1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright IBM Corp. 2006, 2023 4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> 5 * Martin Schwidefsky <schwidefsky@de.ibm.com> 6 * Ralph Wuerthner <rwuerthn@de.ibm.com> 7 * Felix Beck <felix.beck@de.ibm.com> 8 * Holger Dengler <hd@linux.vnet.ibm.com> 9 * Harald Freudenberger <freude@linux.ibm.com> 10 * 11 * Adjunct processor bus. 12 */ 13 14 #define KMSG_COMPONENT "ap" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/kernel_stat.h> 18 #include <linux/moduleparam.h> 19 #include <linux/init.h> 20 #include <linux/delay.h> 21 #include <linux/err.h> 22 #include <linux/freezer.h> 23 #include <linux/interrupt.h> 24 #include <linux/workqueue.h> 25 #include <linux/slab.h> 26 #include <linux/notifier.h> 27 #include <linux/kthread.h> 28 #include <linux/mutex.h> 29 #include <asm/airq.h> 30 #include <asm/tpi.h> 31 #include <linux/atomic.h> 32 #include <asm/isc.h> 33 #include <linux/hrtimer.h> 34 #include <linux/ktime.h> 35 #include <asm/facility.h> 36 #include <linux/crypto.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/debugfs.h> 39 #include <linux/ctype.h> 40 #include <linux/module.h> 41 42 #include "ap_bus.h" 43 #include "ap_debug.h" 44 45 /* 46 * Module parameters; note though this file itself isn't modular. 47 */ 48 int ap_domain_index = -1; /* Adjunct Processor Domain Index */ 49 static DEFINE_SPINLOCK(ap_domain_lock); 50 module_param_named(domain, ap_domain_index, int, 0440); 51 MODULE_PARM_DESC(domain, "domain index for ap devices"); 52 EXPORT_SYMBOL(ap_domain_index); 53 54 static int ap_thread_flag; 55 module_param_named(poll_thread, ap_thread_flag, int, 0440); 56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off)."); 57 58 static char *apm_str; 59 module_param_named(apmask, apm_str, charp, 0440); 60 MODULE_PARM_DESC(apmask, "AP bus adapter mask."); 61 62 static char *aqm_str; 63 module_param_named(aqmask, aqm_str, charp, 0440); 64 MODULE_PARM_DESC(aqmask, "AP bus domain mask."); 65 66 static int ap_useirq = 1; 67 module_param_named(useirq, ap_useirq, int, 0440); 68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on)."); 69 70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE); 71 EXPORT_SYMBOL(ap_max_msg_size); 72 73 static struct device *ap_root_device; 74 75 /* Hashtable of all queue devices on the AP bus */ 76 DEFINE_HASHTABLE(ap_queues, 8); 77 /* lock used for the ap_queues hashtable */ 78 DEFINE_SPINLOCK(ap_queues_lock); 79 80 /* Default permissions (ioctl, card and domain masking) */ 81 struct ap_perms ap_perms; 82 EXPORT_SYMBOL(ap_perms); 83 DEFINE_MUTEX(ap_perms_mutex); 84 EXPORT_SYMBOL(ap_perms_mutex); 85 86 /* # of bus scans since init */ 87 static atomic64_t ap_scan_bus_count; 88 89 /* # of bindings complete since init */ 90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0); 91 92 /* completion for initial APQN bindings complete */ 93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete); 94 95 static struct ap_config_info *ap_qci_info; 96 static struct ap_config_info *ap_qci_info_old; 97 98 /* 99 * AP bus related debug feature things. 100 */ 101 debug_info_t *ap_dbf_info; 102 103 /* 104 * Workqueue timer for bus rescan. 105 */ 106 static struct timer_list ap_config_timer; 107 static int ap_config_time = AP_CONFIG_TIME; 108 static void ap_scan_bus(struct work_struct *); 109 static DECLARE_WORK(ap_scan_work, ap_scan_bus); 110 111 /* 112 * Tasklet & timer for AP request polling and interrupts 113 */ 114 static void ap_tasklet_fn(unsigned long); 115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn); 116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait); 117 static struct task_struct *ap_poll_kthread; 118 static DEFINE_MUTEX(ap_poll_thread_mutex); 119 static DEFINE_SPINLOCK(ap_poll_timer_lock); 120 static struct hrtimer ap_poll_timer; 121 /* 122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds. 123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling. 124 */ 125 static unsigned long poll_high_timeout = 250000UL; 126 127 /* 128 * Some state machine states only require a low frequency polling. 129 * We use 25 Hz frequency for these. 130 */ 131 static unsigned long poll_low_timeout = 40000000UL; 132 133 /* Maximum domain id, if not given via qci */ 134 static int ap_max_domain_id = 15; 135 /* Maximum adapter id, if not given via qci */ 136 static int ap_max_adapter_id = 63; 137 138 static struct bus_type ap_bus_type; 139 140 /* Adapter interrupt definitions */ 141 static void ap_interrupt_handler(struct airq_struct *airq, 142 struct tpi_info *tpi_info); 143 144 static bool ap_irq_flag; 145 146 static struct airq_struct ap_airq = { 147 .handler = ap_interrupt_handler, 148 .isc = AP_ISC, 149 }; 150 151 /** 152 * ap_airq_ptr() - Get the address of the adapter interrupt indicator 153 * 154 * Returns the address of the local-summary-indicator of the adapter 155 * interrupt handler for AP, or NULL if adapter interrupts are not 156 * available. 157 */ 158 void *ap_airq_ptr(void) 159 { 160 if (ap_irq_flag) 161 return ap_airq.lsi_ptr; 162 return NULL; 163 } 164 165 /** 166 * ap_interrupts_available(): Test if AP interrupts are available. 167 * 168 * Returns 1 if AP interrupts are available. 169 */ 170 static int ap_interrupts_available(void) 171 { 172 return test_facility(65); 173 } 174 175 /** 176 * ap_qci_available(): Test if AP configuration 177 * information can be queried via QCI subfunction. 178 * 179 * Returns 1 if subfunction PQAP(QCI) is available. 180 */ 181 static int ap_qci_available(void) 182 { 183 return test_facility(12); 184 } 185 186 /** 187 * ap_apft_available(): Test if AP facilities test (APFT) 188 * facility is available. 189 * 190 * Returns 1 if APFT is available. 191 */ 192 static int ap_apft_available(void) 193 { 194 return test_facility(15); 195 } 196 197 /* 198 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available. 199 * 200 * Returns 1 if the QACT subfunction is available. 201 */ 202 static inline int ap_qact_available(void) 203 { 204 if (ap_qci_info) 205 return ap_qci_info->qact; 206 return 0; 207 } 208 209 /* 210 * ap_sb_available(): Test if the AP secure binding facility is available. 211 * 212 * Returns 1 if secure binding facility is available. 213 */ 214 int ap_sb_available(void) 215 { 216 if (ap_qci_info) 217 return ap_qci_info->apsb; 218 return 0; 219 } 220 221 /* 222 * ap_is_se_guest(): Check for SE guest with AP pass-through support. 223 */ 224 bool ap_is_se_guest(void) 225 { 226 return is_prot_virt_guest() && ap_sb_available(); 227 } 228 EXPORT_SYMBOL(ap_is_se_guest); 229 230 /* 231 * ap_fetch_qci_info(): Fetch cryptographic config info 232 * 233 * Returns the ap configuration info fetched via PQAP(QCI). 234 * On success 0 is returned, on failure a negative errno 235 * is returned, e.g. if the PQAP(QCI) instruction is not 236 * available, the return value will be -EOPNOTSUPP. 237 */ 238 static inline int ap_fetch_qci_info(struct ap_config_info *info) 239 { 240 if (!ap_qci_available()) 241 return -EOPNOTSUPP; 242 if (!info) 243 return -EINVAL; 244 return ap_qci(info); 245 } 246 247 /** 248 * ap_init_qci_info(): Allocate and query qci config info. 249 * Does also update the static variables ap_max_domain_id 250 * and ap_max_adapter_id if this info is available. 251 */ 252 static void __init ap_init_qci_info(void) 253 { 254 if (!ap_qci_available()) { 255 AP_DBF_INFO("%s QCI not supported\n", __func__); 256 return; 257 } 258 259 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL); 260 if (!ap_qci_info) 261 return; 262 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL); 263 if (!ap_qci_info_old) { 264 kfree(ap_qci_info); 265 ap_qci_info = NULL; 266 return; 267 } 268 if (ap_fetch_qci_info(ap_qci_info) != 0) { 269 kfree(ap_qci_info); 270 kfree(ap_qci_info_old); 271 ap_qci_info = NULL; 272 ap_qci_info_old = NULL; 273 return; 274 } 275 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__); 276 277 if (ap_qci_info->apxa) { 278 if (ap_qci_info->na) { 279 ap_max_adapter_id = ap_qci_info->na; 280 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n", 281 __func__, ap_max_adapter_id); 282 } 283 if (ap_qci_info->nd) { 284 ap_max_domain_id = ap_qci_info->nd; 285 AP_DBF_INFO("%s new ap_max_domain_id is %d\n", 286 __func__, ap_max_domain_id); 287 } 288 } 289 290 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 291 } 292 293 /* 294 * ap_test_config(): helper function to extract the nrth bit 295 * within the unsigned int array field. 296 */ 297 static inline int ap_test_config(unsigned int *field, unsigned int nr) 298 { 299 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f)); 300 } 301 302 /* 303 * ap_test_config_card_id(): Test, whether an AP card ID is configured. 304 * 305 * Returns 0 if the card is not configured 306 * 1 if the card is configured or 307 * if the configuration information is not available 308 */ 309 static inline int ap_test_config_card_id(unsigned int id) 310 { 311 if (id > ap_max_adapter_id) 312 return 0; 313 if (ap_qci_info) 314 return ap_test_config(ap_qci_info->apm, id); 315 return 1; 316 } 317 318 /* 319 * ap_test_config_usage_domain(): Test, whether an AP usage domain 320 * is configured. 321 * 322 * Returns 0 if the usage domain is not configured 323 * 1 if the usage domain is configured or 324 * if the configuration information is not available 325 */ 326 int ap_test_config_usage_domain(unsigned int domain) 327 { 328 if (domain > ap_max_domain_id) 329 return 0; 330 if (ap_qci_info) 331 return ap_test_config(ap_qci_info->aqm, domain); 332 return 1; 333 } 334 EXPORT_SYMBOL(ap_test_config_usage_domain); 335 336 /* 337 * ap_test_config_ctrl_domain(): Test, whether an AP control domain 338 * is configured. 339 * @domain AP control domain ID 340 * 341 * Returns 1 if the control domain is configured 342 * 0 in all other cases 343 */ 344 int ap_test_config_ctrl_domain(unsigned int domain) 345 { 346 if (!ap_qci_info || domain > ap_max_domain_id) 347 return 0; 348 return ap_test_config(ap_qci_info->adm, domain); 349 } 350 EXPORT_SYMBOL(ap_test_config_ctrl_domain); 351 352 /* 353 * ap_queue_info(): Check and get AP queue info. 354 * Returns: 1 if APQN exists and info is filled, 355 * 0 if APQN seems to exit but there is no info 356 * available (eg. caused by an asynch pending error) 357 * -1 invalid APQN, TAPQ error or AP queue status which 358 * indicates there is no APQN. 359 */ 360 static int ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac, 361 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop) 362 { 363 struct ap_queue_status status; 364 struct ap_tapq_gr2 tapq_info; 365 366 tapq_info.value = 0; 367 368 /* make sure we don't run into a specifiation exception */ 369 if (AP_QID_CARD(qid) > ap_max_adapter_id || 370 AP_QID_QUEUE(qid) > ap_max_domain_id) 371 return -1; 372 373 /* call TAPQ on this APQN */ 374 status = ap_test_queue(qid, ap_apft_available(), &tapq_info); 375 376 /* handle pending async error with return 'no info available' */ 377 if (status.async) 378 return 0; 379 380 switch (status.response_code) { 381 case AP_RESPONSE_NORMAL: 382 case AP_RESPONSE_RESET_IN_PROGRESS: 383 case AP_RESPONSE_DECONFIGURED: 384 case AP_RESPONSE_CHECKSTOPPED: 385 case AP_RESPONSE_BUSY: 386 /* 387 * According to the architecture in all these cases the 388 * info should be filled. All bits 0 is not possible as 389 * there is at least one of the mode bits set. 390 */ 391 if (WARN_ON_ONCE(!tapq_info.value)) 392 return 0; 393 *q_type = tapq_info.at; 394 *q_fac = tapq_info.fac; 395 *q_depth = tapq_info.qd; 396 *q_ml = tapq_info.ml; 397 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED; 398 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED; 399 return 1; 400 default: 401 /* 402 * A response code which indicates, there is no info available. 403 */ 404 return -1; 405 } 406 } 407 408 void ap_wait(enum ap_sm_wait wait) 409 { 410 ktime_t hr_time; 411 412 switch (wait) { 413 case AP_SM_WAIT_AGAIN: 414 case AP_SM_WAIT_INTERRUPT: 415 if (ap_irq_flag) 416 break; 417 if (ap_poll_kthread) { 418 wake_up(&ap_poll_wait); 419 break; 420 } 421 fallthrough; 422 case AP_SM_WAIT_LOW_TIMEOUT: 423 case AP_SM_WAIT_HIGH_TIMEOUT: 424 spin_lock_bh(&ap_poll_timer_lock); 425 if (!hrtimer_is_queued(&ap_poll_timer)) { 426 hr_time = 427 wait == AP_SM_WAIT_LOW_TIMEOUT ? 428 poll_low_timeout : poll_high_timeout; 429 hrtimer_forward_now(&ap_poll_timer, hr_time); 430 hrtimer_restart(&ap_poll_timer); 431 } 432 spin_unlock_bh(&ap_poll_timer_lock); 433 break; 434 case AP_SM_WAIT_NONE: 435 default: 436 break; 437 } 438 } 439 440 /** 441 * ap_request_timeout(): Handling of request timeouts 442 * @t: timer making this callback 443 * 444 * Handles request timeouts. 445 */ 446 void ap_request_timeout(struct timer_list *t) 447 { 448 struct ap_queue *aq = from_timer(aq, t, timeout); 449 450 spin_lock_bh(&aq->lock); 451 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT)); 452 spin_unlock_bh(&aq->lock); 453 } 454 455 /** 456 * ap_poll_timeout(): AP receive polling for finished AP requests. 457 * @unused: Unused pointer. 458 * 459 * Schedules the AP tasklet using a high resolution timer. 460 */ 461 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused) 462 { 463 tasklet_schedule(&ap_tasklet); 464 return HRTIMER_NORESTART; 465 } 466 467 /** 468 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt 469 * @airq: pointer to adapter interrupt descriptor 470 * @tpi_info: ignored 471 */ 472 static void ap_interrupt_handler(struct airq_struct *airq, 473 struct tpi_info *tpi_info) 474 { 475 inc_irq_stat(IRQIO_APB); 476 tasklet_schedule(&ap_tasklet); 477 } 478 479 /** 480 * ap_tasklet_fn(): Tasklet to poll all AP devices. 481 * @dummy: Unused variable 482 * 483 * Poll all AP devices on the bus. 484 */ 485 static void ap_tasklet_fn(unsigned long dummy) 486 { 487 int bkt; 488 struct ap_queue *aq; 489 enum ap_sm_wait wait = AP_SM_WAIT_NONE; 490 491 /* Reset the indicator if interrupts are used. Thus new interrupts can 492 * be received. Doing it in the beginning of the tasklet is therefore 493 * important that no requests on any AP get lost. 494 */ 495 if (ap_irq_flag) 496 xchg(ap_airq.lsi_ptr, 0); 497 498 spin_lock_bh(&ap_queues_lock); 499 hash_for_each(ap_queues, bkt, aq, hnode) { 500 spin_lock_bh(&aq->lock); 501 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); 502 spin_unlock_bh(&aq->lock); 503 } 504 spin_unlock_bh(&ap_queues_lock); 505 506 ap_wait(wait); 507 } 508 509 static int ap_pending_requests(void) 510 { 511 int bkt; 512 struct ap_queue *aq; 513 514 spin_lock_bh(&ap_queues_lock); 515 hash_for_each(ap_queues, bkt, aq, hnode) { 516 if (aq->queue_count == 0) 517 continue; 518 spin_unlock_bh(&ap_queues_lock); 519 return 1; 520 } 521 spin_unlock_bh(&ap_queues_lock); 522 return 0; 523 } 524 525 /** 526 * ap_poll_thread(): Thread that polls for finished requests. 527 * @data: Unused pointer 528 * 529 * AP bus poll thread. The purpose of this thread is to poll for 530 * finished requests in a loop if there is a "free" cpu - that is 531 * a cpu that doesn't have anything better to do. The polling stops 532 * as soon as there is another task or if all messages have been 533 * delivered. 534 */ 535 static int ap_poll_thread(void *data) 536 { 537 DECLARE_WAITQUEUE(wait, current); 538 539 set_user_nice(current, MAX_NICE); 540 set_freezable(); 541 while (!kthread_should_stop()) { 542 add_wait_queue(&ap_poll_wait, &wait); 543 set_current_state(TASK_INTERRUPTIBLE); 544 if (!ap_pending_requests()) { 545 schedule(); 546 try_to_freeze(); 547 } 548 set_current_state(TASK_RUNNING); 549 remove_wait_queue(&ap_poll_wait, &wait); 550 if (need_resched()) { 551 schedule(); 552 try_to_freeze(); 553 continue; 554 } 555 ap_tasklet_fn(0); 556 } 557 558 return 0; 559 } 560 561 static int ap_poll_thread_start(void) 562 { 563 int rc; 564 565 if (ap_irq_flag || ap_poll_kthread) 566 return 0; 567 mutex_lock(&ap_poll_thread_mutex); 568 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll"); 569 rc = PTR_ERR_OR_ZERO(ap_poll_kthread); 570 if (rc) 571 ap_poll_kthread = NULL; 572 mutex_unlock(&ap_poll_thread_mutex); 573 return rc; 574 } 575 576 static void ap_poll_thread_stop(void) 577 { 578 if (!ap_poll_kthread) 579 return; 580 mutex_lock(&ap_poll_thread_mutex); 581 kthread_stop(ap_poll_kthread); 582 ap_poll_kthread = NULL; 583 mutex_unlock(&ap_poll_thread_mutex); 584 } 585 586 #define is_card_dev(x) ((x)->parent == ap_root_device) 587 #define is_queue_dev(x) ((x)->parent != ap_root_device) 588 589 /** 590 * ap_bus_match() 591 * @dev: Pointer to device 592 * @drv: Pointer to device_driver 593 * 594 * AP bus driver registration/unregistration. 595 */ 596 static int ap_bus_match(struct device *dev, struct device_driver *drv) 597 { 598 struct ap_driver *ap_drv = to_ap_drv(drv); 599 struct ap_device_id *id; 600 601 /* 602 * Compare device type of the device with the list of 603 * supported types of the device_driver. 604 */ 605 for (id = ap_drv->ids; id->match_flags; id++) { 606 if (is_card_dev(dev) && 607 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE && 608 id->dev_type == to_ap_dev(dev)->device_type) 609 return 1; 610 if (is_queue_dev(dev) && 611 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE && 612 id->dev_type == to_ap_dev(dev)->device_type) 613 return 1; 614 } 615 return 0; 616 } 617 618 /** 619 * ap_uevent(): Uevent function for AP devices. 620 * @dev: Pointer to device 621 * @env: Pointer to kobj_uevent_env 622 * 623 * It sets up a single environment variable DEV_TYPE which contains the 624 * hardware device type. 625 */ 626 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env) 627 { 628 int rc = 0; 629 const struct ap_device *ap_dev = to_ap_dev(dev); 630 631 /* Uevents from ap bus core don't need extensions to the env */ 632 if (dev == ap_root_device) 633 return 0; 634 635 if (is_card_dev(dev)) { 636 struct ap_card *ac = to_ap_card(&ap_dev->device); 637 638 /* Set up DEV_TYPE environment variable. */ 639 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type); 640 if (rc) 641 return rc; 642 /* Add MODALIAS= */ 643 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type); 644 if (rc) 645 return rc; 646 647 /* Add MODE=<accel|cca|ep11> */ 648 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL)) 649 rc = add_uevent_var(env, "MODE=accel"); 650 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) 651 rc = add_uevent_var(env, "MODE=cca"); 652 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) 653 rc = add_uevent_var(env, "MODE=ep11"); 654 if (rc) 655 return rc; 656 } else { 657 struct ap_queue *aq = to_ap_queue(&ap_dev->device); 658 659 /* Add MODE=<accel|cca|ep11> */ 660 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL)) 661 rc = add_uevent_var(env, "MODE=accel"); 662 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) 663 rc = add_uevent_var(env, "MODE=cca"); 664 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) 665 rc = add_uevent_var(env, "MODE=ep11"); 666 if (rc) 667 return rc; 668 } 669 670 return 0; 671 } 672 673 static void ap_send_init_scan_done_uevent(void) 674 { 675 char *envp[] = { "INITSCAN=done", NULL }; 676 677 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 678 } 679 680 static void ap_send_bindings_complete_uevent(void) 681 { 682 char buf[32]; 683 char *envp[] = { "BINDINGS=complete", buf, NULL }; 684 685 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu", 686 atomic64_inc_return(&ap_bindings_complete_count)); 687 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 688 } 689 690 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg) 691 { 692 char buf[16]; 693 char *envp[] = { buf, NULL }; 694 695 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0); 696 697 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 698 } 699 EXPORT_SYMBOL(ap_send_config_uevent); 700 701 void ap_send_online_uevent(struct ap_device *ap_dev, int online) 702 { 703 char buf[16]; 704 char *envp[] = { buf, NULL }; 705 706 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0); 707 708 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp); 709 } 710 EXPORT_SYMBOL(ap_send_online_uevent); 711 712 static void ap_send_mask_changed_uevent(unsigned long *newapm, 713 unsigned long *newaqm) 714 { 715 char buf[100]; 716 char *envp[] = { buf, NULL }; 717 718 if (newapm) 719 snprintf(buf, sizeof(buf), 720 "APMASK=0x%016lx%016lx%016lx%016lx\n", 721 newapm[0], newapm[1], newapm[2], newapm[3]); 722 else 723 snprintf(buf, sizeof(buf), 724 "AQMASK=0x%016lx%016lx%016lx%016lx\n", 725 newaqm[0], newaqm[1], newaqm[2], newaqm[3]); 726 727 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp); 728 } 729 730 /* 731 * calc # of bound APQNs 732 */ 733 734 struct __ap_calc_ctrs { 735 unsigned int apqns; 736 unsigned int bound; 737 }; 738 739 static int __ap_calc_helper(struct device *dev, void *arg) 740 { 741 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg; 742 743 if (is_queue_dev(dev)) { 744 pctrs->apqns++; 745 if (dev->driver) 746 pctrs->bound++; 747 } 748 749 return 0; 750 } 751 752 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound) 753 { 754 struct __ap_calc_ctrs ctrs; 755 756 memset(&ctrs, 0, sizeof(ctrs)); 757 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper); 758 759 *apqns = ctrs.apqns; 760 *bound = ctrs.bound; 761 } 762 763 /* 764 * After initial ap bus scan do check if all existing APQNs are 765 * bound to device drivers. 766 */ 767 static void ap_check_bindings_complete(void) 768 { 769 unsigned int apqns, bound; 770 771 if (atomic64_read(&ap_scan_bus_count) >= 1) { 772 ap_calc_bound_apqns(&apqns, &bound); 773 if (bound == apqns) { 774 if (!completion_done(&ap_init_apqn_bindings_complete)) { 775 complete_all(&ap_init_apqn_bindings_complete); 776 AP_DBF_INFO("%s complete\n", __func__); 777 } 778 ap_send_bindings_complete_uevent(); 779 } 780 } 781 } 782 783 /* 784 * Interface to wait for the AP bus to have done one initial ap bus 785 * scan and all detected APQNs have been bound to device drivers. 786 * If these both conditions are not fulfilled, this function blocks 787 * on a condition with wait_for_completion_interruptible_timeout(). 788 * If these both conditions are fulfilled (before the timeout hits) 789 * the return value is 0. If the timeout (in jiffies) hits instead 790 * -ETIME is returned. On failures negative return values are 791 * returned to the caller. 792 */ 793 int ap_wait_init_apqn_bindings_complete(unsigned long timeout) 794 { 795 long l; 796 797 if (completion_done(&ap_init_apqn_bindings_complete)) 798 return 0; 799 800 if (timeout) 801 l = wait_for_completion_interruptible_timeout( 802 &ap_init_apqn_bindings_complete, timeout); 803 else 804 l = wait_for_completion_interruptible( 805 &ap_init_apqn_bindings_complete); 806 if (l < 0) 807 return l == -ERESTARTSYS ? -EINTR : l; 808 else if (l == 0 && timeout) 809 return -ETIME; 810 811 return 0; 812 } 813 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete); 814 815 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data) 816 { 817 if (is_queue_dev(dev) && 818 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data) 819 device_unregister(dev); 820 return 0; 821 } 822 823 static int __ap_revise_reserved(struct device *dev, void *dummy) 824 { 825 int rc, card, queue, devres, drvres; 826 827 if (is_queue_dev(dev)) { 828 card = AP_QID_CARD(to_ap_queue(dev)->qid); 829 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 830 mutex_lock(&ap_perms_mutex); 831 devres = test_bit_inv(card, ap_perms.apm) && 832 test_bit_inv(queue, ap_perms.aqm); 833 mutex_unlock(&ap_perms_mutex); 834 drvres = to_ap_drv(dev->driver)->flags 835 & AP_DRIVER_FLAG_DEFAULT; 836 if (!!devres != !!drvres) { 837 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n", 838 __func__, card, queue); 839 rc = device_reprobe(dev); 840 if (rc) 841 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n", 842 __func__, card, queue); 843 } 844 } 845 846 return 0; 847 } 848 849 static void ap_bus_revise_bindings(void) 850 { 851 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved); 852 } 853 854 /** 855 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the 856 * default host driver or not. 857 * @card: the APID of the adapter card to check 858 * @queue: the APQI of the queue to check 859 * 860 * Note: the ap_perms_mutex must be locked by the caller of this function. 861 * 862 * Return: an int specifying whether the AP adapter is reserved for the host (1) 863 * or not (0). 864 */ 865 int ap_owned_by_def_drv(int card, int queue) 866 { 867 int rc = 0; 868 869 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS) 870 return -EINVAL; 871 872 if (test_bit_inv(card, ap_perms.apm) && 873 test_bit_inv(queue, ap_perms.aqm)) 874 rc = 1; 875 876 return rc; 877 } 878 EXPORT_SYMBOL(ap_owned_by_def_drv); 879 880 /** 881 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in 882 * a set is reserved for the host drivers 883 * or not. 884 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check 885 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check 886 * 887 * Note: the ap_perms_mutex must be locked by the caller of this function. 888 * 889 * Return: an int specifying whether each APQN is reserved for the host (1) or 890 * not (0) 891 */ 892 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm, 893 unsigned long *aqm) 894 { 895 int card, queue, rc = 0; 896 897 for (card = 0; !rc && card < AP_DEVICES; card++) 898 if (test_bit_inv(card, apm) && 899 test_bit_inv(card, ap_perms.apm)) 900 for (queue = 0; !rc && queue < AP_DOMAINS; queue++) 901 if (test_bit_inv(queue, aqm) && 902 test_bit_inv(queue, ap_perms.aqm)) 903 rc = 1; 904 905 return rc; 906 } 907 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv); 908 909 static int ap_device_probe(struct device *dev) 910 { 911 struct ap_device *ap_dev = to_ap_dev(dev); 912 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 913 int card, queue, devres, drvres, rc = -ENODEV; 914 915 if (!get_device(dev)) 916 return rc; 917 918 if (is_queue_dev(dev)) { 919 /* 920 * If the apqn is marked as reserved/used by ap bus and 921 * default drivers, only probe with drivers with the default 922 * flag set. If it is not marked, only probe with drivers 923 * with the default flag not set. 924 */ 925 card = AP_QID_CARD(to_ap_queue(dev)->qid); 926 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid); 927 mutex_lock(&ap_perms_mutex); 928 devres = test_bit_inv(card, ap_perms.apm) && 929 test_bit_inv(queue, ap_perms.aqm); 930 mutex_unlock(&ap_perms_mutex); 931 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT; 932 if (!!devres != !!drvres) 933 goto out; 934 } 935 936 /* Add queue/card to list of active queues/cards */ 937 spin_lock_bh(&ap_queues_lock); 938 if (is_queue_dev(dev)) 939 hash_add(ap_queues, &to_ap_queue(dev)->hnode, 940 to_ap_queue(dev)->qid); 941 spin_unlock_bh(&ap_queues_lock); 942 943 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV; 944 945 if (rc) { 946 spin_lock_bh(&ap_queues_lock); 947 if (is_queue_dev(dev)) 948 hash_del(&to_ap_queue(dev)->hnode); 949 spin_unlock_bh(&ap_queues_lock); 950 } else { 951 ap_check_bindings_complete(); 952 } 953 954 out: 955 if (rc) 956 put_device(dev); 957 return rc; 958 } 959 960 static void ap_device_remove(struct device *dev) 961 { 962 struct ap_device *ap_dev = to_ap_dev(dev); 963 struct ap_driver *ap_drv = to_ap_drv(dev->driver); 964 965 /* prepare ap queue device removal */ 966 if (is_queue_dev(dev)) 967 ap_queue_prepare_remove(to_ap_queue(dev)); 968 969 /* driver's chance to clean up gracefully */ 970 if (ap_drv->remove) 971 ap_drv->remove(ap_dev); 972 973 /* now do the ap queue device remove */ 974 if (is_queue_dev(dev)) 975 ap_queue_remove(to_ap_queue(dev)); 976 977 /* Remove queue/card from list of active queues/cards */ 978 spin_lock_bh(&ap_queues_lock); 979 if (is_queue_dev(dev)) 980 hash_del(&to_ap_queue(dev)->hnode); 981 spin_unlock_bh(&ap_queues_lock); 982 983 put_device(dev); 984 } 985 986 struct ap_queue *ap_get_qdev(ap_qid_t qid) 987 { 988 int bkt; 989 struct ap_queue *aq; 990 991 spin_lock_bh(&ap_queues_lock); 992 hash_for_each(ap_queues, bkt, aq, hnode) { 993 if (aq->qid == qid) { 994 get_device(&aq->ap_dev.device); 995 spin_unlock_bh(&ap_queues_lock); 996 return aq; 997 } 998 } 999 spin_unlock_bh(&ap_queues_lock); 1000 1001 return NULL; 1002 } 1003 EXPORT_SYMBOL(ap_get_qdev); 1004 1005 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner, 1006 char *name) 1007 { 1008 struct device_driver *drv = &ap_drv->driver; 1009 1010 drv->bus = &ap_bus_type; 1011 drv->owner = owner; 1012 drv->name = name; 1013 return driver_register(drv); 1014 } 1015 EXPORT_SYMBOL(ap_driver_register); 1016 1017 void ap_driver_unregister(struct ap_driver *ap_drv) 1018 { 1019 driver_unregister(&ap_drv->driver); 1020 } 1021 EXPORT_SYMBOL(ap_driver_unregister); 1022 1023 void ap_bus_force_rescan(void) 1024 { 1025 /* Only trigger AP bus scans after the initial scan is done */ 1026 if (atomic64_read(&ap_scan_bus_count) <= 0) 1027 return; 1028 1029 /* processing a asynchronous bus rescan */ 1030 del_timer(&ap_config_timer); 1031 queue_work(system_long_wq, &ap_scan_work); 1032 flush_work(&ap_scan_work); 1033 } 1034 EXPORT_SYMBOL(ap_bus_force_rescan); 1035 1036 /* 1037 * A config change has happened, force an ap bus rescan. 1038 */ 1039 void ap_bus_cfg_chg(void) 1040 { 1041 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__); 1042 1043 ap_bus_force_rescan(); 1044 } 1045 1046 /* 1047 * hex2bitmap() - parse hex mask string and set bitmap. 1048 * Valid strings are "0x012345678" with at least one valid hex number. 1049 * Rest of the bitmap to the right is padded with 0. No spaces allowed 1050 * within the string, the leading 0x may be omitted. 1051 * Returns the bitmask with exactly the bits set as given by the hex 1052 * string (both in big endian order). 1053 */ 1054 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits) 1055 { 1056 int i, n, b; 1057 1058 /* bits needs to be a multiple of 8 */ 1059 if (bits & 0x07) 1060 return -EINVAL; 1061 1062 if (str[0] == '0' && str[1] == 'x') 1063 str++; 1064 if (*str == 'x') 1065 str++; 1066 1067 for (i = 0; isxdigit(*str) && i < bits; str++) { 1068 b = hex_to_bin(*str); 1069 for (n = 0; n < 4; n++) 1070 if (b & (0x08 >> n)) 1071 set_bit_inv(i + n, bitmap); 1072 i += 4; 1073 } 1074 1075 if (*str == '\n') 1076 str++; 1077 if (*str) 1078 return -EINVAL; 1079 return 0; 1080 } 1081 1082 /* 1083 * modify_bitmap() - parse bitmask argument and modify an existing 1084 * bit mask accordingly. A concatenation (done with ',') of these 1085 * terms is recognized: 1086 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>] 1087 * <bitnr> may be any valid number (hex, decimal or octal) in the range 1088 * 0...bits-1; the leading + or - is required. Here are some examples: 1089 * +0-15,+32,-128,-0xFF 1090 * -0-255,+1-16,+0x128 1091 * +1,+2,+3,+4,-5,-7-10 1092 * Returns the new bitmap after all changes have been applied. Every 1093 * positive value in the string will set a bit and every negative value 1094 * in the string will clear a bit. As a bit may be touched more than once, 1095 * the last 'operation' wins: 1096 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be 1097 * cleared again. All other bits are unmodified. 1098 */ 1099 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits) 1100 { 1101 int a, i, z; 1102 char *np, sign; 1103 1104 /* bits needs to be a multiple of 8 */ 1105 if (bits & 0x07) 1106 return -EINVAL; 1107 1108 while (*str) { 1109 sign = *str++; 1110 if (sign != '+' && sign != '-') 1111 return -EINVAL; 1112 a = z = simple_strtoul(str, &np, 0); 1113 if (str == np || a >= bits) 1114 return -EINVAL; 1115 str = np; 1116 if (*str == '-') { 1117 z = simple_strtoul(++str, &np, 0); 1118 if (str == np || a > z || z >= bits) 1119 return -EINVAL; 1120 str = np; 1121 } 1122 for (i = a; i <= z; i++) 1123 if (sign == '+') 1124 set_bit_inv(i, bitmap); 1125 else 1126 clear_bit_inv(i, bitmap); 1127 while (*str == ',' || *str == '\n') 1128 str++; 1129 } 1130 1131 return 0; 1132 } 1133 1134 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits, 1135 unsigned long *newmap) 1136 { 1137 unsigned long size; 1138 int rc; 1139 1140 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1141 if (*str == '+' || *str == '-') { 1142 memcpy(newmap, bitmap, size); 1143 rc = modify_bitmap(str, newmap, bits); 1144 } else { 1145 memset(newmap, 0, size); 1146 rc = hex2bitmap(str, newmap, bits); 1147 } 1148 return rc; 1149 } 1150 1151 int ap_parse_mask_str(const char *str, 1152 unsigned long *bitmap, int bits, 1153 struct mutex *lock) 1154 { 1155 unsigned long *newmap, size; 1156 int rc; 1157 1158 /* bits needs to be a multiple of 8 */ 1159 if (bits & 0x07) 1160 return -EINVAL; 1161 1162 size = BITS_TO_LONGS(bits) * sizeof(unsigned long); 1163 newmap = kmalloc(size, GFP_KERNEL); 1164 if (!newmap) 1165 return -ENOMEM; 1166 if (mutex_lock_interruptible(lock)) { 1167 kfree(newmap); 1168 return -ERESTARTSYS; 1169 } 1170 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap); 1171 if (rc == 0) 1172 memcpy(bitmap, newmap, size); 1173 mutex_unlock(lock); 1174 kfree(newmap); 1175 return rc; 1176 } 1177 EXPORT_SYMBOL(ap_parse_mask_str); 1178 1179 /* 1180 * AP bus attributes. 1181 */ 1182 1183 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf) 1184 { 1185 return sysfs_emit(buf, "%d\n", ap_domain_index); 1186 } 1187 1188 static ssize_t ap_domain_store(const struct bus_type *bus, 1189 const char *buf, size_t count) 1190 { 1191 int domain; 1192 1193 if (sscanf(buf, "%i\n", &domain) != 1 || 1194 domain < 0 || domain > ap_max_domain_id || 1195 !test_bit_inv(domain, ap_perms.aqm)) 1196 return -EINVAL; 1197 1198 spin_lock_bh(&ap_domain_lock); 1199 ap_domain_index = domain; 1200 spin_unlock_bh(&ap_domain_lock); 1201 1202 AP_DBF_INFO("%s stored new default domain=%d\n", 1203 __func__, domain); 1204 1205 return count; 1206 } 1207 1208 static BUS_ATTR_RW(ap_domain); 1209 1210 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf) 1211 { 1212 if (!ap_qci_info) /* QCI not supported */ 1213 return sysfs_emit(buf, "not supported\n"); 1214 1215 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1216 ap_qci_info->adm[0], ap_qci_info->adm[1], 1217 ap_qci_info->adm[2], ap_qci_info->adm[3], 1218 ap_qci_info->adm[4], ap_qci_info->adm[5], 1219 ap_qci_info->adm[6], ap_qci_info->adm[7]); 1220 } 1221 1222 static BUS_ATTR_RO(ap_control_domain_mask); 1223 1224 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf) 1225 { 1226 if (!ap_qci_info) /* QCI not supported */ 1227 return sysfs_emit(buf, "not supported\n"); 1228 1229 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1230 ap_qci_info->aqm[0], ap_qci_info->aqm[1], 1231 ap_qci_info->aqm[2], ap_qci_info->aqm[3], 1232 ap_qci_info->aqm[4], ap_qci_info->aqm[5], 1233 ap_qci_info->aqm[6], ap_qci_info->aqm[7]); 1234 } 1235 1236 static BUS_ATTR_RO(ap_usage_domain_mask); 1237 1238 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf) 1239 { 1240 if (!ap_qci_info) /* QCI not supported */ 1241 return sysfs_emit(buf, "not supported\n"); 1242 1243 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n", 1244 ap_qci_info->apm[0], ap_qci_info->apm[1], 1245 ap_qci_info->apm[2], ap_qci_info->apm[3], 1246 ap_qci_info->apm[4], ap_qci_info->apm[5], 1247 ap_qci_info->apm[6], ap_qci_info->apm[7]); 1248 } 1249 1250 static BUS_ATTR_RO(ap_adapter_mask); 1251 1252 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf) 1253 { 1254 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0); 1255 } 1256 1257 static BUS_ATTR_RO(ap_interrupts); 1258 1259 static ssize_t config_time_show(const struct bus_type *bus, char *buf) 1260 { 1261 return sysfs_emit(buf, "%d\n", ap_config_time); 1262 } 1263 1264 static ssize_t config_time_store(const struct bus_type *bus, 1265 const char *buf, size_t count) 1266 { 1267 int time; 1268 1269 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120) 1270 return -EINVAL; 1271 ap_config_time = time; 1272 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 1273 return count; 1274 } 1275 1276 static BUS_ATTR_RW(config_time); 1277 1278 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf) 1279 { 1280 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0); 1281 } 1282 1283 static ssize_t poll_thread_store(const struct bus_type *bus, 1284 const char *buf, size_t count) 1285 { 1286 bool value; 1287 int rc; 1288 1289 rc = kstrtobool(buf, &value); 1290 if (rc) 1291 return rc; 1292 1293 if (value) { 1294 rc = ap_poll_thread_start(); 1295 if (rc) 1296 count = rc; 1297 } else { 1298 ap_poll_thread_stop(); 1299 } 1300 return count; 1301 } 1302 1303 static BUS_ATTR_RW(poll_thread); 1304 1305 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf) 1306 { 1307 return sysfs_emit(buf, "%lu\n", poll_high_timeout); 1308 } 1309 1310 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf, 1311 size_t count) 1312 { 1313 unsigned long value; 1314 ktime_t hr_time; 1315 int rc; 1316 1317 rc = kstrtoul(buf, 0, &value); 1318 if (rc) 1319 return rc; 1320 1321 /* 120 seconds = maximum poll interval */ 1322 if (value > 120000000000UL) 1323 return -EINVAL; 1324 poll_high_timeout = value; 1325 hr_time = poll_high_timeout; 1326 1327 spin_lock_bh(&ap_poll_timer_lock); 1328 hrtimer_cancel(&ap_poll_timer); 1329 hrtimer_set_expires(&ap_poll_timer, hr_time); 1330 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS); 1331 spin_unlock_bh(&ap_poll_timer_lock); 1332 1333 return count; 1334 } 1335 1336 static BUS_ATTR_RW(poll_timeout); 1337 1338 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf) 1339 { 1340 return sysfs_emit(buf, "%d\n", ap_max_domain_id); 1341 } 1342 1343 static BUS_ATTR_RO(ap_max_domain_id); 1344 1345 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf) 1346 { 1347 return sysfs_emit(buf, "%d\n", ap_max_adapter_id); 1348 } 1349 1350 static BUS_ATTR_RO(ap_max_adapter_id); 1351 1352 static ssize_t apmask_show(const struct bus_type *bus, char *buf) 1353 { 1354 int rc; 1355 1356 if (mutex_lock_interruptible(&ap_perms_mutex)) 1357 return -ERESTARTSYS; 1358 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1359 ap_perms.apm[0], ap_perms.apm[1], 1360 ap_perms.apm[2], ap_perms.apm[3]); 1361 mutex_unlock(&ap_perms_mutex); 1362 1363 return rc; 1364 } 1365 1366 static int __verify_card_reservations(struct device_driver *drv, void *data) 1367 { 1368 int rc = 0; 1369 struct ap_driver *ap_drv = to_ap_drv(drv); 1370 unsigned long *newapm = (unsigned long *)data; 1371 1372 /* 1373 * increase the driver's module refcounter to be sure it is not 1374 * going away when we invoke the callback function. 1375 */ 1376 if (!try_module_get(drv->owner)) 1377 return 0; 1378 1379 if (ap_drv->in_use) { 1380 rc = ap_drv->in_use(newapm, ap_perms.aqm); 1381 if (rc) 1382 rc = -EBUSY; 1383 } 1384 1385 /* release the driver's module */ 1386 module_put(drv->owner); 1387 1388 return rc; 1389 } 1390 1391 static int apmask_commit(unsigned long *newapm) 1392 { 1393 int rc; 1394 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)]; 1395 1396 /* 1397 * Check if any bits in the apmask have been set which will 1398 * result in queues being removed from non-default drivers 1399 */ 1400 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) { 1401 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1402 __verify_card_reservations); 1403 if (rc) 1404 return rc; 1405 } 1406 1407 memcpy(ap_perms.apm, newapm, APMASKSIZE); 1408 1409 return 0; 1410 } 1411 1412 static ssize_t apmask_store(const struct bus_type *bus, const char *buf, 1413 size_t count) 1414 { 1415 int rc, changes = 0; 1416 DECLARE_BITMAP(newapm, AP_DEVICES); 1417 1418 if (mutex_lock_interruptible(&ap_perms_mutex)) 1419 return -ERESTARTSYS; 1420 1421 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm); 1422 if (rc) 1423 goto done; 1424 1425 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE); 1426 if (changes) 1427 rc = apmask_commit(newapm); 1428 1429 done: 1430 mutex_unlock(&ap_perms_mutex); 1431 if (rc) 1432 return rc; 1433 1434 if (changes) { 1435 ap_bus_revise_bindings(); 1436 ap_send_mask_changed_uevent(newapm, NULL); 1437 } 1438 1439 return count; 1440 } 1441 1442 static BUS_ATTR_RW(apmask); 1443 1444 static ssize_t aqmask_show(const struct bus_type *bus, char *buf) 1445 { 1446 int rc; 1447 1448 if (mutex_lock_interruptible(&ap_perms_mutex)) 1449 return -ERESTARTSYS; 1450 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n", 1451 ap_perms.aqm[0], ap_perms.aqm[1], 1452 ap_perms.aqm[2], ap_perms.aqm[3]); 1453 mutex_unlock(&ap_perms_mutex); 1454 1455 return rc; 1456 } 1457 1458 static int __verify_queue_reservations(struct device_driver *drv, void *data) 1459 { 1460 int rc = 0; 1461 struct ap_driver *ap_drv = to_ap_drv(drv); 1462 unsigned long *newaqm = (unsigned long *)data; 1463 1464 /* 1465 * increase the driver's module refcounter to be sure it is not 1466 * going away when we invoke the callback function. 1467 */ 1468 if (!try_module_get(drv->owner)) 1469 return 0; 1470 1471 if (ap_drv->in_use) { 1472 rc = ap_drv->in_use(ap_perms.apm, newaqm); 1473 if (rc) 1474 rc = -EBUSY; 1475 } 1476 1477 /* release the driver's module */ 1478 module_put(drv->owner); 1479 1480 return rc; 1481 } 1482 1483 static int aqmask_commit(unsigned long *newaqm) 1484 { 1485 int rc; 1486 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)]; 1487 1488 /* 1489 * Check if any bits in the aqmask have been set which will 1490 * result in queues being removed from non-default drivers 1491 */ 1492 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) { 1493 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved, 1494 __verify_queue_reservations); 1495 if (rc) 1496 return rc; 1497 } 1498 1499 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE); 1500 1501 return 0; 1502 } 1503 1504 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf, 1505 size_t count) 1506 { 1507 int rc, changes = 0; 1508 DECLARE_BITMAP(newaqm, AP_DOMAINS); 1509 1510 if (mutex_lock_interruptible(&ap_perms_mutex)) 1511 return -ERESTARTSYS; 1512 1513 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm); 1514 if (rc) 1515 goto done; 1516 1517 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE); 1518 if (changes) 1519 rc = aqmask_commit(newaqm); 1520 1521 done: 1522 mutex_unlock(&ap_perms_mutex); 1523 if (rc) 1524 return rc; 1525 1526 if (changes) { 1527 ap_bus_revise_bindings(); 1528 ap_send_mask_changed_uevent(NULL, newaqm); 1529 } 1530 1531 return count; 1532 } 1533 1534 static BUS_ATTR_RW(aqmask); 1535 1536 static ssize_t scans_show(const struct bus_type *bus, char *buf) 1537 { 1538 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count)); 1539 } 1540 1541 static ssize_t scans_store(const struct bus_type *bus, const char *buf, 1542 size_t count) 1543 { 1544 AP_DBF_INFO("%s force AP bus rescan\n", __func__); 1545 1546 ap_bus_force_rescan(); 1547 1548 return count; 1549 } 1550 1551 static BUS_ATTR_RW(scans); 1552 1553 static ssize_t bindings_show(const struct bus_type *bus, char *buf) 1554 { 1555 int rc; 1556 unsigned int apqns, n; 1557 1558 ap_calc_bound_apqns(&apqns, &n); 1559 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns) 1560 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns); 1561 else 1562 rc = sysfs_emit(buf, "%u/%u\n", n, apqns); 1563 1564 return rc; 1565 } 1566 1567 static BUS_ATTR_RO(bindings); 1568 1569 static ssize_t features_show(const struct bus_type *bus, char *buf) 1570 { 1571 int n = 0; 1572 1573 if (!ap_qci_info) /* QCI not supported */ 1574 return sysfs_emit(buf, "-\n"); 1575 1576 if (ap_qci_info->apsc) 1577 n += sysfs_emit_at(buf, n, "APSC "); 1578 if (ap_qci_info->apxa) 1579 n += sysfs_emit_at(buf, n, "APXA "); 1580 if (ap_qci_info->qact) 1581 n += sysfs_emit_at(buf, n, "QACT "); 1582 if (ap_qci_info->rc8a) 1583 n += sysfs_emit_at(buf, n, "RC8A "); 1584 if (ap_qci_info->apsb) 1585 n += sysfs_emit_at(buf, n, "APSB "); 1586 1587 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n"); 1588 1589 return n; 1590 } 1591 1592 static BUS_ATTR_RO(features); 1593 1594 static struct attribute *ap_bus_attrs[] = { 1595 &bus_attr_ap_domain.attr, 1596 &bus_attr_ap_control_domain_mask.attr, 1597 &bus_attr_ap_usage_domain_mask.attr, 1598 &bus_attr_ap_adapter_mask.attr, 1599 &bus_attr_config_time.attr, 1600 &bus_attr_poll_thread.attr, 1601 &bus_attr_ap_interrupts.attr, 1602 &bus_attr_poll_timeout.attr, 1603 &bus_attr_ap_max_domain_id.attr, 1604 &bus_attr_ap_max_adapter_id.attr, 1605 &bus_attr_apmask.attr, 1606 &bus_attr_aqmask.attr, 1607 &bus_attr_scans.attr, 1608 &bus_attr_bindings.attr, 1609 &bus_attr_features.attr, 1610 NULL, 1611 }; 1612 ATTRIBUTE_GROUPS(ap_bus); 1613 1614 static struct bus_type ap_bus_type = { 1615 .name = "ap", 1616 .bus_groups = ap_bus_groups, 1617 .match = &ap_bus_match, 1618 .uevent = &ap_uevent, 1619 .probe = ap_device_probe, 1620 .remove = ap_device_remove, 1621 }; 1622 1623 /** 1624 * ap_select_domain(): Select an AP domain if possible and we haven't 1625 * already done so before. 1626 */ 1627 static void ap_select_domain(void) 1628 { 1629 struct ap_queue_status status; 1630 int card, dom; 1631 1632 /* 1633 * Choose the default domain. Either the one specified with 1634 * the "domain=" parameter or the first domain with at least 1635 * one valid APQN. 1636 */ 1637 spin_lock_bh(&ap_domain_lock); 1638 if (ap_domain_index >= 0) { 1639 /* Domain has already been selected. */ 1640 goto out; 1641 } 1642 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1643 if (!ap_test_config_usage_domain(dom) || 1644 !test_bit_inv(dom, ap_perms.aqm)) 1645 continue; 1646 for (card = 0; card <= ap_max_adapter_id; card++) { 1647 if (!ap_test_config_card_id(card) || 1648 !test_bit_inv(card, ap_perms.apm)) 1649 continue; 1650 status = ap_test_queue(AP_MKQID(card, dom), 1651 ap_apft_available(), 1652 NULL); 1653 if (status.response_code == AP_RESPONSE_NORMAL) 1654 break; 1655 } 1656 if (card <= ap_max_adapter_id) 1657 break; 1658 } 1659 if (dom <= ap_max_domain_id) { 1660 ap_domain_index = dom; 1661 AP_DBF_INFO("%s new default domain is %d\n", 1662 __func__, ap_domain_index); 1663 } 1664 out: 1665 spin_unlock_bh(&ap_domain_lock); 1666 } 1667 1668 /* 1669 * This function checks the type and returns either 0 for not 1670 * supported or the highest compatible type value (which may 1671 * include the input type value). 1672 */ 1673 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func) 1674 { 1675 int comp_type = 0; 1676 1677 /* < CEX4 is not supported */ 1678 if (rawtype < AP_DEVICE_TYPE_CEX4) { 1679 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n", 1680 __func__, AP_QID_CARD(qid), 1681 AP_QID_QUEUE(qid), rawtype); 1682 return 0; 1683 } 1684 /* up to CEX8 known and fully supported */ 1685 if (rawtype <= AP_DEVICE_TYPE_CEX8) 1686 return rawtype; 1687 /* 1688 * unknown new type > CEX8, check for compatibility 1689 * to the highest known and supported type which is 1690 * currently CEX8 with the help of the QACT function. 1691 */ 1692 if (ap_qact_available()) { 1693 struct ap_queue_status status; 1694 union ap_qact_ap_info apinfo = {0}; 1695 1696 apinfo.mode = (func >> 26) & 0x07; 1697 apinfo.cat = AP_DEVICE_TYPE_CEX8; 1698 status = ap_qact(qid, 0, &apinfo); 1699 if (status.response_code == AP_RESPONSE_NORMAL && 1700 apinfo.cat >= AP_DEVICE_TYPE_CEX4 && 1701 apinfo.cat <= AP_DEVICE_TYPE_CEX8) 1702 comp_type = apinfo.cat; 1703 } 1704 if (!comp_type) 1705 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n", 1706 __func__, AP_QID_CARD(qid), 1707 AP_QID_QUEUE(qid), rawtype); 1708 else if (comp_type != rawtype) 1709 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n", 1710 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid), 1711 rawtype, comp_type); 1712 return comp_type; 1713 } 1714 1715 /* 1716 * Helper function to be used with bus_find_dev 1717 * matches for the card device with the given id 1718 */ 1719 static int __match_card_device_with_id(struct device *dev, const void *data) 1720 { 1721 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data; 1722 } 1723 1724 /* 1725 * Helper function to be used with bus_find_dev 1726 * matches for the queue device with a given qid 1727 */ 1728 static int __match_queue_device_with_qid(struct device *dev, const void *data) 1729 { 1730 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data; 1731 } 1732 1733 /* 1734 * Helper function to be used with bus_find_dev 1735 * matches any queue device with given queue id 1736 */ 1737 static int __match_queue_device_with_queue_id(struct device *dev, const void *data) 1738 { 1739 return is_queue_dev(dev) && 1740 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data; 1741 } 1742 1743 /* Helper function for notify_config_changed */ 1744 static int __drv_notify_config_changed(struct device_driver *drv, void *data) 1745 { 1746 struct ap_driver *ap_drv = to_ap_drv(drv); 1747 1748 if (try_module_get(drv->owner)) { 1749 if (ap_drv->on_config_changed) 1750 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old); 1751 module_put(drv->owner); 1752 } 1753 1754 return 0; 1755 } 1756 1757 /* Notify all drivers about an qci config change */ 1758 static inline void notify_config_changed(void) 1759 { 1760 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1761 __drv_notify_config_changed); 1762 } 1763 1764 /* Helper function for notify_scan_complete */ 1765 static int __drv_notify_scan_complete(struct device_driver *drv, void *data) 1766 { 1767 struct ap_driver *ap_drv = to_ap_drv(drv); 1768 1769 if (try_module_get(drv->owner)) { 1770 if (ap_drv->on_scan_complete) 1771 ap_drv->on_scan_complete(ap_qci_info, 1772 ap_qci_info_old); 1773 module_put(drv->owner); 1774 } 1775 1776 return 0; 1777 } 1778 1779 /* Notify all drivers about bus scan complete */ 1780 static inline void notify_scan_complete(void) 1781 { 1782 bus_for_each_drv(&ap_bus_type, NULL, NULL, 1783 __drv_notify_scan_complete); 1784 } 1785 1786 /* 1787 * Helper function for ap_scan_bus(). 1788 * Remove card device and associated queue devices. 1789 */ 1790 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac) 1791 { 1792 bus_for_each_dev(&ap_bus_type, NULL, 1793 (void *)(long)ac->id, 1794 __ap_queue_devices_with_id_unregister); 1795 device_unregister(&ac->ap_dev.device); 1796 } 1797 1798 /* 1799 * Helper function for ap_scan_bus(). 1800 * Does the scan bus job for all the domains within 1801 * a valid adapter given by an ap_card ptr. 1802 */ 1803 static inline void ap_scan_domains(struct ap_card *ac) 1804 { 1805 int rc, dom, depth, type, ml; 1806 bool decfg, chkstop; 1807 struct ap_queue *aq; 1808 struct device *dev; 1809 unsigned int func; 1810 ap_qid_t qid; 1811 1812 /* 1813 * Go through the configuration for the domains and compare them 1814 * to the existing queue devices. Also take care of the config 1815 * and error state for the queue devices. 1816 */ 1817 1818 for (dom = 0; dom <= ap_max_domain_id; dom++) { 1819 qid = AP_MKQID(ac->id, dom); 1820 dev = bus_find_device(&ap_bus_type, NULL, 1821 (void *)(long)qid, 1822 __match_queue_device_with_qid); 1823 aq = dev ? to_ap_queue(dev) : NULL; 1824 if (!ap_test_config_usage_domain(dom)) { 1825 if (dev) { 1826 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n", 1827 __func__, ac->id, dom); 1828 device_unregister(dev); 1829 } 1830 goto put_dev_and_continue; 1831 } 1832 /* domain is valid, get info from this APQN */ 1833 rc = ap_queue_info(qid, &type, &func, &depth, 1834 &ml, &decfg, &chkstop); 1835 switch (rc) { 1836 case -1: 1837 if (dev) { 1838 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n", 1839 __func__, ac->id, dom); 1840 device_unregister(dev); 1841 } 1842 fallthrough; 1843 case 0: 1844 goto put_dev_and_continue; 1845 default: 1846 break; 1847 } 1848 /* if no queue device exists, create a new one */ 1849 if (!aq) { 1850 aq = ap_queue_create(qid, ac->ap_dev.device_type); 1851 if (!aq) { 1852 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n", 1853 __func__, ac->id, dom); 1854 continue; 1855 } 1856 aq->card = ac; 1857 aq->config = !decfg; 1858 aq->chkstop = chkstop; 1859 dev = &aq->ap_dev.device; 1860 dev->bus = &ap_bus_type; 1861 dev->parent = &ac->ap_dev.device; 1862 dev_set_name(dev, "%02x.%04x", ac->id, dom); 1863 /* register queue device */ 1864 rc = device_register(dev); 1865 if (rc) { 1866 AP_DBF_WARN("%s(%d,%d) device_register() failed\n", 1867 __func__, ac->id, dom); 1868 goto put_dev_and_continue; 1869 } 1870 /* get it and thus adjust reference counter */ 1871 get_device(dev); 1872 if (decfg) { 1873 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n", 1874 __func__, ac->id, dom); 1875 } else if (chkstop) { 1876 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n", 1877 __func__, ac->id, dom); 1878 } else { 1879 /* nudge the queue's state machine */ 1880 ap_queue_init_state(aq); 1881 AP_DBF_INFO("%s(%d,%d) new queue dev created\n", 1882 __func__, ac->id, dom); 1883 } 1884 goto put_dev_and_continue; 1885 } 1886 /* handle state changes on already existing queue device */ 1887 spin_lock_bh(&aq->lock); 1888 /* checkstop state */ 1889 if (chkstop && !aq->chkstop) { 1890 /* checkstop on */ 1891 aq->chkstop = true; 1892 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1893 aq->dev_state = AP_DEV_STATE_ERROR; 1894 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED; 1895 } 1896 spin_unlock_bh(&aq->lock); 1897 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n", 1898 __func__, ac->id, dom); 1899 /* 'receive' pending messages with -EAGAIN */ 1900 ap_flush_queue(aq); 1901 goto put_dev_and_continue; 1902 } else if (!chkstop && aq->chkstop) { 1903 /* checkstop off */ 1904 aq->chkstop = false; 1905 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1906 _ap_queue_init_state(aq); 1907 spin_unlock_bh(&aq->lock); 1908 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n", 1909 __func__, ac->id, dom); 1910 goto put_dev_and_continue; 1911 } 1912 /* config state change */ 1913 if (decfg && aq->config) { 1914 /* config off this queue device */ 1915 aq->config = false; 1916 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { 1917 aq->dev_state = AP_DEV_STATE_ERROR; 1918 aq->last_err_rc = AP_RESPONSE_DECONFIGURED; 1919 } 1920 spin_unlock_bh(&aq->lock); 1921 AP_DBF_DBG("%s(%d,%d) queue dev config off\n", 1922 __func__, ac->id, dom); 1923 ap_send_config_uevent(&aq->ap_dev, aq->config); 1924 /* 'receive' pending messages with -EAGAIN */ 1925 ap_flush_queue(aq); 1926 goto put_dev_and_continue; 1927 } else if (!decfg && !aq->config) { 1928 /* config on this queue device */ 1929 aq->config = true; 1930 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) 1931 _ap_queue_init_state(aq); 1932 spin_unlock_bh(&aq->lock); 1933 AP_DBF_DBG("%s(%d,%d) queue dev config on\n", 1934 __func__, ac->id, dom); 1935 ap_send_config_uevent(&aq->ap_dev, aq->config); 1936 goto put_dev_and_continue; 1937 } 1938 /* handle other error states */ 1939 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) { 1940 spin_unlock_bh(&aq->lock); 1941 /* 'receive' pending messages with -EAGAIN */ 1942 ap_flush_queue(aq); 1943 /* re-init (with reset) the queue device */ 1944 ap_queue_init_state(aq); 1945 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n", 1946 __func__, ac->id, dom); 1947 goto put_dev_and_continue; 1948 } 1949 spin_unlock_bh(&aq->lock); 1950 put_dev_and_continue: 1951 put_device(dev); 1952 } 1953 } 1954 1955 /* 1956 * Helper function for ap_scan_bus(). 1957 * Does the scan bus job for the given adapter id. 1958 */ 1959 static inline void ap_scan_adapter(int ap) 1960 { 1961 int rc, dom, depth, type, comp_type, ml; 1962 bool decfg, chkstop; 1963 struct ap_card *ac; 1964 struct device *dev; 1965 unsigned int func; 1966 ap_qid_t qid; 1967 1968 /* Is there currently a card device for this adapter ? */ 1969 dev = bus_find_device(&ap_bus_type, NULL, 1970 (void *)(long)ap, 1971 __match_card_device_with_id); 1972 ac = dev ? to_ap_card(dev) : NULL; 1973 1974 /* Adapter not in configuration ? */ 1975 if (!ap_test_config_card_id(ap)) { 1976 if (ac) { 1977 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n", 1978 __func__, ap); 1979 ap_scan_rm_card_dev_and_queue_devs(ac); 1980 put_device(dev); 1981 } 1982 return; 1983 } 1984 1985 /* 1986 * Adapter ap is valid in the current configuration. So do some checks: 1987 * If no card device exists, build one. If a card device exists, check 1988 * for type and functions changed. For all this we need to find a valid 1989 * APQN first. 1990 */ 1991 1992 for (dom = 0; dom <= ap_max_domain_id; dom++) 1993 if (ap_test_config_usage_domain(dom)) { 1994 qid = AP_MKQID(ap, dom); 1995 if (ap_queue_info(qid, &type, &func, &depth, 1996 &ml, &decfg, &chkstop) > 0) 1997 break; 1998 } 1999 if (dom > ap_max_domain_id) { 2000 /* Could not find one valid APQN for this adapter */ 2001 if (ac) { 2002 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n", 2003 __func__, ap); 2004 ap_scan_rm_card_dev_and_queue_devs(ac); 2005 put_device(dev); 2006 } else { 2007 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n", 2008 __func__, ap); 2009 } 2010 return; 2011 } 2012 if (!type) { 2013 /* No apdater type info available, an unusable adapter */ 2014 if (ac) { 2015 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n", 2016 __func__, ap); 2017 ap_scan_rm_card_dev_and_queue_devs(ac); 2018 put_device(dev); 2019 } else { 2020 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n", 2021 __func__, ap); 2022 } 2023 return; 2024 } 2025 if (ac) { 2026 /* Check APQN against existing card device for changes */ 2027 if (ac->raw_hwtype != type) { 2028 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n", 2029 __func__, ap, type); 2030 ap_scan_rm_card_dev_and_queue_devs(ac); 2031 put_device(dev); 2032 ac = NULL; 2033 } else if ((ac->functions & TAPQ_CARD_FUNC_CMP_MASK) != 2034 (func & TAPQ_CARD_FUNC_CMP_MASK)) { 2035 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n", 2036 __func__, ap, func); 2037 ap_scan_rm_card_dev_and_queue_devs(ac); 2038 put_device(dev); 2039 ac = NULL; 2040 } else { 2041 /* handle checkstop state change */ 2042 if (chkstop && !ac->chkstop) { 2043 /* checkstop on */ 2044 ac->chkstop = true; 2045 AP_DBF_INFO("%s(%d) card dev checkstop on\n", 2046 __func__, ap); 2047 } else if (!chkstop && ac->chkstop) { 2048 /* checkstop off */ 2049 ac->chkstop = false; 2050 AP_DBF_INFO("%s(%d) card dev checkstop off\n", 2051 __func__, ap); 2052 } 2053 /* handle config state change */ 2054 if (decfg && ac->config) { 2055 ac->config = false; 2056 AP_DBF_INFO("%s(%d) card dev config off\n", 2057 __func__, ap); 2058 ap_send_config_uevent(&ac->ap_dev, ac->config); 2059 } else if (!decfg && !ac->config) { 2060 ac->config = true; 2061 AP_DBF_INFO("%s(%d) card dev config on\n", 2062 __func__, ap); 2063 ap_send_config_uevent(&ac->ap_dev, ac->config); 2064 } 2065 } 2066 } 2067 2068 if (!ac) { 2069 /* Build a new card device */ 2070 comp_type = ap_get_compatible_type(qid, type, func); 2071 if (!comp_type) { 2072 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n", 2073 __func__, ap, type); 2074 return; 2075 } 2076 ac = ap_card_create(ap, depth, type, comp_type, func, ml); 2077 if (!ac) { 2078 AP_DBF_WARN("%s(%d) ap_card_create() failed\n", 2079 __func__, ap); 2080 return; 2081 } 2082 ac->config = !decfg; 2083 ac->chkstop = chkstop; 2084 dev = &ac->ap_dev.device; 2085 dev->bus = &ap_bus_type; 2086 dev->parent = ap_root_device; 2087 dev_set_name(dev, "card%02x", ap); 2088 /* maybe enlarge ap_max_msg_size to support this card */ 2089 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) { 2090 atomic_set(&ap_max_msg_size, ac->maxmsgsize); 2091 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n", 2092 __func__, ap, 2093 atomic_read(&ap_max_msg_size)); 2094 } 2095 /* Register the new card device with AP bus */ 2096 rc = device_register(dev); 2097 if (rc) { 2098 AP_DBF_WARN("%s(%d) device_register() failed\n", 2099 __func__, ap); 2100 put_device(dev); 2101 return; 2102 } 2103 /* get it and thus adjust reference counter */ 2104 get_device(dev); 2105 if (decfg) 2106 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n", 2107 __func__, ap, type, func); 2108 else if (chkstop) 2109 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n", 2110 __func__, ap, type, func); 2111 else 2112 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n", 2113 __func__, ap, type, func); 2114 } 2115 2116 /* Verify the domains and the queue devices for this card */ 2117 ap_scan_domains(ac); 2118 2119 /* release the card device */ 2120 put_device(&ac->ap_dev.device); 2121 } 2122 2123 /** 2124 * ap_get_configuration - get the host AP configuration 2125 * 2126 * Stores the host AP configuration information returned from the previous call 2127 * to Query Configuration Information (QCI), then retrieves and stores the 2128 * current AP configuration returned from QCI. 2129 * 2130 * Return: true if the host AP configuration changed between calls to QCI; 2131 * otherwise, return false. 2132 */ 2133 static bool ap_get_configuration(void) 2134 { 2135 if (!ap_qci_info) /* QCI not supported */ 2136 return false; 2137 2138 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info)); 2139 ap_fetch_qci_info(ap_qci_info); 2140 2141 return memcmp(ap_qci_info, ap_qci_info_old, 2142 sizeof(struct ap_config_info)) != 0; 2143 } 2144 2145 /** 2146 * ap_scan_bus(): Scan the AP bus for new devices 2147 * Runs periodically, workqueue timer (ap_config_time) 2148 * @unused: Unused pointer. 2149 */ 2150 static void ap_scan_bus(struct work_struct *unused) 2151 { 2152 int ap, config_changed = 0; 2153 2154 /* config change notify */ 2155 config_changed = ap_get_configuration(); 2156 if (config_changed) 2157 notify_config_changed(); 2158 ap_select_domain(); 2159 2160 AP_DBF_DBG("%s running\n", __func__); 2161 2162 /* loop over all possible adapters */ 2163 for (ap = 0; ap <= ap_max_adapter_id; ap++) 2164 ap_scan_adapter(ap); 2165 2166 /* scan complete notify */ 2167 if (config_changed) 2168 notify_scan_complete(); 2169 2170 /* check if there is at least one queue available with default domain */ 2171 if (ap_domain_index >= 0) { 2172 struct device *dev = 2173 bus_find_device(&ap_bus_type, NULL, 2174 (void *)(long)ap_domain_index, 2175 __match_queue_device_with_queue_id); 2176 if (dev) 2177 put_device(dev); 2178 else 2179 AP_DBF_INFO("%s no queue device with default domain %d available\n", 2180 __func__, ap_domain_index); 2181 } 2182 2183 if (atomic64_inc_return(&ap_scan_bus_count) == 1) { 2184 AP_DBF_DBG("%s init scan complete\n", __func__); 2185 ap_send_init_scan_done_uevent(); 2186 ap_check_bindings_complete(); 2187 } 2188 2189 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ); 2190 } 2191 2192 static void ap_config_timeout(struct timer_list *unused) 2193 { 2194 queue_work(system_long_wq, &ap_scan_work); 2195 } 2196 2197 static int __init ap_debug_init(void) 2198 { 2199 ap_dbf_info = debug_register("ap", 2, 1, 2200 DBF_MAX_SPRINTF_ARGS * sizeof(long)); 2201 debug_register_view(ap_dbf_info, &debug_sprintf_view); 2202 debug_set_level(ap_dbf_info, DBF_ERR); 2203 2204 return 0; 2205 } 2206 2207 static void __init ap_perms_init(void) 2208 { 2209 /* all resources usable if no kernel parameter string given */ 2210 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm)); 2211 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm)); 2212 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm)); 2213 2214 /* apm kernel parameter string */ 2215 if (apm_str) { 2216 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm)); 2217 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES, 2218 &ap_perms_mutex); 2219 } 2220 2221 /* aqm kernel parameter string */ 2222 if (aqm_str) { 2223 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm)); 2224 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS, 2225 &ap_perms_mutex); 2226 } 2227 } 2228 2229 /** 2230 * ap_module_init(): The module initialization code. 2231 * 2232 * Initializes the module. 2233 */ 2234 static int __init ap_module_init(void) 2235 { 2236 int rc; 2237 2238 rc = ap_debug_init(); 2239 if (rc) 2240 return rc; 2241 2242 if (!ap_instructions_available()) { 2243 pr_warn("The hardware system does not support AP instructions\n"); 2244 return -ENODEV; 2245 } 2246 2247 /* init ap_queue hashtable */ 2248 hash_init(ap_queues); 2249 2250 /* set up the AP permissions (ioctls, ap and aq masks) */ 2251 ap_perms_init(); 2252 2253 /* Get AP configuration data if available */ 2254 ap_init_qci_info(); 2255 2256 /* check default domain setting */ 2257 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id || 2258 (ap_domain_index >= 0 && 2259 !test_bit_inv(ap_domain_index, ap_perms.aqm))) { 2260 pr_warn("%d is not a valid cryptographic domain\n", 2261 ap_domain_index); 2262 ap_domain_index = -1; 2263 } 2264 2265 /* enable interrupts if available */ 2266 if (ap_interrupts_available() && ap_useirq) { 2267 rc = register_adapter_interrupt(&ap_airq); 2268 ap_irq_flag = (rc == 0); 2269 } 2270 2271 /* Create /sys/bus/ap. */ 2272 rc = bus_register(&ap_bus_type); 2273 if (rc) 2274 goto out; 2275 2276 /* Create /sys/devices/ap. */ 2277 ap_root_device = root_device_register("ap"); 2278 rc = PTR_ERR_OR_ZERO(ap_root_device); 2279 if (rc) 2280 goto out_bus; 2281 ap_root_device->bus = &ap_bus_type; 2282 2283 /* Setup the AP bus rescan timer. */ 2284 timer_setup(&ap_config_timer, ap_config_timeout, 0); 2285 2286 /* 2287 * Setup the high resolution poll timer. 2288 * If we are running under z/VM adjust polling to z/VM polling rate. 2289 */ 2290 if (MACHINE_IS_VM) 2291 poll_high_timeout = 1500000; 2292 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2293 ap_poll_timer.function = ap_poll_timeout; 2294 2295 /* Start the low priority AP bus poll thread. */ 2296 if (ap_thread_flag) { 2297 rc = ap_poll_thread_start(); 2298 if (rc) 2299 goto out_work; 2300 } 2301 2302 queue_work(system_long_wq, &ap_scan_work); 2303 2304 return 0; 2305 2306 out_work: 2307 hrtimer_cancel(&ap_poll_timer); 2308 root_device_unregister(ap_root_device); 2309 out_bus: 2310 bus_unregister(&ap_bus_type); 2311 out: 2312 if (ap_irq_flag) 2313 unregister_adapter_interrupt(&ap_airq); 2314 kfree(ap_qci_info); 2315 return rc; 2316 } 2317 device_initcall(ap_module_init); 2318