xref: /openbmc/linux/drivers/s390/crypto/vfio_ap_ops.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Adjunct processor matrix VFIO device driver callbacks.
4  *
5  * Copyright IBM Corp. 2018
6  *
7  * Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
8  *	      Halil Pasic <pasic@linux.ibm.com>
9  *	      Pierre Morel <pmorel@linux.ibm.com>
10  */
11 #include <linux/string.h>
12 #include <linux/vfio.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/ctype.h>
16 #include <linux/bitops.h>
17 #include <linux/kvm_host.h>
18 #include <linux/module.h>
19 #include <asm/kvm.h>
20 #include <asm/zcrypt.h>
21 
22 #include "vfio_ap_private.h"
23 
24 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
25 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
26 
27 static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev);
28 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn);
29 
30 static int match_apqn(struct device *dev, const void *data)
31 {
32 	struct vfio_ap_queue *q = dev_get_drvdata(dev);
33 
34 	return (q->apqn == *(int *)(data)) ? 1 : 0;
35 }
36 
37 /**
38  * vfio_ap_get_queue: Retrieve a queue with a specific APQN from a list
39  * @matrix_mdev: the associated mediated matrix
40  * @apqn: The queue APQN
41  *
42  * Retrieve a queue with a specific APQN from the list of the
43  * devices of the vfio_ap_drv.
44  * Verify that the APID and the APQI are set in the matrix.
45  *
46  * Returns the pointer to the associated vfio_ap_queue
47  */
48 static struct vfio_ap_queue *vfio_ap_get_queue(
49 					struct ap_matrix_mdev *matrix_mdev,
50 					int apqn)
51 {
52 	struct vfio_ap_queue *q;
53 
54 	if (!test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm))
55 		return NULL;
56 	if (!test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm))
57 		return NULL;
58 
59 	q = vfio_ap_find_queue(apqn);
60 	if (q)
61 		q->matrix_mdev = matrix_mdev;
62 
63 	return q;
64 }
65 
66 /**
67  * vfio_ap_wait_for_irqclear
68  * @apqn: The AP Queue number
69  *
70  * Checks the IRQ bit for the status of this APQN using ap_tapq.
71  * Returns if the ap_tapq function succeeded and the bit is clear.
72  * Returns if ap_tapq function failed with invalid, deconfigured or
73  * checkstopped AP.
74  * Otherwise retries up to 5 times after waiting 20ms.
75  *
76  */
77 static void vfio_ap_wait_for_irqclear(int apqn)
78 {
79 	struct ap_queue_status status;
80 	int retry = 5;
81 
82 	do {
83 		status = ap_tapq(apqn, NULL);
84 		switch (status.response_code) {
85 		case AP_RESPONSE_NORMAL:
86 		case AP_RESPONSE_RESET_IN_PROGRESS:
87 			if (!status.irq_enabled)
88 				return;
89 			fallthrough;
90 		case AP_RESPONSE_BUSY:
91 			msleep(20);
92 			break;
93 		case AP_RESPONSE_Q_NOT_AVAIL:
94 		case AP_RESPONSE_DECONFIGURED:
95 		case AP_RESPONSE_CHECKSTOPPED:
96 		default:
97 			WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
98 				  status.response_code, apqn);
99 			return;
100 		}
101 	} while (--retry);
102 
103 	WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
104 		  __func__, status.response_code, apqn);
105 }
106 
107 /**
108  * vfio_ap_free_aqic_resources
109  * @q: The vfio_ap_queue
110  *
111  * Unregisters the ISC in the GIB when the saved ISC not invalid.
112  * Unpin the guest's page holding the NIB when it exist.
113  * Reset the saved_pfn and saved_isc to invalid values.
114  *
115  */
116 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
117 {
118 	if (!q)
119 		return;
120 	if (q->saved_isc != VFIO_AP_ISC_INVALID &&
121 	    !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) {
122 		kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
123 		q->saved_isc = VFIO_AP_ISC_INVALID;
124 	}
125 	if (q->saved_pfn && !WARN_ON(!q->matrix_mdev)) {
126 		vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev),
127 				 &q->saved_pfn, 1);
128 		q->saved_pfn = 0;
129 	}
130 }
131 
132 /**
133  * vfio_ap_irq_disable
134  * @q: The vfio_ap_queue
135  *
136  * Uses ap_aqic to disable the interruption and in case of success, reset
137  * in progress or IRQ disable command already proceeded: calls
138  * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
139  * and calls vfio_ap_free_aqic_resources() to free the resources associated
140  * with the AP interrupt handling.
141  *
142  * In the case the AP is busy, or a reset is in progress,
143  * retries after 20ms, up to 5 times.
144  *
145  * Returns if ap_aqic function failed with invalid, deconfigured or
146  * checkstopped AP.
147  */
148 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
149 {
150 	struct ap_qirq_ctrl aqic_gisa = {};
151 	struct ap_queue_status status;
152 	int retries = 5;
153 
154 	do {
155 		status = ap_aqic(q->apqn, aqic_gisa, NULL);
156 		switch (status.response_code) {
157 		case AP_RESPONSE_OTHERWISE_CHANGED:
158 		case AP_RESPONSE_NORMAL:
159 			vfio_ap_wait_for_irqclear(q->apqn);
160 			goto end_free;
161 		case AP_RESPONSE_RESET_IN_PROGRESS:
162 		case AP_RESPONSE_BUSY:
163 			msleep(20);
164 			break;
165 		case AP_RESPONSE_Q_NOT_AVAIL:
166 		case AP_RESPONSE_DECONFIGURED:
167 		case AP_RESPONSE_CHECKSTOPPED:
168 		case AP_RESPONSE_INVALID_ADDRESS:
169 		default:
170 			/* All cases in default means AP not operational */
171 			WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
172 				  status.response_code);
173 			goto end_free;
174 		}
175 	} while (retries--);
176 
177 	WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
178 		  status.response_code);
179 end_free:
180 	vfio_ap_free_aqic_resources(q);
181 	q->matrix_mdev = NULL;
182 	return status;
183 }
184 
185 /**
186  * vfio_ap_setirq: Enable Interruption for a APQN
187  *
188  * @dev: the device associated with the ap_queue
189  * @q:	 the vfio_ap_queue holding AQIC parameters
190  *
191  * Pin the NIB saved in *q
192  * Register the guest ISC to GIB interface and retrieve the
193  * host ISC to issue the host side PQAP/AQIC
194  *
195  * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
196  * vfio_pin_pages failed.
197  *
198  * Otherwise return the ap_queue_status returned by the ap_aqic(),
199  * all retry handling will be done by the guest.
200  */
201 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
202 						 int isc,
203 						 unsigned long nib)
204 {
205 	struct ap_qirq_ctrl aqic_gisa = {};
206 	struct ap_queue_status status = {};
207 	struct kvm_s390_gisa *gisa;
208 	struct kvm *kvm;
209 	unsigned long h_nib, g_pfn, h_pfn;
210 	int ret;
211 
212 	g_pfn = nib >> PAGE_SHIFT;
213 	ret = vfio_pin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1,
214 			     IOMMU_READ | IOMMU_WRITE, &h_pfn);
215 	switch (ret) {
216 	case 1:
217 		break;
218 	default:
219 		status.response_code = AP_RESPONSE_INVALID_ADDRESS;
220 		return status;
221 	}
222 
223 	kvm = q->matrix_mdev->kvm;
224 	gisa = kvm->arch.gisa_int.origin;
225 
226 	h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
227 	aqic_gisa.gisc = isc;
228 	aqic_gisa.isc = kvm_s390_gisc_register(kvm, isc);
229 	aqic_gisa.ir = 1;
230 	aqic_gisa.gisa = (uint64_t)gisa >> 4;
231 
232 	status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
233 	switch (status.response_code) {
234 	case AP_RESPONSE_NORMAL:
235 		/* See if we did clear older IRQ configuration */
236 		vfio_ap_free_aqic_resources(q);
237 		q->saved_pfn = g_pfn;
238 		q->saved_isc = isc;
239 		break;
240 	case AP_RESPONSE_OTHERWISE_CHANGED:
241 		/* We could not modify IRQ setings: clear new configuration */
242 		vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1);
243 		kvm_s390_gisc_unregister(kvm, isc);
244 		break;
245 	default:
246 		pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
247 			status.response_code);
248 		vfio_ap_irq_disable(q);
249 		break;
250 	}
251 
252 	return status;
253 }
254 
255 /**
256  * handle_pqap: PQAP instruction callback
257  *
258  * @vcpu: The vcpu on which we received the PQAP instruction
259  *
260  * Get the general register contents to initialize internal variables.
261  * REG[0]: APQN
262  * REG[1]: IR and ISC
263  * REG[2]: NIB
264  *
265  * Response.status may be set to following Response Code:
266  * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
267  * - AP_RESPONSE_DECONFIGURED: if the queue is not configured
268  * - AP_RESPONSE_NORMAL (0) : in case of successs
269  *   Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
270  * We take the matrix_dev lock to ensure serialization on queues and
271  * mediated device access.
272  *
273  * Return 0 if we could handle the request inside KVM.
274  * otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
275  */
276 static int handle_pqap(struct kvm_vcpu *vcpu)
277 {
278 	uint64_t status;
279 	uint16_t apqn;
280 	struct vfio_ap_queue *q;
281 	struct ap_queue_status qstatus = {
282 			       .response_code = AP_RESPONSE_Q_NOT_AVAIL, };
283 	struct ap_matrix_mdev *matrix_mdev;
284 
285 	/* If we do not use the AIV facility just go to userland */
286 	if (!(vcpu->arch.sie_block->eca & ECA_AIV))
287 		return -EOPNOTSUPP;
288 
289 	apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
290 	mutex_lock(&matrix_dev->lock);
291 
292 	if (!vcpu->kvm->arch.crypto.pqap_hook)
293 		goto out_unlock;
294 	matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
295 				   struct ap_matrix_mdev, pqap_hook);
296 
297 	/*
298 	 * If the KVM pointer is in the process of being set, wait until the
299 	 * process has completed.
300 	 */
301 	wait_event_cmd(matrix_mdev->wait_for_kvm,
302 		       !matrix_mdev->kvm_busy,
303 		       mutex_unlock(&matrix_dev->lock),
304 		       mutex_lock(&matrix_dev->lock));
305 
306 	/* If the there is no guest using the mdev, there is nothing to do */
307 	if (!matrix_mdev->kvm)
308 		goto out_unlock;
309 
310 	q = vfio_ap_get_queue(matrix_mdev, apqn);
311 	if (!q)
312 		goto out_unlock;
313 
314 	status = vcpu->run->s.regs.gprs[1];
315 
316 	/* If IR bit(16) is set we enable the interrupt */
317 	if ((status >> (63 - 16)) & 0x01)
318 		qstatus = vfio_ap_irq_enable(q, status & 0x07,
319 					     vcpu->run->s.regs.gprs[2]);
320 	else
321 		qstatus = vfio_ap_irq_disable(q);
322 
323 out_unlock:
324 	memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
325 	vcpu->run->s.regs.gprs[1] >>= 32;
326 	mutex_unlock(&matrix_dev->lock);
327 	return 0;
328 }
329 
330 static void vfio_ap_matrix_init(struct ap_config_info *info,
331 				struct ap_matrix *matrix)
332 {
333 	matrix->apm_max = info->apxa ? info->Na : 63;
334 	matrix->aqm_max = info->apxa ? info->Nd : 15;
335 	matrix->adm_max = info->apxa ? info->Nd : 15;
336 }
337 
338 static int vfio_ap_mdev_create(struct mdev_device *mdev)
339 {
340 	struct ap_matrix_mdev *matrix_mdev;
341 
342 	if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
343 		return -EPERM;
344 
345 	matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
346 	if (!matrix_mdev) {
347 		atomic_inc(&matrix_dev->available_instances);
348 		return -ENOMEM;
349 	}
350 
351 	matrix_mdev->mdev = mdev;
352 	vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
353 	init_waitqueue_head(&matrix_mdev->wait_for_kvm);
354 	mdev_set_drvdata(mdev, matrix_mdev);
355 	matrix_mdev->pqap_hook.hook = handle_pqap;
356 	matrix_mdev->pqap_hook.owner = THIS_MODULE;
357 	mutex_lock(&matrix_dev->lock);
358 	list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
359 	mutex_unlock(&matrix_dev->lock);
360 
361 	return 0;
362 }
363 
364 static int vfio_ap_mdev_remove(struct mdev_device *mdev)
365 {
366 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
367 
368 	mutex_lock(&matrix_dev->lock);
369 
370 	/*
371 	 * If the KVM pointer is in flux or the guest is running, disallow
372 	 * un-assignment of control domain.
373 	 */
374 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
375 		mutex_unlock(&matrix_dev->lock);
376 		return -EBUSY;
377 	}
378 
379 	vfio_ap_mdev_reset_queues(mdev);
380 	list_del(&matrix_mdev->node);
381 	kfree(matrix_mdev);
382 	mdev_set_drvdata(mdev, NULL);
383 	atomic_inc(&matrix_dev->available_instances);
384 	mutex_unlock(&matrix_dev->lock);
385 
386 	return 0;
387 }
388 
389 static ssize_t name_show(struct mdev_type *mtype,
390 			 struct mdev_type_attribute *attr, char *buf)
391 {
392 	return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
393 }
394 
395 static MDEV_TYPE_ATTR_RO(name);
396 
397 static ssize_t available_instances_show(struct mdev_type *mtype,
398 					struct mdev_type_attribute *attr,
399 					char *buf)
400 {
401 	return sprintf(buf, "%d\n",
402 		       atomic_read(&matrix_dev->available_instances));
403 }
404 
405 static MDEV_TYPE_ATTR_RO(available_instances);
406 
407 static ssize_t device_api_show(struct mdev_type *mtype,
408 			       struct mdev_type_attribute *attr, char *buf)
409 {
410 	return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
411 }
412 
413 static MDEV_TYPE_ATTR_RO(device_api);
414 
415 static struct attribute *vfio_ap_mdev_type_attrs[] = {
416 	&mdev_type_attr_name.attr,
417 	&mdev_type_attr_device_api.attr,
418 	&mdev_type_attr_available_instances.attr,
419 	NULL,
420 };
421 
422 static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
423 	.name = VFIO_AP_MDEV_TYPE_HWVIRT,
424 	.attrs = vfio_ap_mdev_type_attrs,
425 };
426 
427 static struct attribute_group *vfio_ap_mdev_type_groups[] = {
428 	&vfio_ap_mdev_hwvirt_type_group,
429 	NULL,
430 };
431 
432 struct vfio_ap_queue_reserved {
433 	unsigned long *apid;
434 	unsigned long *apqi;
435 	bool reserved;
436 };
437 
438 /**
439  * vfio_ap_has_queue
440  *
441  * @dev: an AP queue device
442  * @data: a struct vfio_ap_queue_reserved reference
443  *
444  * Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
445  * apid or apqi specified in @data:
446  *
447  * - If @data contains both an apid and apqi value, then @data will be flagged
448  *   as reserved if the APID and APQI fields for the AP queue device matches
449  *
450  * - If @data contains only an apid value, @data will be flagged as
451  *   reserved if the APID field in the AP queue device matches
452  *
453  * - If @data contains only an apqi value, @data will be flagged as
454  *   reserved if the APQI field in the AP queue device matches
455  *
456  * Returns 0 to indicate the input to function succeeded. Returns -EINVAL if
457  * @data does not contain either an apid or apqi.
458  */
459 static int vfio_ap_has_queue(struct device *dev, void *data)
460 {
461 	struct vfio_ap_queue_reserved *qres = data;
462 	struct ap_queue *ap_queue = to_ap_queue(dev);
463 	ap_qid_t qid;
464 	unsigned long id;
465 
466 	if (qres->apid && qres->apqi) {
467 		qid = AP_MKQID(*qres->apid, *qres->apqi);
468 		if (qid == ap_queue->qid)
469 			qres->reserved = true;
470 	} else if (qres->apid && !qres->apqi) {
471 		id = AP_QID_CARD(ap_queue->qid);
472 		if (id == *qres->apid)
473 			qres->reserved = true;
474 	} else if (!qres->apid && qres->apqi) {
475 		id = AP_QID_QUEUE(ap_queue->qid);
476 		if (id == *qres->apqi)
477 			qres->reserved = true;
478 	} else {
479 		return -EINVAL;
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  * vfio_ap_verify_queue_reserved
487  *
488  * @matrix_dev: a mediated matrix device
489  * @apid: an AP adapter ID
490  * @apqi: an AP queue index
491  *
492  * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
493  * driver according to the following rules:
494  *
495  * - If both @apid and @apqi are not NULL, then there must be an AP queue
496  *   device bound to the vfio_ap driver with the APQN identified by @apid and
497  *   @apqi
498  *
499  * - If only @apid is not NULL, then there must be an AP queue device bound
500  *   to the vfio_ap driver with an APQN containing @apid
501  *
502  * - If only @apqi is not NULL, then there must be an AP queue device bound
503  *   to the vfio_ap driver with an APQN containing @apqi
504  *
505  * Returns 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
506  */
507 static int vfio_ap_verify_queue_reserved(unsigned long *apid,
508 					 unsigned long *apqi)
509 {
510 	int ret;
511 	struct vfio_ap_queue_reserved qres;
512 
513 	qres.apid = apid;
514 	qres.apqi = apqi;
515 	qres.reserved = false;
516 
517 	ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL,
518 				     &qres, vfio_ap_has_queue);
519 	if (ret)
520 		return ret;
521 
522 	if (qres.reserved)
523 		return 0;
524 
525 	return -EADDRNOTAVAIL;
526 }
527 
528 static int
529 vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
530 					     unsigned long apid)
531 {
532 	int ret;
533 	unsigned long apqi;
534 	unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
535 
536 	if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
537 		return vfio_ap_verify_queue_reserved(&apid, NULL);
538 
539 	for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
540 		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
541 		if (ret)
542 			return ret;
543 	}
544 
545 	return 0;
546 }
547 
548 /**
549  * vfio_ap_mdev_verify_no_sharing
550  *
551  * Verifies that the APQNs derived from the cross product of the AP adapter IDs
552  * and AP queue indexes comprising the AP matrix are not configured for another
553  * mediated device. AP queue sharing is not allowed.
554  *
555  * @matrix_mdev: the mediated matrix device
556  *
557  * Returns 0 if the APQNs are not shared, otherwise; returns -EADDRINUSE.
558  */
559 static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
560 {
561 	struct ap_matrix_mdev *lstdev;
562 	DECLARE_BITMAP(apm, AP_DEVICES);
563 	DECLARE_BITMAP(aqm, AP_DOMAINS);
564 
565 	list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
566 		if (matrix_mdev == lstdev)
567 			continue;
568 
569 		memset(apm, 0, sizeof(apm));
570 		memset(aqm, 0, sizeof(aqm));
571 
572 		/*
573 		 * We work on full longs, as we can only exclude the leftover
574 		 * bits in non-inverse order. The leftover is all zeros.
575 		 */
576 		if (!bitmap_and(apm, matrix_mdev->matrix.apm,
577 				lstdev->matrix.apm, AP_DEVICES))
578 			continue;
579 
580 		if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
581 				lstdev->matrix.aqm, AP_DOMAINS))
582 			continue;
583 
584 		return -EADDRINUSE;
585 	}
586 
587 	return 0;
588 }
589 
590 /**
591  * assign_adapter_store
592  *
593  * @dev:	the matrix device
594  * @attr:	the mediated matrix device's assign_adapter attribute
595  * @buf:	a buffer containing the AP adapter number (APID) to
596  *		be assigned
597  * @count:	the number of bytes in @buf
598  *
599  * Parses the APID from @buf and sets the corresponding bit in the mediated
600  * matrix device's APM.
601  *
602  * Returns the number of bytes processed if the APID is valid; otherwise,
603  * returns one of the following errors:
604  *
605  *	1. -EINVAL
606  *	   The APID is not a valid number
607  *
608  *	2. -ENODEV
609  *	   The APID exceeds the maximum value configured for the system
610  *
611  *	3. -EADDRNOTAVAIL
612  *	   An APQN derived from the cross product of the APID being assigned
613  *	   and the APQIs previously assigned is not bound to the vfio_ap device
614  *	   driver; or, if no APQIs have yet been assigned, the APID is not
615  *	   contained in an APQN bound to the vfio_ap device driver.
616  *
617  *	4. -EADDRINUSE
618  *	   An APQN derived from the cross product of the APID being assigned
619  *	   and the APQIs previously assigned is being used by another mediated
620  *	   matrix device
621  */
622 static ssize_t assign_adapter_store(struct device *dev,
623 				    struct device_attribute *attr,
624 				    const char *buf, size_t count)
625 {
626 	int ret;
627 	unsigned long apid;
628 	struct mdev_device *mdev = mdev_from_dev(dev);
629 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
630 
631 	mutex_lock(&matrix_dev->lock);
632 
633 	/*
634 	 * If the KVM pointer is in flux or the guest is running, disallow
635 	 * un-assignment of adapter
636 	 */
637 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
638 		ret = -EBUSY;
639 		goto done;
640 	}
641 
642 	ret = kstrtoul(buf, 0, &apid);
643 	if (ret)
644 		goto done;
645 
646 	if (apid > matrix_mdev->matrix.apm_max) {
647 		ret = -ENODEV;
648 		goto done;
649 	}
650 
651 	/*
652 	 * Set the bit in the AP mask (APM) corresponding to the AP adapter
653 	 * number (APID). The bits in the mask, from most significant to least
654 	 * significant bit, correspond to APIDs 0-255.
655 	 */
656 	ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
657 	if (ret)
658 		goto done;
659 
660 	set_bit_inv(apid, matrix_mdev->matrix.apm);
661 
662 	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
663 	if (ret)
664 		goto share_err;
665 
666 	ret = count;
667 	goto done;
668 
669 share_err:
670 	clear_bit_inv(apid, matrix_mdev->matrix.apm);
671 done:
672 	mutex_unlock(&matrix_dev->lock);
673 
674 	return ret;
675 }
676 static DEVICE_ATTR_WO(assign_adapter);
677 
678 /**
679  * unassign_adapter_store
680  *
681  * @dev:	the matrix device
682  * @attr:	the mediated matrix device's unassign_adapter attribute
683  * @buf:	a buffer containing the adapter number (APID) to be unassigned
684  * @count:	the number of bytes in @buf
685  *
686  * Parses the APID from @buf and clears the corresponding bit in the mediated
687  * matrix device's APM.
688  *
689  * Returns the number of bytes processed if the APID is valid; otherwise,
690  * returns one of the following errors:
691  *	-EINVAL if the APID is not a number
692  *	-ENODEV if the APID it exceeds the maximum value configured for the
693  *		system
694  */
695 static ssize_t unassign_adapter_store(struct device *dev,
696 				      struct device_attribute *attr,
697 				      const char *buf, size_t count)
698 {
699 	int ret;
700 	unsigned long apid;
701 	struct mdev_device *mdev = mdev_from_dev(dev);
702 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
703 
704 	mutex_lock(&matrix_dev->lock);
705 
706 	/*
707 	 * If the KVM pointer is in flux or the guest is running, disallow
708 	 * un-assignment of adapter
709 	 */
710 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
711 		ret = -EBUSY;
712 		goto done;
713 	}
714 
715 	ret = kstrtoul(buf, 0, &apid);
716 	if (ret)
717 		goto done;
718 
719 	if (apid > matrix_mdev->matrix.apm_max) {
720 		ret = -ENODEV;
721 		goto done;
722 	}
723 
724 	clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
725 	ret = count;
726 done:
727 	mutex_unlock(&matrix_dev->lock);
728 	return ret;
729 }
730 static DEVICE_ATTR_WO(unassign_adapter);
731 
732 static int
733 vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
734 					     unsigned long apqi)
735 {
736 	int ret;
737 	unsigned long apid;
738 	unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
739 
740 	if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
741 		return vfio_ap_verify_queue_reserved(NULL, &apqi);
742 
743 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
744 		ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
745 		if (ret)
746 			return ret;
747 	}
748 
749 	return 0;
750 }
751 
752 /**
753  * assign_domain_store
754  *
755  * @dev:	the matrix device
756  * @attr:	the mediated matrix device's assign_domain attribute
757  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
758  *		be assigned
759  * @count:	the number of bytes in @buf
760  *
761  * Parses the APQI from @buf and sets the corresponding bit in the mediated
762  * matrix device's AQM.
763  *
764  * Returns the number of bytes processed if the APQI is valid; otherwise returns
765  * one of the following errors:
766  *
767  *	1. -EINVAL
768  *	   The APQI is not a valid number
769  *
770  *	2. -ENODEV
771  *	   The APQI exceeds the maximum value configured for the system
772  *
773  *	3. -EADDRNOTAVAIL
774  *	   An APQN derived from the cross product of the APQI being assigned
775  *	   and the APIDs previously assigned is not bound to the vfio_ap device
776  *	   driver; or, if no APIDs have yet been assigned, the APQI is not
777  *	   contained in an APQN bound to the vfio_ap device driver.
778  *
779  *	4. -EADDRINUSE
780  *	   An APQN derived from the cross product of the APQI being assigned
781  *	   and the APIDs previously assigned is being used by another mediated
782  *	   matrix device
783  */
784 static ssize_t assign_domain_store(struct device *dev,
785 				   struct device_attribute *attr,
786 				   const char *buf, size_t count)
787 {
788 	int ret;
789 	unsigned long apqi;
790 	struct mdev_device *mdev = mdev_from_dev(dev);
791 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
792 	unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
793 
794 	mutex_lock(&matrix_dev->lock);
795 
796 	/*
797 	 * If the KVM pointer is in flux or the guest is running, disallow
798 	 * assignment of domain
799 	 */
800 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
801 		ret = -EBUSY;
802 		goto done;
803 	}
804 
805 	ret = kstrtoul(buf, 0, &apqi);
806 	if (ret)
807 		goto done;
808 	if (apqi > max_apqi) {
809 		ret = -ENODEV;
810 		goto done;
811 	}
812 
813 	ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
814 	if (ret)
815 		goto done;
816 
817 	set_bit_inv(apqi, matrix_mdev->matrix.aqm);
818 
819 	ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
820 	if (ret)
821 		goto share_err;
822 
823 	ret = count;
824 	goto done;
825 
826 share_err:
827 	clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
828 done:
829 	mutex_unlock(&matrix_dev->lock);
830 
831 	return ret;
832 }
833 static DEVICE_ATTR_WO(assign_domain);
834 
835 
836 /**
837  * unassign_domain_store
838  *
839  * @dev:	the matrix device
840  * @attr:	the mediated matrix device's unassign_domain attribute
841  * @buf:	a buffer containing the AP queue index (APQI) of the domain to
842  *		be unassigned
843  * @count:	the number of bytes in @buf
844  *
845  * Parses the APQI from @buf and clears the corresponding bit in the
846  * mediated matrix device's AQM.
847  *
848  * Returns the number of bytes processed if the APQI is valid; otherwise,
849  * returns one of the following errors:
850  *	-EINVAL if the APQI is not a number
851  *	-ENODEV if the APQI exceeds the maximum value configured for the system
852  */
853 static ssize_t unassign_domain_store(struct device *dev,
854 				     struct device_attribute *attr,
855 				     const char *buf, size_t count)
856 {
857 	int ret;
858 	unsigned long apqi;
859 	struct mdev_device *mdev = mdev_from_dev(dev);
860 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
861 
862 	mutex_lock(&matrix_dev->lock);
863 
864 	/*
865 	 * If the KVM pointer is in flux or the guest is running, disallow
866 	 * un-assignment of domain
867 	 */
868 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
869 		ret = -EBUSY;
870 		goto done;
871 	}
872 
873 	ret = kstrtoul(buf, 0, &apqi);
874 	if (ret)
875 		goto done;
876 
877 	if (apqi > matrix_mdev->matrix.aqm_max) {
878 		ret = -ENODEV;
879 		goto done;
880 	}
881 
882 	clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
883 	ret = count;
884 
885 done:
886 	mutex_unlock(&matrix_dev->lock);
887 	return ret;
888 }
889 static DEVICE_ATTR_WO(unassign_domain);
890 
891 /**
892  * assign_control_domain_store
893  *
894  * @dev:	the matrix device
895  * @attr:	the mediated matrix device's assign_control_domain attribute
896  * @buf:	a buffer containing the domain ID to be assigned
897  * @count:	the number of bytes in @buf
898  *
899  * Parses the domain ID from @buf and sets the corresponding bit in the mediated
900  * matrix device's ADM.
901  *
902  * Returns the number of bytes processed if the domain ID is valid; otherwise,
903  * returns one of the following errors:
904  *	-EINVAL if the ID is not a number
905  *	-ENODEV if the ID exceeds the maximum value configured for the system
906  */
907 static ssize_t assign_control_domain_store(struct device *dev,
908 					   struct device_attribute *attr,
909 					   const char *buf, size_t count)
910 {
911 	int ret;
912 	unsigned long id;
913 	struct mdev_device *mdev = mdev_from_dev(dev);
914 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
915 
916 	mutex_lock(&matrix_dev->lock);
917 
918 	/*
919 	 * If the KVM pointer is in flux or the guest is running, disallow
920 	 * assignment of control domain.
921 	 */
922 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
923 		ret = -EBUSY;
924 		goto done;
925 	}
926 
927 	ret = kstrtoul(buf, 0, &id);
928 	if (ret)
929 		goto done;
930 
931 	if (id > matrix_mdev->matrix.adm_max) {
932 		ret = -ENODEV;
933 		goto done;
934 	}
935 
936 	/* Set the bit in the ADM (bitmask) corresponding to the AP control
937 	 * domain number (id). The bits in the mask, from most significant to
938 	 * least significant, correspond to IDs 0 up to the one less than the
939 	 * number of control domains that can be assigned.
940 	 */
941 	set_bit_inv(id, matrix_mdev->matrix.adm);
942 	ret = count;
943 done:
944 	mutex_unlock(&matrix_dev->lock);
945 	return ret;
946 }
947 static DEVICE_ATTR_WO(assign_control_domain);
948 
949 /**
950  * unassign_control_domain_store
951  *
952  * @dev:	the matrix device
953  * @attr:	the mediated matrix device's unassign_control_domain attribute
954  * @buf:	a buffer containing the domain ID to be unassigned
955  * @count:	the number of bytes in @buf
956  *
957  * Parses the domain ID from @buf and clears the corresponding bit in the
958  * mediated matrix device's ADM.
959  *
960  * Returns the number of bytes processed if the domain ID is valid; otherwise,
961  * returns one of the following errors:
962  *	-EINVAL if the ID is not a number
963  *	-ENODEV if the ID exceeds the maximum value configured for the system
964  */
965 static ssize_t unassign_control_domain_store(struct device *dev,
966 					     struct device_attribute *attr,
967 					     const char *buf, size_t count)
968 {
969 	int ret;
970 	unsigned long domid;
971 	struct mdev_device *mdev = mdev_from_dev(dev);
972 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
973 	unsigned long max_domid =  matrix_mdev->matrix.adm_max;
974 
975 	mutex_lock(&matrix_dev->lock);
976 
977 	/*
978 	 * If the KVM pointer is in flux or the guest is running, disallow
979 	 * un-assignment of control domain.
980 	 */
981 	if (matrix_mdev->kvm_busy || matrix_mdev->kvm) {
982 		ret = -EBUSY;
983 		goto done;
984 	}
985 
986 	ret = kstrtoul(buf, 0, &domid);
987 	if (ret)
988 		goto done;
989 	if (domid > max_domid) {
990 		ret = -ENODEV;
991 		goto done;
992 	}
993 
994 	clear_bit_inv(domid, matrix_mdev->matrix.adm);
995 	ret = count;
996 done:
997 	mutex_unlock(&matrix_dev->lock);
998 	return ret;
999 }
1000 static DEVICE_ATTR_WO(unassign_control_domain);
1001 
1002 static ssize_t control_domains_show(struct device *dev,
1003 				    struct device_attribute *dev_attr,
1004 				    char *buf)
1005 {
1006 	unsigned long id;
1007 	int nchars = 0;
1008 	int n;
1009 	char *bufpos = buf;
1010 	struct mdev_device *mdev = mdev_from_dev(dev);
1011 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1012 	unsigned long max_domid = matrix_mdev->matrix.adm_max;
1013 
1014 	mutex_lock(&matrix_dev->lock);
1015 	for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
1016 		n = sprintf(bufpos, "%04lx\n", id);
1017 		bufpos += n;
1018 		nchars += n;
1019 	}
1020 	mutex_unlock(&matrix_dev->lock);
1021 
1022 	return nchars;
1023 }
1024 static DEVICE_ATTR_RO(control_domains);
1025 
1026 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
1027 			   char *buf)
1028 {
1029 	struct mdev_device *mdev = mdev_from_dev(dev);
1030 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1031 	char *bufpos = buf;
1032 	unsigned long apid;
1033 	unsigned long apqi;
1034 	unsigned long apid1;
1035 	unsigned long apqi1;
1036 	unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
1037 	unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
1038 	int nchars = 0;
1039 	int n;
1040 
1041 	apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
1042 	apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
1043 
1044 	mutex_lock(&matrix_dev->lock);
1045 
1046 	if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
1047 		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
1048 			for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1049 					     naqm_bits) {
1050 				n = sprintf(bufpos, "%02lx.%04lx\n", apid,
1051 					    apqi);
1052 				bufpos += n;
1053 				nchars += n;
1054 			}
1055 		}
1056 	} else if (apid1 < napm_bits) {
1057 		for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
1058 			n = sprintf(bufpos, "%02lx.\n", apid);
1059 			bufpos += n;
1060 			nchars += n;
1061 		}
1062 	} else if (apqi1 < naqm_bits) {
1063 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
1064 			n = sprintf(bufpos, ".%04lx\n", apqi);
1065 			bufpos += n;
1066 			nchars += n;
1067 		}
1068 	}
1069 
1070 	mutex_unlock(&matrix_dev->lock);
1071 
1072 	return nchars;
1073 }
1074 static DEVICE_ATTR_RO(matrix);
1075 
1076 static struct attribute *vfio_ap_mdev_attrs[] = {
1077 	&dev_attr_assign_adapter.attr,
1078 	&dev_attr_unassign_adapter.attr,
1079 	&dev_attr_assign_domain.attr,
1080 	&dev_attr_unassign_domain.attr,
1081 	&dev_attr_assign_control_domain.attr,
1082 	&dev_attr_unassign_control_domain.attr,
1083 	&dev_attr_control_domains.attr,
1084 	&dev_attr_matrix.attr,
1085 	NULL,
1086 };
1087 
1088 static struct attribute_group vfio_ap_mdev_attr_group = {
1089 	.attrs = vfio_ap_mdev_attrs
1090 };
1091 
1092 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
1093 	&vfio_ap_mdev_attr_group,
1094 	NULL
1095 };
1096 
1097 /**
1098  * vfio_ap_mdev_set_kvm
1099  *
1100  * @matrix_mdev: a mediated matrix device
1101  * @kvm: reference to KVM instance
1102  *
1103  * Sets all data for @matrix_mdev that are needed to manage AP resources
1104  * for the guest whose state is represented by @kvm.
1105  *
1106  * Note: The matrix_dev->lock must be taken prior to calling
1107  * this function; however, the lock will be temporarily released while the
1108  * guest's AP configuration is set to avoid a potential lockdep splat.
1109  * The kvm->lock is taken to set the guest's AP configuration which, under
1110  * certain circumstances, will result in a circular lock dependency if this is
1111  * done under the @matrix_mdev->lock.
1112  *
1113  * Return 0 if no other mediated matrix device has a reference to @kvm;
1114  * otherwise, returns an -EPERM.
1115  */
1116 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
1117 				struct kvm *kvm)
1118 {
1119 	struct ap_matrix_mdev *m;
1120 
1121 	if (kvm->arch.crypto.crycbd) {
1122 		list_for_each_entry(m, &matrix_dev->mdev_list, node) {
1123 			if (m != matrix_mdev && m->kvm == kvm)
1124 				return -EPERM;
1125 		}
1126 
1127 		kvm_get_kvm(kvm);
1128 		matrix_mdev->kvm_busy = true;
1129 		mutex_unlock(&matrix_dev->lock);
1130 		kvm_arch_crypto_set_masks(kvm,
1131 					  matrix_mdev->matrix.apm,
1132 					  matrix_mdev->matrix.aqm,
1133 					  matrix_mdev->matrix.adm);
1134 		mutex_lock(&matrix_dev->lock);
1135 		kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
1136 		matrix_mdev->kvm = kvm;
1137 		matrix_mdev->kvm_busy = false;
1138 		wake_up_all(&matrix_mdev->wait_for_kvm);
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 /*
1145  * vfio_ap_mdev_iommu_notifier: IOMMU notifier callback
1146  *
1147  * @nb: The notifier block
1148  * @action: Action to be taken
1149  * @data: data associated with the request
1150  *
1151  * For an UNMAP request, unpin the guest IOVA (the NIB guest address we
1152  * pinned before). Other requests are ignored.
1153  *
1154  */
1155 static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
1156 				       unsigned long action, void *data)
1157 {
1158 	struct ap_matrix_mdev *matrix_mdev;
1159 
1160 	matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);
1161 
1162 	if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
1163 		struct vfio_iommu_type1_dma_unmap *unmap = data;
1164 		unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;
1165 
1166 		vfio_unpin_pages(mdev_dev(matrix_mdev->mdev), &g_pfn, 1);
1167 		return NOTIFY_OK;
1168 	}
1169 
1170 	return NOTIFY_DONE;
1171 }
1172 
1173 /**
1174  * vfio_ap_mdev_unset_kvm
1175  *
1176  * @matrix_mdev: a matrix mediated device
1177  *
1178  * Performs clean-up of resources no longer needed by @matrix_mdev.
1179  *
1180  * Note: The matrix_dev->lock must be taken prior to calling
1181  * this function; however, the lock will be temporarily released while the
1182  * guest's AP configuration is cleared to avoid a potential lockdep splat.
1183  * The kvm->lock is taken to clear the guest's AP configuration which, under
1184  * certain circumstances, will result in a circular lock dependency if this is
1185  * done under the @matrix_mdev->lock.
1186  *
1187  */
1188 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev)
1189 {
1190 	/*
1191 	 * If the KVM pointer is in the process of being set, wait until the
1192 	 * process has completed.
1193 	 */
1194 	wait_event_cmd(matrix_mdev->wait_for_kvm,
1195 		       !matrix_mdev->kvm_busy,
1196 		       mutex_unlock(&matrix_dev->lock),
1197 		       mutex_lock(&matrix_dev->lock));
1198 
1199 	if (matrix_mdev->kvm) {
1200 		matrix_mdev->kvm_busy = true;
1201 		mutex_unlock(&matrix_dev->lock);
1202 		kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
1203 		mutex_lock(&matrix_dev->lock);
1204 		vfio_ap_mdev_reset_queues(matrix_mdev->mdev);
1205 		matrix_mdev->kvm->arch.crypto.pqap_hook = NULL;
1206 		kvm_put_kvm(matrix_mdev->kvm);
1207 		matrix_mdev->kvm = NULL;
1208 		matrix_mdev->kvm_busy = false;
1209 		wake_up_all(&matrix_mdev->wait_for_kvm);
1210 	}
1211 }
1212 
1213 static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
1214 				       unsigned long action, void *data)
1215 {
1216 	int notify_rc = NOTIFY_OK;
1217 	struct ap_matrix_mdev *matrix_mdev;
1218 
1219 	if (action != VFIO_GROUP_NOTIFY_SET_KVM)
1220 		return NOTIFY_OK;
1221 
1222 	mutex_lock(&matrix_dev->lock);
1223 	matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
1224 
1225 	if (!data)
1226 		vfio_ap_mdev_unset_kvm(matrix_mdev);
1227 	else if (vfio_ap_mdev_set_kvm(matrix_mdev, data))
1228 		notify_rc = NOTIFY_DONE;
1229 
1230 	mutex_unlock(&matrix_dev->lock);
1231 
1232 	return notify_rc;
1233 }
1234 
1235 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn)
1236 {
1237 	struct device *dev;
1238 	struct vfio_ap_queue *q = NULL;
1239 
1240 	dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
1241 				 &apqn, match_apqn);
1242 	if (dev) {
1243 		q = dev_get_drvdata(dev);
1244 		put_device(dev);
1245 	}
1246 
1247 	return q;
1248 }
1249 
1250 int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q,
1251 			     unsigned int retry)
1252 {
1253 	struct ap_queue_status status;
1254 	int ret;
1255 	int retry2 = 2;
1256 
1257 	if (!q)
1258 		return 0;
1259 
1260 retry_zapq:
1261 	status = ap_zapq(q->apqn);
1262 	switch (status.response_code) {
1263 	case AP_RESPONSE_NORMAL:
1264 		ret = 0;
1265 		break;
1266 	case AP_RESPONSE_RESET_IN_PROGRESS:
1267 		if (retry--) {
1268 			msleep(20);
1269 			goto retry_zapq;
1270 		}
1271 		ret = -EBUSY;
1272 		break;
1273 	case AP_RESPONSE_Q_NOT_AVAIL:
1274 	case AP_RESPONSE_DECONFIGURED:
1275 	case AP_RESPONSE_CHECKSTOPPED:
1276 		WARN_ON_ONCE(status.irq_enabled);
1277 		ret = -EBUSY;
1278 		goto free_resources;
1279 	default:
1280 		/* things are really broken, give up */
1281 		WARN(true, "PQAP/ZAPQ completed with invalid rc (%x)\n",
1282 		     status.response_code);
1283 		return -EIO;
1284 	}
1285 
1286 	/* wait for the reset to take effect */
1287 	while (retry2--) {
1288 		if (status.queue_empty && !status.irq_enabled)
1289 			break;
1290 		msleep(20);
1291 		status = ap_tapq(q->apqn, NULL);
1292 	}
1293 	WARN_ON_ONCE(retry2 <= 0);
1294 
1295 free_resources:
1296 	vfio_ap_free_aqic_resources(q);
1297 
1298 	return ret;
1299 }
1300 
1301 static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
1302 {
1303 	int ret;
1304 	int rc = 0;
1305 	unsigned long apid, apqi;
1306 	struct vfio_ap_queue *q;
1307 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1308 
1309 	for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
1310 			     matrix_mdev->matrix.apm_max + 1) {
1311 		for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
1312 				     matrix_mdev->matrix.aqm_max + 1) {
1313 			q = vfio_ap_find_queue(AP_MKQID(apid, apqi));
1314 			ret = vfio_ap_mdev_reset_queue(q, 1);
1315 			/*
1316 			 * Regardless whether a queue turns out to be busy, or
1317 			 * is not operational, we need to continue resetting
1318 			 * the remaining queues.
1319 			 */
1320 			if (ret)
1321 				rc = ret;
1322 		}
1323 	}
1324 
1325 	return rc;
1326 }
1327 
1328 static int vfio_ap_mdev_open(struct mdev_device *mdev)
1329 {
1330 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1331 	unsigned long events;
1332 	int ret;
1333 
1334 
1335 	if (!try_module_get(THIS_MODULE))
1336 		return -ENODEV;
1337 
1338 	matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
1339 	events = VFIO_GROUP_NOTIFY_SET_KVM;
1340 
1341 	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1342 				     &events, &matrix_mdev->group_notifier);
1343 	if (ret) {
1344 		module_put(THIS_MODULE);
1345 		return ret;
1346 	}
1347 
1348 	matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
1349 	events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
1350 	ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1351 				     &events, &matrix_mdev->iommu_notifier);
1352 	if (!ret)
1353 		return ret;
1354 
1355 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1356 				 &matrix_mdev->group_notifier);
1357 	module_put(THIS_MODULE);
1358 	return ret;
1359 }
1360 
1361 static void vfio_ap_mdev_release(struct mdev_device *mdev)
1362 {
1363 	struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
1364 
1365 	mutex_lock(&matrix_dev->lock);
1366 	vfio_ap_mdev_unset_kvm(matrix_mdev);
1367 	mutex_unlock(&matrix_dev->lock);
1368 
1369 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
1370 				 &matrix_mdev->iommu_notifier);
1371 	vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
1372 				 &matrix_mdev->group_notifier);
1373 	module_put(THIS_MODULE);
1374 }
1375 
1376 static int vfio_ap_mdev_get_device_info(unsigned long arg)
1377 {
1378 	unsigned long minsz;
1379 	struct vfio_device_info info;
1380 
1381 	minsz = offsetofend(struct vfio_device_info, num_irqs);
1382 
1383 	if (copy_from_user(&info, (void __user *)arg, minsz))
1384 		return -EFAULT;
1385 
1386 	if (info.argsz < minsz)
1387 		return -EINVAL;
1388 
1389 	info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
1390 	info.num_regions = 0;
1391 	info.num_irqs = 0;
1392 
1393 	return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0;
1394 }
1395 
1396 static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
1397 				    unsigned int cmd, unsigned long arg)
1398 {
1399 	int ret;
1400 	struct ap_matrix_mdev *matrix_mdev;
1401 
1402 	mutex_lock(&matrix_dev->lock);
1403 	switch (cmd) {
1404 	case VFIO_DEVICE_GET_INFO:
1405 		ret = vfio_ap_mdev_get_device_info(arg);
1406 		break;
1407 	case VFIO_DEVICE_RESET:
1408 		matrix_mdev = mdev_get_drvdata(mdev);
1409 		if (WARN(!matrix_mdev, "Driver data missing from mdev!!")) {
1410 			ret = -EINVAL;
1411 			break;
1412 		}
1413 
1414 		/*
1415 		 * If the KVM pointer is in the process of being set, wait until
1416 		 * the process has completed.
1417 		 */
1418 		wait_event_cmd(matrix_mdev->wait_for_kvm,
1419 			       !matrix_mdev->kvm_busy,
1420 			       mutex_unlock(&matrix_dev->lock),
1421 			       mutex_lock(&matrix_dev->lock));
1422 
1423 		ret = vfio_ap_mdev_reset_queues(mdev);
1424 		break;
1425 	default:
1426 		ret = -EOPNOTSUPP;
1427 		break;
1428 	}
1429 	mutex_unlock(&matrix_dev->lock);
1430 
1431 	return ret;
1432 }
1433 
1434 static const struct mdev_parent_ops vfio_ap_matrix_ops = {
1435 	.owner			= THIS_MODULE,
1436 	.supported_type_groups	= vfio_ap_mdev_type_groups,
1437 	.mdev_attr_groups	= vfio_ap_mdev_attr_groups,
1438 	.create			= vfio_ap_mdev_create,
1439 	.remove			= vfio_ap_mdev_remove,
1440 	.open			= vfio_ap_mdev_open,
1441 	.release		= vfio_ap_mdev_release,
1442 	.ioctl			= vfio_ap_mdev_ioctl,
1443 };
1444 
1445 int vfio_ap_mdev_register(void)
1446 {
1447 	atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
1448 
1449 	return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
1450 }
1451 
1452 void vfio_ap_mdev_unregister(void)
1453 {
1454 	mdev_unregister_device(&matrix_dev->device);
1455 }
1456