xref: /openbmc/linux/drivers/sbus/char/bbc_envctrl.c (revision c21b37f6)
1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2  * bbc_envctrl.c: UltraSPARC-III environment control driver.
3  *
4  * Copyright (C) 2001 David S. Miller (davem@redhat.com)
5  */
6 
7 #include <linux/kthread.h>
8 #include <linux/delay.h>
9 #include <linux/kmod.h>
10 #include <linux/reboot.h>
11 #include <asm/oplib.h>
12 #include <asm/ebus.h>
13 
14 #include "bbc_i2c.h"
15 #include "max1617.h"
16 
17 #undef ENVCTRL_TRACE
18 
19 /* WARNING: Making changes to this driver is very dangerous.
20  *          If you misprogram the sensor chips they can
21  *          cut the power on you instantly.
22  */
23 
24 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
25  * Both are implemented using max1617 i2c devices.  Each max1617
26  * monitors 2 temperatures, one for one of the cpu dies and the other
27  * for the ambient temperature.
28  *
29  * The max1617 is capable of being programmed with power-off
30  * temperature values, one low limit and one high limit.  These
31  * can be controlled independently for the cpu or ambient temperature.
32  * If a limit is violated, the power is simply shut off.  The frequency
33  * with which the max1617 does temperature sampling can be controlled
34  * as well.
35  *
36  * Three fans exist inside the machine, all three are controlled with
37  * an i2c digital to analog converter.  There is a fan directed at the
38  * two processor slots, another for the rest of the enclosure, and the
39  * third is for the power supply.  The first two fans may be speed
40  * controlled by changing the voltage fed to them.  The third fan may
41  * only be completely off or on.  The third fan is meant to only be
42  * disabled/enabled when entering/exiting the lowest power-saving
43  * mode of the machine.
44  *
45  * An environmental control kernel thread periodically monitors all
46  * temperature sensors.  Based upon the samples it will adjust the
47  * fan speeds to try and keep the system within a certain temperature
48  * range (the goal being to make the fans as quiet as possible without
49  * allowing the system to get too hot).
50  *
51  * If the temperature begins to rise/fall outside of the acceptable
52  * operating range, a periodic warning will be sent to the kernel log.
53  * The fans will be put on full blast to attempt to deal with this
54  * situation.  After exceeding the acceptable operating range by a
55  * certain threshold, the kernel thread will shut down the system.
56  * Here, the thread is attempting to shut the machine down cleanly
57  * before the hardware based power-off event is triggered.
58  */
59 
60 /* These settings are in Celsius.  We use these defaults only
61  * if we cannot interrogate the cpu-fru SEEPROM.
62  */
63 struct temp_limits {
64 	s8 high_pwroff, high_shutdown, high_warn;
65 	s8 low_warn, low_shutdown, low_pwroff;
66 };
67 
68 static struct temp_limits cpu_temp_limits[2] = {
69 	{ 100, 85, 80, 5, -5, -10 },
70 	{ 100, 85, 80, 5, -5, -10 },
71 };
72 
73 static struct temp_limits amb_temp_limits[2] = {
74 	{ 65, 55, 40, 5, -5, -10 },
75 	{ 65, 55, 40, 5, -5, -10 },
76 };
77 
78 enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
79 
80 struct bbc_cpu_temperature {
81 	struct bbc_cpu_temperature	*next;
82 
83 	struct bbc_i2c_client		*client;
84 	int				index;
85 
86 	/* Current readings, and history. */
87 	s8				curr_cpu_temp;
88 	s8				curr_amb_temp;
89 	s8				prev_cpu_temp;
90 	s8				prev_amb_temp;
91 	s8				avg_cpu_temp;
92 	s8				avg_amb_temp;
93 
94 	int				sample_tick;
95 
96 	enum fan_action			fan_todo[2];
97 #define FAN_AMBIENT	0
98 #define FAN_CPU		1
99 };
100 
101 struct bbc_cpu_temperature *all_bbc_temps;
102 
103 struct bbc_fan_control {
104 	struct bbc_fan_control 	*next;
105 
106 	struct bbc_i2c_client 	*client;
107 	int 			index;
108 
109 	int			psupply_fan_on;
110 	int			cpu_fan_speed;
111 	int			system_fan_speed;
112 };
113 
114 struct bbc_fan_control *all_bbc_fans;
115 
116 #define CPU_FAN_REG	0xf0
117 #define SYS_FAN_REG	0xf2
118 #define PSUPPLY_FAN_REG	0xf4
119 
120 #define FAN_SPEED_MIN	0x0c
121 #define FAN_SPEED_MAX	0x3f
122 
123 #define PSUPPLY_FAN_ON	0x1f
124 #define PSUPPLY_FAN_OFF	0x00
125 
126 static void set_fan_speeds(struct bbc_fan_control *fp)
127 {
128 	/* Put temperatures into range so we don't mis-program
129 	 * the hardware.
130 	 */
131 	if (fp->cpu_fan_speed < FAN_SPEED_MIN)
132 		fp->cpu_fan_speed = FAN_SPEED_MIN;
133 	if (fp->cpu_fan_speed > FAN_SPEED_MAX)
134 		fp->cpu_fan_speed = FAN_SPEED_MAX;
135 	if (fp->system_fan_speed < FAN_SPEED_MIN)
136 		fp->system_fan_speed = FAN_SPEED_MIN;
137 	if (fp->system_fan_speed > FAN_SPEED_MAX)
138 		fp->system_fan_speed = FAN_SPEED_MAX;
139 #ifdef ENVCTRL_TRACE
140 	printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
141 	       fp->index,
142 	       fp->cpu_fan_speed, fp->system_fan_speed);
143 #endif
144 
145 	bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
146 	bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
147 	bbc_i2c_writeb(fp->client,
148 		       (fp->psupply_fan_on ?
149 			PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
150 		       PSUPPLY_FAN_REG);
151 }
152 
153 static void get_current_temps(struct bbc_cpu_temperature *tp)
154 {
155 	tp->prev_amb_temp = tp->curr_amb_temp;
156 	bbc_i2c_readb(tp->client,
157 		      (unsigned char *) &tp->curr_amb_temp,
158 		      MAX1617_AMB_TEMP);
159 	tp->prev_cpu_temp = tp->curr_cpu_temp;
160 	bbc_i2c_readb(tp->client,
161 		      (unsigned char *) &tp->curr_cpu_temp,
162 		      MAX1617_CPU_TEMP);
163 #ifdef ENVCTRL_TRACE
164 	printk("temp%d: cpu(%d C) amb(%d C)\n",
165 	       tp->index,
166 	       (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
167 #endif
168 }
169 
170 
171 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
172 {
173 	static int shutting_down = 0;
174 	char *type = "???";
175 	s8 val = -1;
176 
177 	if (shutting_down != 0)
178 		return;
179 
180 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
181 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
182 		type = "ambient";
183 		val = tp->curr_amb_temp;
184 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
185 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
186 		type = "CPU";
187 		val = tp->curr_cpu_temp;
188 	}
189 
190 	printk(KERN_CRIT "temp%d: Outside of safe %s "
191 	       "operating temperature, %d C.\n",
192 	       tp->index, type, val);
193 
194 	printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
195 
196 	shutting_down = 1;
197 	if (orderly_poweroff(true) < 0)
198 		printk(KERN_CRIT "envctrl: shutdown execution failed\n");
199 }
200 
201 #define WARN_INTERVAL	(30 * HZ)
202 
203 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
204 {
205 	int ret = 0;
206 
207 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
208 		if (tp->curr_amb_temp >=
209 		    amb_temp_limits[tp->index].high_warn) {
210 			printk(KERN_WARNING "temp%d: "
211 			       "Above safe ambient operating temperature, %d C.\n",
212 			       tp->index, (int) tp->curr_amb_temp);
213 			ret = 1;
214 		} else if (tp->curr_amb_temp <
215 			   amb_temp_limits[tp->index].low_warn) {
216 			printk(KERN_WARNING "temp%d: "
217 			       "Below safe ambient operating temperature, %d C.\n",
218 			       tp->index, (int) tp->curr_amb_temp);
219 			ret = 1;
220 		}
221 		if (ret)
222 			*last_warn = jiffies;
223 	} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
224 		   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
225 		ret = 1;
226 
227 	/* Now check the shutdown limits. */
228 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
229 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
230 		do_envctrl_shutdown(tp);
231 		ret = 1;
232 	}
233 
234 	if (ret) {
235 		tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
236 	} else if ((tick & (8 - 1)) == 0) {
237 		s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
238 		s8 amb_goal_lo;
239 
240 		amb_goal_lo = amb_goal_hi - 3;
241 
242 		/* We do not try to avoid 'too cold' events.  Basically we
243 		 * only try to deal with over-heating and fan noise reduction.
244 		 */
245 		if (tp->avg_amb_temp < amb_goal_hi) {
246 			if (tp->avg_amb_temp >= amb_goal_lo)
247 				tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
248 			else
249 				tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
250 		} else {
251 			tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
252 		}
253 	} else {
254 		tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
255 	}
256 }
257 
258 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
259 {
260 	int ret = 0;
261 
262 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
263 		if (tp->curr_cpu_temp >=
264 		    cpu_temp_limits[tp->index].high_warn) {
265 			printk(KERN_WARNING "temp%d: "
266 			       "Above safe CPU operating temperature, %d C.\n",
267 			       tp->index, (int) tp->curr_cpu_temp);
268 			ret = 1;
269 		} else if (tp->curr_cpu_temp <
270 			   cpu_temp_limits[tp->index].low_warn) {
271 			printk(KERN_WARNING "temp%d: "
272 			       "Below safe CPU operating temperature, %d C.\n",
273 			       tp->index, (int) tp->curr_cpu_temp);
274 			ret = 1;
275 		}
276 		if (ret)
277 			*last_warn = jiffies;
278 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
279 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
280 		ret = 1;
281 
282 	/* Now check the shutdown limits. */
283 	if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
284 	    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
285 		do_envctrl_shutdown(tp);
286 		ret = 1;
287 	}
288 
289 	if (ret) {
290 		tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
291 	} else if ((tick & (8 - 1)) == 0) {
292 		s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
293 		s8 cpu_goal_lo;
294 
295 		cpu_goal_lo = cpu_goal_hi - 3;
296 
297 		/* We do not try to avoid 'too cold' events.  Basically we
298 		 * only try to deal with over-heating and fan noise reduction.
299 		 */
300 		if (tp->avg_cpu_temp < cpu_goal_hi) {
301 			if (tp->avg_cpu_temp >= cpu_goal_lo)
302 				tp->fan_todo[FAN_CPU] = FAN_SAME;
303 			else
304 				tp->fan_todo[FAN_CPU] = FAN_SLOWER;
305 		} else {
306 			tp->fan_todo[FAN_CPU] = FAN_FASTER;
307 		}
308 	} else {
309 		tp->fan_todo[FAN_CPU] = FAN_SAME;
310 	}
311 }
312 
313 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
314 {
315 	tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
316 	tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
317 
318 	analyze_ambient_temp(tp, last_warn, tp->sample_tick);
319 	analyze_cpu_temp(tp, last_warn, tp->sample_tick);
320 
321 	tp->sample_tick++;
322 }
323 
324 static enum fan_action prioritize_fan_action(int which_fan)
325 {
326 	struct bbc_cpu_temperature *tp;
327 	enum fan_action decision = FAN_STATE_MAX;
328 
329 	/* Basically, prioritize what the temperature sensors
330 	 * recommend we do, and perform that action on all the
331 	 * fans.
332 	 */
333 	for (tp = all_bbc_temps; tp; tp = tp->next) {
334 		if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
335 			decision = FAN_FULLBLAST;
336 			break;
337 		}
338 		if (tp->fan_todo[which_fan] == FAN_SAME &&
339 		    decision != FAN_FASTER)
340 			decision = FAN_SAME;
341 		else if (tp->fan_todo[which_fan] == FAN_FASTER)
342 			decision = FAN_FASTER;
343 		else if (decision != FAN_FASTER &&
344 			 decision != FAN_SAME &&
345 			 tp->fan_todo[which_fan] == FAN_SLOWER)
346 			decision = FAN_SLOWER;
347 	}
348 	if (decision == FAN_STATE_MAX)
349 		decision = FAN_SAME;
350 
351 	return decision;
352 }
353 
354 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
355 {
356 	enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
357 	int ret;
358 
359 	if (decision == FAN_SAME)
360 		return 0;
361 
362 	ret = 1;
363 	if (decision == FAN_FULLBLAST) {
364 		if (fp->system_fan_speed >= FAN_SPEED_MAX)
365 			ret = 0;
366 		else
367 			fp->system_fan_speed = FAN_SPEED_MAX;
368 	} else {
369 		if (decision == FAN_FASTER) {
370 			if (fp->system_fan_speed >= FAN_SPEED_MAX)
371 				ret = 0;
372 			else
373 				fp->system_fan_speed += 2;
374 		} else {
375 			int orig_speed = fp->system_fan_speed;
376 
377 			if (orig_speed <= FAN_SPEED_MIN ||
378 			    orig_speed <= (fp->cpu_fan_speed - 3))
379 				ret = 0;
380 			else
381 				fp->system_fan_speed -= 1;
382 		}
383 	}
384 
385 	return ret;
386 }
387 
388 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
389 {
390 	enum fan_action decision = prioritize_fan_action(FAN_CPU);
391 	int ret;
392 
393 	if (decision == FAN_SAME)
394 		return 0;
395 
396 	ret = 1;
397 	if (decision == FAN_FULLBLAST) {
398 		if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
399 			ret = 0;
400 		else
401 			fp->cpu_fan_speed = FAN_SPEED_MAX;
402 	} else {
403 		if (decision == FAN_FASTER) {
404 			if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
405 				ret = 0;
406 			else {
407 				fp->cpu_fan_speed += 2;
408 				if (fp->system_fan_speed <
409 				    (fp->cpu_fan_speed - 3))
410 					fp->system_fan_speed =
411 						fp->cpu_fan_speed - 3;
412 			}
413 		} else {
414 			if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
415 				ret = 0;
416 			else
417 				fp->cpu_fan_speed -= 1;
418 		}
419 	}
420 
421 	return ret;
422 }
423 
424 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
425 {
426 	int new;
427 
428 	new  = maybe_new_ambient_fan_speed(fp);
429 	new |= maybe_new_cpu_fan_speed(fp);
430 
431 	if (new)
432 		set_fan_speeds(fp);
433 }
434 
435 static void fans_full_blast(void)
436 {
437 	struct bbc_fan_control *fp;
438 
439 	/* Since we will not be monitoring things anymore, put
440 	 * the fans on full blast.
441 	 */
442 	for (fp = all_bbc_fans; fp; fp = fp->next) {
443 		fp->cpu_fan_speed = FAN_SPEED_MAX;
444 		fp->system_fan_speed = FAN_SPEED_MAX;
445 		fp->psupply_fan_on = 1;
446 		set_fan_speeds(fp);
447 	}
448 }
449 
450 #define POLL_INTERVAL	(5 * 1000)
451 static unsigned long last_warning_jiffies;
452 static struct task_struct *kenvctrld_task;
453 
454 static int kenvctrld(void *__unused)
455 {
456 	printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
457 	last_warning_jiffies = jiffies - WARN_INTERVAL;
458 	for (;;) {
459 		struct bbc_cpu_temperature *tp;
460 		struct bbc_fan_control *fp;
461 
462 		msleep_interruptible(POLL_INTERVAL);
463 		if (kthread_should_stop())
464 			break;
465 
466 		for (tp = all_bbc_temps; tp; tp = tp->next) {
467 			get_current_temps(tp);
468 			analyze_temps(tp, &last_warning_jiffies);
469 		}
470 		for (fp = all_bbc_fans; fp; fp = fp->next)
471 			maybe_new_fan_speeds(fp);
472 	}
473 	printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
474 
475 	fans_full_blast();
476 
477 	return 0;
478 }
479 
480 static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx)
481 {
482 	struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL);
483 
484 	if (!tp)
485 		return;
486 	memset(tp, 0, sizeof(*tp));
487 	tp->client = bbc_i2c_attach(echild);
488 	if (!tp->client) {
489 		kfree(tp);
490 		return;
491 	}
492 
493 	tp->index = temp_idx;
494 	{
495 		struct bbc_cpu_temperature **tpp = &all_bbc_temps;
496 		while (*tpp)
497 			tpp = &((*tpp)->next);
498 		tp->next = NULL;
499 		*tpp = tp;
500 	}
501 
502 	/* Tell it to convert once every 5 seconds, clear all cfg
503 	 * bits.
504 	 */
505 	bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
506 	bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
507 
508 	/* Program the hard temperature limits into the chip. */
509 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
510 		       MAX1617_WR_AMB_HIGHLIM);
511 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
512 		       MAX1617_WR_AMB_LOWLIM);
513 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
514 		       MAX1617_WR_CPU_HIGHLIM);
515 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
516 		       MAX1617_WR_CPU_LOWLIM);
517 
518 	get_current_temps(tp);
519 	tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
520 	tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
521 
522 	tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
523 	tp->fan_todo[FAN_CPU] = FAN_SAME;
524 }
525 
526 static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx)
527 {
528 	struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL);
529 
530 	if (!fp)
531 		return;
532 	memset(fp, 0, sizeof(*fp));
533 	fp->client = bbc_i2c_attach(echild);
534 	if (!fp->client) {
535 		kfree(fp);
536 		return;
537 	}
538 
539 	fp->index = fan_idx;
540 
541 	{
542 		struct bbc_fan_control **fpp = &all_bbc_fans;
543 		while (*fpp)
544 			fpp = &((*fpp)->next);
545 		fp->next = NULL;
546 		*fpp = fp;
547 	}
548 
549 	/* The i2c device controlling the fans is write-only.
550 	 * So the only way to keep track of the current power
551 	 * level fed to the fans is via software.  Choose half
552 	 * power for cpu/system and 'on' fo the powersupply fan
553 	 * and set it now.
554 	 */
555 	fp->psupply_fan_on = 1;
556 	fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
557 	fp->cpu_fan_speed += FAN_SPEED_MIN;
558 	fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
559 	fp->system_fan_speed += FAN_SPEED_MIN;
560 
561 	set_fan_speeds(fp);
562 }
563 
564 int bbc_envctrl_init(void)
565 {
566 	struct linux_ebus_child *echild;
567 	int temp_index = 0;
568 	int fan_index = 0;
569 	int devidx = 0;
570 
571 	while ((echild = bbc_i2c_getdev(devidx++)) != NULL) {
572 		if (!strcmp(echild->prom_node->name, "temperature"))
573 			attach_one_temp(echild, temp_index++);
574 		if (!strcmp(echild->prom_node->name, "fan-control"))
575 			attach_one_fan(echild, fan_index++);
576 	}
577 	if (temp_index != 0 && fan_index != 0) {
578 		kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
579 		if (IS_ERR(kenvctrld_task))
580 			return PTR_ERR(kenvctrld_task);
581 	}
582 
583 	return 0;
584 }
585 
586 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
587 {
588 	bbc_i2c_detach(tp->client);
589 	kfree(tp);
590 }
591 
592 static void destroy_one_fan(struct bbc_fan_control *fp)
593 {
594 	bbc_i2c_detach(fp->client);
595 	kfree(fp);
596 }
597 
598 void bbc_envctrl_cleanup(void)
599 {
600 	struct bbc_cpu_temperature *tp;
601 	struct bbc_fan_control *fp;
602 
603 	kthread_stop(kenvctrld_task);
604 
605 	tp = all_bbc_temps;
606 	while (tp != NULL) {
607 		struct bbc_cpu_temperature *next = tp->next;
608 		destroy_one_temp(tp);
609 		tp = next;
610 	}
611 	all_bbc_temps = NULL;
612 
613 	fp = all_bbc_fans;
614 	while (fp != NULL) {
615 		struct bbc_fan_control *next = fp->next;
616 		destroy_one_fan(fp);
617 		fp = next;
618 	}
619 	all_bbc_fans = NULL;
620 }
621