577 
578 	if (count != sizeof(struct dax_command))
579 		return -EINVAL;
580 
581 	/* immediate command */
582 	if (ctx->owner != current)
583 		return -EUSERS;
584 
585 	if (copy_from_user(&hdr, buf, sizeof(hdr)))
586 		return -EFAULT;
587 
588 	ca = ctx->ca_buf_ra + hdr.ca_offset;
589 
590 	switch (hdr.command) {
591 	case CCB_KILL:
592 		if (hdr.ca_offset >= DAX_MMAP_LEN) {
593 			dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)",
594 				hdr.ca_offset, DAX_MMAP_LEN);
595 			return -EINVAL;
596 		}
597 
598 		ret = dax_ccb_kill(ca, &ctx->result.kill.action);
599 		if (ret != 0) {
600 			dax_dbg("dax_ccb_kill failed (ret=%d)", ret);
601 			return ret;
602 		}
603 
604 		dax_info_dbg("killed (ca_offset %d)", hdr.ca_offset);
605 		idx = hdr.ca_offset / sizeof(struct dax_cca);
606 		ctx->ca_buf[idx].status = CCA_STAT_KILLED;
607 		ctx->ca_buf[idx].err = CCA_ERR_KILLED;
608 		ctx->client = current;
609 		return count;
610 
611 	case CCB_INFO:
612 		if (hdr.ca_offset >= DAX_MMAP_LEN) {
613 			dax_dbg("invalid ca_offset (%d) >= ca_buflen (%d)",
614 				hdr.ca_offset, DAX_MMAP_LEN);
615 			return -EINVAL;
616 		}
617 
618 		ret = dax_ccb_info(ca, &ctx->result.info);
619 		if (ret != 0) {
620 			dax_dbg("dax_ccb_info failed (ret=%d)", ret);
621 			return ret;
622 		}
623 
624 		dax_info_dbg("info succeeded on ca_offset %d", hdr.ca_offset);
625 		ctx->client = current;
626 		return count;
627 
628 	case CCB_DEQUEUE:
629 		for (i = 0; i < DAX_CA_ELEMS; i++) {
630 			if (ctx->ca_buf[i].status !=
631 			    CCA_STAT_NOT_COMPLETED)
632 				dax_unlock_pages(ctx, i, 1);
633 		}
634 		return count;
635 
636 	default:
637 		return -EINVAL;
638 	}
639 }
640 
641 static int dax_open(struct inode *inode, struct file *f)
642 {
643 	struct dax_ctx *ctx = NULL;
644 	int i;
645 
646 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
647 	if (ctx == NULL)
648 		goto done;
649 
650 	ctx->ccb_buf = kcalloc(DAX_MAX_CCBS, sizeof(struct dax_ccb),
651 			       GFP_KERNEL);
652 	if (ctx->ccb_buf == NULL)
653 		goto done;
654 
655 	ctx->ccb_buf_ra = virt_to_phys(ctx->ccb_buf);
656 	dax_dbg("ctx->ccb_buf=0x%p, ccb_buf_ra=0x%llx",
657 		(void *)ctx->ccb_buf, ctx->ccb_buf_ra);
658 
659 	/* allocate CCB completion area buffer */
660 	ctx->ca_buf = kzalloc(DAX_MMAP_LEN, GFP_KERNEL);
661 	if (ctx->ca_buf == NULL)
662 		goto alloc_error;
663 	for (i = 0; i < DAX_CA_ELEMS; i++)
664 		ctx->ca_buf[i].status = CCA_STAT_COMPLETED;
665 
666 	ctx->ca_buf_ra = virt_to_phys(ctx->ca_buf);
667 	dax_dbg("ctx=0x%p, ctx->ca_buf=0x%p, ca_buf_ra=0x%llx",
668 		(void *)ctx, (void *)ctx->ca_buf, ctx->ca_buf_ra);
669 
670 	ctx->owner = current;
671 	f->private_data = ctx;
672 	return 0;
673 
674 alloc_error:
675 	kfree(ctx->ccb_buf);
676 done:
677 	kfree(ctx);
678 	return -ENOMEM;
679 }
680 
681 static char *dax_hv_errno(unsigned long hv_ret, int *ret)
682 {
683 	switch (hv_ret) {
684 	case HV_EBADALIGN:
685 		*ret = -EFAULT;
686 		return "HV_EBADALIGN";
687 	case HV_ENORADDR:
688 		*ret = -EFAULT;
689 		return "HV_ENORADDR";
690 	case HV_EINVAL:
691 		*ret = -EINVAL;
692 		return "HV_EINVAL";
693 	case HV_EWOULDBLOCK:
694 		*ret = -EAGAIN;
695 		return "HV_EWOULDBLOCK";
696 	case HV_ENOACCESS:
697 		*ret = -EPERM;
698 		return "HV_ENOACCESS";
699 	default:
700 		break;
701 	}
702 
703 	*ret = -EIO;
704 	return "UNKNOWN";
705 }
706 
707 static int dax_ccb_kill(u64 ca, u16 *kill_res)
708 {
709 	unsigned long hv_ret;
710 	int count, ret = 0;
711 	char *err_str;
712 
713 	for (count = 0; count < DAX_CCB_RETRIES; count++) {
714 		dax_dbg("attempting kill on ca_ra 0x%llx", ca);
715 		hv_ret = sun4v_ccb_kill(ca, kill_res);
716 
717 		if (hv_ret == HV_EOK) {
718 			dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca,
719 				     *kill_res);
720 		} else {
721 			err_str = dax_hv_errno(hv_ret, &ret);
722 			dax_dbg("%s (ca_ra 0x%llx)", err_str, ca);
723 		}
724 
725 		if (ret != -EAGAIN)
726 			return ret;
727 		dax_info_dbg("ccb_kill count = %d", count);
728 		udelay(DAX_CCB_USEC);
729 	}
730 
731 	return -EAGAIN;
732 }
733 
734 static int dax_ccb_info(u64 ca, struct ccb_info_result *info)
735 {
736 	unsigned long hv_ret;
737 	char *err_str;
738 	int ret = 0;
739 
740 	dax_dbg("attempting info on ca_ra 0x%llx", ca);
741 	hv_ret = sun4v_ccb_info(ca, info);
742 
743 	if (hv_ret == HV_EOK) {
744 		dax_info_dbg("HV_EOK (ca_ra 0x%llx): %d", ca, info->state);
745 		if (info->state == DAX_CCB_ENQUEUED) {
746 			dax_info_dbg("dax_unit %d, queue_num %d, queue_pos %d",
747 				     info->inst_num, info->q_num, info->q_pos);
748 		}
749 	} else {
750 		err_str = dax_hv_errno(hv_ret, &ret);
751 		dax_dbg("%s (ca_ra 0x%llx)", err_str, ca);
752 	}
753 
754 	return ret;
755 }
756 
757 static void dax_prt_ccbs(struct dax_ccb *ccb, int nelem)
758 {
759 	int i, j;
760 	u64 *ccbp;
761 
762 	dax_dbg("ccb buffer:");
763 	for (i = 0; i < nelem; i++) {
764 		ccbp = (u64 *)&ccb[i];
765 		dax_dbg(" %sccb[%d]", ccb[i].hdr.longccb ? "long " : "",  i);
766 		for (j = 0; j < 8; j++)
767 			dax_dbg("\tccb[%d].dwords[%d]=0x%llx",
768 				i, j, *(ccbp + j));
769 	}
770 }
771 
772 /*
773  * Validates user CCB content.  Also sets completion address and address types
774  * for all addresses contained in CCB.
775  */
776 static int dax_preprocess_usr_ccbs(struct dax_ctx *ctx, int idx, int nelem)
777 {
778 	int i;
779 
780 	/*
781 	 * The user is not allowed to specify real address types in
782 	 * the CCB header.  This must be enforced by the kernel before
783 	 * submitting the CCBs to HV.  The only allowed values for all
784 	 * address fields are VA or IMM
785 	 */
786 	for (i = 0; i < nelem; i++) {
787 		struct dax_ccb *ccbp = &ctx->ccb_buf[i];
788 		unsigned long ca_offset;
789 
790 		if (ccbp->hdr.ccb_version > max_ccb_version)
791 			return DAX_SUBMIT_ERR_CCB_INVAL;
792 
793 		switch (ccbp->hdr.opcode) {
794 		case DAX_OP_SYNC_NOP:
795 		case DAX_OP_EXTRACT:
796 		case DAX_OP_SCAN_VALUE:
797 		case DAX_OP_SCAN_RANGE:
798 		case DAX_OP_TRANSLATE:
799 		case DAX_OP_SCAN_VALUE | DAX_OP_INVERT:
800 		case DAX_OP_SCAN_RANGE | DAX_OP_INVERT:
801 		case DAX_OP_TRANSLATE | DAX_OP_INVERT:
802 		case DAX_OP_SELECT:
803 			break;
804 		default:
805 			return DAX_SUBMIT_ERR_CCB_INVAL;
806 		}
807 
808 		if (ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_VA &&
809 		    ccbp->hdr.out_addr_type != DAX_ADDR_TYPE_NONE) {
810 			dax_dbg("invalid out_addr_type in user CCB[%d]", i);
811 			return DAX_SUBMIT_ERR_CCB_INVAL;
812 		}
813 
814 		if (ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_VA &&
815 		    ccbp->hdr.pri_addr_type != DAX_ADDR_TYPE_NONE) {
816 			dax_dbg("invalid pri_addr_type in user CCB[%d]", i);
817 			return DAX_SUBMIT_ERR_CCB_INVAL;
818 		}
819 
820 		if (ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_VA &&
821 		    ccbp->hdr.sec_addr_type != DAX_ADDR_TYPE_NONE) {
822 			dax_dbg("invalid sec_addr_type in user CCB[%d]", i);
823 			return DAX_SUBMIT_ERR_CCB_INVAL;
824 		}
825 
826 		if (ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_VA &&
827 		    ccbp->hdr.table_addr_type != DAX_ADDR_TYPE_NONE) {
828 			dax_dbg("invalid table_addr_type in user CCB[%d]", i);
829 			return DAX_SUBMIT_ERR_CCB_INVAL;
830 		}
831 
832 		/* set completion (real) address and address type */
833 		ccbp->hdr.cca_addr_type = DAX_ADDR_TYPE_RA;
834 		ca_offset = (idx + i) * sizeof(struct dax_cca);
835 		ccbp->ca = (void *)ctx->ca_buf_ra + ca_offset;
836 		memset(&ctx->ca_buf[idx + i], 0, sizeof(struct dax_cca));
837 
838 		dax_dbg("ccb[%d]=%p, ca_offset=0x%lx, compl RA=0x%llx",
839 			i, ccbp, ca_offset, ctx->ca_buf_ra + ca_offset);
840 
841 		/* skip over 2nd 64 bytes of long CCB */
842 		if (ccbp->hdr.longccb)
843 			i++;
844 	}
845 
846 	return DAX_SUBMIT_OK;
847 }
848 
849 static int dax_ccb_exec(struct dax_ctx *ctx, const char __user *buf,
850 			size_t count, loff_t *ppos)
851 {
852 	unsigned long accepted_len, hv_rv;
853 	int i, idx, nccbs, naccepted;
854 
855 	ctx->client = current;
856 	idx = *ppos;
857 	nccbs = count / sizeof(struct dax_ccb);
858 
859 	if (ctx->owner != current) {
860 		dax_dbg("wrong thread");
861 		ctx->result.exec.status = DAX_SUBMIT_ERR_THR_INIT;
862 		return 0;
863 	}
864 	dax_dbg("args: ccb_buf_len=%ld, idx=%d", count, idx);
865 
866 	/* for given index and length, verify ca_buf range exists */
867 	if (idx < 0 || idx > (DAX_CA_ELEMS - nccbs)) {
868 		ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL;
869 		return 0;
870 	}
871 
872 	/*
873 	 * Copy CCBs into kernel buffer to prevent modification by the
874 	 * user in between validation and submission.
875 	 */
876 	if (copy_from_user(ctx->ccb_buf, buf, count)) {
877 		dax_dbg("copyin of user CCB buffer failed");
878 		ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_ARR_MMU_MISS;
879 		return 0;
880 	}
881 
882 	/* check to see if ca_buf[idx] .. ca_buf[idx + nccbs] are available */
883 	for (i = idx; i < idx + nccbs; i++) {
884 		if (ctx->ca_buf[i].status == CCA_STAT_NOT_COMPLETED) {
885 			dax_dbg("CA range not available, dequeue needed");
886 			ctx->result.exec.status = DAX_SUBMIT_ERR_NO_CA_AVAIL;
887 			return 0;
888 		}
889 	}
890 	dax_unlock_pages(ctx, idx, nccbs);
891 
892 	ctx->result.exec.status = dax_preprocess_usr_ccbs(ctx, idx, nccbs);
893 	if (ctx->result.exec.status != DAX_SUBMIT_OK)
894 		return 0;
895 
896 	ctx->result.exec.status = dax_lock_pages(ctx, idx, nccbs,
897 						 &ctx->result.exec.status_data);
898 	if (ctx->result.exec.status != DAX_SUBMIT_OK)
899 		return 0;
900 
901 	if (dax_debug & DAX_DBG_FLG_BASIC)
902 		dax_prt_ccbs(ctx->ccb_buf, nccbs);
903 
904 	hv_rv = sun4v_ccb_submit(ctx->ccb_buf_ra, count,
905 				 HV_CCB_QUERY_CMD | HV_CCB_VA_SECONDARY, 0,
906 				 &accepted_len, &ctx->result.exec.status_data);
907 
908 	switch (hv_rv) {
909 	case HV_EOK:
910 		/*
911 		 * Hcall succeeded with no errors but the accepted
912 		 * length may be less than the requested length.  The
913 		 * only way the driver can resubmit the remainder is
914 		 * to wait for completion of the submitted CCBs since
915 		 * there is no way to guarantee the ordering semantics
916 		 * required by the client applications.  Therefore we
917 		 * let the user library deal with resubmissions.
918 		 */
919 		ctx->result.exec.status = DAX_SUBMIT_OK;
920 		break;
921 	case HV_EWOULDBLOCK:
922 		/*
923 		 * This is a transient HV API error. The user library
924 		 * can retry.
925 		 */
926 		dax_dbg("hcall returned HV_EWOULDBLOCK");
927 		ctx->result.exec.status = DAX_SUBMIT_ERR_WOULDBLOCK;
928 		break;
929 	case HV_ENOMAP:
930 		/*
931 		 * HV was unable to translate a VA. The VA it could
932 		 * not translate is returned in the status_data param.
933 		 */
934 		dax_dbg("hcall returned HV_ENOMAP");
935 		ctx->result.exec.status = DAX_SUBMIT_ERR_NOMAP;
936 		break;
937 	case HV_EINVAL:
938 		/*
939 		 * This is the result of an invalid user CCB as HV is
940 		 * validating some of the user CCB fields.  Pass this
941 		 * error back to the user. There is no supporting info
942 		 * to isolate the invalid field.
943 		 */
944 		dax_dbg("hcall returned HV_EINVAL");
945 		ctx->result.exec.status = DAX_SUBMIT_ERR_CCB_INVAL;
946 		break;
947 	case HV_ENOACCESS:
948 		/*
949 		 * HV found a VA that did not have the appropriate
950 		 * permissions (such as the w bit). The VA in question
951 		 * is returned in status_data param.
952 		 */
953 		dax_dbg("hcall returned HV_ENOACCESS");
954 		ctx->result.exec.status = DAX_SUBMIT_ERR_NOACCESS;
955 		break;
956 	case HV_EUNAVAILABLE:
957 		/*
958 		 * The requested CCB operation could not be performed
959 		 * at this time. Return the specific unavailable code
960 		 * in the status_data field.
961 		 */
962 		dax_dbg("hcall returned HV_EUNAVAILABLE");
963 		ctx->result.exec.status = DAX_SUBMIT_ERR_UNAVAIL;
964 		break;
965 	default:
966 		ctx->result.exec.status = DAX_SUBMIT_ERR_INTERNAL;
967 		dax_dbg("unknown hcall return value (%ld)", hv_rv);
968 		break;
969 	}
970 
971 	/* unlock pages associated with the unaccepted CCBs */
972 	naccepted = accepted_len / sizeof(struct dax_ccb);
973 	dax_unlock_pages(ctx, idx + naccepted, nccbs - naccepted);
974 
975 	/* mark unaccepted CCBs as not completed */
976 	for (i = idx + naccepted; i < idx + nccbs; i++)
977 		ctx->ca_buf[i].status = CCA_STAT_COMPLETED;
978 
979 	ctx->ccb_count += naccepted;
980 	ctx->fail_count += nccbs - naccepted;
981 
982 	dax_dbg("hcall rv=%ld, accepted_len=%ld, status_data=0x%llx, ret status=%d",
983 		hv_rv, accepted_len, ctx->result.exec.status_data,
984 		ctx->result.exec.status);
985 
986 	if (count == accepted_len)
987 		ctx->client = NULL; /* no read needed to complete protocol */
988 	return accepted_len;
989 }
990