1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Adjunct processor matrix VFIO device driver callbacks. 4 * 5 * Copyright IBM Corp. 2018 6 * 7 * Author(s): Tony Krowiak <akrowiak@linux.ibm.com> 8 * Halil Pasic <pasic@linux.ibm.com> 9 * Pierre Morel <pmorel@linux.ibm.com> 10 */ 11 #include <linux/string.h> 12 #include <linux/vfio.h> 13 #include <linux/device.h> 14 #include <linux/list.h> 15 #include <linux/ctype.h> 16 #include <linux/bitops.h> 17 #include <linux/kvm_host.h> 18 #include <linux/module.h> 19 #include <linux/uuid.h> 20 #include <asm/kvm.h> 21 #include <asm/zcrypt.h> 22 23 #include "vfio_ap_private.h" 24 #include "vfio_ap_debug.h" 25 26 #define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough" 27 #define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device" 28 29 #define AP_QUEUE_ASSIGNED "assigned" 30 #define AP_QUEUE_UNASSIGNED "unassigned" 31 #define AP_QUEUE_IN_USE "in use" 32 33 #define MAX_RESET_CHECK_WAIT 200 /* Sleep max 200ms for reset check */ 34 #define AP_RESET_INTERVAL 20 /* Reset sleep interval (20ms) */ 35 36 static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable); 37 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn); 38 static const struct vfio_device_ops vfio_ap_matrix_dev_ops; 39 static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q); 40 41 /** 42 * get_update_locks_for_kvm: Acquire the locks required to dynamically update a 43 * KVM guest's APCB in the proper order. 44 * 45 * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB. 46 * 47 * The proper locking order is: 48 * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM 49 * guest's APCB. 50 * 2. kvm->lock: required to update a guest's APCB 51 * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev 52 * 53 * Note: If @kvm is NULL, the KVM lock will not be taken. 54 */ 55 static inline void get_update_locks_for_kvm(struct kvm *kvm) 56 { 57 mutex_lock(&matrix_dev->guests_lock); 58 if (kvm) 59 mutex_lock(&kvm->lock); 60 mutex_lock(&matrix_dev->mdevs_lock); 61 } 62 63 /** 64 * release_update_locks_for_kvm: Release the locks used to dynamically update a 65 * KVM guest's APCB in the proper order. 66 * 67 * @kvm: a pointer to a struct kvm object containing the KVM guest's APCB. 68 * 69 * The proper unlocking order is: 70 * 1. matrix_dev->mdevs_lock 71 * 2. kvm->lock 72 * 3. matrix_dev->guests_lock 73 * 74 * Note: If @kvm is NULL, the KVM lock will not be released. 75 */ 76 static inline void release_update_locks_for_kvm(struct kvm *kvm) 77 { 78 mutex_unlock(&matrix_dev->mdevs_lock); 79 if (kvm) 80 mutex_unlock(&kvm->lock); 81 mutex_unlock(&matrix_dev->guests_lock); 82 } 83 84 /** 85 * get_update_locks_for_mdev: Acquire the locks required to dynamically update a 86 * KVM guest's APCB in the proper order. 87 * 88 * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP 89 * configuration data to use to update a KVM guest's APCB. 90 * 91 * The proper locking order is: 92 * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM 93 * guest's APCB. 94 * 2. matrix_mdev->kvm->lock: required to update a guest's APCB 95 * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev 96 * 97 * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM 98 * lock will not be taken. 99 */ 100 static inline void get_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev) 101 { 102 mutex_lock(&matrix_dev->guests_lock); 103 if (matrix_mdev && matrix_mdev->kvm) 104 mutex_lock(&matrix_mdev->kvm->lock); 105 mutex_lock(&matrix_dev->mdevs_lock); 106 } 107 108 /** 109 * release_update_locks_for_mdev: Release the locks used to dynamically update a 110 * KVM guest's APCB in the proper order. 111 * 112 * @matrix_mdev: a pointer to a struct ap_matrix_mdev object containing the AP 113 * configuration data to use to update a KVM guest's APCB. 114 * 115 * The proper unlocking order is: 116 * 1. matrix_dev->mdevs_lock 117 * 2. matrix_mdev->kvm->lock 118 * 3. matrix_dev->guests_lock 119 * 120 * Note: If @matrix_mdev is NULL or is not attached to a KVM guest, the KVM 121 * lock will not be released. 122 */ 123 static inline void release_update_locks_for_mdev(struct ap_matrix_mdev *matrix_mdev) 124 { 125 mutex_unlock(&matrix_dev->mdevs_lock); 126 if (matrix_mdev && matrix_mdev->kvm) 127 mutex_unlock(&matrix_mdev->kvm->lock); 128 mutex_unlock(&matrix_dev->guests_lock); 129 } 130 131 /** 132 * get_update_locks_by_apqn: Find the mdev to which an APQN is assigned and 133 * acquire the locks required to update the APCB of 134 * the KVM guest to which the mdev is attached. 135 * 136 * @apqn: the APQN of a queue device. 137 * 138 * The proper locking order is: 139 * 1. matrix_dev->guests_lock: required to use the KVM pointer to update a KVM 140 * guest's APCB. 141 * 2. matrix_mdev->kvm->lock: required to update a guest's APCB 142 * 3. matrix_dev->mdevs_lock: required to access data stored in a matrix_mdev 143 * 144 * Note: If @apqn is not assigned to a matrix_mdev, the matrix_mdev->kvm->lock 145 * will not be taken. 146 * 147 * Return: the ap_matrix_mdev object to which @apqn is assigned or NULL if @apqn 148 * is not assigned to an ap_matrix_mdev. 149 */ 150 static struct ap_matrix_mdev *get_update_locks_by_apqn(int apqn) 151 { 152 struct ap_matrix_mdev *matrix_mdev; 153 154 mutex_lock(&matrix_dev->guests_lock); 155 156 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { 157 if (test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm) && 158 test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm)) { 159 if (matrix_mdev->kvm) 160 mutex_lock(&matrix_mdev->kvm->lock); 161 162 mutex_lock(&matrix_dev->mdevs_lock); 163 164 return matrix_mdev; 165 } 166 } 167 168 mutex_lock(&matrix_dev->mdevs_lock); 169 170 return NULL; 171 } 172 173 /** 174 * get_update_locks_for_queue: get the locks required to update the APCB of the 175 * KVM guest to which the matrix mdev linked to a 176 * vfio_ap_queue object is attached. 177 * 178 * @q: a pointer to a vfio_ap_queue object. 179 * 180 * The proper locking order is: 181 * 1. q->matrix_dev->guests_lock: required to use the KVM pointer to update a 182 * KVM guest's APCB. 183 * 2. q->matrix_mdev->kvm->lock: required to update a guest's APCB 184 * 3. matrix_dev->mdevs_lock: required to access data stored in matrix_mdev 185 * 186 * Note: if @queue is not linked to an ap_matrix_mdev object, the KVM lock 187 * will not be taken. 188 */ 189 static inline void get_update_locks_for_queue(struct vfio_ap_queue *q) 190 { 191 mutex_lock(&matrix_dev->guests_lock); 192 if (q->matrix_mdev && q->matrix_mdev->kvm) 193 mutex_lock(&q->matrix_mdev->kvm->lock); 194 mutex_lock(&matrix_dev->mdevs_lock); 195 } 196 197 /** 198 * vfio_ap_mdev_get_queue - retrieve a queue with a specific APQN from a 199 * hash table of queues assigned to a matrix mdev 200 * @matrix_mdev: the matrix mdev 201 * @apqn: The APQN of a queue device 202 * 203 * Return: the pointer to the vfio_ap_queue struct representing the queue or 204 * NULL if the queue is not assigned to @matrix_mdev 205 */ 206 static struct vfio_ap_queue *vfio_ap_mdev_get_queue( 207 struct ap_matrix_mdev *matrix_mdev, 208 int apqn) 209 { 210 struct vfio_ap_queue *q; 211 212 hash_for_each_possible(matrix_mdev->qtable.queues, q, mdev_qnode, 213 apqn) { 214 if (q && q->apqn == apqn) 215 return q; 216 } 217 218 return NULL; 219 } 220 221 /** 222 * vfio_ap_wait_for_irqclear - clears the IR bit or gives up after 5 tries 223 * @apqn: The AP Queue number 224 * 225 * Checks the IRQ bit for the status of this APQN using ap_tapq. 226 * Returns if the ap_tapq function succeeded and the bit is clear. 227 * Returns if ap_tapq function failed with invalid, deconfigured or 228 * checkstopped AP. 229 * Otherwise retries up to 5 times after waiting 20ms. 230 */ 231 static void vfio_ap_wait_for_irqclear(int apqn) 232 { 233 struct ap_queue_status status; 234 int retry = 5; 235 236 do { 237 status = ap_tapq(apqn, NULL); 238 switch (status.response_code) { 239 case AP_RESPONSE_NORMAL: 240 case AP_RESPONSE_RESET_IN_PROGRESS: 241 if (!status.irq_enabled) 242 return; 243 fallthrough; 244 case AP_RESPONSE_BUSY: 245 msleep(20); 246 break; 247 case AP_RESPONSE_Q_NOT_AVAIL: 248 case AP_RESPONSE_DECONFIGURED: 249 case AP_RESPONSE_CHECKSTOPPED: 250 default: 251 WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__, 252 status.response_code, apqn); 253 return; 254 } 255 } while (--retry); 256 257 WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n", 258 __func__, status.response_code, apqn); 259 } 260 261 /** 262 * vfio_ap_free_aqic_resources - free vfio_ap_queue resources 263 * @q: The vfio_ap_queue 264 * 265 * Unregisters the ISC in the GIB when the saved ISC not invalid. 266 * Unpins the guest's page holding the NIB when it exists. 267 * Resets the saved_iova and saved_isc to invalid values. 268 */ 269 static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q) 270 { 271 if (!q) 272 return; 273 if (q->saved_isc != VFIO_AP_ISC_INVALID && 274 !WARN_ON(!(q->matrix_mdev && q->matrix_mdev->kvm))) { 275 kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc); 276 q->saved_isc = VFIO_AP_ISC_INVALID; 277 } 278 if (q->saved_iova && !WARN_ON(!q->matrix_mdev)) { 279 vfio_unpin_pages(&q->matrix_mdev->vdev, q->saved_iova, 1); 280 q->saved_iova = 0; 281 } 282 } 283 284 /** 285 * vfio_ap_irq_disable - disables and clears an ap_queue interrupt 286 * @q: The vfio_ap_queue 287 * 288 * Uses ap_aqic to disable the interruption and in case of success, reset 289 * in progress or IRQ disable command already proceeded: calls 290 * vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear 291 * and calls vfio_ap_free_aqic_resources() to free the resources associated 292 * with the AP interrupt handling. 293 * 294 * In the case the AP is busy, or a reset is in progress, 295 * retries after 20ms, up to 5 times. 296 * 297 * Returns if ap_aqic function failed with invalid, deconfigured or 298 * checkstopped AP. 299 * 300 * Return: &struct ap_queue_status 301 */ 302 static struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q) 303 { 304 union ap_qirq_ctrl aqic_gisa = { .value = 0 }; 305 struct ap_queue_status status; 306 int retries = 5; 307 308 do { 309 status = ap_aqic(q->apqn, aqic_gisa, 0); 310 switch (status.response_code) { 311 case AP_RESPONSE_OTHERWISE_CHANGED: 312 case AP_RESPONSE_NORMAL: 313 vfio_ap_wait_for_irqclear(q->apqn); 314 goto end_free; 315 case AP_RESPONSE_RESET_IN_PROGRESS: 316 case AP_RESPONSE_BUSY: 317 msleep(20); 318 break; 319 case AP_RESPONSE_Q_NOT_AVAIL: 320 case AP_RESPONSE_DECONFIGURED: 321 case AP_RESPONSE_CHECKSTOPPED: 322 case AP_RESPONSE_INVALID_ADDRESS: 323 default: 324 /* All cases in default means AP not operational */ 325 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__, 326 status.response_code); 327 goto end_free; 328 } 329 } while (retries--); 330 331 WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__, 332 status.response_code); 333 end_free: 334 vfio_ap_free_aqic_resources(q); 335 return status; 336 } 337 338 /** 339 * vfio_ap_validate_nib - validate a notification indicator byte (nib) address. 340 * 341 * @vcpu: the object representing the vcpu executing the PQAP(AQIC) instruction. 342 * @nib: the location for storing the nib address. 343 * 344 * When the PQAP(AQIC) instruction is executed, general register 2 contains the 345 * address of the notification indicator byte (nib) used for IRQ notification. 346 * This function parses and validates the nib from gr2. 347 * 348 * Return: returns zero if the nib address is a valid; otherwise, returns 349 * -EINVAL. 350 */ 351 static int vfio_ap_validate_nib(struct kvm_vcpu *vcpu, dma_addr_t *nib) 352 { 353 *nib = vcpu->run->s.regs.gprs[2]; 354 355 if (!*nib) 356 return -EINVAL; 357 if (kvm_is_error_hva(gfn_to_hva(vcpu->kvm, *nib >> PAGE_SHIFT))) 358 return -EINVAL; 359 360 return 0; 361 } 362 363 /** 364 * vfio_ap_irq_enable - Enable Interruption for a APQN 365 * 366 * @q: the vfio_ap_queue holding AQIC parameters 367 * @isc: the guest ISC to register with the GIB interface 368 * @vcpu: the vcpu object containing the registers specifying the parameters 369 * passed to the PQAP(AQIC) instruction. 370 * 371 * Pin the NIB saved in *q 372 * Register the guest ISC to GIB interface and retrieve the 373 * host ISC to issue the host side PQAP/AQIC 374 * 375 * Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the 376 * vfio_pin_pages failed. 377 * 378 * Otherwise return the ap_queue_status returned by the ap_aqic(), 379 * all retry handling will be done by the guest. 380 * 381 * Return: &struct ap_queue_status 382 */ 383 static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q, 384 int isc, 385 struct kvm_vcpu *vcpu) 386 { 387 union ap_qirq_ctrl aqic_gisa = { .value = 0 }; 388 struct ap_queue_status status = {}; 389 struct kvm_s390_gisa *gisa; 390 struct page *h_page; 391 int nisc; 392 struct kvm *kvm; 393 phys_addr_t h_nib; 394 dma_addr_t nib; 395 int ret; 396 397 /* Verify that the notification indicator byte address is valid */ 398 if (vfio_ap_validate_nib(vcpu, &nib)) { 399 VFIO_AP_DBF_WARN("%s: invalid NIB address: nib=%pad, apqn=%#04x\n", 400 __func__, &nib, q->apqn); 401 402 status.response_code = AP_RESPONSE_INVALID_ADDRESS; 403 return status; 404 } 405 406 ret = vfio_pin_pages(&q->matrix_mdev->vdev, nib, 1, 407 IOMMU_READ | IOMMU_WRITE, &h_page); 408 switch (ret) { 409 case 1: 410 break; 411 default: 412 VFIO_AP_DBF_WARN("%s: vfio_pin_pages failed: rc=%d," 413 "nib=%pad, apqn=%#04x\n", 414 __func__, ret, &nib, q->apqn); 415 416 status.response_code = AP_RESPONSE_INVALID_ADDRESS; 417 return status; 418 } 419 420 kvm = q->matrix_mdev->kvm; 421 gisa = kvm->arch.gisa_int.origin; 422 423 h_nib = page_to_phys(h_page) | (nib & ~PAGE_MASK); 424 aqic_gisa.gisc = isc; 425 426 nisc = kvm_s390_gisc_register(kvm, isc); 427 if (nisc < 0) { 428 VFIO_AP_DBF_WARN("%s: gisc registration failed: nisc=%d, isc=%d, apqn=%#04x\n", 429 __func__, nisc, isc, q->apqn); 430 431 status.response_code = AP_RESPONSE_INVALID_GISA; 432 return status; 433 } 434 435 aqic_gisa.isc = nisc; 436 aqic_gisa.ir = 1; 437 aqic_gisa.gisa = virt_to_phys(gisa) >> 4; 438 439 status = ap_aqic(q->apqn, aqic_gisa, h_nib); 440 switch (status.response_code) { 441 case AP_RESPONSE_NORMAL: 442 /* See if we did clear older IRQ configuration */ 443 vfio_ap_free_aqic_resources(q); 444 q->saved_iova = nib; 445 q->saved_isc = isc; 446 break; 447 case AP_RESPONSE_OTHERWISE_CHANGED: 448 /* We could not modify IRQ setings: clear new configuration */ 449 vfio_unpin_pages(&q->matrix_mdev->vdev, nib, 1); 450 kvm_s390_gisc_unregister(kvm, isc); 451 break; 452 default: 453 pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn, 454 status.response_code); 455 vfio_ap_irq_disable(q); 456 break; 457 } 458 459 if (status.response_code != AP_RESPONSE_NORMAL) { 460 VFIO_AP_DBF_WARN("%s: PQAP(AQIC) failed with status=%#02x: " 461 "zone=%#x, ir=%#x, gisc=%#x, f=%#x," 462 "gisa=%#x, isc=%#x, apqn=%#04x\n", 463 __func__, status.response_code, 464 aqic_gisa.zone, aqic_gisa.ir, aqic_gisa.gisc, 465 aqic_gisa.gf, aqic_gisa.gisa, aqic_gisa.isc, 466 q->apqn); 467 } 468 469 return status; 470 } 471 472 /** 473 * vfio_ap_le_guid_to_be_uuid - convert a little endian guid array into an array 474 * of big endian elements that can be passed by 475 * value to an s390dbf sprintf event function to 476 * format a UUID string. 477 * 478 * @guid: the object containing the little endian guid 479 * @uuid: a six-element array of long values that can be passed by value as 480 * arguments for a formatting string specifying a UUID. 481 * 482 * The S390 Debug Feature (s390dbf) allows the use of "%s" in the sprintf 483 * event functions if the memory for the passed string is available as long as 484 * the debug feature exists. Since a mediated device can be removed at any 485 * time, it's name can not be used because %s passes the reference to the string 486 * in memory and the reference will go stale once the device is removed . 487 * 488 * The s390dbf string formatting function allows a maximum of 9 arguments for a 489 * message to be displayed in the 'sprintf' view. In order to use the bytes 490 * comprising the mediated device's UUID to display the mediated device name, 491 * they will have to be converted into an array whose elements can be passed by 492 * value to sprintf. For example: 493 * 494 * guid array: { 83, 78, 17, 62, bb, f1, f0, 47, 91, 4d, 32, a2, 2e, 3a, 88, 04 } 495 * mdev name: 62177883-f1bb-47f0-914d-32a22e3a8804 496 * array returned: { 62177883, f1bb, 47f0, 914d, 32a2, 2e3a8804 } 497 * formatting string: "%08lx-%04lx-%04lx-%04lx-%02lx%04lx" 498 */ 499 static void vfio_ap_le_guid_to_be_uuid(guid_t *guid, unsigned long *uuid) 500 { 501 /* 502 * The input guid is ordered in little endian, so it needs to be 503 * reordered for displaying a UUID as a string. This specifies the 504 * guid indices in proper order. 505 */ 506 uuid[0] = le32_to_cpup((__le32 *)guid); 507 uuid[1] = le16_to_cpup((__le16 *)&guid->b[4]); 508 uuid[2] = le16_to_cpup((__le16 *)&guid->b[6]); 509 uuid[3] = *((__u16 *)&guid->b[8]); 510 uuid[4] = *((__u16 *)&guid->b[10]); 511 uuid[5] = *((__u32 *)&guid->b[12]); 512 } 513 514 /** 515 * handle_pqap - PQAP instruction callback 516 * 517 * @vcpu: The vcpu on which we received the PQAP instruction 518 * 519 * Get the general register contents to initialize internal variables. 520 * REG[0]: APQN 521 * REG[1]: IR and ISC 522 * REG[2]: NIB 523 * 524 * Response.status may be set to following Response Code: 525 * - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available 526 * - AP_RESPONSE_DECONFIGURED: if the queue is not configured 527 * - AP_RESPONSE_NORMAL (0) : in case of successs 528 * Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC. 529 * We take the matrix_dev lock to ensure serialization on queues and 530 * mediated device access. 531 * 532 * Return: 0 if we could handle the request inside KVM. 533 * Otherwise, returns -EOPNOTSUPP to let QEMU handle the fault. 534 */ 535 static int handle_pqap(struct kvm_vcpu *vcpu) 536 { 537 uint64_t status; 538 uint16_t apqn; 539 unsigned long uuid[6]; 540 struct vfio_ap_queue *q; 541 struct ap_queue_status qstatus = { 542 .response_code = AP_RESPONSE_Q_NOT_AVAIL, }; 543 struct ap_matrix_mdev *matrix_mdev; 544 545 apqn = vcpu->run->s.regs.gprs[0] & 0xffff; 546 547 /* If we do not use the AIV facility just go to userland */ 548 if (!(vcpu->arch.sie_block->eca & ECA_AIV)) { 549 VFIO_AP_DBF_WARN("%s: AIV facility not installed: apqn=0x%04x, eca=0x%04x\n", 550 __func__, apqn, vcpu->arch.sie_block->eca); 551 552 return -EOPNOTSUPP; 553 } 554 555 mutex_lock(&matrix_dev->mdevs_lock); 556 557 if (!vcpu->kvm->arch.crypto.pqap_hook) { 558 VFIO_AP_DBF_WARN("%s: PQAP(AQIC) hook not registered with the vfio_ap driver: apqn=0x%04x\n", 559 __func__, apqn); 560 561 goto out_unlock; 562 } 563 564 matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook, 565 struct ap_matrix_mdev, pqap_hook); 566 567 /* If the there is no guest using the mdev, there is nothing to do */ 568 if (!matrix_mdev->kvm) { 569 vfio_ap_le_guid_to_be_uuid(&matrix_mdev->mdev->uuid, uuid); 570 VFIO_AP_DBF_WARN("%s: mdev %08lx-%04lx-%04lx-%04lx-%04lx%08lx not in use: apqn=0x%04x\n", 571 __func__, uuid[0], uuid[1], uuid[2], 572 uuid[3], uuid[4], uuid[5], apqn); 573 goto out_unlock; 574 } 575 576 q = vfio_ap_mdev_get_queue(matrix_mdev, apqn); 577 if (!q) { 578 VFIO_AP_DBF_WARN("%s: Queue %02x.%04x not bound to the vfio_ap driver\n", 579 __func__, AP_QID_CARD(apqn), 580 AP_QID_QUEUE(apqn)); 581 goto out_unlock; 582 } 583 584 status = vcpu->run->s.regs.gprs[1]; 585 586 /* If IR bit(16) is set we enable the interrupt */ 587 if ((status >> (63 - 16)) & 0x01) 588 qstatus = vfio_ap_irq_enable(q, status & 0x07, vcpu); 589 else 590 qstatus = vfio_ap_irq_disable(q); 591 592 out_unlock: 593 memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus)); 594 vcpu->run->s.regs.gprs[1] >>= 32; 595 mutex_unlock(&matrix_dev->mdevs_lock); 596 return 0; 597 } 598 599 static void vfio_ap_matrix_init(struct ap_config_info *info, 600 struct ap_matrix *matrix) 601 { 602 matrix->apm_max = info->apxa ? info->na : 63; 603 matrix->aqm_max = info->apxa ? info->nd : 15; 604 matrix->adm_max = info->apxa ? info->nd : 15; 605 } 606 607 static void vfio_ap_mdev_update_guest_apcb(struct ap_matrix_mdev *matrix_mdev) 608 { 609 if (matrix_mdev->kvm) 610 kvm_arch_crypto_set_masks(matrix_mdev->kvm, 611 matrix_mdev->shadow_apcb.apm, 612 matrix_mdev->shadow_apcb.aqm, 613 matrix_mdev->shadow_apcb.adm); 614 } 615 616 static bool vfio_ap_mdev_filter_cdoms(struct ap_matrix_mdev *matrix_mdev) 617 { 618 DECLARE_BITMAP(prev_shadow_adm, AP_DOMAINS); 619 620 bitmap_copy(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, AP_DOMAINS); 621 bitmap_and(matrix_mdev->shadow_apcb.adm, matrix_mdev->matrix.adm, 622 (unsigned long *)matrix_dev->info.adm, AP_DOMAINS); 623 624 return !bitmap_equal(prev_shadow_adm, matrix_mdev->shadow_apcb.adm, 625 AP_DOMAINS); 626 } 627 628 /* 629 * vfio_ap_mdev_filter_matrix - filter the APQNs assigned to the matrix mdev 630 * to ensure no queue devices are passed through to 631 * the guest that are not bound to the vfio_ap 632 * device driver. 633 * 634 * @matrix_mdev: the matrix mdev whose matrix is to be filtered. 635 * 636 * Note: If an APQN referencing a queue device that is not bound to the vfio_ap 637 * driver, its APID will be filtered from the guest's APCB. The matrix 638 * structure precludes filtering an individual APQN, so its APID will be 639 * filtered. 640 * 641 * Return: a boolean value indicating whether the KVM guest's APCB was changed 642 * by the filtering or not. 643 */ 644 static bool vfio_ap_mdev_filter_matrix(unsigned long *apm, unsigned long *aqm, 645 struct ap_matrix_mdev *matrix_mdev) 646 { 647 unsigned long apid, apqi, apqn; 648 DECLARE_BITMAP(prev_shadow_apm, AP_DEVICES); 649 DECLARE_BITMAP(prev_shadow_aqm, AP_DOMAINS); 650 struct vfio_ap_queue *q; 651 652 bitmap_copy(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, AP_DEVICES); 653 bitmap_copy(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, AP_DOMAINS); 654 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb); 655 656 /* 657 * Copy the adapters, domains and control domains to the shadow_apcb 658 * from the matrix mdev, but only those that are assigned to the host's 659 * AP configuration. 660 */ 661 bitmap_and(matrix_mdev->shadow_apcb.apm, matrix_mdev->matrix.apm, 662 (unsigned long *)matrix_dev->info.apm, AP_DEVICES); 663 bitmap_and(matrix_mdev->shadow_apcb.aqm, matrix_mdev->matrix.aqm, 664 (unsigned long *)matrix_dev->info.aqm, AP_DOMAINS); 665 666 for_each_set_bit_inv(apid, apm, AP_DEVICES) { 667 for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) { 668 /* 669 * If the APQN is not bound to the vfio_ap device 670 * driver, then we can't assign it to the guest's 671 * AP configuration. The AP architecture won't 672 * allow filtering of a single APQN, so let's filter 673 * the APID since an adapter represents a physical 674 * hardware device. 675 */ 676 apqn = AP_MKQID(apid, apqi); 677 q = vfio_ap_mdev_get_queue(matrix_mdev, apqn); 678 if (!q || q->reset_rc) { 679 clear_bit_inv(apid, 680 matrix_mdev->shadow_apcb.apm); 681 break; 682 } 683 } 684 } 685 686 return !bitmap_equal(prev_shadow_apm, matrix_mdev->shadow_apcb.apm, 687 AP_DEVICES) || 688 !bitmap_equal(prev_shadow_aqm, matrix_mdev->shadow_apcb.aqm, 689 AP_DOMAINS); 690 } 691 692 static int vfio_ap_mdev_init_dev(struct vfio_device *vdev) 693 { 694 struct ap_matrix_mdev *matrix_mdev = 695 container_of(vdev, struct ap_matrix_mdev, vdev); 696 697 matrix_mdev->mdev = to_mdev_device(vdev->dev); 698 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix); 699 matrix_mdev->pqap_hook = handle_pqap; 700 vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->shadow_apcb); 701 hash_init(matrix_mdev->qtable.queues); 702 703 return 0; 704 } 705 706 static int vfio_ap_mdev_probe(struct mdev_device *mdev) 707 { 708 struct ap_matrix_mdev *matrix_mdev; 709 int ret; 710 711 matrix_mdev = vfio_alloc_device(ap_matrix_mdev, vdev, &mdev->dev, 712 &vfio_ap_matrix_dev_ops); 713 if (IS_ERR(matrix_mdev)) 714 return PTR_ERR(matrix_mdev); 715 716 ret = vfio_register_emulated_iommu_dev(&matrix_mdev->vdev); 717 if (ret) 718 goto err_put_vdev; 719 dev_set_drvdata(&mdev->dev, matrix_mdev); 720 mutex_lock(&matrix_dev->mdevs_lock); 721 list_add(&matrix_mdev->node, &matrix_dev->mdev_list); 722 mutex_unlock(&matrix_dev->mdevs_lock); 723 return 0; 724 725 err_put_vdev: 726 vfio_put_device(&matrix_mdev->vdev); 727 return ret; 728 } 729 730 static void vfio_ap_mdev_link_queue(struct ap_matrix_mdev *matrix_mdev, 731 struct vfio_ap_queue *q) 732 { 733 if (q) { 734 q->matrix_mdev = matrix_mdev; 735 hash_add(matrix_mdev->qtable.queues, &q->mdev_qnode, q->apqn); 736 } 737 } 738 739 static void vfio_ap_mdev_link_apqn(struct ap_matrix_mdev *matrix_mdev, int apqn) 740 { 741 struct vfio_ap_queue *q; 742 743 q = vfio_ap_find_queue(apqn); 744 vfio_ap_mdev_link_queue(matrix_mdev, q); 745 } 746 747 static void vfio_ap_unlink_queue_fr_mdev(struct vfio_ap_queue *q) 748 { 749 hash_del(&q->mdev_qnode); 750 } 751 752 static void vfio_ap_unlink_mdev_fr_queue(struct vfio_ap_queue *q) 753 { 754 q->matrix_mdev = NULL; 755 } 756 757 static void vfio_ap_mdev_unlink_fr_queues(struct ap_matrix_mdev *matrix_mdev) 758 { 759 struct vfio_ap_queue *q; 760 unsigned long apid, apqi; 761 762 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) { 763 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, 764 AP_DOMAINS) { 765 q = vfio_ap_mdev_get_queue(matrix_mdev, 766 AP_MKQID(apid, apqi)); 767 if (q) 768 q->matrix_mdev = NULL; 769 } 770 } 771 } 772 773 static void vfio_ap_mdev_remove(struct mdev_device *mdev) 774 { 775 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(&mdev->dev); 776 777 vfio_unregister_group_dev(&matrix_mdev->vdev); 778 779 mutex_lock(&matrix_dev->guests_lock); 780 mutex_lock(&matrix_dev->mdevs_lock); 781 vfio_ap_mdev_reset_queues(&matrix_mdev->qtable); 782 vfio_ap_mdev_unlink_fr_queues(matrix_mdev); 783 list_del(&matrix_mdev->node); 784 mutex_unlock(&matrix_dev->mdevs_lock); 785 mutex_unlock(&matrix_dev->guests_lock); 786 vfio_put_device(&matrix_mdev->vdev); 787 } 788 789 #define MDEV_SHARING_ERR "Userspace may not re-assign queue %02lx.%04lx " \ 790 "already assigned to %s" 791 792 static void vfio_ap_mdev_log_sharing_err(struct ap_matrix_mdev *matrix_mdev, 793 unsigned long *apm, 794 unsigned long *aqm) 795 { 796 unsigned long apid, apqi; 797 const struct device *dev = mdev_dev(matrix_mdev->mdev); 798 const char *mdev_name = dev_name(dev); 799 800 for_each_set_bit_inv(apid, apm, AP_DEVICES) 801 for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) 802 dev_warn(dev, MDEV_SHARING_ERR, apid, apqi, mdev_name); 803 } 804 805 /** 806 * vfio_ap_mdev_verify_no_sharing - verify APQNs are not shared by matrix mdevs 807 * 808 * @mdev_apm: mask indicating the APIDs of the APQNs to be verified 809 * @mdev_aqm: mask indicating the APQIs of the APQNs to be verified 810 * 811 * Verifies that each APQN derived from the Cartesian product of a bitmap of 812 * AP adapter IDs and AP queue indexes is not configured for any matrix 813 * mediated device. AP queue sharing is not allowed. 814 * 815 * Return: 0 if the APQNs are not shared; otherwise return -EADDRINUSE. 816 */ 817 static int vfio_ap_mdev_verify_no_sharing(unsigned long *mdev_apm, 818 unsigned long *mdev_aqm) 819 { 820 struct ap_matrix_mdev *matrix_mdev; 821 DECLARE_BITMAP(apm, AP_DEVICES); 822 DECLARE_BITMAP(aqm, AP_DOMAINS); 823 824 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { 825 /* 826 * If the input apm and aqm are fields of the matrix_mdev 827 * object, then move on to the next matrix_mdev. 828 */ 829 if (mdev_apm == matrix_mdev->matrix.apm && 830 mdev_aqm == matrix_mdev->matrix.aqm) 831 continue; 832 833 memset(apm, 0, sizeof(apm)); 834 memset(aqm, 0, sizeof(aqm)); 835 836 /* 837 * We work on full longs, as we can only exclude the leftover 838 * bits in non-inverse order. The leftover is all zeros. 839 */ 840 if (!bitmap_and(apm, mdev_apm, matrix_mdev->matrix.apm, 841 AP_DEVICES)) 842 continue; 843 844 if (!bitmap_and(aqm, mdev_aqm, matrix_mdev->matrix.aqm, 845 AP_DOMAINS)) 846 continue; 847 848 vfio_ap_mdev_log_sharing_err(matrix_mdev, apm, aqm); 849 850 return -EADDRINUSE; 851 } 852 853 return 0; 854 } 855 856 /** 857 * vfio_ap_mdev_validate_masks - verify that the APQNs assigned to the mdev are 858 * not reserved for the default zcrypt driver and 859 * are not assigned to another mdev. 860 * 861 * @matrix_mdev: the mdev to which the APQNs being validated are assigned. 862 * 863 * Return: One of the following values: 864 * o the error returned from the ap_apqn_in_matrix_owned_by_def_drv() function, 865 * most likely -EBUSY indicating the ap_perms_mutex lock is already held. 866 * o EADDRNOTAVAIL if an APQN assigned to @matrix_mdev is reserved for the 867 * zcrypt default driver. 868 * o EADDRINUSE if an APQN assigned to @matrix_mdev is assigned to another mdev 869 * o A zero indicating validation succeeded. 870 */ 871 static int vfio_ap_mdev_validate_masks(struct ap_matrix_mdev *matrix_mdev) 872 { 873 if (ap_apqn_in_matrix_owned_by_def_drv(matrix_mdev->matrix.apm, 874 matrix_mdev->matrix.aqm)) 875 return -EADDRNOTAVAIL; 876 877 return vfio_ap_mdev_verify_no_sharing(matrix_mdev->matrix.apm, 878 matrix_mdev->matrix.aqm); 879 } 880 881 static void vfio_ap_mdev_link_adapter(struct ap_matrix_mdev *matrix_mdev, 882 unsigned long apid) 883 { 884 unsigned long apqi; 885 886 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) 887 vfio_ap_mdev_link_apqn(matrix_mdev, 888 AP_MKQID(apid, apqi)); 889 } 890 891 /** 892 * assign_adapter_store - parses the APID from @buf and sets the 893 * corresponding bit in the mediated matrix device's APM 894 * 895 * @dev: the matrix device 896 * @attr: the mediated matrix device's assign_adapter attribute 897 * @buf: a buffer containing the AP adapter number (APID) to 898 * be assigned 899 * @count: the number of bytes in @buf 900 * 901 * Return: the number of bytes processed if the APID is valid; otherwise, 902 * returns one of the following errors: 903 * 904 * 1. -EINVAL 905 * The APID is not a valid number 906 * 907 * 2. -ENODEV 908 * The APID exceeds the maximum value configured for the system 909 * 910 * 3. -EADDRNOTAVAIL 911 * An APQN derived from the cross product of the APID being assigned 912 * and the APQIs previously assigned is not bound to the vfio_ap device 913 * driver; or, if no APQIs have yet been assigned, the APID is not 914 * contained in an APQN bound to the vfio_ap device driver. 915 * 916 * 4. -EADDRINUSE 917 * An APQN derived from the cross product of the APID being assigned 918 * and the APQIs previously assigned is being used by another mediated 919 * matrix device 920 * 921 * 5. -EAGAIN 922 * A lock required to validate the mdev's AP configuration could not 923 * be obtained. 924 */ 925 static ssize_t assign_adapter_store(struct device *dev, 926 struct device_attribute *attr, 927 const char *buf, size_t count) 928 { 929 int ret; 930 unsigned long apid; 931 DECLARE_BITMAP(apm_delta, AP_DEVICES); 932 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 933 934 mutex_lock(&ap_perms_mutex); 935 get_update_locks_for_mdev(matrix_mdev); 936 937 ret = kstrtoul(buf, 0, &apid); 938 if (ret) 939 goto done; 940 941 if (apid > matrix_mdev->matrix.apm_max) { 942 ret = -ENODEV; 943 goto done; 944 } 945 946 if (test_bit_inv(apid, matrix_mdev->matrix.apm)) { 947 ret = count; 948 goto done; 949 } 950 951 set_bit_inv(apid, matrix_mdev->matrix.apm); 952 953 ret = vfio_ap_mdev_validate_masks(matrix_mdev); 954 if (ret) { 955 clear_bit_inv(apid, matrix_mdev->matrix.apm); 956 goto done; 957 } 958 959 vfio_ap_mdev_link_adapter(matrix_mdev, apid); 960 memset(apm_delta, 0, sizeof(apm_delta)); 961 set_bit_inv(apid, apm_delta); 962 963 if (vfio_ap_mdev_filter_matrix(apm_delta, 964 matrix_mdev->matrix.aqm, matrix_mdev)) 965 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 966 967 ret = count; 968 done: 969 release_update_locks_for_mdev(matrix_mdev); 970 mutex_unlock(&ap_perms_mutex); 971 972 return ret; 973 } 974 static DEVICE_ATTR_WO(assign_adapter); 975 976 static struct vfio_ap_queue 977 *vfio_ap_unlink_apqn_fr_mdev(struct ap_matrix_mdev *matrix_mdev, 978 unsigned long apid, unsigned long apqi) 979 { 980 struct vfio_ap_queue *q = NULL; 981 982 q = vfio_ap_mdev_get_queue(matrix_mdev, AP_MKQID(apid, apqi)); 983 /* If the queue is assigned to the matrix mdev, unlink it. */ 984 if (q) 985 vfio_ap_unlink_queue_fr_mdev(q); 986 987 return q; 988 } 989 990 /** 991 * vfio_ap_mdev_unlink_adapter - unlink all queues associated with unassigned 992 * adapter from the matrix mdev to which the 993 * adapter was assigned. 994 * @matrix_mdev: the matrix mediated device to which the adapter was assigned. 995 * @apid: the APID of the unassigned adapter. 996 * @qtable: table for storing queues associated with unassigned adapter. 997 */ 998 static void vfio_ap_mdev_unlink_adapter(struct ap_matrix_mdev *matrix_mdev, 999 unsigned long apid, 1000 struct ap_queue_table *qtable) 1001 { 1002 unsigned long apqi; 1003 struct vfio_ap_queue *q; 1004 1005 for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, AP_DOMAINS) { 1006 q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi); 1007 1008 if (q && qtable) { 1009 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) && 1010 test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) 1011 hash_add(qtable->queues, &q->mdev_qnode, 1012 q->apqn); 1013 } 1014 } 1015 } 1016 1017 static void vfio_ap_mdev_hot_unplug_adapter(struct ap_matrix_mdev *matrix_mdev, 1018 unsigned long apid) 1019 { 1020 int loop_cursor; 1021 struct vfio_ap_queue *q; 1022 struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL); 1023 1024 hash_init(qtable->queues); 1025 vfio_ap_mdev_unlink_adapter(matrix_mdev, apid, qtable); 1026 1027 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm)) { 1028 clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm); 1029 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1030 } 1031 1032 vfio_ap_mdev_reset_queues(qtable); 1033 1034 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { 1035 vfio_ap_unlink_mdev_fr_queue(q); 1036 hash_del(&q->mdev_qnode); 1037 } 1038 1039 kfree(qtable); 1040 } 1041 1042 /** 1043 * unassign_adapter_store - parses the APID from @buf and clears the 1044 * corresponding bit in the mediated matrix device's APM 1045 * 1046 * @dev: the matrix device 1047 * @attr: the mediated matrix device's unassign_adapter attribute 1048 * @buf: a buffer containing the adapter number (APID) to be unassigned 1049 * @count: the number of bytes in @buf 1050 * 1051 * Return: the number of bytes processed if the APID is valid; otherwise, 1052 * returns one of the following errors: 1053 * -EINVAL if the APID is not a number 1054 * -ENODEV if the APID it exceeds the maximum value configured for the 1055 * system 1056 */ 1057 static ssize_t unassign_adapter_store(struct device *dev, 1058 struct device_attribute *attr, 1059 const char *buf, size_t count) 1060 { 1061 int ret; 1062 unsigned long apid; 1063 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1064 1065 get_update_locks_for_mdev(matrix_mdev); 1066 1067 ret = kstrtoul(buf, 0, &apid); 1068 if (ret) 1069 goto done; 1070 1071 if (apid > matrix_mdev->matrix.apm_max) { 1072 ret = -ENODEV; 1073 goto done; 1074 } 1075 1076 if (!test_bit_inv(apid, matrix_mdev->matrix.apm)) { 1077 ret = count; 1078 goto done; 1079 } 1080 1081 clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm); 1082 vfio_ap_mdev_hot_unplug_adapter(matrix_mdev, apid); 1083 ret = count; 1084 done: 1085 release_update_locks_for_mdev(matrix_mdev); 1086 return ret; 1087 } 1088 static DEVICE_ATTR_WO(unassign_adapter); 1089 1090 static void vfio_ap_mdev_link_domain(struct ap_matrix_mdev *matrix_mdev, 1091 unsigned long apqi) 1092 { 1093 unsigned long apid; 1094 1095 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) 1096 vfio_ap_mdev_link_apqn(matrix_mdev, 1097 AP_MKQID(apid, apqi)); 1098 } 1099 1100 /** 1101 * assign_domain_store - parses the APQI from @buf and sets the 1102 * corresponding bit in the mediated matrix device's AQM 1103 * 1104 * @dev: the matrix device 1105 * @attr: the mediated matrix device's assign_domain attribute 1106 * @buf: a buffer containing the AP queue index (APQI) of the domain to 1107 * be assigned 1108 * @count: the number of bytes in @buf 1109 * 1110 * Return: the number of bytes processed if the APQI is valid; otherwise returns 1111 * one of the following errors: 1112 * 1113 * 1. -EINVAL 1114 * The APQI is not a valid number 1115 * 1116 * 2. -ENODEV 1117 * The APQI exceeds the maximum value configured for the system 1118 * 1119 * 3. -EADDRNOTAVAIL 1120 * An APQN derived from the cross product of the APQI being assigned 1121 * and the APIDs previously assigned is not bound to the vfio_ap device 1122 * driver; or, if no APIDs have yet been assigned, the APQI is not 1123 * contained in an APQN bound to the vfio_ap device driver. 1124 * 1125 * 4. -EADDRINUSE 1126 * An APQN derived from the cross product of the APQI being assigned 1127 * and the APIDs previously assigned is being used by another mediated 1128 * matrix device 1129 * 1130 * 5. -EAGAIN 1131 * The lock required to validate the mdev's AP configuration could not 1132 * be obtained. 1133 */ 1134 static ssize_t assign_domain_store(struct device *dev, 1135 struct device_attribute *attr, 1136 const char *buf, size_t count) 1137 { 1138 int ret; 1139 unsigned long apqi; 1140 DECLARE_BITMAP(aqm_delta, AP_DOMAINS); 1141 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1142 1143 mutex_lock(&ap_perms_mutex); 1144 get_update_locks_for_mdev(matrix_mdev); 1145 1146 ret = kstrtoul(buf, 0, &apqi); 1147 if (ret) 1148 goto done; 1149 1150 if (apqi > matrix_mdev->matrix.aqm_max) { 1151 ret = -ENODEV; 1152 goto done; 1153 } 1154 1155 if (test_bit_inv(apqi, matrix_mdev->matrix.aqm)) { 1156 ret = count; 1157 goto done; 1158 } 1159 1160 set_bit_inv(apqi, matrix_mdev->matrix.aqm); 1161 1162 ret = vfio_ap_mdev_validate_masks(matrix_mdev); 1163 if (ret) { 1164 clear_bit_inv(apqi, matrix_mdev->matrix.aqm); 1165 goto done; 1166 } 1167 1168 vfio_ap_mdev_link_domain(matrix_mdev, apqi); 1169 memset(aqm_delta, 0, sizeof(aqm_delta)); 1170 set_bit_inv(apqi, aqm_delta); 1171 1172 if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, aqm_delta, 1173 matrix_mdev)) 1174 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1175 1176 ret = count; 1177 done: 1178 release_update_locks_for_mdev(matrix_mdev); 1179 mutex_unlock(&ap_perms_mutex); 1180 1181 return ret; 1182 } 1183 static DEVICE_ATTR_WO(assign_domain); 1184 1185 static void vfio_ap_mdev_unlink_domain(struct ap_matrix_mdev *matrix_mdev, 1186 unsigned long apqi, 1187 struct ap_queue_table *qtable) 1188 { 1189 unsigned long apid; 1190 struct vfio_ap_queue *q; 1191 1192 for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, AP_DEVICES) { 1193 q = vfio_ap_unlink_apqn_fr_mdev(matrix_mdev, apid, apqi); 1194 1195 if (q && qtable) { 1196 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) && 1197 test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) 1198 hash_add(qtable->queues, &q->mdev_qnode, 1199 q->apqn); 1200 } 1201 } 1202 } 1203 1204 static void vfio_ap_mdev_hot_unplug_domain(struct ap_matrix_mdev *matrix_mdev, 1205 unsigned long apqi) 1206 { 1207 int loop_cursor; 1208 struct vfio_ap_queue *q; 1209 struct ap_queue_table *qtable = kzalloc(sizeof(*qtable), GFP_KERNEL); 1210 1211 hash_init(qtable->queues); 1212 vfio_ap_mdev_unlink_domain(matrix_mdev, apqi, qtable); 1213 1214 if (test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) { 1215 clear_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm); 1216 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1217 } 1218 1219 vfio_ap_mdev_reset_queues(qtable); 1220 1221 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { 1222 vfio_ap_unlink_mdev_fr_queue(q); 1223 hash_del(&q->mdev_qnode); 1224 } 1225 1226 kfree(qtable); 1227 } 1228 1229 /** 1230 * unassign_domain_store - parses the APQI from @buf and clears the 1231 * corresponding bit in the mediated matrix device's AQM 1232 * 1233 * @dev: the matrix device 1234 * @attr: the mediated matrix device's unassign_domain attribute 1235 * @buf: a buffer containing the AP queue index (APQI) of the domain to 1236 * be unassigned 1237 * @count: the number of bytes in @buf 1238 * 1239 * Return: the number of bytes processed if the APQI is valid; otherwise, 1240 * returns one of the following errors: 1241 * -EINVAL if the APQI is not a number 1242 * -ENODEV if the APQI exceeds the maximum value configured for the system 1243 */ 1244 static ssize_t unassign_domain_store(struct device *dev, 1245 struct device_attribute *attr, 1246 const char *buf, size_t count) 1247 { 1248 int ret; 1249 unsigned long apqi; 1250 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1251 1252 get_update_locks_for_mdev(matrix_mdev); 1253 1254 ret = kstrtoul(buf, 0, &apqi); 1255 if (ret) 1256 goto done; 1257 1258 if (apqi > matrix_mdev->matrix.aqm_max) { 1259 ret = -ENODEV; 1260 goto done; 1261 } 1262 1263 if (!test_bit_inv(apqi, matrix_mdev->matrix.aqm)) { 1264 ret = count; 1265 goto done; 1266 } 1267 1268 clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm); 1269 vfio_ap_mdev_hot_unplug_domain(matrix_mdev, apqi); 1270 ret = count; 1271 1272 done: 1273 release_update_locks_for_mdev(matrix_mdev); 1274 return ret; 1275 } 1276 static DEVICE_ATTR_WO(unassign_domain); 1277 1278 /** 1279 * assign_control_domain_store - parses the domain ID from @buf and sets 1280 * the corresponding bit in the mediated matrix device's ADM 1281 * 1282 * @dev: the matrix device 1283 * @attr: the mediated matrix device's assign_control_domain attribute 1284 * @buf: a buffer containing the domain ID to be assigned 1285 * @count: the number of bytes in @buf 1286 * 1287 * Return: the number of bytes processed if the domain ID is valid; otherwise, 1288 * returns one of the following errors: 1289 * -EINVAL if the ID is not a number 1290 * -ENODEV if the ID exceeds the maximum value configured for the system 1291 */ 1292 static ssize_t assign_control_domain_store(struct device *dev, 1293 struct device_attribute *attr, 1294 const char *buf, size_t count) 1295 { 1296 int ret; 1297 unsigned long id; 1298 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1299 1300 get_update_locks_for_mdev(matrix_mdev); 1301 1302 ret = kstrtoul(buf, 0, &id); 1303 if (ret) 1304 goto done; 1305 1306 if (id > matrix_mdev->matrix.adm_max) { 1307 ret = -ENODEV; 1308 goto done; 1309 } 1310 1311 if (test_bit_inv(id, matrix_mdev->matrix.adm)) { 1312 ret = count; 1313 goto done; 1314 } 1315 1316 /* Set the bit in the ADM (bitmask) corresponding to the AP control 1317 * domain number (id). The bits in the mask, from most significant to 1318 * least significant, correspond to IDs 0 up to the one less than the 1319 * number of control domains that can be assigned. 1320 */ 1321 set_bit_inv(id, matrix_mdev->matrix.adm); 1322 if (vfio_ap_mdev_filter_cdoms(matrix_mdev)) 1323 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1324 1325 ret = count; 1326 done: 1327 release_update_locks_for_mdev(matrix_mdev); 1328 return ret; 1329 } 1330 static DEVICE_ATTR_WO(assign_control_domain); 1331 1332 /** 1333 * unassign_control_domain_store - parses the domain ID from @buf and 1334 * clears the corresponding bit in the mediated matrix device's ADM 1335 * 1336 * @dev: the matrix device 1337 * @attr: the mediated matrix device's unassign_control_domain attribute 1338 * @buf: a buffer containing the domain ID to be unassigned 1339 * @count: the number of bytes in @buf 1340 * 1341 * Return: the number of bytes processed if the domain ID is valid; otherwise, 1342 * returns one of the following errors: 1343 * -EINVAL if the ID is not a number 1344 * -ENODEV if the ID exceeds the maximum value configured for the system 1345 */ 1346 static ssize_t unassign_control_domain_store(struct device *dev, 1347 struct device_attribute *attr, 1348 const char *buf, size_t count) 1349 { 1350 int ret; 1351 unsigned long domid; 1352 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1353 1354 get_update_locks_for_mdev(matrix_mdev); 1355 1356 ret = kstrtoul(buf, 0, &domid); 1357 if (ret) 1358 goto done; 1359 1360 if (domid > matrix_mdev->matrix.adm_max) { 1361 ret = -ENODEV; 1362 goto done; 1363 } 1364 1365 if (!test_bit_inv(domid, matrix_mdev->matrix.adm)) { 1366 ret = count; 1367 goto done; 1368 } 1369 1370 clear_bit_inv(domid, matrix_mdev->matrix.adm); 1371 1372 if (test_bit_inv(domid, matrix_mdev->shadow_apcb.adm)) { 1373 clear_bit_inv(domid, matrix_mdev->shadow_apcb.adm); 1374 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1375 } 1376 1377 ret = count; 1378 done: 1379 release_update_locks_for_mdev(matrix_mdev); 1380 return ret; 1381 } 1382 static DEVICE_ATTR_WO(unassign_control_domain); 1383 1384 static ssize_t control_domains_show(struct device *dev, 1385 struct device_attribute *dev_attr, 1386 char *buf) 1387 { 1388 unsigned long id; 1389 int nchars = 0; 1390 int n; 1391 char *bufpos = buf; 1392 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1393 unsigned long max_domid = matrix_mdev->matrix.adm_max; 1394 1395 mutex_lock(&matrix_dev->mdevs_lock); 1396 for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) { 1397 n = sprintf(bufpos, "%04lx\n", id); 1398 bufpos += n; 1399 nchars += n; 1400 } 1401 mutex_unlock(&matrix_dev->mdevs_lock); 1402 1403 return nchars; 1404 } 1405 static DEVICE_ATTR_RO(control_domains); 1406 1407 static ssize_t vfio_ap_mdev_matrix_show(struct ap_matrix *matrix, char *buf) 1408 { 1409 char *bufpos = buf; 1410 unsigned long apid; 1411 unsigned long apqi; 1412 unsigned long apid1; 1413 unsigned long apqi1; 1414 unsigned long napm_bits = matrix->apm_max + 1; 1415 unsigned long naqm_bits = matrix->aqm_max + 1; 1416 int nchars = 0; 1417 int n; 1418 1419 apid1 = find_first_bit_inv(matrix->apm, napm_bits); 1420 apqi1 = find_first_bit_inv(matrix->aqm, naqm_bits); 1421 1422 if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) { 1423 for_each_set_bit_inv(apid, matrix->apm, napm_bits) { 1424 for_each_set_bit_inv(apqi, matrix->aqm, 1425 naqm_bits) { 1426 n = sprintf(bufpos, "%02lx.%04lx\n", apid, 1427 apqi); 1428 bufpos += n; 1429 nchars += n; 1430 } 1431 } 1432 } else if (apid1 < napm_bits) { 1433 for_each_set_bit_inv(apid, matrix->apm, napm_bits) { 1434 n = sprintf(bufpos, "%02lx.\n", apid); 1435 bufpos += n; 1436 nchars += n; 1437 } 1438 } else if (apqi1 < naqm_bits) { 1439 for_each_set_bit_inv(apqi, matrix->aqm, naqm_bits) { 1440 n = sprintf(bufpos, ".%04lx\n", apqi); 1441 bufpos += n; 1442 nchars += n; 1443 } 1444 } 1445 1446 return nchars; 1447 } 1448 1449 static ssize_t matrix_show(struct device *dev, struct device_attribute *attr, 1450 char *buf) 1451 { 1452 ssize_t nchars; 1453 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1454 1455 mutex_lock(&matrix_dev->mdevs_lock); 1456 nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->matrix, buf); 1457 mutex_unlock(&matrix_dev->mdevs_lock); 1458 1459 return nchars; 1460 } 1461 static DEVICE_ATTR_RO(matrix); 1462 1463 static ssize_t guest_matrix_show(struct device *dev, 1464 struct device_attribute *attr, char *buf) 1465 { 1466 ssize_t nchars; 1467 struct ap_matrix_mdev *matrix_mdev = dev_get_drvdata(dev); 1468 1469 mutex_lock(&matrix_dev->mdevs_lock); 1470 nchars = vfio_ap_mdev_matrix_show(&matrix_mdev->shadow_apcb, buf); 1471 mutex_unlock(&matrix_dev->mdevs_lock); 1472 1473 return nchars; 1474 } 1475 static DEVICE_ATTR_RO(guest_matrix); 1476 1477 static struct attribute *vfio_ap_mdev_attrs[] = { 1478 &dev_attr_assign_adapter.attr, 1479 &dev_attr_unassign_adapter.attr, 1480 &dev_attr_assign_domain.attr, 1481 &dev_attr_unassign_domain.attr, 1482 &dev_attr_assign_control_domain.attr, 1483 &dev_attr_unassign_control_domain.attr, 1484 &dev_attr_control_domains.attr, 1485 &dev_attr_matrix.attr, 1486 &dev_attr_guest_matrix.attr, 1487 NULL, 1488 }; 1489 1490 static struct attribute_group vfio_ap_mdev_attr_group = { 1491 .attrs = vfio_ap_mdev_attrs 1492 }; 1493 1494 static const struct attribute_group *vfio_ap_mdev_attr_groups[] = { 1495 &vfio_ap_mdev_attr_group, 1496 NULL 1497 }; 1498 1499 /** 1500 * vfio_ap_mdev_set_kvm - sets all data for @matrix_mdev that are needed 1501 * to manage AP resources for the guest whose state is represented by @kvm 1502 * 1503 * @matrix_mdev: a mediated matrix device 1504 * @kvm: reference to KVM instance 1505 * 1506 * Return: 0 if no other mediated matrix device has a reference to @kvm; 1507 * otherwise, returns an -EPERM. 1508 */ 1509 static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev, 1510 struct kvm *kvm) 1511 { 1512 struct ap_matrix_mdev *m; 1513 1514 if (kvm->arch.crypto.crycbd) { 1515 down_write(&kvm->arch.crypto.pqap_hook_rwsem); 1516 kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook; 1517 up_write(&kvm->arch.crypto.pqap_hook_rwsem); 1518 1519 get_update_locks_for_kvm(kvm); 1520 1521 list_for_each_entry(m, &matrix_dev->mdev_list, node) { 1522 if (m != matrix_mdev && m->kvm == kvm) { 1523 release_update_locks_for_kvm(kvm); 1524 return -EPERM; 1525 } 1526 } 1527 1528 kvm_get_kvm(kvm); 1529 matrix_mdev->kvm = kvm; 1530 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1531 1532 release_update_locks_for_kvm(kvm); 1533 } 1534 1535 return 0; 1536 } 1537 1538 static void unmap_iova(struct ap_matrix_mdev *matrix_mdev, u64 iova, u64 length) 1539 { 1540 struct ap_queue_table *qtable = &matrix_mdev->qtable; 1541 struct vfio_ap_queue *q; 1542 int loop_cursor; 1543 1544 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { 1545 if (q->saved_iova >= iova && q->saved_iova < iova + length) 1546 vfio_ap_irq_disable(q); 1547 } 1548 } 1549 1550 static void vfio_ap_mdev_dma_unmap(struct vfio_device *vdev, u64 iova, 1551 u64 length) 1552 { 1553 struct ap_matrix_mdev *matrix_mdev = 1554 container_of(vdev, struct ap_matrix_mdev, vdev); 1555 1556 mutex_lock(&matrix_dev->mdevs_lock); 1557 1558 unmap_iova(matrix_mdev, iova, length); 1559 1560 mutex_unlock(&matrix_dev->mdevs_lock); 1561 } 1562 1563 /** 1564 * vfio_ap_mdev_unset_kvm - performs clean-up of resources no longer needed 1565 * by @matrix_mdev. 1566 * 1567 * @matrix_mdev: a matrix mediated device 1568 */ 1569 static void vfio_ap_mdev_unset_kvm(struct ap_matrix_mdev *matrix_mdev) 1570 { 1571 struct kvm *kvm = matrix_mdev->kvm; 1572 1573 if (kvm && kvm->arch.crypto.crycbd) { 1574 down_write(&kvm->arch.crypto.pqap_hook_rwsem); 1575 kvm->arch.crypto.pqap_hook = NULL; 1576 up_write(&kvm->arch.crypto.pqap_hook_rwsem); 1577 1578 get_update_locks_for_kvm(kvm); 1579 1580 kvm_arch_crypto_clear_masks(kvm); 1581 vfio_ap_mdev_reset_queues(&matrix_mdev->qtable); 1582 kvm_put_kvm(kvm); 1583 matrix_mdev->kvm = NULL; 1584 1585 release_update_locks_for_kvm(kvm); 1586 } 1587 } 1588 1589 static struct vfio_ap_queue *vfio_ap_find_queue(int apqn) 1590 { 1591 struct ap_queue *queue; 1592 struct vfio_ap_queue *q = NULL; 1593 1594 queue = ap_get_qdev(apqn); 1595 if (!queue) 1596 return NULL; 1597 1598 if (queue->ap_dev.device.driver == &matrix_dev->vfio_ap_drv->driver) 1599 q = dev_get_drvdata(&queue->ap_dev.device); 1600 1601 put_device(&queue->ap_dev.device); 1602 1603 return q; 1604 } 1605 1606 static int apq_status_check(int apqn, struct ap_queue_status *status) 1607 { 1608 switch (status->response_code) { 1609 case AP_RESPONSE_NORMAL: 1610 case AP_RESPONSE_RESET_IN_PROGRESS: 1611 if (status->queue_empty && !status->irq_enabled) 1612 return 0; 1613 return -EBUSY; 1614 case AP_RESPONSE_DECONFIGURED: 1615 /* 1616 * If the AP queue is deconfigured, any subsequent AP command 1617 * targeting the queue will fail with the same response code. On the 1618 * other hand, when an AP adapter is deconfigured, the associated 1619 * queues are reset, so let's return a value indicating the reset 1620 * for which we're waiting completed successfully. 1621 */ 1622 return 0; 1623 default: 1624 WARN(true, 1625 "failed to verify reset of queue %02x.%04x: TAPQ rc=%u\n", 1626 AP_QID_CARD(apqn), AP_QID_QUEUE(apqn), 1627 status->response_code); 1628 return -EIO; 1629 } 1630 } 1631 1632 static int apq_reset_check(struct vfio_ap_queue *q) 1633 { 1634 int ret; 1635 int iters = MAX_RESET_CHECK_WAIT / AP_RESET_INTERVAL; 1636 struct ap_queue_status status; 1637 1638 for (; iters > 0; iters--) { 1639 msleep(AP_RESET_INTERVAL); 1640 status = ap_tapq(q->apqn, NULL); 1641 ret = apq_status_check(q->apqn, &status); 1642 if (ret != -EBUSY) 1643 return ret; 1644 } 1645 WARN_ONCE(iters <= 0, 1646 "timeout verifying reset of queue %02x.%04x (%u, %u, %u)", 1647 AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn), 1648 status.queue_empty, status.irq_enabled, status.response_code); 1649 return ret; 1650 } 1651 1652 static int vfio_ap_mdev_reset_queue(struct vfio_ap_queue *q) 1653 { 1654 struct ap_queue_status status; 1655 int ret; 1656 1657 if (!q) 1658 return 0; 1659 retry_zapq: 1660 status = ap_zapq(q->apqn, 0); 1661 q->reset_rc = status.response_code; 1662 switch (status.response_code) { 1663 case AP_RESPONSE_NORMAL: 1664 ret = 0; 1665 /* if the reset has not completed, wait for it to take effect */ 1666 if (!status.queue_empty || status.irq_enabled) 1667 ret = apq_reset_check(q); 1668 break; 1669 case AP_RESPONSE_RESET_IN_PROGRESS: 1670 /* 1671 * There is a reset issued by another process in progress. Let's wait 1672 * for that to complete. Since we have no idea whether it was a RAPQ or 1673 * ZAPQ, then if it completes successfully, let's issue the ZAPQ. 1674 */ 1675 ret = apq_reset_check(q); 1676 if (ret) 1677 break; 1678 goto retry_zapq; 1679 case AP_RESPONSE_DECONFIGURED: 1680 /* 1681 * When an AP adapter is deconfigured, the associated 1682 * queues are reset, so let's return a value indicating the reset 1683 * completed successfully. 1684 */ 1685 ret = 0; 1686 break; 1687 default: 1688 WARN(true, 1689 "PQAP/ZAPQ for %02x.%04x failed with invalid rc=%u\n", 1690 AP_QID_CARD(q->apqn), AP_QID_QUEUE(q->apqn), 1691 status.response_code); 1692 return -EIO; 1693 } 1694 1695 vfio_ap_free_aqic_resources(q); 1696 1697 return ret; 1698 } 1699 1700 static int vfio_ap_mdev_reset_queues(struct ap_queue_table *qtable) 1701 { 1702 int ret, loop_cursor, rc = 0; 1703 struct vfio_ap_queue *q; 1704 1705 hash_for_each(qtable->queues, loop_cursor, q, mdev_qnode) { 1706 ret = vfio_ap_mdev_reset_queue(q); 1707 /* 1708 * Regardless whether a queue turns out to be busy, or 1709 * is not operational, we need to continue resetting 1710 * the remaining queues. 1711 */ 1712 if (ret) 1713 rc = ret; 1714 } 1715 1716 return rc; 1717 } 1718 1719 static int vfio_ap_mdev_open_device(struct vfio_device *vdev) 1720 { 1721 struct ap_matrix_mdev *matrix_mdev = 1722 container_of(vdev, struct ap_matrix_mdev, vdev); 1723 1724 if (!vdev->kvm) 1725 return -EINVAL; 1726 1727 return vfio_ap_mdev_set_kvm(matrix_mdev, vdev->kvm); 1728 } 1729 1730 static void vfio_ap_mdev_close_device(struct vfio_device *vdev) 1731 { 1732 struct ap_matrix_mdev *matrix_mdev = 1733 container_of(vdev, struct ap_matrix_mdev, vdev); 1734 1735 vfio_ap_mdev_unset_kvm(matrix_mdev); 1736 } 1737 1738 static int vfio_ap_mdev_get_device_info(unsigned long arg) 1739 { 1740 unsigned long minsz; 1741 struct vfio_device_info info; 1742 1743 minsz = offsetofend(struct vfio_device_info, num_irqs); 1744 1745 if (copy_from_user(&info, (void __user *)arg, minsz)) 1746 return -EFAULT; 1747 1748 if (info.argsz < minsz) 1749 return -EINVAL; 1750 1751 info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET; 1752 info.num_regions = 0; 1753 info.num_irqs = 0; 1754 1755 return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; 1756 } 1757 1758 static ssize_t vfio_ap_mdev_ioctl(struct vfio_device *vdev, 1759 unsigned int cmd, unsigned long arg) 1760 { 1761 struct ap_matrix_mdev *matrix_mdev = 1762 container_of(vdev, struct ap_matrix_mdev, vdev); 1763 int ret; 1764 1765 mutex_lock(&matrix_dev->mdevs_lock); 1766 switch (cmd) { 1767 case VFIO_DEVICE_GET_INFO: 1768 ret = vfio_ap_mdev_get_device_info(arg); 1769 break; 1770 case VFIO_DEVICE_RESET: 1771 ret = vfio_ap_mdev_reset_queues(&matrix_mdev->qtable); 1772 break; 1773 default: 1774 ret = -EOPNOTSUPP; 1775 break; 1776 } 1777 mutex_unlock(&matrix_dev->mdevs_lock); 1778 1779 return ret; 1780 } 1781 1782 static struct ap_matrix_mdev *vfio_ap_mdev_for_queue(struct vfio_ap_queue *q) 1783 { 1784 struct ap_matrix_mdev *matrix_mdev; 1785 unsigned long apid = AP_QID_CARD(q->apqn); 1786 unsigned long apqi = AP_QID_QUEUE(q->apqn); 1787 1788 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { 1789 if (test_bit_inv(apid, matrix_mdev->matrix.apm) && 1790 test_bit_inv(apqi, matrix_mdev->matrix.aqm)) 1791 return matrix_mdev; 1792 } 1793 1794 return NULL; 1795 } 1796 1797 static ssize_t status_show(struct device *dev, 1798 struct device_attribute *attr, 1799 char *buf) 1800 { 1801 ssize_t nchars = 0; 1802 struct vfio_ap_queue *q; 1803 struct ap_matrix_mdev *matrix_mdev; 1804 struct ap_device *apdev = to_ap_dev(dev); 1805 1806 mutex_lock(&matrix_dev->mdevs_lock); 1807 q = dev_get_drvdata(&apdev->device); 1808 matrix_mdev = vfio_ap_mdev_for_queue(q); 1809 1810 if (matrix_mdev) { 1811 if (matrix_mdev->kvm) 1812 nchars = scnprintf(buf, PAGE_SIZE, "%s\n", 1813 AP_QUEUE_IN_USE); 1814 else 1815 nchars = scnprintf(buf, PAGE_SIZE, "%s\n", 1816 AP_QUEUE_ASSIGNED); 1817 } else { 1818 nchars = scnprintf(buf, PAGE_SIZE, "%s\n", 1819 AP_QUEUE_UNASSIGNED); 1820 } 1821 1822 mutex_unlock(&matrix_dev->mdevs_lock); 1823 1824 return nchars; 1825 } 1826 1827 static DEVICE_ATTR_RO(status); 1828 1829 static struct attribute *vfio_queue_attrs[] = { 1830 &dev_attr_status.attr, 1831 NULL, 1832 }; 1833 1834 static const struct attribute_group vfio_queue_attr_group = { 1835 .attrs = vfio_queue_attrs, 1836 }; 1837 1838 static const struct vfio_device_ops vfio_ap_matrix_dev_ops = { 1839 .init = vfio_ap_mdev_init_dev, 1840 .open_device = vfio_ap_mdev_open_device, 1841 .close_device = vfio_ap_mdev_close_device, 1842 .ioctl = vfio_ap_mdev_ioctl, 1843 .dma_unmap = vfio_ap_mdev_dma_unmap, 1844 .bind_iommufd = vfio_iommufd_emulated_bind, 1845 .unbind_iommufd = vfio_iommufd_emulated_unbind, 1846 .attach_ioas = vfio_iommufd_emulated_attach_ioas, 1847 }; 1848 1849 static struct mdev_driver vfio_ap_matrix_driver = { 1850 .device_api = VFIO_DEVICE_API_AP_STRING, 1851 .max_instances = MAX_ZDEV_ENTRIES_EXT, 1852 .driver = { 1853 .name = "vfio_ap_mdev", 1854 .owner = THIS_MODULE, 1855 .mod_name = KBUILD_MODNAME, 1856 .dev_groups = vfio_ap_mdev_attr_groups, 1857 }, 1858 .probe = vfio_ap_mdev_probe, 1859 .remove = vfio_ap_mdev_remove, 1860 }; 1861 1862 int vfio_ap_mdev_register(void) 1863 { 1864 int ret; 1865 1866 ret = mdev_register_driver(&vfio_ap_matrix_driver); 1867 if (ret) 1868 return ret; 1869 1870 matrix_dev->mdev_type.sysfs_name = VFIO_AP_MDEV_TYPE_HWVIRT; 1871 matrix_dev->mdev_type.pretty_name = VFIO_AP_MDEV_NAME_HWVIRT; 1872 matrix_dev->mdev_types[0] = &matrix_dev->mdev_type; 1873 ret = mdev_register_parent(&matrix_dev->parent, &matrix_dev->device, 1874 &vfio_ap_matrix_driver, 1875 matrix_dev->mdev_types, 1); 1876 if (ret) 1877 goto err_driver; 1878 return 0; 1879 1880 err_driver: 1881 mdev_unregister_driver(&vfio_ap_matrix_driver); 1882 return ret; 1883 } 1884 1885 void vfio_ap_mdev_unregister(void) 1886 { 1887 mdev_unregister_parent(&matrix_dev->parent); 1888 mdev_unregister_driver(&vfio_ap_matrix_driver); 1889 } 1890 1891 int vfio_ap_mdev_probe_queue(struct ap_device *apdev) 1892 { 1893 int ret; 1894 struct vfio_ap_queue *q; 1895 struct ap_matrix_mdev *matrix_mdev; 1896 1897 ret = sysfs_create_group(&apdev->device.kobj, &vfio_queue_attr_group); 1898 if (ret) 1899 return ret; 1900 1901 q = kzalloc(sizeof(*q), GFP_KERNEL); 1902 if (!q) { 1903 ret = -ENOMEM; 1904 goto err_remove_group; 1905 } 1906 1907 q->apqn = to_ap_queue(&apdev->device)->qid; 1908 q->saved_isc = VFIO_AP_ISC_INVALID; 1909 matrix_mdev = get_update_locks_by_apqn(q->apqn); 1910 1911 if (matrix_mdev) { 1912 vfio_ap_mdev_link_queue(matrix_mdev, q); 1913 1914 if (vfio_ap_mdev_filter_matrix(matrix_mdev->matrix.apm, 1915 matrix_mdev->matrix.aqm, 1916 matrix_mdev)) 1917 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1918 } 1919 dev_set_drvdata(&apdev->device, q); 1920 release_update_locks_for_mdev(matrix_mdev); 1921 1922 return 0; 1923 1924 err_remove_group: 1925 sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group); 1926 return ret; 1927 } 1928 1929 void vfio_ap_mdev_remove_queue(struct ap_device *apdev) 1930 { 1931 unsigned long apid, apqi; 1932 struct vfio_ap_queue *q; 1933 struct ap_matrix_mdev *matrix_mdev; 1934 1935 sysfs_remove_group(&apdev->device.kobj, &vfio_queue_attr_group); 1936 q = dev_get_drvdata(&apdev->device); 1937 get_update_locks_for_queue(q); 1938 matrix_mdev = q->matrix_mdev; 1939 1940 if (matrix_mdev) { 1941 vfio_ap_unlink_queue_fr_mdev(q); 1942 1943 apid = AP_QID_CARD(q->apqn); 1944 apqi = AP_QID_QUEUE(q->apqn); 1945 1946 /* 1947 * If the queue is assigned to the guest's APCB, then remove 1948 * the adapter's APID from the APCB and hot it into the guest. 1949 */ 1950 if (test_bit_inv(apid, matrix_mdev->shadow_apcb.apm) && 1951 test_bit_inv(apqi, matrix_mdev->shadow_apcb.aqm)) { 1952 clear_bit_inv(apid, matrix_mdev->shadow_apcb.apm); 1953 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 1954 } 1955 } 1956 1957 vfio_ap_mdev_reset_queue(q); 1958 dev_set_drvdata(&apdev->device, NULL); 1959 kfree(q); 1960 release_update_locks_for_mdev(matrix_mdev); 1961 } 1962 1963 /** 1964 * vfio_ap_mdev_resource_in_use: check whether any of a set of APQNs is 1965 * assigned to a mediated device under the control 1966 * of the vfio_ap device driver. 1967 * 1968 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check. 1969 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check. 1970 * 1971 * Return: 1972 * * -EADDRINUSE if one or more of the APQNs specified via @apm/@aqm are 1973 * assigned to a mediated device under the control of the vfio_ap 1974 * device driver. 1975 * * Otherwise, return 0. 1976 */ 1977 int vfio_ap_mdev_resource_in_use(unsigned long *apm, unsigned long *aqm) 1978 { 1979 int ret; 1980 1981 mutex_lock(&matrix_dev->guests_lock); 1982 mutex_lock(&matrix_dev->mdevs_lock); 1983 ret = vfio_ap_mdev_verify_no_sharing(apm, aqm); 1984 mutex_unlock(&matrix_dev->mdevs_lock); 1985 mutex_unlock(&matrix_dev->guests_lock); 1986 1987 return ret; 1988 } 1989 1990 /** 1991 * vfio_ap_mdev_hot_unplug_cfg - hot unplug the adapters, domains and control 1992 * domains that have been removed from the host's 1993 * AP configuration from a guest. 1994 * 1995 * @matrix_mdev: an ap_matrix_mdev object attached to a KVM guest. 1996 * @aprem: the adapters that have been removed from the host's AP configuration 1997 * @aqrem: the domains that have been removed from the host's AP configuration 1998 * @cdrem: the control domains that have been removed from the host's AP 1999 * configuration. 2000 */ 2001 static void vfio_ap_mdev_hot_unplug_cfg(struct ap_matrix_mdev *matrix_mdev, 2002 unsigned long *aprem, 2003 unsigned long *aqrem, 2004 unsigned long *cdrem) 2005 { 2006 int do_hotplug = 0; 2007 2008 if (!bitmap_empty(aprem, AP_DEVICES)) { 2009 do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.apm, 2010 matrix_mdev->shadow_apcb.apm, 2011 aprem, AP_DEVICES); 2012 } 2013 2014 if (!bitmap_empty(aqrem, AP_DOMAINS)) { 2015 do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.aqm, 2016 matrix_mdev->shadow_apcb.aqm, 2017 aqrem, AP_DEVICES); 2018 } 2019 2020 if (!bitmap_empty(cdrem, AP_DOMAINS)) 2021 do_hotplug |= bitmap_andnot(matrix_mdev->shadow_apcb.adm, 2022 matrix_mdev->shadow_apcb.adm, 2023 cdrem, AP_DOMAINS); 2024 2025 if (do_hotplug) 2026 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 2027 } 2028 2029 /** 2030 * vfio_ap_mdev_cfg_remove - determines which guests are using the adapters, 2031 * domains and control domains that have been removed 2032 * from the host AP configuration and unplugs them 2033 * from those guests. 2034 * 2035 * @ap_remove: bitmap specifying which adapters have been removed from the host 2036 * config. 2037 * @aq_remove: bitmap specifying which domains have been removed from the host 2038 * config. 2039 * @cd_remove: bitmap specifying which control domains have been removed from 2040 * the host config. 2041 */ 2042 static void vfio_ap_mdev_cfg_remove(unsigned long *ap_remove, 2043 unsigned long *aq_remove, 2044 unsigned long *cd_remove) 2045 { 2046 struct ap_matrix_mdev *matrix_mdev; 2047 DECLARE_BITMAP(aprem, AP_DEVICES); 2048 DECLARE_BITMAP(aqrem, AP_DOMAINS); 2049 DECLARE_BITMAP(cdrem, AP_DOMAINS); 2050 int do_remove = 0; 2051 2052 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { 2053 mutex_lock(&matrix_mdev->kvm->lock); 2054 mutex_lock(&matrix_dev->mdevs_lock); 2055 2056 do_remove |= bitmap_and(aprem, ap_remove, 2057 matrix_mdev->matrix.apm, 2058 AP_DEVICES); 2059 do_remove |= bitmap_and(aqrem, aq_remove, 2060 matrix_mdev->matrix.aqm, 2061 AP_DOMAINS); 2062 do_remove |= bitmap_andnot(cdrem, cd_remove, 2063 matrix_mdev->matrix.adm, 2064 AP_DOMAINS); 2065 2066 if (do_remove) 2067 vfio_ap_mdev_hot_unplug_cfg(matrix_mdev, aprem, aqrem, 2068 cdrem); 2069 2070 mutex_unlock(&matrix_dev->mdevs_lock); 2071 mutex_unlock(&matrix_mdev->kvm->lock); 2072 } 2073 } 2074 2075 /** 2076 * vfio_ap_mdev_on_cfg_remove - responds to the removal of adapters, domains and 2077 * control domains from the host AP configuration 2078 * by unplugging them from the guests that are 2079 * using them. 2080 * @cur_config_info: the current host AP configuration information 2081 * @prev_config_info: the previous host AP configuration information 2082 */ 2083 static void vfio_ap_mdev_on_cfg_remove(struct ap_config_info *cur_config_info, 2084 struct ap_config_info *prev_config_info) 2085 { 2086 int do_remove; 2087 DECLARE_BITMAP(aprem, AP_DEVICES); 2088 DECLARE_BITMAP(aqrem, AP_DOMAINS); 2089 DECLARE_BITMAP(cdrem, AP_DOMAINS); 2090 2091 do_remove = bitmap_andnot(aprem, 2092 (unsigned long *)prev_config_info->apm, 2093 (unsigned long *)cur_config_info->apm, 2094 AP_DEVICES); 2095 do_remove |= bitmap_andnot(aqrem, 2096 (unsigned long *)prev_config_info->aqm, 2097 (unsigned long *)cur_config_info->aqm, 2098 AP_DEVICES); 2099 do_remove |= bitmap_andnot(cdrem, 2100 (unsigned long *)prev_config_info->adm, 2101 (unsigned long *)cur_config_info->adm, 2102 AP_DEVICES); 2103 2104 if (do_remove) 2105 vfio_ap_mdev_cfg_remove(aprem, aqrem, cdrem); 2106 } 2107 2108 /** 2109 * vfio_ap_filter_apid_by_qtype: filter APIDs from an AP mask for adapters that 2110 * are older than AP type 10 (CEX4). 2111 * @apm: a bitmap of the APIDs to examine 2112 * @aqm: a bitmap of the APQIs of the queues to query for the AP type. 2113 */ 2114 static void vfio_ap_filter_apid_by_qtype(unsigned long *apm, unsigned long *aqm) 2115 { 2116 bool apid_cleared; 2117 struct ap_queue_status status; 2118 unsigned long apid, apqi; 2119 struct ap_tapq_gr2 info; 2120 2121 for_each_set_bit_inv(apid, apm, AP_DEVICES) { 2122 apid_cleared = false; 2123 2124 for_each_set_bit_inv(apqi, aqm, AP_DOMAINS) { 2125 status = ap_test_queue(AP_MKQID(apid, apqi), 1, &info); 2126 switch (status.response_code) { 2127 /* 2128 * According to the architecture in each case 2129 * below, the queue's info should be filled. 2130 */ 2131 case AP_RESPONSE_NORMAL: 2132 case AP_RESPONSE_RESET_IN_PROGRESS: 2133 case AP_RESPONSE_DECONFIGURED: 2134 case AP_RESPONSE_CHECKSTOPPED: 2135 case AP_RESPONSE_BUSY: 2136 /* 2137 * The vfio_ap device driver only 2138 * supports CEX4 and newer adapters, so 2139 * remove the APID if the adapter is 2140 * older than a CEX4. 2141 */ 2142 if (info.at < AP_DEVICE_TYPE_CEX4) { 2143 clear_bit_inv(apid, apm); 2144 apid_cleared = true; 2145 } 2146 2147 break; 2148 2149 default: 2150 /* 2151 * If we don't know the adapter type, 2152 * clear its APID since it can't be 2153 * determined whether the vfio_ap 2154 * device driver supports it. 2155 */ 2156 clear_bit_inv(apid, apm); 2157 apid_cleared = true; 2158 break; 2159 } 2160 2161 /* 2162 * If we've already cleared the APID from the apm, there 2163 * is no need to continue examining the remainin AP 2164 * queues to determine the type of the adapter. 2165 */ 2166 if (apid_cleared) 2167 continue; 2168 } 2169 } 2170 } 2171 2172 /** 2173 * vfio_ap_mdev_cfg_add - store bitmaps specifying the adapters, domains and 2174 * control domains that have been added to the host's 2175 * AP configuration for each matrix mdev to which they 2176 * are assigned. 2177 * 2178 * @apm_add: a bitmap specifying the adapters that have been added to the AP 2179 * configuration. 2180 * @aqm_add: a bitmap specifying the domains that have been added to the AP 2181 * configuration. 2182 * @adm_add: a bitmap specifying the control domains that have been added to the 2183 * AP configuration. 2184 */ 2185 static void vfio_ap_mdev_cfg_add(unsigned long *apm_add, unsigned long *aqm_add, 2186 unsigned long *adm_add) 2187 { 2188 struct ap_matrix_mdev *matrix_mdev; 2189 2190 if (list_empty(&matrix_dev->mdev_list)) 2191 return; 2192 2193 vfio_ap_filter_apid_by_qtype(apm_add, aqm_add); 2194 2195 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { 2196 bitmap_and(matrix_mdev->apm_add, 2197 matrix_mdev->matrix.apm, apm_add, AP_DEVICES); 2198 bitmap_and(matrix_mdev->aqm_add, 2199 matrix_mdev->matrix.aqm, aqm_add, AP_DOMAINS); 2200 bitmap_and(matrix_mdev->adm_add, 2201 matrix_mdev->matrix.adm, adm_add, AP_DEVICES); 2202 } 2203 } 2204 2205 /** 2206 * vfio_ap_mdev_on_cfg_add - responds to the addition of adapters, domains and 2207 * control domains to the host AP configuration 2208 * by updating the bitmaps that specify what adapters, 2209 * domains and control domains have been added so they 2210 * can be hot plugged into the guest when the AP bus 2211 * scan completes (see vfio_ap_on_scan_complete 2212 * function). 2213 * @cur_config_info: the current AP configuration information 2214 * @prev_config_info: the previous AP configuration information 2215 */ 2216 static void vfio_ap_mdev_on_cfg_add(struct ap_config_info *cur_config_info, 2217 struct ap_config_info *prev_config_info) 2218 { 2219 bool do_add; 2220 DECLARE_BITMAP(apm_add, AP_DEVICES); 2221 DECLARE_BITMAP(aqm_add, AP_DOMAINS); 2222 DECLARE_BITMAP(adm_add, AP_DOMAINS); 2223 2224 do_add = bitmap_andnot(apm_add, 2225 (unsigned long *)cur_config_info->apm, 2226 (unsigned long *)prev_config_info->apm, 2227 AP_DEVICES); 2228 do_add |= bitmap_andnot(aqm_add, 2229 (unsigned long *)cur_config_info->aqm, 2230 (unsigned long *)prev_config_info->aqm, 2231 AP_DOMAINS); 2232 do_add |= bitmap_andnot(adm_add, 2233 (unsigned long *)cur_config_info->adm, 2234 (unsigned long *)prev_config_info->adm, 2235 AP_DOMAINS); 2236 2237 if (do_add) 2238 vfio_ap_mdev_cfg_add(apm_add, aqm_add, adm_add); 2239 } 2240 2241 /** 2242 * vfio_ap_on_cfg_changed - handles notification of changes to the host AP 2243 * configuration. 2244 * 2245 * @cur_cfg_info: the current host AP configuration 2246 * @prev_cfg_info: the previous host AP configuration 2247 */ 2248 void vfio_ap_on_cfg_changed(struct ap_config_info *cur_cfg_info, 2249 struct ap_config_info *prev_cfg_info) 2250 { 2251 if (!cur_cfg_info || !prev_cfg_info) 2252 return; 2253 2254 mutex_lock(&matrix_dev->guests_lock); 2255 2256 vfio_ap_mdev_on_cfg_remove(cur_cfg_info, prev_cfg_info); 2257 vfio_ap_mdev_on_cfg_add(cur_cfg_info, prev_cfg_info); 2258 memcpy(&matrix_dev->info, cur_cfg_info, sizeof(*cur_cfg_info)); 2259 2260 mutex_unlock(&matrix_dev->guests_lock); 2261 } 2262 2263 static void vfio_ap_mdev_hot_plug_cfg(struct ap_matrix_mdev *matrix_mdev) 2264 { 2265 bool do_hotplug = false; 2266 int filter_domains = 0; 2267 int filter_adapters = 0; 2268 DECLARE_BITMAP(apm, AP_DEVICES); 2269 DECLARE_BITMAP(aqm, AP_DOMAINS); 2270 2271 mutex_lock(&matrix_mdev->kvm->lock); 2272 mutex_lock(&matrix_dev->mdevs_lock); 2273 2274 filter_adapters = bitmap_and(apm, matrix_mdev->matrix.apm, 2275 matrix_mdev->apm_add, AP_DEVICES); 2276 filter_domains = bitmap_and(aqm, matrix_mdev->matrix.aqm, 2277 matrix_mdev->aqm_add, AP_DOMAINS); 2278 2279 if (filter_adapters && filter_domains) 2280 do_hotplug |= vfio_ap_mdev_filter_matrix(apm, aqm, matrix_mdev); 2281 else if (filter_adapters) 2282 do_hotplug |= 2283 vfio_ap_mdev_filter_matrix(apm, 2284 matrix_mdev->shadow_apcb.aqm, 2285 matrix_mdev); 2286 else 2287 do_hotplug |= 2288 vfio_ap_mdev_filter_matrix(matrix_mdev->shadow_apcb.apm, 2289 aqm, matrix_mdev); 2290 2291 if (bitmap_intersects(matrix_mdev->matrix.adm, matrix_mdev->adm_add, 2292 AP_DOMAINS)) 2293 do_hotplug |= vfio_ap_mdev_filter_cdoms(matrix_mdev); 2294 2295 if (do_hotplug) 2296 vfio_ap_mdev_update_guest_apcb(matrix_mdev); 2297 2298 mutex_unlock(&matrix_dev->mdevs_lock); 2299 mutex_unlock(&matrix_mdev->kvm->lock); 2300 } 2301 2302 void vfio_ap_on_scan_complete(struct ap_config_info *new_config_info, 2303 struct ap_config_info *old_config_info) 2304 { 2305 struct ap_matrix_mdev *matrix_mdev; 2306 2307 mutex_lock(&matrix_dev->guests_lock); 2308 2309 list_for_each_entry(matrix_mdev, &matrix_dev->mdev_list, node) { 2310 if (bitmap_empty(matrix_mdev->apm_add, AP_DEVICES) && 2311 bitmap_empty(matrix_mdev->aqm_add, AP_DOMAINS) && 2312 bitmap_empty(matrix_mdev->adm_add, AP_DOMAINS)) 2313 continue; 2314 2315 vfio_ap_mdev_hot_plug_cfg(matrix_mdev); 2316 bitmap_clear(matrix_mdev->apm_add, 0, AP_DEVICES); 2317 bitmap_clear(matrix_mdev->aqm_add, 0, AP_DOMAINS); 2318 bitmap_clear(matrix_mdev->adm_add, 0, AP_DOMAINS); 2319 } 2320 2321 mutex_unlock(&matrix_dev->guests_lock); 2322 } 2323