1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Adjunct processor matrix VFIO device driver callbacks. 4 * 5 * Copyright IBM Corp. 2018 6 * 7 * Author(s): Tony Krowiak <akrowiak@linux.ibm.com> 8 * Halil Pasic <pasic@linux.ibm.com> 9 * Pierre Morel <pmorel@linux.ibm.com> 10 */ 11 #include <linux/string.h> 12 #include <linux/vfio.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/ctype.h> 16 #include <linux/bitops.h> 17 #include <linux/kvm_host.h> 18 #include <linux/module.h> 19 #include <linux/uuid.h> 20 #include <asm/kvm.h> 21 #include <asm/zcrypt.h> 22 23 #include "vfio_ap_private.h" 24 #include "vfio_ap_debug.h" 25 26 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough" 27 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device" 28 29 static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev); 30 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn); 31 static const struct vfio_device_ops vfio_ap_matrix_dev_ops; 32 33 static int match_apqn(struct device *dev, const void *data) 34 { 35 struct vfio_ap_queue *q = dev_get_drvdata(dev); 36 37 return (q->apqn == *(int *)(data)) ? 1 : 0; 38 } 39 40 /** 41 * vfio_ap_get_queue - retrieve a queue with a specific APQN from a list 42 * @matrix_mdev: the associated mediated matrix 43 * @apqn: The queue APQN 44 * 45 * Retrieve a queue with a specific APQN from the list of the 46 * devices of the vfio_ap_drv. 47 * Verify that the APID and the APQI are set in the matrix. 48 * 49 * Return: the pointer to the associated vfio_ap_queue 50 */ 51 static struct vfio_ap_queue *vfio_ap_get_queue( 52 struct ap_matrix_mdev *matrix_mdev, 53 int apqn) 54 { 55 struct vfio_ap_queue *q; 56 57 if (!test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm)) 58 return NULL; 59 if (!test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) 60 return NULL; 61 62 q = vfio_ap_find_queue(apqn); 63 if (q) 64 q->matrix_mdev = matrix_mdev; 65 66 return q; 67 } 68 69 /** 70 * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries 71 * @apqn: The AP Queue number 72 * 73 * Checks the IRQ bit for the status of this APQN using ap_tapq. 74 * Returns if the ap_tapq function succeeded and the bit is clear. 75 * Returns if ap_tapq function failed with invalid, deconfigured or 76 * checkstopped AP. 77 * Otherwise retries up to 5 times after waiting 20ms. 78 */ 79 static void vfio_ap_wait_for_irqclear(int apqn) 80 { 81 struct ap_queue_status status; 82 int retry = 5; 83 84 do { 85 status = ap_tapq(apqn, NULL); 86 switch (status.response_code) { 87 case AP_RESPONSE_NORMAL: 88 case AP_RESPONSE_RESET_IN_PROGRESS: 89 if (!status.irq_enabled) 90 return; 91 fallthrough; 92 case AP_RESPONSE_BUSY: 93 msleep(20); 94 break; 95 case AP_RESPONSE_Q_NOT_AVAIL: 96 case AP_RESPONSE_DECONFIGURED: 97 case AP_RESPONSE_CHECKSTOPPED: 98 default: 99 WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__, 100 status.response_code, apqn); 101 return; 102 } 103 } while (--retry); 104 105 WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n", 106 __func__, status.response_code, apqn); 107 } 108 109 /** 110 * vfio_ap_free_aqic_resources - free vfio_ap_queue resources 111 * @q: The vfio_ap_queue 112 * 113 * Unregisters the ISC in the GIB when the saved ISC not invalid. 114 * Unpins the guest's page holding the NIB when it exists. 115 * Resets the saved_iova and saved_isc to invalid values. 116 */ 117 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q) 118 { 119 if (!q) 120 return; 121 if (q->saved_isc != VFIO_AP_ISC_INVALID && 122 !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) { 123 kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc); 124 q->saved_isc = VFIO_AP_ISC_INVALID; 125 } 126 if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) { 127 vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1); 128 q->saved_iova = 0; 129 } 130 } 131 132 /** 133 * vfio_ap_irq_disable - disables and clears an ap_queue interrupt 134 * @q: The vfio_ap_queue 135 * 136 * Uses ap_aqic to disable the interruption and in case of success, reset 137 * in progress or IRQ disable command already proceeded: calls 138 * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear 139 * and calls vfio_ap_free_aqic_resources() to free the resources associated 140 * with the AP interrupt handling. 141 * 142 * In the case the AP is busy, or a reset is in progress, 143 * retries after 20ms, up to 5 times. 144 * 145 * Returns if ap_aqic function failed with invalid, deconfigured or 146 * checkstopped AP. 147 * 148 * Return: &struct ap_queue_status 149 */ 150 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q) 151 { 152 struct ap_qirq_ctrl aqic_gisa = {}; 153 struct ap_queue_status status; 154 int retries = 5; 155 156 do { 157 status = ap_aqic(q->apqn, aqic_gisa, 0); 158 switch (status.response_code) { 159 case AP_RESPONSE_OTHERWISE_CHANGED: 160 case AP_RESPONSE_NORMAL: 161 vfio_ap_wait_for_irqclear(q->apqn); 162 goto end_free; 163 case AP_RESPONSE_RESET_IN_PROGRESS: 164 case AP_RESPONSE_BUSY: 165 msleep(20); 166 break; 167 case AP_RESPONSE_Q_NOT_AVAIL: 168 case AP_RESPONSE_DECONFIGURED: 169 case AP_RESPONSE_CHECKSTOPPED: 170 case AP_RESPONSE_INVALID_ADDRESS: 171 default: 172 /* All cases in default means AP not operational */ 173 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__, 174 status.response_code); 175 goto end_free; 176 } 177 } while (retries--); 178 179 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__, 180 status.response_code); 181 end_free: 182 vfio_ap_free_aqic_resources(q); 183 q->matrix_mdev = NULL; 184 return status; 185 } 186 187 /** 188 * vfio_ap_validate_nib - validate a notification indicator byte (nib) address. 189 * 190 * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction. 191 * @nib: the location for storing the nib address. 192 * 193 * When the PQAP(AQIC) instruction is executed, general register 2 contains the 194 * address of the notification indicator byte (nib) used for IRQ notification. 195 * This function parses and validates the nib from gr2. 196 * 197 * Return: returns zero if the nib address is a valid; otherwise, returns 198 * -EINVAL. 199 */ 200 static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib) 201 { 202 *nib = vcpu->run->s.regs.gprs[2]; 203 204 if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT))) 205 return -EINVAL; 206 207 return 0; 208 } 209 210 /** 211 * vfio_ap_irq_enable - Enable Interruption for a APQN 212 * 213 * @q: the vfio_ap_queue holding AQIC parameters 214 * @isc: the guest ISC to register with the GIB interface 215 * @vcpu: the vcpu object containing the registers specifying the parameters 216 * passed to the PQAP(AQIC) instruction. 217 * 218 * Pin the NIB saved in *q 219 * Register the guest ISC to GIB interface and retrieve the 220 * host ISC to issue the host side PQAP/AQIC 221 * 222 * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the 223 * vfio_pin_pages failed. 224 * 225 * Otherwise return the ap_queue_status returned by the ap_aqic(), 226 * all retry handling will be done by the guest. 227 * 228 * Return: &struct ap_queue_status 229 */ 230 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q, 231 int isc, 232 struct kvm_vcpu *vcpu) 233 { 234 struct ap_qirq_ctrl aqic_gisa = {}; 235 struct ap_queue_status status = {}; 236 struct kvm_s390_gisa *gisa; 237 struct page *h_page; 238 int nisc; 239 struct kvm *kvm; 240 phys_addr_t h_nib; 241 dma_addr_t nib; 242 int ret; 243 244 /* Verify that the notification indicator byte address is valid */ 245 if (vfio_ap_validate_nib(vcpu, &nib)) { 246 VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n", 247 __func__, &nib, q->apqn); 248 249 status.response_code = AP_RESPONSE_INVALID_ADDRESS; 250 return status; 251 } 252 253 ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1, 254 IOMMU_READ | IOMMU_WRITE, &h_page); 255 switch (ret) { 256 case 1: 257 break; 258 default: 259 VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d," 260 "nib=%pad, apqn=%#04x\n", 261 __func__, ret, &nib, q->apqn); 262 263 status.response_code = AP_RESPONSE_INVALID_ADDRESS; 264 return status; 265 } 266 267 kvm = q->matrix_mdev->kvm; 268 gisa = kvm->arch.gisa_int.origin; 269 270 h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK); 271 aqic_gisa.gisc = isc; 272 273 nisc = kvm_s390_gisc_register(kvm, isc); 274 if (nisc < 0) { 275 VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n", 276 __func__, nisc, isc, q->apqn); 277 278 status.response_code = AP_RESPONSE_INVALID_GISA; 279 return status; 280 } 281 282 aqic_gisa.isc = nisc; 283 aqic_gisa.ir = 1; 284 aqic_gisa.gisa = (uint64_t)gisa >> 4; 285 286 status = ap_aqic(q->apqn, aqic_gisa, h_nib); 287 switch (status.response_code) { 288 case AP_RESPONSE_NORMAL: 289 /* See if we did clear older IRQ configuration */ 290 vfio_ap_free_aqic_resources(q); 291 q->saved_iova = nib; 292 q->saved_isc = isc; 293 break; 294 case AP_RESPONSE_OTHERWISE_CHANGED: 295 /* We could not modify IRQ setings: clear new configuration */ 296 vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1); 297 kvm_s390_gisc_unregister(kvm, isc); 298 break; 299 default: 300 pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn, 301 status.response_code); 302 vfio_ap_irq_disable(q); 303 break; 304 } 305 306 if (status.response_code != AP_RESPONSE_NORMAL) { 307 VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: " 308 "zone=%#x, ir=%#x, gisc=%#x, f=%#x," 309 "gisa=%#x, isc=%#x, apqn=%#04x\n", 310 __func__, status.response_code, 311 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc, 312 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc, 313 q->apqn); 314 } 315 316 return status; 317 } 318 319 /** 320 * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array 321 * of big endian elements that can be passed by 322 * value to an s390dbf sprintf event function to 323 * format a UUID string. 324 * 325 * @guid: the object containing the little endian guid 326 * @uuid: a six-element array of long values that can be passed by value as 327 * arguments for a formatting string specifying a UUID. 328 * 329 * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf 330 * event functions if the memory for the passed string is available as long as 331 * the debug feature exists. Since a mediated device can be removed at any 332 * time, it's name can not be used because %s passes the reference to the string 333 * in memory and the reference will go stale once the device is removed . 334 * 335 * The s390dbf string formatting function allows a maximum of 9 arguments for a 336 * message to be displayed in the 'sprintf' view. In order to use the bytes 337 * comprising the mediated device's UUID to display the mediated device name, 338 * they will have to be converted into an array whose elements can be passed by 339 * value to sprintf. For example: 340 * 341 * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 } 342 * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804 343 * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 } 344 * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx" 345 */ 346 static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid) 347 { 348 /* 349 * The input guid is ordered in little endian, so it needs to be 350 * reordered for displaying a UUID as a string. This specifies the 351 * guid indices in proper order. 352 */ 353 uuid[0] = le32_to_cpup((__le32 *)guid); 354 uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]); 355 uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]); 356 uuid[3] = *((__u16 *)&guid->b[8]); 357 uuid[4] = *((__u16 *)&guid->b[10]); 358 uuid[5] = *((__u32 *)&guid->b[12]); 359 } 360 361 /** 362 * handle_pqap - PQAP instruction callback 363 * 364 * @vcpu: The vcpu on which we received the PQAP instruction 365 * 366 * Get the general register contents to initialize internal variables. 367 * REG[0]: APQN 368 * REG[1]: IR and ISC 369 * REG[2]: NIB 370 * 371 * Response.status may be set to following Response Code: 372 * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available 373 * - AP_RESPONSE_DECONFIGURED: if the queue is not configured 374 * - AP_RESPONSE_NORMAL (0) : in case of successs 375 * Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC. 376 * We take the matrix_dev lock to ensure serialization on queues and 377 * mediated device access. 378 * 379 * Return: 0 if we could handle the request inside KVM. 380 * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault. 381 */ 382 static int handle_pqap(struct kvm_vcpu *vcpu) 383 { 384 uint64_t status; 385 uint16_t apqn; 386 unsigned long uuid[6]; 387 struct vfio_ap_queue *q; 388 struct ap_queue_status qstatus = { 389 .response_code = AP_RESPONSE_Q_NOT_AVAIL, }; 390 struct ap_matrix_mdev *matrix_mdev; 391 392 apqn = vcpu->run->s.regs.gprs[0] & 0xffff; 393 394 /* If we do not use the AIV facility just go to userland */ 395 if (!(vcpu->arch.sie_block->eca & ECA_AIV)) { 396 VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n", 397 __func__, apqn, vcpu->arch.sie_block->eca); 398 399 return -EOPNOTSUPP; 400 } 401 402 mutex_lock(&matrix_dev->lock); 403 if (!vcpu->kvm->arch.crypto.pqap_hook) { 404 VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n", 405 __func__, apqn); 406 goto out_unlock; 407 } 408 409 matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook, 410 struct ap_matrix_mdev, pqap_hook); 411 412 /* If the there is no guest using the mdev, there is nothing to do */ 413 if (!matrix_mdev->kvm) { 414 vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid); 415 VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n", 416 __func__, uuid[0], uuid[1], uuid[2], 417 uuid[3], uuid[4], uuid[5], apqn); 418 goto out_unlock; 419 } 420 421 q = vfio_ap_get_queue(matrix_mdev, apqn); 422 if (!q) { 423 VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n", 424 __func__, AP_QID_CARD(apqn), 425 AP_QID_QUEUE(apqn)); 426 goto out_unlock; 427 } 428 429 status = vcpu->run->s.regs.gprs[1]; 430 431 /* If IR bit(16) is set we enable the interrupt */ 432 if ((status >> (63 - 16)) & 0x01) 433 qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu); 434 else 435 qstatus = vfio_ap_irq_disable(q); 436 437 out_unlock: 438 memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus)); 439 vcpu->run->s.regs.gprs[1] >>= 32; 440 mutex_unlock(&matrix_dev->lock); 441 return 0; 442 } 443 444 static void vfio_ap_matrix_init(struct ap_config_info *info, 445 struct ap_matrix *matrix) 446 { 447 matrix->apm_max = info->apxa ? info->Na : 63; 448 matrix->aqm_max = info->apxa ? info->Nd : 15; 449 matrix->adm_max = info->apxa ? info->Nd : 15; 450 } 451 452 static int vfio_ap_mdev_probe(struct mdev_device *mdev) 453 { 454 struct ap_matrix_mdev *matrix_mdev; 455 int ret; 456 457 if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0)) 458 return -EPERM; 459 460 matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL); 461 if (!matrix_mdev) { 462 ret = -ENOMEM; 463 goto err_dec_available; 464 } 465 vfio_init_group_dev(&matrix_mdev->vdev, &mdev->dev, 466 &vfio_ap_matrix_dev_ops); 467 468 matrix_mdev->mdev = mdev; 469 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix); 470 matrix_mdev->pqap_hook = handle_pqap; 471 mutex_lock(&matrix_dev->lock); 472 list_add(&matrix_mdev->node, &matrix_dev->mdev_list); 473 mutex_unlock(&matrix_dev->lock); 474 475 ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev); 476 if (ret) 477 goto err_list; 478 dev_set_drvdata(&mdev->dev, matrix_mdev); 479 return 0; 480 481 err_list: 482 mutex_lock(&matrix_dev->lock); 483 list_del(&matrix_mdev->node); 484 mutex_unlock(&matrix_dev->lock); 485 vfio_uninit_group_dev(&matrix_mdev->vdev); 486 kfree(matrix_mdev); 487 err_dec_available: 488 atomic_inc(&matrix_dev->available_instances); 489 return ret; 490 } 491 492 static void vfio_ap_mdev_remove(struct mdev_device *mdev) 493 { 494 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev); 495 496 vfio_unregister_group_dev(&matrix_mdev->vdev); 497 498 mutex_lock(&matrix_dev->lock); 499 vfio_ap_mdev_reset_queues(matrix_mdev); 500 list_del(&matrix_mdev->node); 501 mutex_unlock(&matrix_dev->lock); 502 vfio_uninit_group_dev(&matrix_mdev->vdev); 503 kfree(matrix_mdev); 504 atomic_inc(&matrix_dev->available_instances); 505 } 506 507 static ssize_t name_show(struct mdev_type *mtype, 508 struct mdev_type_attribute *attr, char *buf) 509 { 510 return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT); 511 } 512 513 static MDEV_TYPE_ATTR_RO(name); 514 515 static ssize_t available_instances_show(struct mdev_type *mtype, 516 struct mdev_type_attribute *attr, 517 char *buf) 518 { 519 return sprintf(buf, "%d\n", 520 atomic_read(&matrix_dev->available_instances)); 521 } 522 523 static MDEV_TYPE_ATTR_RO(available_instances); 524 525 static ssize_t device_api_show(struct mdev_type *mtype, 526 struct mdev_type_attribute *attr, char *buf) 527 { 528 return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING); 529 } 530 531 static MDEV_TYPE_ATTR_RO(device_api); 532 533 static struct attribute *vfio_ap_mdev_type_attrs[] = { 534 &mdev_type_attr_name.attr, 535 &mdev_type_attr_device_api.attr, 536 &mdev_type_attr_available_instances.attr, 537 NULL, 538 }; 539 540 static struct attribute_group vfio_ap_mdev_hwvirt_type_group = { 541 .name = VFIO_AP_MDEV_TYPE_HWVIRT, 542 .attrs = vfio_ap_mdev_type_attrs, 543 }; 544 545 static struct attribute_group *vfio_ap_mdev_type_groups[] = { 546 &vfio_ap_mdev_hwvirt_type_group, 547 NULL, 548 }; 549 550 struct vfio_ap_queue_reserved { 551 unsigned long *apid; 552 unsigned long *apqi; 553 bool reserved; 554 }; 555 556 /** 557 * vfio_ap_has_queue - determines if the AP queue containing the target in @data 558 * 559 * @dev: an AP queue device 560 * @data: a struct vfio_ap_queue_reserved reference 561 * 562 * Flags whether the AP queue device (@dev) has a queue ID containing the APQN, 563 * apid or apqi specified in @data: 564 * 565 * - If @data contains both an apid and apqi value, then @data will be flagged 566 * as reserved if the APID and APQI fields for the AP queue device matches 567 * 568 * - If @data contains only an apid value, @data will be flagged as 569 * reserved if the APID field in the AP queue device matches 570 * 571 * - If @data contains only an apqi value, @data will be flagged as 572 * reserved if the APQI field in the AP queue device matches 573 * 574 * Return: 0 to indicate the input to function succeeded. Returns -EINVAL if 575 * @data does not contain either an apid or apqi. 576 */ 577 static int vfio_ap_has_queue(struct device *dev, void *data) 578 { 579 struct vfio_ap_queue_reserved *qres = data; 580 struct ap_queue *ap_queue = to_ap_queue(dev); 581 ap_qid_t qid; 582 unsigned long id; 583 584 if (qres->apid && qres->apqi) { 585 qid = AP_MKQID(*qres->apid, *qres->apqi); 586 if (qid == ap_queue->qid) 587 qres->reserved = true; 588 } else if (qres->apid && !qres->apqi) { 589 id = AP_QID_CARD(ap_queue->qid); 590 if (id == *qres->apid) 591 qres->reserved = true; 592 } else if (!qres->apid && qres->apqi) { 593 id = AP_QID_QUEUE(ap_queue->qid); 594 if (id == *qres->apqi) 595 qres->reserved = true; 596 } else { 597 return -EINVAL; 598 } 599 600 return 0; 601 } 602 603 /** 604 * vfio_ap_verify_queue_reserved - verifies that the AP queue containing 605 * @apid or @aqpi is reserved 606 * 607 * @apid: an AP adapter ID 608 * @apqi: an AP queue index 609 * 610 * Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device 611 * driver according to the following rules: 612 * 613 * - If both @apid and @apqi are not NULL, then there must be an AP queue 614 * device bound to the vfio_ap driver with the APQN identified by @apid and 615 * @apqi 616 * 617 * - If only @apid is not NULL, then there must be an AP queue device bound 618 * to the vfio_ap driver with an APQN containing @apid 619 * 620 * - If only @apqi is not NULL, then there must be an AP queue device bound 621 * to the vfio_ap driver with an APQN containing @apqi 622 * 623 * Return: 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL. 624 */ 625 static int vfio_ap_verify_queue_reserved(unsigned long *apid, 626 unsigned long *apqi) 627 { 628 int ret; 629 struct vfio_ap_queue_reserved qres; 630 631 qres.apid = apid; 632 qres.apqi = apqi; 633 qres.reserved = false; 634 635 ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL, 636 &qres, vfio_ap_has_queue); 637 if (ret) 638 return ret; 639 640 if (qres.reserved) 641 return 0; 642 643 return -EADDRNOTAVAIL; 644 } 645 646 static int 647 vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev, 648 unsigned long apid) 649 { 650 int ret; 651 unsigned long apqi; 652 unsigned long nbits = matrix_mdev->matrix.aqm_max + 1; 653 654 if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits) 655 return vfio_ap_verify_queue_reserved(&apid, NULL); 656 657 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) { 658 ret = vfio_ap_verify_queue_reserved(&apid, &apqi); 659 if (ret) 660 return ret; 661 } 662 663 return 0; 664 } 665 666 /** 667 * vfio_ap_mdev_verify_no_sharing - verifies that the AP matrix is not configured 668 * 669 * @matrix_mdev: the mediated matrix device 670 * 671 * Verifies that the APQNs derived from the cross product of the AP adapter IDs 672 * and AP queue indexes comprising the AP matrix are not configured for another 673 * mediated device. AP queue sharing is not allowed. 674 * 675 * Return: 0 if the APQNs are not shared; otherwise returns -EADDRINUSE. 676 */ 677 static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev) 678 { 679 struct ap_matrix_mdev *lstdev; 680 DECLARE_BITMAP(apm, AP_DEVICES); 681 DECLARE_BITMAP(aqm, AP_DOMAINS); 682 683 list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) { 684 if (matrix_mdev == lstdev) 685 continue; 686 687 memset(apm, 0, sizeof(apm)); 688 memset(aqm, 0, sizeof(aqm)); 689 690 /* 691 * We work on full longs, as we can only exclude the leftover 692 * bits in non-inverse order. The leftover is all zeros. 693 */ 694 if (!bitmap_and(apm, matrix_mdev->matrix.apm, 695 lstdev->matrix.apm, AP_DEVICES)) 696 continue; 697 698 if (!bitmap_and(aqm, matrix_mdev->matrix.aqm, 699 lstdev->matrix.aqm, AP_DOMAINS)) 700 continue; 701 702 return -EADDRINUSE; 703 } 704 705 return 0; 706 } 707 708 /** 709 * assign_adapter_store - parses the APID from @buf and sets the 710 * corresponding bit in the mediated matrix device's APM 711 * 712 * @dev: the matrix device 713 * @attr: the mediated matrix device's assign_adapter attribute 714 * @buf: a buffer containing the AP adapter number (APID) to 715 * be assigned 716 * @count: the number of bytes in @buf 717 * 718 * Return: the number of bytes processed if the APID is valid; otherwise, 719 * returns one of the following errors: 720 * 721 * 1. -EINVAL 722 * The APID is not a valid number 723 * 724 * 2. -ENODEV 725 * The APID exceeds the maximum value configured for the system 726 * 727 * 3. -EADDRNOTAVAIL 728 * An APQN derived from the cross product of the APID being assigned 729 * and the APQIs previously assigned is not bound to the vfio_ap device 730 * driver; or, if no APQIs have yet been assigned, the APID is not 731 * contained in an APQN bound to the vfio_ap device driver. 732 * 733 * 4. -EADDRINUSE 734 * An APQN derived from the cross product of the APID being assigned 735 * and the APQIs previously assigned is being used by another mediated 736 * matrix device 737 */ 738 static ssize_t assign_adapter_store(struct device *dev, 739 struct device_attribute *attr, 740 const char *buf, size_t count) 741 { 742 int ret; 743 unsigned long apid; 744 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 745 746 mutex_lock(&matrix_dev->lock); 747 748 /* If the KVM guest is running, disallow assignment of adapter */ 749 if (matrix_mdev->kvm) { 750 ret = -EBUSY; 751 goto done; 752 } 753 754 ret = kstrtoul(buf, 0, &apid); 755 if (ret) 756 goto done; 757 758 if (apid > matrix_mdev->matrix.apm_max) { 759 ret = -ENODEV; 760 goto done; 761 } 762 763 /* 764 * Set the bit in the AP mask (APM) corresponding to the AP adapter 765 * number (APID). The bits in the mask, from most significant to least 766 * significant bit, correspond to APIDs 0-255. 767 */ 768 ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid); 769 if (ret) 770 goto done; 771 772 set_bit_inv(apid, matrix_mdev->matrix.apm); 773 774 ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev); 775 if (ret) 776 goto share_err; 777 778 ret = count; 779 goto done; 780 781 share_err: 782 clear_bit_inv(apid, matrix_mdev->matrix.apm); 783 done: 784 mutex_unlock(&matrix_dev->lock); 785 786 return ret; 787 } 788 static DEVICE_ATTR_WO(assign_adapter); 789 790 /** 791 * unassign_adapter_store - parses the APID from @buf and clears the 792 * corresponding bit in the mediated matrix device's APM 793 * 794 * @dev: the matrix device 795 * @attr: the mediated matrix device's unassign_adapter attribute 796 * @buf: a buffer containing the adapter number (APID) to be unassigned 797 * @count: the number of bytes in @buf 798 * 799 * Return: the number of bytes processed if the APID is valid; otherwise, 800 * returns one of the following errors: 801 * -EINVAL if the APID is not a number 802 * -ENODEV if the APID it exceeds the maximum value configured for the 803 * system 804 */ 805 static ssize_t unassign_adapter_store(struct device *dev, 806 struct device_attribute *attr, 807 const char *buf, size_t count) 808 { 809 int ret; 810 unsigned long apid; 811 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 812 813 mutex_lock(&matrix_dev->lock); 814 815 /* If the KVM guest is running, disallow unassignment of adapter */ 816 if (matrix_mdev->kvm) { 817 ret = -EBUSY; 818 goto done; 819 } 820 821 ret = kstrtoul(buf, 0, &apid); 822 if (ret) 823 goto done; 824 825 if (apid > matrix_mdev->matrix.apm_max) { 826 ret = -ENODEV; 827 goto done; 828 } 829 830 clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm); 831 ret = count; 832 done: 833 mutex_unlock(&matrix_dev->lock); 834 return ret; 835 } 836 static DEVICE_ATTR_WO(unassign_adapter); 837 838 static int 839 vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev, 840 unsigned long apqi) 841 { 842 int ret; 843 unsigned long apid; 844 unsigned long nbits = matrix_mdev->matrix.apm_max + 1; 845 846 if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits) 847 return vfio_ap_verify_queue_reserved(NULL, &apqi); 848 849 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) { 850 ret = vfio_ap_verify_queue_reserved(&apid, &apqi); 851 if (ret) 852 return ret; 853 } 854 855 return 0; 856 } 857 858 /** 859 * assign_domain_store - parses the APQI from @buf and sets the 860 * corresponding bit in the mediated matrix device's AQM 861 * 862 * @dev: the matrix device 863 * @attr: the mediated matrix device's assign_domain attribute 864 * @buf: a buffer containing the AP queue index (APQI) of the domain to 865 * be assigned 866 * @count: the number of bytes in @buf 867 * 868 * Return: the number of bytes processed if the APQI is valid; otherwise returns 869 * one of the following errors: 870 * 871 * 1. -EINVAL 872 * The APQI is not a valid number 873 * 874 * 2. -ENODEV 875 * The APQI exceeds the maximum value configured for the system 876 * 877 * 3. -EADDRNOTAVAIL 878 * An APQN derived from the cross product of the APQI being assigned 879 * and the APIDs previously assigned is not bound to the vfio_ap device 880 * driver; or, if no APIDs have yet been assigned, the APQI is not 881 * contained in an APQN bound to the vfio_ap device driver. 882 * 883 * 4. -EADDRINUSE 884 * An APQN derived from the cross product of the APQI being assigned 885 * and the APIDs previously assigned is being used by another mediated 886 * matrix device 887 */ 888 static ssize_t assign_domain_store(struct device *dev, 889 struct device_attribute *attr, 890 const char *buf, size_t count) 891 { 892 int ret; 893 unsigned long apqi; 894 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 895 unsigned long max_apqi = matrix_mdev->matrix.aqm_max; 896 897 mutex_lock(&matrix_dev->lock); 898 899 /* If the KVM guest is running, disallow assignment of domain */ 900 if (matrix_mdev->kvm) { 901 ret = -EBUSY; 902 goto done; 903 } 904 905 ret = kstrtoul(buf, 0, &apqi); 906 if (ret) 907 goto done; 908 if (apqi > max_apqi) { 909 ret = -ENODEV; 910 goto done; 911 } 912 913 ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi); 914 if (ret) 915 goto done; 916 917 set_bit_inv(apqi, matrix_mdev->matrix.aqm); 918 919 ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev); 920 if (ret) 921 goto share_err; 922 923 ret = count; 924 goto done; 925 926 share_err: 927 clear_bit_inv(apqi, matrix_mdev->matrix.aqm); 928 done: 929 mutex_unlock(&matrix_dev->lock); 930 931 return ret; 932 } 933 static DEVICE_ATTR_WO(assign_domain); 934 935 936 /** 937 * unassign_domain_store - parses the APQI from @buf and clears the 938 * corresponding bit in the mediated matrix device's AQM 939 * 940 * @dev: the matrix device 941 * @attr: the mediated matrix device's unassign_domain attribute 942 * @buf: a buffer containing the AP queue index (APQI) of the domain to 943 * be unassigned 944 * @count: the number of bytes in @buf 945 * 946 * Return: the number of bytes processed if the APQI is valid; otherwise, 947 * returns one of the following errors: 948 * -EINVAL if the APQI is not a number 949 * -ENODEV if the APQI exceeds the maximum value configured for the system 950 */ 951 static ssize_t unassign_domain_store(struct device *dev, 952 struct device_attribute *attr, 953 const char *buf, size_t count) 954 { 955 int ret; 956 unsigned long apqi; 957 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 958 959 mutex_lock(&matrix_dev->lock); 960 961 /* If the KVM guest is running, disallow unassignment of domain */ 962 if (matrix_mdev->kvm) { 963 ret = -EBUSY; 964 goto done; 965 } 966 967 ret = kstrtoul(buf, 0, &apqi); 968 if (ret) 969 goto done; 970 971 if (apqi > matrix_mdev->matrix.aqm_max) { 972 ret = -ENODEV; 973 goto done; 974 } 975 976 clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm); 977 ret = count; 978 979 done: 980 mutex_unlock(&matrix_dev->lock); 981 return ret; 982 } 983 static DEVICE_ATTR_WO(unassign_domain); 984 985 /** 986 * assign_control_domain_store - parses the domain ID from @buf and sets 987 * the corresponding bit in the mediated matrix device's ADM 988 * 989 * @dev: the matrix device 990 * @attr: the mediated matrix device's assign_control_domain attribute 991 * @buf: a buffer containing the domain ID to be assigned 992 * @count: the number of bytes in @buf 993 * 994 * Return: the number of bytes processed if the domain ID is valid; otherwise, 995 * returns one of the following errors: 996 * -EINVAL if the ID is not a number 997 * -ENODEV if the ID exceeds the maximum value configured for the system 998 */ 999 static ssize_t assign_control_domain_store(struct device *dev, 1000 struct device_attribute *attr, 1001 const char *buf, size_t count) 1002 { 1003 int ret; 1004 unsigned long id; 1005 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1006 1007 mutex_lock(&matrix_dev->lock); 1008 1009 /* If the KVM guest is running, disallow assignment of control domain */ 1010 if (matrix_mdev->kvm) { 1011 ret = -EBUSY; 1012 goto done; 1013 } 1014 1015 ret = kstrtoul(buf, 0, &id); 1016 if (ret) 1017 goto done; 1018 1019 if (id > matrix_mdev->matrix.adm_max) { 1020 ret = -ENODEV; 1021 goto done; 1022 } 1023 1024 /* Set the bit in the ADM (bitmask) corresponding to the AP control 1025 * domain number (id). The bits in the mask, from most significant to 1026 * least significant, correspond to IDs 0 up to the one less than the 1027 * number of control domains that can be assigned. 1028 */ 1029 set_bit_inv(id, matrix_mdev->matrix.adm); 1030 ret = count; 1031 done: 1032 mutex_unlock(&matrix_dev->lock); 1033 return ret; 1034 } 1035 static DEVICE_ATTR_WO(assign_control_domain); 1036 1037 /** 1038 * unassign_control_domain_store - parses the domain ID from @buf and 1039 * clears the corresponding bit in the mediated matrix device's ADM 1040 * 1041 * @dev: the matrix device 1042 * @attr: the mediated matrix device's unassign_control_domain attribute 1043 * @buf: a buffer containing the domain ID to be unassigned 1044 * @count: the number of bytes in @buf 1045 * 1046 * Return: the number of bytes processed if the domain ID is valid; otherwise, 1047 * returns one of the following errors: 1048 * -EINVAL if the ID is not a number 1049 * -ENODEV if the ID exceeds the maximum value configured for the system 1050 */ 1051 static ssize_t unassign_control_domain_store(struct device *dev, 1052 struct device_attribute *attr, 1053 const char *buf, size_t count) 1054 { 1055 int ret; 1056 unsigned long domid; 1057 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1058 unsigned long max_domid = matrix_mdev->matrix.adm_max; 1059 1060 mutex_lock(&matrix_dev->lock); 1061 1062 /* If a KVM guest is running, disallow unassignment of control domain */ 1063 if (matrix_mdev->kvm) { 1064 ret = -EBUSY; 1065 goto done; 1066 } 1067 1068 ret = kstrtoul(buf, 0, &domid); 1069 if (ret) 1070 goto done; 1071 if (domid > max_domid) { 1072 ret = -ENODEV; 1073 goto done; 1074 } 1075 1076 clear_bit_inv(domid, matrix_mdev->matrix.adm); 1077 ret = count; 1078 done: 1079 mutex_unlock(&matrix_dev->lock); 1080 return ret; 1081 } 1082 static DEVICE_ATTR_WO(unassign_control_domain); 1083 1084 static ssize_t control_domains_show(struct device *dev, 1085 struct device_attribute *dev_attr, 1086 char *buf) 1087 { 1088 unsigned long id; 1089 int nchars = 0; 1090 int n; 1091 char *bufpos = buf; 1092 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1093 unsigned long max_domid = matrix_mdev->matrix.adm_max; 1094 1095 mutex_lock(&matrix_dev->lock); 1096 for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) { 1097 n = sprintf(bufpos, "%04lx\n", id); 1098 bufpos += n; 1099 nchars += n; 1100 } 1101 mutex_unlock(&matrix_dev->lock); 1102 1103 return nchars; 1104 } 1105 static DEVICE_ATTR_RO(control_domains); 1106 1107 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr, 1108 char *buf) 1109 { 1110 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1111 char *bufpos = buf; 1112 unsigned long apid; 1113 unsigned long apqi; 1114 unsigned long apid1; 1115 unsigned long apqi1; 1116 unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1; 1117 unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1; 1118 int nchars = 0; 1119 int n; 1120 1121 apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits); 1122 apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits); 1123 1124 mutex_lock(&matrix_dev->lock); 1125 1126 if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) { 1127 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) { 1128 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, 1129 naqm_bits) { 1130 n = sprintf(bufpos, "%02lx.%04lx\n", apid, 1131 apqi); 1132 bufpos += n; 1133 nchars += n; 1134 } 1135 } 1136 } else if (apid1 < napm_bits) { 1137 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) { 1138 n = sprintf(bufpos, "%02lx.\n", apid); 1139 bufpos += n; 1140 nchars += n; 1141 } 1142 } else if (apqi1 < naqm_bits) { 1143 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) { 1144 n = sprintf(bufpos, ".%04lx\n", apqi); 1145 bufpos += n; 1146 nchars += n; 1147 } 1148 } 1149 1150 mutex_unlock(&matrix_dev->lock); 1151 1152 return nchars; 1153 } 1154 static DEVICE_ATTR_RO(matrix); 1155 1156 static struct attribute *vfio_ap_mdev_attrs[] = { 1157 &dev_attr_assign_adapter.attr, 1158 &dev_attr_unassign_adapter.attr, 1159 &dev_attr_assign_domain.attr, 1160 &dev_attr_unassign_domain.attr, 1161 &dev_attr_assign_control_domain.attr, 1162 &dev_attr_unassign_control_domain.attr, 1163 &dev_attr_control_domains.attr, 1164 &dev_attr_matrix.attr, 1165 NULL, 1166 }; 1167 1168 static struct attribute_group vfio_ap_mdev_attr_group = { 1169 .attrs = vfio_ap_mdev_attrs 1170 }; 1171 1172 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = { 1173 &vfio_ap_mdev_attr_group, 1174 NULL 1175 }; 1176 1177 /** 1178 * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed 1179 * to manage AP resources for the guest whose state is represented by @kvm 1180 * 1181 * @matrix_mdev: a mediated matrix device 1182 * @kvm: reference to KVM instance 1183 * 1184 * Return: 0 if no other mediated matrix device has a reference to @kvm; 1185 * otherwise, returns an -EPERM. 1186 */ 1187 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev, 1188 struct kvm *kvm) 1189 { 1190 struct ap_matrix_mdev *m; 1191 1192 if (kvm->arch.crypto.crycbd) { 1193 down_write(&kvm->arch.crypto.pqap_hook_rwsem); 1194 kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook; 1195 up_write(&kvm->arch.crypto.pqap_hook_rwsem); 1196 1197 mutex_lock(&kvm->lock); 1198 mutex_lock(&matrix_dev->lock); 1199 1200 list_for_each_entry(m, &matrix_dev->mdev_list, node) { 1201 if (m != matrix_mdev && m->kvm == kvm) { 1202 mutex_unlock(&kvm->lock); 1203 mutex_unlock(&matrix_dev->lock); 1204 return -EPERM; 1205 } 1206 } 1207 1208 kvm_get_kvm(kvm); 1209 matrix_mdev->kvm = kvm; 1210 kvm_arch_crypto_set_masks(kvm, 1211 matrix_mdev->matrix.apm, 1212 matrix_mdev->matrix.aqm, 1213 matrix_mdev->matrix.adm); 1214 1215 mutex_unlock(&kvm->lock); 1216 mutex_unlock(&matrix_dev->lock); 1217 } 1218 1219 return 0; 1220 } 1221 1222 static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova, 1223 u64 length) 1224 { 1225 struct ap_matrix_mdev *matrix_mdev = 1226 container_of(vdev, struct ap_matrix_mdev, vdev); 1227 1228 vfio_unpin_pages(&matrix_mdev->vdev, iova, 1); 1229 } 1230 1231 /** 1232 * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed 1233 * by @matrix_mdev. 1234 * 1235 * @matrix_mdev: a matrix mediated device 1236 */ 1237 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev) 1238 { 1239 struct kvm *kvm = matrix_mdev->kvm; 1240 1241 if (kvm && kvm->arch.crypto.crycbd) { 1242 down_write(&kvm->arch.crypto.pqap_hook_rwsem); 1243 kvm->arch.crypto.pqap_hook = NULL; 1244 up_write(&kvm->arch.crypto.pqap_hook_rwsem); 1245 1246 mutex_lock(&kvm->lock); 1247 mutex_lock(&matrix_dev->lock); 1248 1249 kvm_arch_crypto_clear_masks(kvm); 1250 vfio_ap_mdev_reset_queues(matrix_mdev); 1251 kvm_put_kvm(kvm); 1252 matrix_mdev->kvm = NULL; 1253 1254 mutex_unlock(&kvm->lock); 1255 mutex_unlock(&matrix_dev->lock); 1256 } 1257 } 1258 1259 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn) 1260 { 1261 struct device *dev; 1262 struct vfio_ap_queue *q = NULL; 1263 1264 dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL, 1265 &apqn, match_apqn); 1266 if (dev) { 1267 q = dev_get_drvdata(dev); 1268 put_device(dev); 1269 } 1270 1271 return q; 1272 } 1273 1274 int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q, 1275 unsigned int retry) 1276 { 1277 struct ap_queue_status status; 1278 int ret; 1279 int retry2 = 2; 1280 1281 if (!q) 1282 return 0; 1283 1284 retry_zapq: 1285 status = ap_zapq(q->apqn); 1286 switch (status.response_code) { 1287 case AP_RESPONSE_NORMAL: 1288 ret = 0; 1289 break; 1290 case AP_RESPONSE_RESET_IN_PROGRESS: 1291 if (retry--) { 1292 msleep(20); 1293 goto retry_zapq; 1294 } 1295 ret = -EBUSY; 1296 break; 1297 case AP_RESPONSE_Q_NOT_AVAIL: 1298 case AP_RESPONSE_DECONFIGURED: 1299 case AP_RESPONSE_CHECKSTOPPED: 1300 WARN_ON_ONCE(status.irq_enabled); 1301 ret = -EBUSY; 1302 goto free_resources; 1303 default: 1304 /* things are really broken, give up */ 1305 WARN(true, "PQAP/ZAPQ completed with invalid rc (%x)\n", 1306 status.response_code); 1307 return -EIO; 1308 } 1309 1310 /* wait for the reset to take effect */ 1311 while (retry2--) { 1312 if (status.queue_empty && !status.irq_enabled) 1313 break; 1314 msleep(20); 1315 status = ap_tapq(q->apqn, NULL); 1316 } 1317 WARN_ON_ONCE(retry2 <= 0); 1318 1319 free_resources: 1320 vfio_ap_free_aqic_resources(q); 1321 1322 return ret; 1323 } 1324 1325 static int vfio_ap_mdev_reset_queues(struct ap_matrix_mdev *matrix_mdev) 1326 { 1327 int ret; 1328 int rc = 0; 1329 unsigned long apid, apqi; 1330 struct vfio_ap_queue *q; 1331 1332 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, 1333 matrix_mdev->matrix.apm_max + 1) { 1334 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, 1335 matrix_mdev->matrix.aqm_max + 1) { 1336 q = vfio_ap_find_queue(AP_MKQID(apid, apqi)); 1337 ret = vfio_ap_mdev_reset_queue(q, 1); 1338 /* 1339 * Regardless whether a queue turns out to be busy, or 1340 * is not operational, we need to continue resetting 1341 * the remaining queues. 1342 */ 1343 if (ret) 1344 rc = ret; 1345 } 1346 } 1347 1348 return rc; 1349 } 1350 1351 static int vfio_ap_mdev_open_device(struct vfio_device *vdev) 1352 { 1353 struct ap_matrix_mdev *matrix_mdev = 1354 container_of(vdev, struct ap_matrix_mdev, vdev); 1355 1356 if (!vdev->kvm) 1357 return -EINVAL; 1358 1359 return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm); 1360 } 1361 1362 static void vfio_ap_mdev_close_device(struct vfio_device *vdev) 1363 { 1364 struct ap_matrix_mdev *matrix_mdev = 1365 container_of(vdev, struct ap_matrix_mdev, vdev); 1366 1367 vfio_ap_mdev_unset_kvm(matrix_mdev); 1368 } 1369 1370 static int vfio_ap_mdev_get_device_info(unsigned long arg) 1371 { 1372 unsigned long minsz; 1373 struct vfio_device_info info; 1374 1375 minsz = offsetofend(struct vfio_device_info, num_irqs); 1376 1377 if (copy_from_user(&info, (void __user *)arg, minsz)) 1378 return -EFAULT; 1379 1380 if (info.argsz < minsz) 1381 return -EINVAL; 1382 1383 info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET; 1384 info.num_regions = 0; 1385 info.num_irqs = 0; 1386 1387 return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; 1388 } 1389 1390 static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev, 1391 unsigned int cmd, unsigned long arg) 1392 { 1393 struct ap_matrix_mdev *matrix_mdev = 1394 container_of(vdev, struct ap_matrix_mdev, vdev); 1395 int ret; 1396 1397 mutex_lock(&matrix_dev->lock); 1398 switch (cmd) { 1399 case VFIO_DEVICE_GET_INFO: 1400 ret = vfio_ap_mdev_get_device_info(arg); 1401 break; 1402 case VFIO_DEVICE_RESET: 1403 ret = vfio_ap_mdev_reset_queues(matrix_mdev); 1404 break; 1405 default: 1406 ret = -EOPNOTSUPP; 1407 break; 1408 } 1409 mutex_unlock(&matrix_dev->lock); 1410 1411 return ret; 1412 } 1413 1414 static const struct vfio_device_ops vfio_ap_matrix_dev_ops = { 1415 .open_device = vfio_ap_mdev_open_device, 1416 .close_device = vfio_ap_mdev_close_device, 1417 .ioctl = vfio_ap_mdev_ioctl, 1418 .dma_unmap = vfio_ap_mdev_dma_unmap, 1419 }; 1420 1421 static struct mdev_driver vfio_ap_matrix_driver = { 1422 .driver = { 1423 .name = "vfio_ap_mdev", 1424 .owner = THIS_MODULE, 1425 .mod_name = KBUILD_MODNAME, 1426 .dev_groups = vfio_ap_mdev_attr_groups, 1427 }, 1428 .probe = vfio_ap_mdev_probe, 1429 .remove = vfio_ap_mdev_remove, 1430 .supported_type_groups = vfio_ap_mdev_type_groups, 1431 }; 1432 1433 int vfio_ap_mdev_register(void) 1434 { 1435 int ret; 1436 1437 atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT); 1438 1439 ret = mdev_register_driver(&vfio_ap_matrix_driver); 1440 if (ret) 1441 return ret; 1442 1443 ret = mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_driver); 1444 if (ret) 1445 goto err_driver; 1446 return 0; 1447 1448 err_driver: 1449 mdev_unregister_driver(&vfio_ap_matrix_driver); 1450 return ret; 1451 } 1452 1453 void vfio_ap_mdev_unregister(void) 1454 { 1455 mdev_unregister_device(&matrix_dev->device); 1456 mdev_unregister_driver(&vfio_ap_matrix_driver); 1457 } 1458