xref: /openbmc/linux/drivers/s390/crypto/pkey_api.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  pkey device driver
4  *
5  *  Copyright IBM Corp. 2017,2019
6  *  Author(s): Harald Freudenberger
7  */
8 
9 #define KMSG_COMPONENT "pkey"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11 
12 #include <linux/fs.h>
13 #include <linux/init.h>
14 #include <linux/miscdevice.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kallsyms.h>
18 #include <linux/debugfs.h>
19 #include <linux/random.h>
20 #include <linux/cpufeature.h>
21 #include <asm/zcrypt.h>
22 #include <asm/cpacf.h>
23 #include <asm/pkey.h>
24 #include <crypto/aes.h>
25 
26 #include "zcrypt_api.h"
27 #include "zcrypt_ccamisc.h"
28 #include "zcrypt_ep11misc.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("IBM Corporation");
32 MODULE_DESCRIPTION("s390 protected key interface");
33 
34 #define KEYBLOBBUFSIZE 8192  /* key buffer size used for internal processing */
35 #define MAXAPQNSINLIST 64    /* max 64 apqns within a apqn list */
36 
37 /* mask of available pckmo subfunctions, fetched once at module init */
38 static cpacf_mask_t pckmo_functions;
39 
40 /*
41  * debug feature data and functions
42  */
43 
44 static debug_info_t *debug_info;
45 
46 #define DEBUG_DBG(...)	debug_sprintf_event(debug_info, 6, ##__VA_ARGS__)
47 #define DEBUG_INFO(...) debug_sprintf_event(debug_info, 5, ##__VA_ARGS__)
48 #define DEBUG_WARN(...) debug_sprintf_event(debug_info, 4, ##__VA_ARGS__)
49 #define DEBUG_ERR(...)	debug_sprintf_event(debug_info, 3, ##__VA_ARGS__)
50 
51 static void __init pkey_debug_init(void)
52 {
53 	/* 5 arguments per dbf entry (including the format string ptr) */
54 	debug_info = debug_register("pkey", 1, 1, 5 * sizeof(long));
55 	debug_register_view(debug_info, &debug_sprintf_view);
56 	debug_set_level(debug_info, 3);
57 }
58 
59 static void __exit pkey_debug_exit(void)
60 {
61 	debug_unregister(debug_info);
62 }
63 
64 /* inside view of a protected key token (only type 0x00 version 0x01) */
65 struct protaeskeytoken {
66 	u8  type;     /* 0x00 for PAES specific key tokens */
67 	u8  res0[3];
68 	u8  version;  /* should be 0x01 for protected AES key token */
69 	u8  res1[3];
70 	u32 keytype;  /* key type, one of the PKEY_KEYTYPE values */
71 	u32 len;      /* bytes actually stored in protkey[] */
72 	u8  protkey[MAXPROTKEYSIZE]; /* the protected key blob */
73 } __packed;
74 
75 /* inside view of a clear key token (type 0x00 version 0x02) */
76 struct clearaeskeytoken {
77 	u8  type;	 /* 0x00 for PAES specific key tokens */
78 	u8  res0[3];
79 	u8  version;	 /* 0x02 for clear AES key token */
80 	u8  res1[3];
81 	u32 keytype;	 /* key type, one of the PKEY_KEYTYPE values */
82 	u32 len;	 /* bytes actually stored in clearkey[] */
83 	u8  clearkey[]; /* clear key value */
84 } __packed;
85 
86 /*
87  * Create a protected key from a clear key value.
88  */
89 static int pkey_clr2protkey(u32 keytype,
90 			    const struct pkey_clrkey *clrkey,
91 			    struct pkey_protkey *protkey)
92 {
93 	long fc;
94 	int keysize;
95 	u8 paramblock[64];
96 
97 	switch (keytype) {
98 	case PKEY_KEYTYPE_AES_128:
99 		keysize = 16;
100 		fc = CPACF_PCKMO_ENC_AES_128_KEY;
101 		break;
102 	case PKEY_KEYTYPE_AES_192:
103 		keysize = 24;
104 		fc = CPACF_PCKMO_ENC_AES_192_KEY;
105 		break;
106 	case PKEY_KEYTYPE_AES_256:
107 		keysize = 32;
108 		fc = CPACF_PCKMO_ENC_AES_256_KEY;
109 		break;
110 	default:
111 		DEBUG_ERR("%s unknown/unsupported keytype %d\n",
112 			  __func__, keytype);
113 		return -EINVAL;
114 	}
115 
116 	/*
117 	 * Check if the needed pckmo subfunction is available.
118 	 * These subfunctions can be enabled/disabled by customers
119 	 * in the LPAR profile or may even change on the fly.
120 	 */
121 	if (!cpacf_test_func(&pckmo_functions, fc)) {
122 		DEBUG_ERR("%s pckmo functions not available\n", __func__);
123 		return -ENODEV;
124 	}
125 
126 	/* prepare param block */
127 	memset(paramblock, 0, sizeof(paramblock));
128 	memcpy(paramblock, clrkey->clrkey, keysize);
129 
130 	/* call the pckmo instruction */
131 	cpacf_pckmo(fc, paramblock);
132 
133 	/* copy created protected key */
134 	protkey->type = keytype;
135 	protkey->len = keysize + 32;
136 	memcpy(protkey->protkey, paramblock, keysize + 32);
137 
138 	return 0;
139 }
140 
141 /*
142  * Find card and transform secure key into protected key.
143  */
144 static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey)
145 {
146 	int rc, verify;
147 	u16 cardnr, domain;
148 	struct keytoken_header *hdr = (struct keytoken_header *)key;
149 
150 	/*
151 	 * The cca_xxx2protkey call may fail when a card has been
152 	 * addressed where the master key was changed after last fetch
153 	 * of the mkvp into the cache. Try 3 times: First witout verify
154 	 * then with verify and last round with verify and old master
155 	 * key verification pattern match not ignored.
156 	 */
157 	for (verify = 0; verify < 3; verify++) {
158 		rc = cca_findcard(key, &cardnr, &domain, verify);
159 		if (rc < 0)
160 			continue;
161 		if (rc > 0 && verify < 2)
162 			continue;
163 		switch (hdr->version) {
164 		case TOKVER_CCA_AES:
165 			rc = cca_sec2protkey(cardnr, domain,
166 					     key, pkey->protkey,
167 					     &pkey->len, &pkey->type);
168 			break;
169 		case TOKVER_CCA_VLSC:
170 			rc = cca_cipher2protkey(cardnr, domain,
171 						key, pkey->protkey,
172 						&pkey->len, &pkey->type);
173 			break;
174 		default:
175 			return -EINVAL;
176 		}
177 		if (rc == 0)
178 			break;
179 	}
180 
181 	if (rc)
182 		DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
183 
184 	return rc;
185 }
186 
187 /*
188  * Construct EP11 key with given clear key value.
189  */
190 static int pkey_clr2ep11key(const u8 *clrkey, size_t clrkeylen,
191 			    u8 *keybuf, size_t *keybuflen)
192 {
193 	int i, rc;
194 	u16 card, dom;
195 	u32 nr_apqns, *apqns = NULL;
196 
197 	/* build a list of apqns suitable for ep11 keys with cpacf support */
198 	rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
199 			    ZCRYPT_CEX7, EP11_API_V, NULL);
200 	if (rc)
201 		goto out;
202 
203 	/* go through the list of apqns and try to bild an ep11 key */
204 	for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
205 		card = apqns[i] >> 16;
206 		dom = apqns[i] & 0xFFFF;
207 		rc = ep11_clr2keyblob(card, dom, clrkeylen * 8,
208 				      0, clrkey, keybuf, keybuflen);
209 		if (rc == 0)
210 			break;
211 	}
212 
213 out:
214 	kfree(apqns);
215 	if (rc)
216 		DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
217 	return rc;
218 }
219 
220 /*
221  * Find card and transform EP11 secure key into protected key.
222  */
223 static int pkey_ep11key2pkey(const u8 *key, struct pkey_protkey *pkey)
224 {
225 	int i, rc;
226 	u16 card, dom;
227 	u32 nr_apqns, *apqns = NULL;
228 	struct ep11keyblob *kb = (struct ep11keyblob *) key;
229 
230 	/* build a list of apqns suitable for this key */
231 	rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
232 			    ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
233 	if (rc)
234 		goto out;
235 
236 	/* go through the list of apqns and try to derive an pkey */
237 	for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
238 		card = apqns[i] >> 16;
239 		dom = apqns[i] & 0xFFFF;
240 		rc = ep11_key2protkey(card, dom, key, kb->head.len,
241 				      pkey->protkey, &pkey->len, &pkey->type);
242 		if (rc == 0)
243 			break;
244 	}
245 
246 out:
247 	kfree(apqns);
248 	if (rc)
249 		DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
250 	return rc;
251 }
252 
253 /*
254  * Verify key and give back some info about the key.
255  */
256 static int pkey_verifykey(const struct pkey_seckey *seckey,
257 			  u16 *pcardnr, u16 *pdomain,
258 			  u16 *pkeysize, u32 *pattributes)
259 {
260 	struct secaeskeytoken *t = (struct secaeskeytoken *) seckey;
261 	u16 cardnr, domain;
262 	int rc;
263 
264 	/* check the secure key for valid AES secure key */
265 	rc = cca_check_secaeskeytoken(debug_info, 3, (u8 *) seckey, 0);
266 	if (rc)
267 		goto out;
268 	if (pattributes)
269 		*pattributes = PKEY_VERIFY_ATTR_AES;
270 	if (pkeysize)
271 		*pkeysize = t->bitsize;
272 
273 	/* try to find a card which can handle this key */
274 	rc = cca_findcard(seckey->seckey, &cardnr, &domain, 1);
275 	if (rc < 0)
276 		goto out;
277 
278 	if (rc > 0) {
279 		/* key mkvp matches to old master key mkvp */
280 		DEBUG_DBG("%s secure key has old mkvp\n", __func__);
281 		if (pattributes)
282 			*pattributes |= PKEY_VERIFY_ATTR_OLD_MKVP;
283 		rc = 0;
284 	}
285 
286 	if (pcardnr)
287 		*pcardnr = cardnr;
288 	if (pdomain)
289 		*pdomain = domain;
290 
291 out:
292 	DEBUG_DBG("%s rc=%d\n", __func__, rc);
293 	return rc;
294 }
295 
296 /*
297  * Generate a random protected key
298  */
299 static int pkey_genprotkey(u32 keytype, struct pkey_protkey *protkey)
300 {
301 	struct pkey_clrkey clrkey;
302 	int keysize;
303 	int rc;
304 
305 	switch (keytype) {
306 	case PKEY_KEYTYPE_AES_128:
307 		keysize = 16;
308 		break;
309 	case PKEY_KEYTYPE_AES_192:
310 		keysize = 24;
311 		break;
312 	case PKEY_KEYTYPE_AES_256:
313 		keysize = 32;
314 		break;
315 	default:
316 		DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
317 			  keytype);
318 		return -EINVAL;
319 	}
320 
321 	/* generate a dummy random clear key */
322 	get_random_bytes(clrkey.clrkey, keysize);
323 
324 	/* convert it to a dummy protected key */
325 	rc = pkey_clr2protkey(keytype, &clrkey, protkey);
326 	if (rc)
327 		return rc;
328 
329 	/* replace the key part of the protected key with random bytes */
330 	get_random_bytes(protkey->protkey, keysize);
331 
332 	return 0;
333 }
334 
335 /*
336  * Verify if a protected key is still valid
337  */
338 static int pkey_verifyprotkey(const struct pkey_protkey *protkey)
339 {
340 	unsigned long fc;
341 	struct {
342 		u8 iv[AES_BLOCK_SIZE];
343 		u8 key[MAXPROTKEYSIZE];
344 	} param;
345 	u8 null_msg[AES_BLOCK_SIZE];
346 	u8 dest_buf[AES_BLOCK_SIZE];
347 	unsigned int k;
348 
349 	switch (protkey->type) {
350 	case PKEY_KEYTYPE_AES_128:
351 		fc = CPACF_KMC_PAES_128;
352 		break;
353 	case PKEY_KEYTYPE_AES_192:
354 		fc = CPACF_KMC_PAES_192;
355 		break;
356 	case PKEY_KEYTYPE_AES_256:
357 		fc = CPACF_KMC_PAES_256;
358 		break;
359 	default:
360 		DEBUG_ERR("%s unknown/unsupported keytype %d\n", __func__,
361 			  protkey->type);
362 		return -EINVAL;
363 	}
364 
365 	memset(null_msg, 0, sizeof(null_msg));
366 
367 	memset(param.iv, 0, sizeof(param.iv));
368 	memcpy(param.key, protkey->protkey, sizeof(param.key));
369 
370 	k = cpacf_kmc(fc | CPACF_ENCRYPT, &param, null_msg, dest_buf,
371 		      sizeof(null_msg));
372 	if (k != sizeof(null_msg)) {
373 		DEBUG_ERR("%s protected key is not valid\n", __func__);
374 		return -EKEYREJECTED;
375 	}
376 
377 	return 0;
378 }
379 
380 /*
381  * Transform a non-CCA key token into a protected key
382  */
383 static int pkey_nonccatok2pkey(const u8 *key, u32 keylen,
384 			       struct pkey_protkey *protkey)
385 {
386 	int rc = -EINVAL;
387 	u8 *tmpbuf = NULL;
388 	struct keytoken_header *hdr = (struct keytoken_header *)key;
389 
390 	switch (hdr->version) {
391 	case TOKVER_PROTECTED_KEY: {
392 		struct protaeskeytoken *t;
393 
394 		if (keylen != sizeof(struct protaeskeytoken))
395 			goto out;
396 		t = (struct protaeskeytoken *)key;
397 		protkey->len = t->len;
398 		protkey->type = t->keytype;
399 		memcpy(protkey->protkey, t->protkey,
400 		       sizeof(protkey->protkey));
401 		rc = pkey_verifyprotkey(protkey);
402 		break;
403 	}
404 	case TOKVER_CLEAR_KEY: {
405 		struct clearaeskeytoken *t;
406 		struct pkey_clrkey ckey;
407 		union u_tmpbuf {
408 			u8 skey[SECKEYBLOBSIZE];
409 			u8 ep11key[MAXEP11AESKEYBLOBSIZE];
410 		};
411 		size_t tmpbuflen = sizeof(union u_tmpbuf);
412 
413 		if (keylen < sizeof(struct clearaeskeytoken))
414 			goto out;
415 		t = (struct clearaeskeytoken *)key;
416 		if (keylen != sizeof(*t) + t->len)
417 			goto out;
418 		if ((t->keytype == PKEY_KEYTYPE_AES_128 && t->len == 16)
419 		    || (t->keytype == PKEY_KEYTYPE_AES_192 && t->len == 24)
420 		    || (t->keytype == PKEY_KEYTYPE_AES_256 && t->len == 32))
421 			memcpy(ckey.clrkey, t->clearkey, t->len);
422 		else
423 			goto out;
424 		/* alloc temp key buffer space */
425 		tmpbuf = kmalloc(tmpbuflen, GFP_ATOMIC);
426 		if (!tmpbuf) {
427 			rc = -ENOMEM;
428 			goto out;
429 		}
430 		/* try direct way with the PCKMO instruction */
431 		rc = pkey_clr2protkey(t->keytype, &ckey, protkey);
432 		if (rc == 0)
433 			break;
434 		/* PCKMO failed, so try the CCA secure key way */
435 		rc = cca_clr2seckey(0xFFFF, 0xFFFF, t->keytype,
436 				    ckey.clrkey, tmpbuf);
437 		if (rc == 0)
438 			rc = pkey_skey2pkey(tmpbuf, protkey);
439 		if (rc == 0)
440 			break;
441 		/* if the CCA way also failed, let's try via EP11 */
442 		rc = pkey_clr2ep11key(ckey.clrkey, t->len,
443 				      tmpbuf, &tmpbuflen);
444 		if (rc == 0)
445 			rc = pkey_ep11key2pkey(tmpbuf, protkey);
446 		/* now we should really have an protected key */
447 		DEBUG_ERR("%s unable to build protected key from clear",
448 			  __func__);
449 		break;
450 	}
451 	case TOKVER_EP11_AES: {
452 		if (keylen < MINEP11AESKEYBLOBSIZE)
453 			goto out;
454 		/* check ep11 key for exportable as protected key */
455 		rc = ep11_check_aeskeyblob(debug_info, 3, key, 0, 1);
456 		if (rc)
457 			goto out;
458 		rc = pkey_ep11key2pkey(key, protkey);
459 		break;
460 	}
461 	default:
462 		DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n",
463 			  __func__, hdr->version);
464 		rc = -EINVAL;
465 	}
466 
467 out:
468 	kfree(tmpbuf);
469 	return rc;
470 }
471 
472 /*
473  * Transform a CCA internal key token into a protected key
474  */
475 static int pkey_ccainttok2pkey(const u8 *key, u32 keylen,
476 			       struct pkey_protkey *protkey)
477 {
478 	struct keytoken_header *hdr = (struct keytoken_header *)key;
479 
480 	switch (hdr->version) {
481 	case TOKVER_CCA_AES:
482 		if (keylen != sizeof(struct secaeskeytoken))
483 			return -EINVAL;
484 		break;
485 	case TOKVER_CCA_VLSC:
486 		if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
487 			return -EINVAL;
488 		break;
489 	default:
490 		DEBUG_ERR("%s unknown/unsupported CCA internal token version %d\n",
491 			  __func__, hdr->version);
492 		return -EINVAL;
493 	}
494 
495 	return pkey_skey2pkey(key, protkey);
496 }
497 
498 /*
499  * Transform a key blob (of any type) into a protected key
500  */
501 int pkey_keyblob2pkey(const u8 *key, u32 keylen,
502 		      struct pkey_protkey *protkey)
503 {
504 	int rc;
505 	struct keytoken_header *hdr = (struct keytoken_header *)key;
506 
507 	if (keylen < sizeof(struct keytoken_header)) {
508 		DEBUG_ERR("%s invalid keylen %d\n", __func__, keylen);
509 		return -EINVAL;
510 	}
511 
512 	switch (hdr->type) {
513 	case TOKTYPE_NON_CCA:
514 		rc = pkey_nonccatok2pkey(key, keylen, protkey);
515 		break;
516 	case TOKTYPE_CCA_INTERNAL:
517 		rc = pkey_ccainttok2pkey(key, keylen, protkey);
518 		break;
519 	default:
520 		DEBUG_ERR("%s unknown/unsupported blob type %d\n",
521 			  __func__, hdr->type);
522 		return -EINVAL;
523 	}
524 
525 	DEBUG_DBG("%s rc=%d\n", __func__, rc);
526 	return rc;
527 
528 }
529 EXPORT_SYMBOL(pkey_keyblob2pkey);
530 
531 static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
532 			   enum pkey_key_type ktype, enum pkey_key_size ksize,
533 			   u32 kflags, u8 *keybuf, size_t *keybufsize)
534 {
535 	int i, card, dom, rc;
536 
537 	/* check for at least one apqn given */
538 	if (!apqns || !nr_apqns)
539 		return -EINVAL;
540 
541 	/* check key type and size */
542 	switch (ktype) {
543 	case PKEY_TYPE_CCA_DATA:
544 	case PKEY_TYPE_CCA_CIPHER:
545 		if (*keybufsize < SECKEYBLOBSIZE)
546 			return -EINVAL;
547 		break;
548 	case PKEY_TYPE_EP11:
549 		if (*keybufsize < MINEP11AESKEYBLOBSIZE)
550 			return -EINVAL;
551 		break;
552 	default:
553 		return -EINVAL;
554 	}
555 	switch (ksize) {
556 	case PKEY_SIZE_AES_128:
557 	case PKEY_SIZE_AES_192:
558 	case PKEY_SIZE_AES_256:
559 		break;
560 	default:
561 		return -EINVAL;
562 	}
563 
564 	/* simple try all apqns from the list */
565 	for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
566 		card = apqns[i].card;
567 		dom = apqns[i].domain;
568 		if (ktype == PKEY_TYPE_EP11) {
569 			rc = ep11_genaeskey(card, dom, ksize, kflags,
570 					    keybuf, keybufsize);
571 		} else if (ktype == PKEY_TYPE_CCA_DATA) {
572 			rc = cca_genseckey(card, dom, ksize, keybuf);
573 			*keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
574 		} else /* TOKVER_CCA_VLSC */
575 			rc = cca_gencipherkey(card, dom, ksize, kflags,
576 					      keybuf, keybufsize);
577 		if (rc == 0)
578 			break;
579 	}
580 
581 	return rc;
582 }
583 
584 static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
585 			    enum pkey_key_type ktype, enum pkey_key_size ksize,
586 			    u32 kflags, const u8 *clrkey,
587 			    u8 *keybuf, size_t *keybufsize)
588 {
589 	int i, card, dom, rc;
590 
591 	/* check for at least one apqn given */
592 	if (!apqns || !nr_apqns)
593 		return -EINVAL;
594 
595 	/* check key type and size */
596 	switch (ktype) {
597 	case PKEY_TYPE_CCA_DATA:
598 	case PKEY_TYPE_CCA_CIPHER:
599 		if (*keybufsize < SECKEYBLOBSIZE)
600 			return -EINVAL;
601 		break;
602 	case PKEY_TYPE_EP11:
603 		if (*keybufsize < MINEP11AESKEYBLOBSIZE)
604 			return -EINVAL;
605 		break;
606 	default:
607 		return -EINVAL;
608 	}
609 	switch (ksize) {
610 	case PKEY_SIZE_AES_128:
611 	case PKEY_SIZE_AES_192:
612 	case PKEY_SIZE_AES_256:
613 		break;
614 	default:
615 		return -EINVAL;
616 	}
617 
618 	/* simple try all apqns from the list */
619 	for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
620 		card = apqns[i].card;
621 		dom = apqns[i].domain;
622 		if (ktype == PKEY_TYPE_EP11) {
623 			rc = ep11_clr2keyblob(card, dom, ksize, kflags,
624 					      clrkey, keybuf, keybufsize);
625 		} else if (ktype == PKEY_TYPE_CCA_DATA) {
626 			rc = cca_clr2seckey(card, dom, ksize,
627 					    clrkey, keybuf);
628 			*keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
629 		} else /* TOKVER_CCA_VLSC */
630 			rc = cca_clr2cipherkey(card, dom, ksize, kflags,
631 					       clrkey, keybuf, keybufsize);
632 		if (rc == 0)
633 			break;
634 	}
635 
636 	return rc;
637 }
638 
639 static int pkey_verifykey2(const u8 *key, size_t keylen,
640 			   u16 *cardnr, u16 *domain,
641 			   enum pkey_key_type *ktype,
642 			   enum pkey_key_size *ksize, u32 *flags)
643 {
644 	int rc;
645 	u32 _nr_apqns, *_apqns = NULL;
646 	struct keytoken_header *hdr = (struct keytoken_header *)key;
647 
648 	if (keylen < sizeof(struct keytoken_header))
649 		return -EINVAL;
650 
651 	if (hdr->type == TOKTYPE_CCA_INTERNAL
652 	    && hdr->version == TOKVER_CCA_AES) {
653 		struct secaeskeytoken *t = (struct secaeskeytoken *)key;
654 
655 		rc = cca_check_secaeskeytoken(debug_info, 3, key, 0);
656 		if (rc)
657 			goto out;
658 		if (ktype)
659 			*ktype = PKEY_TYPE_CCA_DATA;
660 		if (ksize)
661 			*ksize = (enum pkey_key_size) t->bitsize;
662 
663 		rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
664 				   ZCRYPT_CEX3C, t->mkvp, 0, 1);
665 		if (rc == 0 && flags)
666 			*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
667 		if (rc == -ENODEV) {
668 			rc = cca_findcard2(&_apqns, &_nr_apqns,
669 					   *cardnr, *domain,
670 					   ZCRYPT_CEX3C, 0, t->mkvp, 1);
671 			if (rc == 0 && flags)
672 				*flags = PKEY_FLAGS_MATCH_ALT_MKVP;
673 		}
674 		if (rc)
675 			goto out;
676 
677 		*cardnr = ((struct pkey_apqn *)_apqns)->card;
678 		*domain = ((struct pkey_apqn *)_apqns)->domain;
679 
680 	} else if (hdr->type == TOKTYPE_CCA_INTERNAL
681 		   && hdr->version == TOKVER_CCA_VLSC) {
682 		struct cipherkeytoken *t = (struct cipherkeytoken *)key;
683 
684 		rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1);
685 		if (rc)
686 			goto out;
687 		if (ktype)
688 			*ktype = PKEY_TYPE_CCA_CIPHER;
689 		if (ksize) {
690 			*ksize = PKEY_SIZE_UNKNOWN;
691 			if (!t->plfver && t->wpllen == 512)
692 				*ksize = PKEY_SIZE_AES_128;
693 			else if (!t->plfver && t->wpllen == 576)
694 				*ksize = PKEY_SIZE_AES_192;
695 			else if (!t->plfver && t->wpllen == 640)
696 				*ksize = PKEY_SIZE_AES_256;
697 		}
698 
699 		rc = cca_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
700 				   ZCRYPT_CEX6, t->mkvp0, 0, 1);
701 		if (rc == 0 && flags)
702 			*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
703 		if (rc == -ENODEV) {
704 			rc = cca_findcard2(&_apqns, &_nr_apqns,
705 					   *cardnr, *domain,
706 					   ZCRYPT_CEX6, 0, t->mkvp0, 1);
707 			if (rc == 0 && flags)
708 				*flags = PKEY_FLAGS_MATCH_ALT_MKVP;
709 		}
710 		if (rc)
711 			goto out;
712 
713 		*cardnr = ((struct pkey_apqn *)_apqns)->card;
714 		*domain = ((struct pkey_apqn *)_apqns)->domain;
715 
716 	} else if (hdr->type == TOKTYPE_NON_CCA
717 		   && hdr->version == TOKVER_EP11_AES) {
718 		struct ep11keyblob *kb = (struct ep11keyblob *)key;
719 
720 		rc = ep11_check_aeskeyblob(debug_info, 3, key, 0, 1);
721 		if (rc)
722 			goto out;
723 		if (ktype)
724 			*ktype = PKEY_TYPE_EP11;
725 		if (ksize)
726 			*ksize = kb->head.keybitlen;
727 
728 		rc = ep11_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
729 				    ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
730 		if (rc)
731 			goto out;
732 
733 		if (flags)
734 			*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
735 
736 		*cardnr = ((struct pkey_apqn *)_apqns)->card;
737 		*domain = ((struct pkey_apqn *)_apqns)->domain;
738 
739 	} else
740 		rc = -EINVAL;
741 
742 out:
743 	kfree(_apqns);
744 	return rc;
745 }
746 
747 static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
748 			      const u8 *key, size_t keylen,
749 			      struct pkey_protkey *pkey)
750 {
751 	int i, card, dom, rc;
752 	struct keytoken_header *hdr = (struct keytoken_header *)key;
753 
754 	/* check for at least one apqn given */
755 	if (!apqns || !nr_apqns)
756 		return -EINVAL;
757 
758 	if (keylen < sizeof(struct keytoken_header))
759 		return -EINVAL;
760 
761 	if (hdr->type == TOKTYPE_CCA_INTERNAL) {
762 		if (hdr->version == TOKVER_CCA_AES) {
763 			if (keylen != sizeof(struct secaeskeytoken))
764 				return -EINVAL;
765 			if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
766 				return -EINVAL;
767 		} else if (hdr->version == TOKVER_CCA_VLSC) {
768 			if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
769 				return -EINVAL;
770 			if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
771 				return -EINVAL;
772 		} else {
773 			DEBUG_ERR("%s unknown CCA internal token version %d\n",
774 				  __func__, hdr->version);
775 			return -EINVAL;
776 		}
777 	} else if (hdr->type == TOKTYPE_NON_CCA) {
778 		if (hdr->version == TOKVER_EP11_AES) {
779 			if (keylen < sizeof(struct ep11keyblob))
780 				return -EINVAL;
781 			if (ep11_check_aeskeyblob(debug_info, 3, key, 0, 1))
782 				return -EINVAL;
783 		} else {
784 			return pkey_nonccatok2pkey(key, keylen, pkey);
785 		}
786 	} else {
787 		DEBUG_ERR("%s unknown/unsupported blob type %d\n",
788 			  __func__, hdr->type);
789 		return -EINVAL;
790 	}
791 
792 	/* simple try all apqns from the list */
793 	for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
794 		card = apqns[i].card;
795 		dom = apqns[i].domain;
796 		if (hdr->type == TOKTYPE_CCA_INTERNAL
797 		    && hdr->version == TOKVER_CCA_AES)
798 			rc = cca_sec2protkey(card, dom, key, pkey->protkey,
799 					     &pkey->len, &pkey->type);
800 		else if (hdr->type == TOKTYPE_CCA_INTERNAL
801 			 && hdr->version == TOKVER_CCA_VLSC)
802 			rc = cca_cipher2protkey(card, dom, key, pkey->protkey,
803 						&pkey->len, &pkey->type);
804 		else { /* EP11 AES secure key blob */
805 			struct ep11keyblob *kb = (struct ep11keyblob *) key;
806 
807 			rc = ep11_key2protkey(card, dom, key, kb->head.len,
808 					      pkey->protkey, &pkey->len,
809 					      &pkey->type);
810 		}
811 		if (rc == 0)
812 			break;
813 	}
814 
815 	return rc;
816 }
817 
818 static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
819 			  struct pkey_apqn *apqns, size_t *nr_apqns)
820 {
821 	int rc = EINVAL;
822 	u32 _nr_apqns, *_apqns = NULL;
823 	struct keytoken_header *hdr = (struct keytoken_header *)key;
824 
825 	if (keylen < sizeof(struct keytoken_header) || flags == 0)
826 		return -EINVAL;
827 
828 	if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES) {
829 		int minhwtype = 0, api = 0;
830 		struct ep11keyblob *kb = (struct ep11keyblob *) key;
831 
832 		if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
833 			return -EINVAL;
834 		if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
835 			minhwtype = ZCRYPT_CEX7;
836 			api = EP11_API_V;
837 		}
838 		rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
839 				    minhwtype, api, kb->wkvp);
840 		if (rc)
841 			goto out;
842 	} else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
843 		int minhwtype = ZCRYPT_CEX3C;
844 		u64 cur_mkvp = 0, old_mkvp = 0;
845 
846 		if (hdr->version == TOKVER_CCA_AES) {
847 			struct secaeskeytoken *t = (struct secaeskeytoken *)key;
848 
849 			if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
850 				cur_mkvp = t->mkvp;
851 			if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
852 				old_mkvp = t->mkvp;
853 		} else if (hdr->version == TOKVER_CCA_VLSC) {
854 			struct cipherkeytoken *t = (struct cipherkeytoken *)key;
855 
856 			minhwtype = ZCRYPT_CEX6;
857 			if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
858 				cur_mkvp = t->mkvp0;
859 			if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
860 				old_mkvp = t->mkvp0;
861 		} else {
862 			/* unknown cca internal token type */
863 			return -EINVAL;
864 		}
865 		rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
866 				   minhwtype, cur_mkvp, old_mkvp, 1);
867 		if (rc)
868 			goto out;
869 	} else
870 		return -EINVAL;
871 
872 	if (apqns) {
873 		if (*nr_apqns < _nr_apqns)
874 			rc = -ENOSPC;
875 		else
876 			memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
877 	}
878 	*nr_apqns = _nr_apqns;
879 
880 out:
881 	kfree(_apqns);
882 	return rc;
883 }
884 
885 static int pkey_apqns4keytype(enum pkey_key_type ktype,
886 			      u8 cur_mkvp[32], u8 alt_mkvp[32], u32 flags,
887 			      struct pkey_apqn *apqns, size_t *nr_apqns)
888 {
889 	int rc = -EINVAL;
890 	u32 _nr_apqns, *_apqns = NULL;
891 
892 	if (ktype == PKEY_TYPE_CCA_DATA || ktype == PKEY_TYPE_CCA_CIPHER) {
893 		u64 cur_mkvp = 0, old_mkvp = 0;
894 		int minhwtype = ZCRYPT_CEX3C;
895 
896 		if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
897 			cur_mkvp = *((u64 *) cur_mkvp);
898 		if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
899 			old_mkvp = *((u64 *) alt_mkvp);
900 		if (ktype == PKEY_TYPE_CCA_CIPHER)
901 			minhwtype = ZCRYPT_CEX6;
902 		rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
903 				   minhwtype, cur_mkvp, old_mkvp, 1);
904 		if (rc)
905 			goto out;
906 	} else if (ktype == PKEY_TYPE_EP11) {
907 		u8 *wkvp = NULL;
908 
909 		if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
910 			wkvp = cur_mkvp;
911 		rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
912 				    ZCRYPT_CEX7, EP11_API_V, wkvp);
913 		if (rc)
914 			goto out;
915 
916 	} else
917 		return -EINVAL;
918 
919 	if (apqns) {
920 		if (*nr_apqns < _nr_apqns)
921 			rc = -ENOSPC;
922 		else
923 			memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
924 	}
925 	*nr_apqns = _nr_apqns;
926 
927 out:
928 	kfree(_apqns);
929 	return rc;
930 }
931 
932 /*
933  * File io functions
934  */
935 
936 static void *_copy_key_from_user(void __user *ukey, size_t keylen)
937 {
938 	if (!ukey || keylen < MINKEYBLOBSIZE || keylen > KEYBLOBBUFSIZE)
939 		return ERR_PTR(-EINVAL);
940 
941 	return memdup_user(ukey, keylen);
942 }
943 
944 static void *_copy_apqns_from_user(void __user *uapqns, size_t nr_apqns)
945 {
946 	if (!uapqns || nr_apqns == 0)
947 		return NULL;
948 
949 	return memdup_user(uapqns, nr_apqns * sizeof(struct pkey_apqn));
950 }
951 
952 static long pkey_unlocked_ioctl(struct file *filp, unsigned int cmd,
953 				unsigned long arg)
954 {
955 	int rc;
956 
957 	switch (cmd) {
958 	case PKEY_GENSECK: {
959 		struct pkey_genseck __user *ugs = (void __user *) arg;
960 		struct pkey_genseck kgs;
961 
962 		if (copy_from_user(&kgs, ugs, sizeof(kgs)))
963 			return -EFAULT;
964 		rc = cca_genseckey(kgs.cardnr, kgs.domain,
965 				   kgs.keytype, kgs.seckey.seckey);
966 		DEBUG_DBG("%s cca_genseckey()=%d\n", __func__, rc);
967 		if (rc)
968 			break;
969 		if (copy_to_user(ugs, &kgs, sizeof(kgs)))
970 			return -EFAULT;
971 		break;
972 	}
973 	case PKEY_CLR2SECK: {
974 		struct pkey_clr2seck __user *ucs = (void __user *) arg;
975 		struct pkey_clr2seck kcs;
976 
977 		if (copy_from_user(&kcs, ucs, sizeof(kcs)))
978 			return -EFAULT;
979 		rc = cca_clr2seckey(kcs.cardnr, kcs.domain, kcs.keytype,
980 				    kcs.clrkey.clrkey, kcs.seckey.seckey);
981 		DEBUG_DBG("%s cca_clr2seckey()=%d\n", __func__, rc);
982 		if (rc)
983 			break;
984 		if (copy_to_user(ucs, &kcs, sizeof(kcs)))
985 			return -EFAULT;
986 		memzero_explicit(&kcs, sizeof(kcs));
987 		break;
988 	}
989 	case PKEY_SEC2PROTK: {
990 		struct pkey_sec2protk __user *usp = (void __user *) arg;
991 		struct pkey_sec2protk ksp;
992 
993 		if (copy_from_user(&ksp, usp, sizeof(ksp)))
994 			return -EFAULT;
995 		rc = cca_sec2protkey(ksp.cardnr, ksp.domain,
996 				     ksp.seckey.seckey, ksp.protkey.protkey,
997 				     &ksp.protkey.len, &ksp.protkey.type);
998 		DEBUG_DBG("%s cca_sec2protkey()=%d\n", __func__, rc);
999 		if (rc)
1000 			break;
1001 		if (copy_to_user(usp, &ksp, sizeof(ksp)))
1002 			return -EFAULT;
1003 		break;
1004 	}
1005 	case PKEY_CLR2PROTK: {
1006 		struct pkey_clr2protk __user *ucp = (void __user *) arg;
1007 		struct pkey_clr2protk kcp;
1008 
1009 		if (copy_from_user(&kcp, ucp, sizeof(kcp)))
1010 			return -EFAULT;
1011 		rc = pkey_clr2protkey(kcp.keytype,
1012 				      &kcp.clrkey, &kcp.protkey);
1013 		DEBUG_DBG("%s pkey_clr2protkey()=%d\n", __func__, rc);
1014 		if (rc)
1015 			break;
1016 		if (copy_to_user(ucp, &kcp, sizeof(kcp)))
1017 			return -EFAULT;
1018 		memzero_explicit(&kcp, sizeof(kcp));
1019 		break;
1020 	}
1021 	case PKEY_FINDCARD: {
1022 		struct pkey_findcard __user *ufc = (void __user *) arg;
1023 		struct pkey_findcard kfc;
1024 
1025 		if (copy_from_user(&kfc, ufc, sizeof(kfc)))
1026 			return -EFAULT;
1027 		rc = cca_findcard(kfc.seckey.seckey,
1028 				  &kfc.cardnr, &kfc.domain, 1);
1029 		DEBUG_DBG("%s cca_findcard()=%d\n", __func__, rc);
1030 		if (rc < 0)
1031 			break;
1032 		if (copy_to_user(ufc, &kfc, sizeof(kfc)))
1033 			return -EFAULT;
1034 		break;
1035 	}
1036 	case PKEY_SKEY2PKEY: {
1037 		struct pkey_skey2pkey __user *usp = (void __user *) arg;
1038 		struct pkey_skey2pkey ksp;
1039 
1040 		if (copy_from_user(&ksp, usp, sizeof(ksp)))
1041 			return -EFAULT;
1042 		rc = pkey_skey2pkey(ksp.seckey.seckey, &ksp.protkey);
1043 		DEBUG_DBG("%s pkey_skey2pkey()=%d\n", __func__, rc);
1044 		if (rc)
1045 			break;
1046 		if (copy_to_user(usp, &ksp, sizeof(ksp)))
1047 			return -EFAULT;
1048 		break;
1049 	}
1050 	case PKEY_VERIFYKEY: {
1051 		struct pkey_verifykey __user *uvk = (void __user *) arg;
1052 		struct pkey_verifykey kvk;
1053 
1054 		if (copy_from_user(&kvk, uvk, sizeof(kvk)))
1055 			return -EFAULT;
1056 		rc = pkey_verifykey(&kvk.seckey, &kvk.cardnr, &kvk.domain,
1057 				    &kvk.keysize, &kvk.attributes);
1058 		DEBUG_DBG("%s pkey_verifykey()=%d\n", __func__, rc);
1059 		if (rc)
1060 			break;
1061 		if (copy_to_user(uvk, &kvk, sizeof(kvk)))
1062 			return -EFAULT;
1063 		break;
1064 	}
1065 	case PKEY_GENPROTK: {
1066 		struct pkey_genprotk __user *ugp = (void __user *) arg;
1067 		struct pkey_genprotk kgp;
1068 
1069 		if (copy_from_user(&kgp, ugp, sizeof(kgp)))
1070 			return -EFAULT;
1071 		rc = pkey_genprotkey(kgp.keytype, &kgp.protkey);
1072 		DEBUG_DBG("%s pkey_genprotkey()=%d\n", __func__, rc);
1073 		if (rc)
1074 			break;
1075 		if (copy_to_user(ugp, &kgp, sizeof(kgp)))
1076 			return -EFAULT;
1077 		break;
1078 	}
1079 	case PKEY_VERIFYPROTK: {
1080 		struct pkey_verifyprotk __user *uvp = (void __user *) arg;
1081 		struct pkey_verifyprotk kvp;
1082 
1083 		if (copy_from_user(&kvp, uvp, sizeof(kvp)))
1084 			return -EFAULT;
1085 		rc = pkey_verifyprotkey(&kvp.protkey);
1086 		DEBUG_DBG("%s pkey_verifyprotkey()=%d\n", __func__, rc);
1087 		break;
1088 	}
1089 	case PKEY_KBLOB2PROTK: {
1090 		struct pkey_kblob2pkey __user *utp = (void __user *) arg;
1091 		struct pkey_kblob2pkey ktp;
1092 		u8 *kkey;
1093 
1094 		if (copy_from_user(&ktp, utp, sizeof(ktp)))
1095 			return -EFAULT;
1096 		kkey = _copy_key_from_user(ktp.key, ktp.keylen);
1097 		if (IS_ERR(kkey))
1098 			return PTR_ERR(kkey);
1099 		rc = pkey_keyblob2pkey(kkey, ktp.keylen, &ktp.protkey);
1100 		DEBUG_DBG("%s pkey_keyblob2pkey()=%d\n", __func__, rc);
1101 		kfree(kkey);
1102 		if (rc)
1103 			break;
1104 		if (copy_to_user(utp, &ktp, sizeof(ktp)))
1105 			return -EFAULT;
1106 		break;
1107 	}
1108 	case PKEY_GENSECK2: {
1109 		struct pkey_genseck2 __user *ugs = (void __user *) arg;
1110 		struct pkey_genseck2 kgs;
1111 		struct pkey_apqn *apqns;
1112 		size_t klen = KEYBLOBBUFSIZE;
1113 		u8 *kkey;
1114 
1115 		if (copy_from_user(&kgs, ugs, sizeof(kgs)))
1116 			return -EFAULT;
1117 		apqns = _copy_apqns_from_user(kgs.apqns, kgs.apqn_entries);
1118 		if (IS_ERR(apqns))
1119 			return PTR_ERR(apqns);
1120 		kkey = kmalloc(klen, GFP_KERNEL);
1121 		if (!kkey) {
1122 			kfree(apqns);
1123 			return -ENOMEM;
1124 		}
1125 		rc = pkey_genseckey2(apqns, kgs.apqn_entries,
1126 				     kgs.type, kgs.size, kgs.keygenflags,
1127 				     kkey, &klen);
1128 		DEBUG_DBG("%s pkey_genseckey2()=%d\n", __func__, rc);
1129 		kfree(apqns);
1130 		if (rc) {
1131 			kfree(kkey);
1132 			break;
1133 		}
1134 		if (kgs.key) {
1135 			if (kgs.keylen < klen) {
1136 				kfree(kkey);
1137 				return -EINVAL;
1138 			}
1139 			if (copy_to_user(kgs.key, kkey, klen)) {
1140 				kfree(kkey);
1141 				return -EFAULT;
1142 			}
1143 		}
1144 		kgs.keylen = klen;
1145 		if (copy_to_user(ugs, &kgs, sizeof(kgs)))
1146 			rc = -EFAULT;
1147 		kfree(kkey);
1148 		break;
1149 	}
1150 	case PKEY_CLR2SECK2: {
1151 		struct pkey_clr2seck2 __user *ucs = (void __user *) arg;
1152 		struct pkey_clr2seck2 kcs;
1153 		struct pkey_apqn *apqns;
1154 		size_t klen = KEYBLOBBUFSIZE;
1155 		u8 *kkey;
1156 
1157 		if (copy_from_user(&kcs, ucs, sizeof(kcs)))
1158 			return -EFAULT;
1159 		apqns = _copy_apqns_from_user(kcs.apqns, kcs.apqn_entries);
1160 		if (IS_ERR(apqns))
1161 			return PTR_ERR(apqns);
1162 		kkey = kmalloc(klen, GFP_KERNEL);
1163 		if (!kkey) {
1164 			kfree(apqns);
1165 			return -ENOMEM;
1166 		}
1167 		rc = pkey_clr2seckey2(apqns, kcs.apqn_entries,
1168 				      kcs.type, kcs.size, kcs.keygenflags,
1169 				      kcs.clrkey.clrkey, kkey, &klen);
1170 		DEBUG_DBG("%s pkey_clr2seckey2()=%d\n", __func__, rc);
1171 		kfree(apqns);
1172 		if (rc) {
1173 			kfree(kkey);
1174 			break;
1175 		}
1176 		if (kcs.key) {
1177 			if (kcs.keylen < klen) {
1178 				kfree(kkey);
1179 				return -EINVAL;
1180 			}
1181 			if (copy_to_user(kcs.key, kkey, klen)) {
1182 				kfree(kkey);
1183 				return -EFAULT;
1184 			}
1185 		}
1186 		kcs.keylen = klen;
1187 		if (copy_to_user(ucs, &kcs, sizeof(kcs)))
1188 			rc = -EFAULT;
1189 		memzero_explicit(&kcs, sizeof(kcs));
1190 		kfree(kkey);
1191 		break;
1192 	}
1193 	case PKEY_VERIFYKEY2: {
1194 		struct pkey_verifykey2 __user *uvk = (void __user *) arg;
1195 		struct pkey_verifykey2 kvk;
1196 		u8 *kkey;
1197 
1198 		if (copy_from_user(&kvk, uvk, sizeof(kvk)))
1199 			return -EFAULT;
1200 		kkey = _copy_key_from_user(kvk.key, kvk.keylen);
1201 		if (IS_ERR(kkey))
1202 			return PTR_ERR(kkey);
1203 		rc = pkey_verifykey2(kkey, kvk.keylen,
1204 				     &kvk.cardnr, &kvk.domain,
1205 				     &kvk.type, &kvk.size, &kvk.flags);
1206 		DEBUG_DBG("%s pkey_verifykey2()=%d\n", __func__, rc);
1207 		kfree(kkey);
1208 		if (rc)
1209 			break;
1210 		if (copy_to_user(uvk, &kvk, sizeof(kvk)))
1211 			return -EFAULT;
1212 		break;
1213 	}
1214 	case PKEY_KBLOB2PROTK2: {
1215 		struct pkey_kblob2pkey2 __user *utp = (void __user *) arg;
1216 		struct pkey_kblob2pkey2 ktp;
1217 		struct pkey_apqn *apqns = NULL;
1218 		u8 *kkey;
1219 
1220 		if (copy_from_user(&ktp, utp, sizeof(ktp)))
1221 			return -EFAULT;
1222 		apqns = _copy_apqns_from_user(ktp.apqns, ktp.apqn_entries);
1223 		if (IS_ERR(apqns))
1224 			return PTR_ERR(apqns);
1225 		kkey = _copy_key_from_user(ktp.key, ktp.keylen);
1226 		if (IS_ERR(kkey)) {
1227 			kfree(apqns);
1228 			return PTR_ERR(kkey);
1229 		}
1230 		rc = pkey_keyblob2pkey2(apqns, ktp.apqn_entries,
1231 					kkey, ktp.keylen, &ktp.protkey);
1232 		DEBUG_DBG("%s pkey_keyblob2pkey2()=%d\n", __func__, rc);
1233 		kfree(apqns);
1234 		kfree(kkey);
1235 		if (rc)
1236 			break;
1237 		if (copy_to_user(utp, &ktp, sizeof(ktp)))
1238 			return -EFAULT;
1239 		break;
1240 	}
1241 	case PKEY_APQNS4K: {
1242 		struct pkey_apqns4key __user *uak = (void __user *) arg;
1243 		struct pkey_apqns4key kak;
1244 		struct pkey_apqn *apqns = NULL;
1245 		size_t nr_apqns, len;
1246 		u8 *kkey;
1247 
1248 		if (copy_from_user(&kak, uak, sizeof(kak)))
1249 			return -EFAULT;
1250 		nr_apqns = kak.apqn_entries;
1251 		if (nr_apqns) {
1252 			apqns = kmalloc_array(nr_apqns,
1253 					      sizeof(struct pkey_apqn),
1254 					      GFP_KERNEL);
1255 			if (!apqns)
1256 				return -ENOMEM;
1257 		}
1258 		kkey = _copy_key_from_user(kak.key, kak.keylen);
1259 		if (IS_ERR(kkey)) {
1260 			kfree(apqns);
1261 			return PTR_ERR(kkey);
1262 		}
1263 		rc = pkey_apqns4key(kkey, kak.keylen, kak.flags,
1264 				    apqns, &nr_apqns);
1265 		DEBUG_DBG("%s pkey_apqns4key()=%d\n", __func__, rc);
1266 		kfree(kkey);
1267 		if (rc && rc != -ENOSPC) {
1268 			kfree(apqns);
1269 			break;
1270 		}
1271 		if (!rc && kak.apqns) {
1272 			if (nr_apqns > kak.apqn_entries) {
1273 				kfree(apqns);
1274 				return -EINVAL;
1275 			}
1276 			len = nr_apqns * sizeof(struct pkey_apqn);
1277 			if (len) {
1278 				if (copy_to_user(kak.apqns, apqns, len)) {
1279 					kfree(apqns);
1280 					return -EFAULT;
1281 				}
1282 			}
1283 		}
1284 		kak.apqn_entries = nr_apqns;
1285 		if (copy_to_user(uak, &kak, sizeof(kak)))
1286 			rc = -EFAULT;
1287 		kfree(apqns);
1288 		break;
1289 	}
1290 	case PKEY_APQNS4KT: {
1291 		struct pkey_apqns4keytype __user *uat = (void __user *) arg;
1292 		struct pkey_apqns4keytype kat;
1293 		struct pkey_apqn *apqns = NULL;
1294 		size_t nr_apqns, len;
1295 
1296 		if (copy_from_user(&kat, uat, sizeof(kat)))
1297 			return -EFAULT;
1298 		nr_apqns = kat.apqn_entries;
1299 		if (nr_apqns) {
1300 			apqns = kmalloc_array(nr_apqns,
1301 					      sizeof(struct pkey_apqn),
1302 					      GFP_KERNEL);
1303 			if (!apqns)
1304 				return -ENOMEM;
1305 		}
1306 		rc = pkey_apqns4keytype(kat.type, kat.cur_mkvp, kat.alt_mkvp,
1307 					kat.flags, apqns, &nr_apqns);
1308 		DEBUG_DBG("%s pkey_apqns4keytype()=%d\n", __func__, rc);
1309 		if (rc && rc != -ENOSPC) {
1310 			kfree(apqns);
1311 			break;
1312 		}
1313 		if (!rc && kat.apqns) {
1314 			if (nr_apqns > kat.apqn_entries) {
1315 				kfree(apqns);
1316 				return -EINVAL;
1317 			}
1318 			len = nr_apqns * sizeof(struct pkey_apqn);
1319 			if (len) {
1320 				if (copy_to_user(kat.apqns, apqns, len)) {
1321 					kfree(apqns);
1322 					return -EFAULT;
1323 				}
1324 			}
1325 		}
1326 		kat.apqn_entries = nr_apqns;
1327 		if (copy_to_user(uat, &kat, sizeof(kat)))
1328 			rc = -EFAULT;
1329 		kfree(apqns);
1330 		break;
1331 	}
1332 	default:
1333 		/* unknown/unsupported ioctl cmd */
1334 		return -ENOTTY;
1335 	}
1336 
1337 	return rc;
1338 }
1339 
1340 /*
1341  * Sysfs and file io operations
1342  */
1343 
1344 /*
1345  * Sysfs attribute read function for all protected key binary attributes.
1346  * The implementation can not deal with partial reads, because a new random
1347  * protected key blob is generated with each read. In case of partial reads
1348  * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1349  */
1350 static ssize_t pkey_protkey_aes_attr_read(u32 keytype, bool is_xts, char *buf,
1351 					  loff_t off, size_t count)
1352 {
1353 	struct protaeskeytoken protkeytoken;
1354 	struct pkey_protkey protkey;
1355 	int rc;
1356 
1357 	if (off != 0 || count < sizeof(protkeytoken))
1358 		return -EINVAL;
1359 	if (is_xts)
1360 		if (count < 2 * sizeof(protkeytoken))
1361 			return -EINVAL;
1362 
1363 	memset(&protkeytoken, 0, sizeof(protkeytoken));
1364 	protkeytoken.type = TOKTYPE_NON_CCA;
1365 	protkeytoken.version = TOKVER_PROTECTED_KEY;
1366 	protkeytoken.keytype = keytype;
1367 
1368 	rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
1369 	if (rc)
1370 		return rc;
1371 
1372 	protkeytoken.len = protkey.len;
1373 	memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
1374 
1375 	memcpy(buf, &protkeytoken, sizeof(protkeytoken));
1376 
1377 	if (is_xts) {
1378 		rc = pkey_genprotkey(protkeytoken.keytype, &protkey);
1379 		if (rc)
1380 			return rc;
1381 
1382 		protkeytoken.len = protkey.len;
1383 		memcpy(&protkeytoken.protkey, &protkey.protkey, protkey.len);
1384 
1385 		memcpy(buf + sizeof(protkeytoken), &protkeytoken,
1386 		       sizeof(protkeytoken));
1387 
1388 		return 2 * sizeof(protkeytoken);
1389 	}
1390 
1391 	return sizeof(protkeytoken);
1392 }
1393 
1394 static ssize_t protkey_aes_128_read(struct file *filp,
1395 				    struct kobject *kobj,
1396 				    struct bin_attribute *attr,
1397 				    char *buf, loff_t off,
1398 				    size_t count)
1399 {
1400 	return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
1401 					  off, count);
1402 }
1403 
1404 static ssize_t protkey_aes_192_read(struct file *filp,
1405 				    struct kobject *kobj,
1406 				    struct bin_attribute *attr,
1407 				    char *buf, loff_t off,
1408 				    size_t count)
1409 {
1410 	return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
1411 					  off, count);
1412 }
1413 
1414 static ssize_t protkey_aes_256_read(struct file *filp,
1415 				    struct kobject *kobj,
1416 				    struct bin_attribute *attr,
1417 				    char *buf, loff_t off,
1418 				    size_t count)
1419 {
1420 	return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
1421 					  off, count);
1422 }
1423 
1424 static ssize_t protkey_aes_128_xts_read(struct file *filp,
1425 					struct kobject *kobj,
1426 					struct bin_attribute *attr,
1427 					char *buf, loff_t off,
1428 					size_t count)
1429 {
1430 	return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
1431 					  off, count);
1432 }
1433 
1434 static ssize_t protkey_aes_256_xts_read(struct file *filp,
1435 					struct kobject *kobj,
1436 					struct bin_attribute *attr,
1437 					char *buf, loff_t off,
1438 					size_t count)
1439 {
1440 	return pkey_protkey_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
1441 					  off, count);
1442 }
1443 
1444 static BIN_ATTR_RO(protkey_aes_128, sizeof(struct protaeskeytoken));
1445 static BIN_ATTR_RO(protkey_aes_192, sizeof(struct protaeskeytoken));
1446 static BIN_ATTR_RO(protkey_aes_256, sizeof(struct protaeskeytoken));
1447 static BIN_ATTR_RO(protkey_aes_128_xts, 2 * sizeof(struct protaeskeytoken));
1448 static BIN_ATTR_RO(protkey_aes_256_xts, 2 * sizeof(struct protaeskeytoken));
1449 
1450 static struct bin_attribute *protkey_attrs[] = {
1451 	&bin_attr_protkey_aes_128,
1452 	&bin_attr_protkey_aes_192,
1453 	&bin_attr_protkey_aes_256,
1454 	&bin_attr_protkey_aes_128_xts,
1455 	&bin_attr_protkey_aes_256_xts,
1456 	NULL
1457 };
1458 
1459 static struct attribute_group protkey_attr_group = {
1460 	.name	   = "protkey",
1461 	.bin_attrs = protkey_attrs,
1462 };
1463 
1464 /*
1465  * Sysfs attribute read function for all secure key ccadata binary attributes.
1466  * The implementation can not deal with partial reads, because a new random
1467  * protected key blob is generated with each read. In case of partial reads
1468  * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1469  */
1470 static ssize_t pkey_ccadata_aes_attr_read(u32 keytype, bool is_xts, char *buf,
1471 					  loff_t off, size_t count)
1472 {
1473 	int rc;
1474 	struct pkey_seckey *seckey = (struct pkey_seckey *) buf;
1475 
1476 	if (off != 0 || count < sizeof(struct secaeskeytoken))
1477 		return -EINVAL;
1478 	if (is_xts)
1479 		if (count < 2 * sizeof(struct secaeskeytoken))
1480 			return -EINVAL;
1481 
1482 	rc = cca_genseckey(-1, -1, keytype, seckey->seckey);
1483 	if (rc)
1484 		return rc;
1485 
1486 	if (is_xts) {
1487 		seckey++;
1488 		rc = cca_genseckey(-1, -1, keytype, seckey->seckey);
1489 		if (rc)
1490 			return rc;
1491 
1492 		return 2 * sizeof(struct secaeskeytoken);
1493 	}
1494 
1495 	return sizeof(struct secaeskeytoken);
1496 }
1497 
1498 static ssize_t ccadata_aes_128_read(struct file *filp,
1499 				    struct kobject *kobj,
1500 				    struct bin_attribute *attr,
1501 				    char *buf, loff_t off,
1502 				    size_t count)
1503 {
1504 	return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, false, buf,
1505 					  off, count);
1506 }
1507 
1508 static ssize_t ccadata_aes_192_read(struct file *filp,
1509 				    struct kobject *kobj,
1510 				    struct bin_attribute *attr,
1511 				    char *buf, loff_t off,
1512 				    size_t count)
1513 {
1514 	return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_192, false, buf,
1515 					  off, count);
1516 }
1517 
1518 static ssize_t ccadata_aes_256_read(struct file *filp,
1519 				    struct kobject *kobj,
1520 				    struct bin_attribute *attr,
1521 				    char *buf, loff_t off,
1522 				    size_t count)
1523 {
1524 	return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, false, buf,
1525 					  off, count);
1526 }
1527 
1528 static ssize_t ccadata_aes_128_xts_read(struct file *filp,
1529 					struct kobject *kobj,
1530 					struct bin_attribute *attr,
1531 					char *buf, loff_t off,
1532 					size_t count)
1533 {
1534 	return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_128, true, buf,
1535 					  off, count);
1536 }
1537 
1538 static ssize_t ccadata_aes_256_xts_read(struct file *filp,
1539 					struct kobject *kobj,
1540 					struct bin_attribute *attr,
1541 					char *buf, loff_t off,
1542 					size_t count)
1543 {
1544 	return pkey_ccadata_aes_attr_read(PKEY_KEYTYPE_AES_256, true, buf,
1545 					  off, count);
1546 }
1547 
1548 static BIN_ATTR_RO(ccadata_aes_128, sizeof(struct secaeskeytoken));
1549 static BIN_ATTR_RO(ccadata_aes_192, sizeof(struct secaeskeytoken));
1550 static BIN_ATTR_RO(ccadata_aes_256, sizeof(struct secaeskeytoken));
1551 static BIN_ATTR_RO(ccadata_aes_128_xts, 2 * sizeof(struct secaeskeytoken));
1552 static BIN_ATTR_RO(ccadata_aes_256_xts, 2 * sizeof(struct secaeskeytoken));
1553 
1554 static struct bin_attribute *ccadata_attrs[] = {
1555 	&bin_attr_ccadata_aes_128,
1556 	&bin_attr_ccadata_aes_192,
1557 	&bin_attr_ccadata_aes_256,
1558 	&bin_attr_ccadata_aes_128_xts,
1559 	&bin_attr_ccadata_aes_256_xts,
1560 	NULL
1561 };
1562 
1563 static struct attribute_group ccadata_attr_group = {
1564 	.name	   = "ccadata",
1565 	.bin_attrs = ccadata_attrs,
1566 };
1567 
1568 #define CCACIPHERTOKENSIZE	(sizeof(struct cipherkeytoken) + 80)
1569 
1570 /*
1571  * Sysfs attribute read function for all secure key ccacipher binary attributes.
1572  * The implementation can not deal with partial reads, because a new random
1573  * secure key blob is generated with each read. In case of partial reads
1574  * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1575  */
1576 static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
1577 					    bool is_xts, char *buf, loff_t off,
1578 					    size_t count)
1579 {
1580 	int i, rc, card, dom;
1581 	u32 nr_apqns, *apqns = NULL;
1582 	size_t keysize = CCACIPHERTOKENSIZE;
1583 
1584 	if (off != 0 || count < CCACIPHERTOKENSIZE)
1585 		return -EINVAL;
1586 	if (is_xts)
1587 		if (count < 2 * CCACIPHERTOKENSIZE)
1588 			return -EINVAL;
1589 
1590 	/* build a list of apqns able to generate an cipher key */
1591 	rc = cca_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
1592 			   ZCRYPT_CEX6, 0, 0, 0);
1593 	if (rc)
1594 		return rc;
1595 
1596 	memset(buf, 0, is_xts ? 2 * keysize : keysize);
1597 
1598 	/* simple try all apqns from the list */
1599 	for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
1600 		card = apqns[i] >> 16;
1601 		dom = apqns[i] & 0xFFFF;
1602 		rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
1603 		if (rc == 0)
1604 			break;
1605 	}
1606 		if (rc)
1607 			return rc;
1608 
1609 	if (is_xts) {
1610 		keysize = CCACIPHERTOKENSIZE;
1611 		buf += CCACIPHERTOKENSIZE;
1612 		rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
1613 		if (rc == 0)
1614 			return 2 * CCACIPHERTOKENSIZE;
1615 	}
1616 
1617 	return CCACIPHERTOKENSIZE;
1618 }
1619 
1620 static ssize_t ccacipher_aes_128_read(struct file *filp,
1621 				      struct kobject *kobj,
1622 				      struct bin_attribute *attr,
1623 				      char *buf, loff_t off,
1624 				      size_t count)
1625 {
1626 	return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
1627 					    off, count);
1628 }
1629 
1630 static ssize_t ccacipher_aes_192_read(struct file *filp,
1631 				      struct kobject *kobj,
1632 				      struct bin_attribute *attr,
1633 				      char *buf, loff_t off,
1634 				      size_t count)
1635 {
1636 	return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
1637 					    off, count);
1638 }
1639 
1640 static ssize_t ccacipher_aes_256_read(struct file *filp,
1641 				      struct kobject *kobj,
1642 				      struct bin_attribute *attr,
1643 				      char *buf, loff_t off,
1644 				      size_t count)
1645 {
1646 	return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
1647 					    off, count);
1648 }
1649 
1650 static ssize_t ccacipher_aes_128_xts_read(struct file *filp,
1651 					  struct kobject *kobj,
1652 					  struct bin_attribute *attr,
1653 					  char *buf, loff_t off,
1654 					  size_t count)
1655 {
1656 	return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
1657 					    off, count);
1658 }
1659 
1660 static ssize_t ccacipher_aes_256_xts_read(struct file *filp,
1661 					  struct kobject *kobj,
1662 					  struct bin_attribute *attr,
1663 					  char *buf, loff_t off,
1664 					  size_t count)
1665 {
1666 	return pkey_ccacipher_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
1667 					    off, count);
1668 }
1669 
1670 static BIN_ATTR_RO(ccacipher_aes_128, CCACIPHERTOKENSIZE);
1671 static BIN_ATTR_RO(ccacipher_aes_192, CCACIPHERTOKENSIZE);
1672 static BIN_ATTR_RO(ccacipher_aes_256, CCACIPHERTOKENSIZE);
1673 static BIN_ATTR_RO(ccacipher_aes_128_xts, 2 * CCACIPHERTOKENSIZE);
1674 static BIN_ATTR_RO(ccacipher_aes_256_xts, 2 * CCACIPHERTOKENSIZE);
1675 
1676 static struct bin_attribute *ccacipher_attrs[] = {
1677 	&bin_attr_ccacipher_aes_128,
1678 	&bin_attr_ccacipher_aes_192,
1679 	&bin_attr_ccacipher_aes_256,
1680 	&bin_attr_ccacipher_aes_128_xts,
1681 	&bin_attr_ccacipher_aes_256_xts,
1682 	NULL
1683 };
1684 
1685 static struct attribute_group ccacipher_attr_group = {
1686 	.name	   = "ccacipher",
1687 	.bin_attrs = ccacipher_attrs,
1688 };
1689 
1690 /*
1691  * Sysfs attribute read function for all ep11 aes key binary attributes.
1692  * The implementation can not deal with partial reads, because a new random
1693  * secure key blob is generated with each read. In case of partial reads
1694  * (i.e. off != 0 or count < key blob size) -EINVAL is returned.
1695  * This function and the sysfs attributes using it provide EP11 key blobs
1696  * padded to the upper limit of MAXEP11AESKEYBLOBSIZE which is currently
1697  * 320 bytes.
1698  */
1699 static ssize_t pkey_ep11_aes_attr_read(enum pkey_key_size keybits,
1700 				       bool is_xts, char *buf, loff_t off,
1701 				       size_t count)
1702 {
1703 	int i, rc, card, dom;
1704 	u32 nr_apqns, *apqns = NULL;
1705 	size_t keysize = MAXEP11AESKEYBLOBSIZE;
1706 
1707 	if (off != 0 || count < MAXEP11AESKEYBLOBSIZE)
1708 		return -EINVAL;
1709 	if (is_xts)
1710 		if (count < 2 * MAXEP11AESKEYBLOBSIZE)
1711 			return -EINVAL;
1712 
1713 	/* build a list of apqns able to generate an cipher key */
1714 	rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
1715 			    ZCRYPT_CEX7, EP11_API_V, NULL);
1716 	if (rc)
1717 		return rc;
1718 
1719 	memset(buf, 0, is_xts ? 2 * keysize : keysize);
1720 
1721 	/* simple try all apqns from the list */
1722 	for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
1723 		card = apqns[i] >> 16;
1724 		dom = apqns[i] & 0xFFFF;
1725 		rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
1726 		if (rc == 0)
1727 			break;
1728 	}
1729 	if (rc)
1730 		return rc;
1731 
1732 	if (is_xts) {
1733 		keysize = MAXEP11AESKEYBLOBSIZE;
1734 		buf += MAXEP11AESKEYBLOBSIZE;
1735 		rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
1736 		if (rc == 0)
1737 			return 2 * MAXEP11AESKEYBLOBSIZE;
1738 	}
1739 
1740 	return MAXEP11AESKEYBLOBSIZE;
1741 }
1742 
1743 static ssize_t ep11_aes_128_read(struct file *filp,
1744 				 struct kobject *kobj,
1745 				 struct bin_attribute *attr,
1746 				 char *buf, loff_t off,
1747 				 size_t count)
1748 {
1749 	return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
1750 				       off, count);
1751 }
1752 
1753 static ssize_t ep11_aes_192_read(struct file *filp,
1754 				 struct kobject *kobj,
1755 				 struct bin_attribute *attr,
1756 				 char *buf, loff_t off,
1757 				 size_t count)
1758 {
1759 	return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
1760 				       off, count);
1761 }
1762 
1763 static ssize_t ep11_aes_256_read(struct file *filp,
1764 				 struct kobject *kobj,
1765 				 struct bin_attribute *attr,
1766 				 char *buf, loff_t off,
1767 				 size_t count)
1768 {
1769 	return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
1770 				       off, count);
1771 }
1772 
1773 static ssize_t ep11_aes_128_xts_read(struct file *filp,
1774 				     struct kobject *kobj,
1775 				     struct bin_attribute *attr,
1776 				     char *buf, loff_t off,
1777 				     size_t count)
1778 {
1779 	return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
1780 				       off, count);
1781 }
1782 
1783 static ssize_t ep11_aes_256_xts_read(struct file *filp,
1784 				     struct kobject *kobj,
1785 				     struct bin_attribute *attr,
1786 				     char *buf, loff_t off,
1787 				     size_t count)
1788 {
1789 	return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
1790 				       off, count);
1791 }
1792 
1793 static BIN_ATTR_RO(ep11_aes_128, MAXEP11AESKEYBLOBSIZE);
1794 static BIN_ATTR_RO(ep11_aes_192, MAXEP11AESKEYBLOBSIZE);
1795 static BIN_ATTR_RO(ep11_aes_256, MAXEP11AESKEYBLOBSIZE);
1796 static BIN_ATTR_RO(ep11_aes_128_xts, 2 * MAXEP11AESKEYBLOBSIZE);
1797 static BIN_ATTR_RO(ep11_aes_256_xts, 2 * MAXEP11AESKEYBLOBSIZE);
1798 
1799 static struct bin_attribute *ep11_attrs[] = {
1800 	&bin_attr_ep11_aes_128,
1801 	&bin_attr_ep11_aes_192,
1802 	&bin_attr_ep11_aes_256,
1803 	&bin_attr_ep11_aes_128_xts,
1804 	&bin_attr_ep11_aes_256_xts,
1805 	NULL
1806 };
1807 
1808 static struct attribute_group ep11_attr_group = {
1809 	.name	   = "ep11",
1810 	.bin_attrs = ep11_attrs,
1811 };
1812 
1813 static const struct attribute_group *pkey_attr_groups[] = {
1814 	&protkey_attr_group,
1815 	&ccadata_attr_group,
1816 	&ccacipher_attr_group,
1817 	&ep11_attr_group,
1818 	NULL,
1819 };
1820 
1821 static const struct file_operations pkey_fops = {
1822 	.owner		= THIS_MODULE,
1823 	.open		= nonseekable_open,
1824 	.llseek		= no_llseek,
1825 	.unlocked_ioctl = pkey_unlocked_ioctl,
1826 };
1827 
1828 static struct miscdevice pkey_dev = {
1829 	.name	= "pkey",
1830 	.minor	= MISC_DYNAMIC_MINOR,
1831 	.mode	= 0666,
1832 	.fops	= &pkey_fops,
1833 	.groups = pkey_attr_groups,
1834 };
1835 
1836 /*
1837  * Module init
1838  */
1839 static int __init pkey_init(void)
1840 {
1841 	cpacf_mask_t kmc_functions;
1842 
1843 	/*
1844 	 * The pckmo instruction should be available - even if we don't
1845 	 * actually invoke it. This instruction comes with MSA 3 which
1846 	 * is also the minimum level for the kmc instructions which
1847 	 * are able to work with protected keys.
1848 	 */
1849 	if (!cpacf_query(CPACF_PCKMO, &pckmo_functions))
1850 		return -ENODEV;
1851 
1852 	/* check for kmc instructions available */
1853 	if (!cpacf_query(CPACF_KMC, &kmc_functions))
1854 		return -ENODEV;
1855 	if (!cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_128) ||
1856 	    !cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_192) ||
1857 	    !cpacf_test_func(&kmc_functions, CPACF_KMC_PAES_256))
1858 		return -ENODEV;
1859 
1860 	pkey_debug_init();
1861 
1862 	return misc_register(&pkey_dev);
1863 }
1864 
1865 /*
1866  * Module exit
1867  */
1868 static void __exit pkey_exit(void)
1869 {
1870 	misc_deregister(&pkey_dev);
1871 	pkey_debug_exit();
1872 }
1873 
1874 module_cpu_feature_match(MSA, pkey_init);
1875 module_exit(pkey_exit);
1876